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Osteoarthritis (OA) is a highly prevalent age-relatedmusculoskeletal disorder that

typically results in chronic pain and disability. OA is a multifactorial disease, with

increased oxidative stress, dysregulated inflammatory response, and impaired

matrix metabolism contributing to its onset and progression. The neurohormone

melatonin, primarily synthesized by the pineal gland, has emerged as a promising

therapeutic agent for OA due to its potential to alleviate inflammation, oxidative

stress, and chondrocyte death with minimal adverse effects. The present review

provides a comprehensive summary of the current understanding regarding

melatonin as a promising pharmaceutical agent for the treatment of OA, along

with an exploration of various delivery systems that can be utilized for melatonin

administration. These findings may provide novel therapeutic strategies and

targets for inhibiting the advancement of OA.
KEYWORDS

osteoarthritis, melatonin, inflammation, oxidative stress, chondrocyte death,
delivery systems
1 Introduction

Osteoarthritis (OA) is a prevalent age-related irreversible musculoskeletal disorder,

recognized as a primary cause of chronic pain and disability. It is characterized by

persistent synovitis, progressive degradation of articular cartilage, secondary formation

of osteophytes, and remodeling of subchondral bone (1–3). The pathogenesis of OA is

influenced by a myriad of risk factors, encompassing age, obesity, gender, genetic

predisposition, and joint injuries (4). As a refractory condition, OA can not only give

rise to localized symptoms such as pain, joint deformity, and joint dysfunction but also

coexist with comorbidities including diabetes, cardiac ailments, and mental health

disorders, which significantly augments the likelihood of serious adverse events (5). The

global prevalence of OA stands at approximately 7% of the world’s population, equating to

around 500 million individuals, and the number continues to rise due to the worldwide

obesity epidemic and the aging demographic (6, 7). The high incidence of adverse effects
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and the rapid increase in the prevalence of OA impose a substantial

financial burden on society, families, and individuals, while also

posing a significant threat to public health (8, 9).

The main pathological characteristics of OA include the loss of

chondrocytes, degradation of the cartilage matrix, and synovitis,

ultimately leading to terminal OA (10). The treatment for OA

involves halting the loss of chondrocytes, promoting the production

of cartilage matrix, and reducing synovitis. A wide range of

therapeutic approaches have been employed for the treatment of

OA, including minimally invasive surgery, conventional surgical

procedures, muscle strengthening exercises, physiotherapy

interventions, sodium hyaluronate injections, corticosteroids

administration, and nonsteroidal anti-inflammatory drugs

(NSAIDs) (11, 12). Furthermore, several emerging therapeutic

strategies have demonstrated promising initial outcomes,

including the transplantation of autologous chondrocytes, and the

intra-articular administration of platelet-rich plasma and

mesenchymal stem cells (MSCs) (13–15). Unfortunately, current

therapies for individuals with OA yield unsatisfactory outcomes due

to the lack of effective interventions to impede chondrocyte loss and

articular cartilage deterioration (16). The investigation of novel

therapeutic targets for this intricate disease is thus imperative.

The endogenous indole hormone melatonin is primarily secreted

in the pineal gland, synthesized from tryptophan through a series of

derivative reactions (17). The release of melatonin into the circulation

of cerebrospinal fluid and bloodstream facilitates its subsequent

delivery to distant organs and tissues to regulate inflammation,

provide antioxidant protection, inhibit tumor growth, and promote

anti-aging effects (18–21). The findings of multiple studies have

demonstrated that melatonin exerts a protective effect against the

development of OA through mechanisms such as inflammation

reduction, elimination of excess free radicals, and promotion of

matrix synthesis (22). Consequently, the potential clinical

application of melatonin characterized by minimal adverse effects,

holds great promise as a viable strategy for the treatment of OA. The

intra-articular injection of melatonin is an optimal choice due to the

absence of lymphatic and circulatory networks in hyaline cartilage.

However, due to the short half-life of melatonin, it is necessary to

administer injections as frequently as twice a week (23). To minimize

the frequency of intra-articular injection, several delivery systems

have been employed for the sustained release of melatonin. The

present review provides an overview of the therapeutic advantages

and delivery systems of melatonin in the progression of OA. These

findings may offer a comprehensive understanding of forthcoming

studies on melatonin-based treatment for OA.
2 The role of oxidative stress,
inflammation, and chondrocyte
death in OA

2.1 Oxidative stress in OA

The imbalance between oxidation and antioxidants leads to

oxidative stress (24). Reactive oxygen species (ROS), which are
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byproducts generated during aerobic metabolism, are unstable and

reactive molecules such as superoxide anion (O2
-), hydroxyl radical

(OH-), hydrogen peroxide and (H2O2). The catalysis of ROS occurs

in peroxisomes and mitochondria through the action of Nitric

Oxide Synthase (NOS), Xanthine Oxidase (XO), NADPH oxidases

(NOXs) (25). Under physiological conditions, O2
- is the most

abundant type of ROS, with the majority being generated by

mitochondria. Mitochondria, known as the “powerhouse” of

eukaryotic cells, convert nutrient molecules into adenosine

triphosphate (ATP) through oxidative phosphorylation (26).

Although the conventional consensus posits that chondrocytes

derive their energy through anaerobic glycolysis in an oxygen-

deprived environment, the ample oxygen supply on the surface area

of articular cartilage fosters conducive conditions for aerobic

respiration (27, 28). The respiratory chain, located in the inner

membrane of mitochondria, is widely recognized as the primary

source of ROS and generates approximately 2%–3% of O2
- as a

byproduct during oxidative phosphorylation (29). Additionally,

mitochondria play a crucial role in regulating the synthesis of

antioxidant systems such as NADH/NAD+, NADPH/NADP+,

and GSH/GSSG. In pathological conditions, however,

mitochondrial homeostasis is disrupted, leading to an excessive

generation of O2
-. Excessive production of O2

- leads to

mitochondrial dysfunction by reducing the membrane potential

of mitochondria and causing damage to mitochondrial DNA

(mtDNA), thereby amplifying the generation of O2
-. Not only

does H2O2 originate from XO during the conversion of

hypoxanthine to xanthine, but it can also be generated from O2
-

upon activation of superoxide dismutase (SOD). Reactive nitrogen

species (RNS) encompass a group of reactive molecules derived

from O2
- and NO, which are accountable for inducing nitrosative

stress that contributes to cellular damage. Endothelial NOS (eNOS),

neuronal NOS (nNOS), and inducible NOS (iNOS) represent three

distinct isoforms of nitric oxide synthase. The production of NO is

attributed to the activity of three NOSs, namely nNOS, eNOS, and

iNOS. While nNOS and eNOS generate NO at a significantly low

level, iNOS induced by inflammatory cytokines such as interleukin-

1b (IL-1b), IL-17, and tumor necrosis factor a (TNFa) exhibits a
relatively high output of NO (30, 31).

The cells possess antioxidant defense mechanisms comprising

both enzymatic and non-enzymatic components to counteract the

heightened production of ROS and prevent cellular dysfunction.

The non-enzymatic system comprises ascorbic acid (vitamin C), a-
tocopherol (vitamin E), and glutathione (GSH), while the enzymatic

component consists of SOD, catalase (CAT), glutathione peroxidase

(GPX), peroxiredoxins (PRXS), and NADPH ubiquinone

oxidoreductase (NQO1) (32). The SODs, comprising three

isoforms including cytosolic SOD (SOD1), mitochondrial SOD

(SOD2), and extracellular SOD (SOD3), effectively eliminate ROS

by converting O2
- to H2O2. Subsequently, the accumulated H2O2 is

further converted to H2O through the actions of GPX, PRXS, and

CATs (33–35). The presence of GSH is crucial for maintaining

cellular redox potential and antioxidant defenses, as it serves as a

significant reductant. GPX plays a vital role in preventing the

oxidation of membrane lipids by converting H2O2 to H2O

through the oxidation of GSH to GSSH (35). The downregulation
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of antioxidant system proteins, including SOD, CAT, and GPX, has

been observed in both in vivo and in vitro studies of OA joints (36).

When the production of ROS exceeds the scavenging capacity of the

antioxidant system or the low activity of the antioxidant defense

system, the cell is in a condition of oxidative stress which is

characterized by an imbalance of oxidation and antioxidant state

(37). The pathogenesis of numerous age-related disorders has been

strongly associated with oxidative stress, which also serves as a

pivotal contributor to the progression of OA (38–41).

The maintenance of cellular function and homeostasis

necessitates a physiological level of ROS, however, excessive ROS

induced by pathological processes can oxidize macromolecules such

as mtDNA, genomic DNA, proteins, and lipids, thereby impairing

essential cellular processes (Figure 1) (42–44). Investigations have

documented that ROS-induced macromolecule compromise,

including that of genomic, mtDNA, and lipids, results in synovitis

worsening, extracellular matrix (ECM) degradation, and

chondrocyte death, such as apoptosis and ferroptosis (45, 46).

The increased level of ROS in cartilage and chondrocytes can be

attributed to variations in oxygen pressure, mechanical stress, as

well as the presence of inflammatory mediators such as IL-1, IL-17,

and TNF-a (29, 47). The upregulation of ROS levels in the

chondrocytes of individuals with OA have been demonstrated by

numerous studies (45, 48). The most predominant ROS found in

OA cartilages and chondrocytes are O2
- and H2O2. Excessive

generation of O2
- can activate the transcription factor NF-kB,

subsequently leading to elevated levels of cytokines, chemokines,

and iNOS (49). Meanwhile, the cartilages and chondrocytes of

individuals affected by OA also exhibit an excessive production of
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NO and its derivative (50). The anabolism of proteoglycans is

hindered by abnormal levels of H2O2 and NO, thereby impeding

the production of cartilage matrix (51). In addition, studies have

demonstrated that exposure of chondrocytes to pro-oxidants such

as H2O2, tert-butyl hydroperoxide (TBHP), and menadione

disrupts cellular redox equilibrium and induces oxidative stress,

thereby leading to increased inflammation, apoptosis, and

ferroptosis (52, 53). Moreover, oxidative stress accelerates

telomere shortening and impairs chondrocyte replication

capacity, thereby promoting chondrocyte senescence (39). A

significant contributing factor to OA is the senescence of

chondrocytes, which compromises the redox balance of

mitochondria and leads to an increased production of ROS,

which can result in the oxidation of genomic and mtDNA (54–

56). Consequently, this oxidative damage can accelerate

chondrocyte senescence and impede chondrocyte proliferation

(57, 58). Taken collectively, these studies demonstrate that

oxidative stress induced by excessive production of ROS under

various adverse conditions promotes the degradation of cartilage,

hinders ECM synthesis, and induces chondrocyte senescence and

death. All these effects contribute to the progression of OA.

Consequently, developing therapeutic interventions targeting

detrimental ROS may hold promise for OA treatment.
2.2 Inflammation in OA

A fundamental defensive response to an infection stimulated by

microorganisms or antigens is inflammation, which is mediated by
FIGURE 1

The excessive ROS caused by various pathologic processes can oxidize macromolecules including mitochondrial DNA (mtDNA), genomic, proteins,
and lipids to accelerate OA.
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the host immune system. The short-term, regulated inflammation

contributes to tissue defense and repair, whereas the long-term,

aberrant inflammation leads to tissue damage and cell death. The

pathophysiology of several human diseases, such as diabetes,

obesity, cancer, neurological diseases, and autoimmune diseases,

are significantly influenced by chronic inflammation (59). It is well

established that inflamed synovium is now recognized as a prevalent

indicator of OA. To maintain the proper functioning of articular

cartilage, the synovium produces synovial fluid containing

hyaluronic acid and lubricin. It has been observed that patients in

advanced stages of OA exhibit elevated levels of chemokines and

proinflammatory cytokines in their synovial fluid (60, 61). The

degeneration of cartilage and the exacerbation of synovitis are both

attributed to the overexpression of prostaglandins, leukotrienes,

chemokines, and cytokines in the synovium (62). Generally,

chondrocytes are typically situated in an anaerobic environment,

which helps maintain the articular cartilage in a state of low

metabolic activity and limited turnover synthesis of ECM.

However, under pathological conditions, chondrocytes

overproduce chemokines and cytokines that enhance the levels of

collagenases and aggrecanases, thereby disrupting the delicate

balance between anabolism and catabolism in articular cartilage

and leading to erosion of ECM (63). Further investigations have

revealed that the elevation of cytokine levels in joints plays a pivotal

role in the pathogenesis of OA by regulating oxidative stress and

chondrocyte death (64). Consequently, targeting anti-inflammatory

strategies hold significant potential for the treatment of OA.

The three most prominently expressed cytokines in patients

with OA are IL-1, IL-6, and TNF-a, which are produced by

macrophages, chondrocytes, and fibroblast-like synoviocytes,

which play a significant role in the degenerative process of OA

(29). Other cytokines, such as IL-17, IL-18, CXCL5, RANTES, and

MCP1, have also been demonstrated to serve as key regulators in

the pathogenesis of OA (65, 66). Intra-articular injections of either

TNF-a or IL-1 into the knee joints have been demonstrated to

expedite the progression of OA, with their combined effects further

exacerbating this impact (29). The expression of catabolic genes

such as COX-2, IL-6, iNOS, a disintegrin and metalloproteinase

with thrombospondin motifs (ADAMTSs), and matrix

metalloproteases (MMPs) was found upregulated in chondrocytes

stimulated with IL-1 and TNF-a, while the expression of anabolic

genes including collagen II and aggrecan was downregulated (67–

69). The aberrant expression of iNOS induced by inflammatory

cytokines enhances the expression of NO, thereby increasing the

level of IL-1b and TNF-a to aggravate inflammation through

activation of the NF-kB pathway (70). It is well established that

MMPs and ADAMTSs are responsible for the degradation of

collagen and aggrecan, respectively (71, 72). The pro-

inflammatory cytokines TNF-a and IL-1 could inhibit the

function of complex I, membrane potential, and lead to mtDNA

damage, therefore contributing to mitochondrial dysfunction in

human chondrocytes (28). It has been reported that the production

of functionally compromised respiratory chain subunits was indued

by mtDNA damage and mutations, thereby increasing the levels of

ROS in chondrocytes (73). The impaired mitochondrial

bioenergetics and increased inflammatory response ultimately
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contribute to chondrocyte death (73). Treatment of chondrocytes

with inflammatory cytokines such as IL-1 and TNF-a led to a

significantly elevated level of IL-6 and MMP-13 (74–76).

Additionally, the administration of IL-6 through intra-articular

injection in mouse knee joints promoted the destruction of

articular cartilage (77). Therefore, these findings indicate that

inflammatory cytokines are involved in perturbing the

homeostasis of articular cartilage to involve the development of

OA, and the stability of the inflammatory microenvironment is

responsible for determining the function of joints.
2.3 Chondrocyte death in OA

Cell death plays a vital role in maintaining homeostasis and the

developing of the body by eliminating senescent cells and shaping

tissue during embryologic development. Additionally, cell death is

an aberrant pathological phenomenon triggered by detrimental

stimuli such as infections and injuries (78). The sole cell type

found in articular cartilage, chondrocytes, are intricately

embedded within the ECM and play a vital role in maintaining

ECM homeostasis by regulating anabolic and catabolic processes, as

well as repairing the damaged cartilages in OA. Therefore, the loss

of chondrocytes may accelerate the remodeling of ECM, leading to

abnormal structure of ECM and articular cartilage degeneration,

thereby potentially hastening the progression of OA. Consequently,

strategies to protect from the degeneration of articular cartilage can

be developed by understanding the molecular mechanism of

chondrocyte death. According to the regulation of involved

processes, chondrocyte death can be categorized into non-

programmed and programmed forms. Autophagy, pyroptosis,

ferroptosis, and necroptosis are all examples of programmed cell

death (PCD), while necrosis is a form of non-programmed cell

death (non-PCD) that occurs due to chemical or physical

stimulation under extreme conditions (79, 80).

Autophagy is a crucial cellular process responsible for the

elimination of misfolded proteins, damaged organelles, and

intracellular pathogens to maintain cellular homeostasis (81–83).

Autophagy can be categorized into three distinct types, including

macroautophagy, microautophagy, and chaperone-mediated

autophagy. Macroautophagy, commonly known as autophagy,

involves the formation of bilayer membranes derived from the

endoplasmic reticulum (ER) and intracellular components that

encapsulate proteins and organelles, and eventually fuse with

lysosomes to form autophagolysosomes (84, 85). Lysosomes

contain a high concentration of hydrolytic enzymes that are

capable of breaking down various substrates, including damaged

macromolecules and organelles. The autophagy process consists of

several consecutive phases, namely initiation, phagophore or

nucleation maturation, membrane elongation, sequestering the

target substrate and autophagosome formation, lysosome fusion,

and substrate degradation (86–88). The autophagy process is

regulated by approximately 40 autophagy-related genes, with the

majority of ATG functioning in complexes to regulate autophagy

through various signaling pathways (86, 89). Autophagy serves as a

defense mechanism for maintaining intracellular homeostasis,
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operating at a basal level under normal conditions to eliminate aging-

related damaged organelles and misfolded proteins (90). Autophagy

can also be triggered by extreme conditions, such as external pressure,

limited nutrient availability, hypoxia, and endoplasmic reticulum

stress (ERS). The upregulation of autophagy-related proteins,

including Unc-51-like kinase 1 (ULK1), LC3, and beclin-1, has

been confirmed in human chondrocytes, however, the levels of

these proteins decline in the aging population (91). The insufficient

level of autophagy fails to effectively eliminate damaged organelles

and macromolecules, leading to the disruption of chondrocyte

homeostasis and ultimately resulting in OA (92). Therefore, the

age-related decline in autophagy is a contributing factor to the

deterioration of articular chondrocytes, thereby being associated

with the occurrence and progression of OA.

Apoptosis, a tightly regulated mechanism of cell death, is

indispensable for maintaining tissue homeostasis and ensuring the

proper functioning of the human body. Morphological characteristics

associated with cell apoptosis include DNA fragmentation, chromatin

condensation, cell shrinkage, membrane blistering, and the formation

of apoptotic bodies (93). Previous studies have shown that chondrocyte

apoptosis is related to articular cartilage degradation (94). The intrinsic

mitochondrial pathway and the extrinsic death receptor pathway are

two well-established signaling pathways for apoptosis (79). External

stimuli induce an increase in mitochondrial membrane permeability,

facilitating the release of apoptotic factors such as cytochrome C and

procaspases into the cytoplasm, thereby triggering activation of the

mitochondrial pathway (95, 96). Under normal circumstances,

damaged or depolarized mitochondria are selectively eliminated

through autophagy to prevent cellular damage caused by

dysfunctional mitochondria, which is commonly referred to as

mitophagy (97, 98). The insufficient clearance of dysfunctional

mitochondria through mitophagy leads to the release of apoptotic

factors into the cytoplasm and subsequent initiation of apoptosis. This

process is further exacerbated by the excessive production of ROS (99).

The chondrocytes exhibited impaired autophagy and excessive

apoptosis during the later stages of OA. Moreover, the essential anti-

apoptotic proteins, such as Bcl2 and Bcl-XL, can suppress autophagy by

binding to the key regulators of autophagy Beclin 1, thereby inhibiting

the formation of the Beclin 1 complex. The apoptosis appears to be

intricately linked with autophagy. The relationship between apoptosis

and autophagy in chondrocytes remains incompletely understood,

necessitating further investigation for confirmation.

The different forms of cell death are classified as lytic or non-lytic

based on whether the cellular contents overflow upon cell death (100).

Pyroptosis, also referred to as inflammatory necrosis, is a specific form

of lytic cell death primarily triggered by diverse inflammasomes. These

inflammasomes, such as the NLR family pyrin domain containing 3

(NLRP3), assemble in the cytosol and activate caspase to cleave

gasdermins, generating membrane toxic enzymes that contribute to

the formation of cell membrane perforation (101). The influx of water

into the cytosol triggers a progressive swelling of cells, ultimately leading

to membrane rupture. This event results in the release of cellular debris

and cytokines, which not only impair neighboring cells but also

exacerbate inflammation (102–104). Pyroptosis, similar to apoptosis,

is a form of caspase-dependent PCD. Pyroptosis consists primarily of

two pathways, including the non-canonical pathway and the canonical
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inflammasome pathway (105). The non-canonical inflammasome

pathway is mediated by caspases 4, 5, and 11, whereas the canonical

inflammasome pathway is mediated by caspase-1. Pyroptosis has been

implicated in the pathogenesis of various diseases, including respiratory,

circulatory, digestive, and urinary tract disorders since its original

proposal in 2001 (106–109). The involvement of chondrocyte

pyroptosis in the pathogenesis of OA has been experimentally

validated (110). In addition to being commonly associated with OA,

obesity, age, and basic calcium phosphate (BCP) also possess the ability

to activate the NLRP3 inflammasome, thereby triggering chondrocyte

pyroptosis (80). The expression of pyroptosis-related inflammasomes is

upregulated in the synovial fluid of individuals affected by OA.

Moreover, overexpression of inflammasomes enhances the levels of

inflammatory factors such as IL-1b and IL-18, both contributing to

chondrocyte pyroptosis and inflammatory responses (80). Additionally,

the suppression of OA deterioration can be achieved by inhibiting the

NLRP3 inflammasome with CY-09 (111).

Initially proposed by Stockwell’s team in 2012, ferroptosis

represents a distinct form of PCD (112). In contrast to

autophagy, apoptosis, and pyroptosis, ferroptosis is an iron-

dependent PCD characterized by unique morphological features

including mitochondrial structural disruption and accumulation of

lipid peroxides (113). The distinguishing features of ferroptosis

from other PCDs primarily lie in the morphological changes

observed in mitochondria, such as reduction or disappearance of

mitochondrial cristae, decrease in mitochondrial volume, and

rupture of the outer membrane (114). Iron-ion plays a crucial

role in the process of ferroptosis, as it facilitates the generation of

abundant ROS through the Fenton reaction, consequently leading

to the formation of lipid peroxides (115). The accumulation of lipid

peroxides ultimately contributes to an increase in membrane

permeability and subsequent cell membrane rupture, resulting in

cell death. Under normal circumstances, the essential antioxidant

defense system known as glutathione peroxidase 4 (GPX4)

effectively prevents the buildup of lipid peroxides, thereby

mitigating ferroptosis (53, 116). The level of iron ion in the

cartilage synovial fluid of the OA group has been found to be

significantly higher in vivo, while the level of GPX4 is lower

compared to that in the normal group (53). Furthermore,

ferroptosis can enhance the upregulation of MMP13 and

downregulation of collagen II, thereby exacerbating ECM

degradation (113). A growing body of studies has demonstrated

that ferroptosis plays a significant role in the pathogenesis of OA

(117, 118). The occurrence of other forms of cell death, such as

cuproptosis, in addition to the previously discussed chondrocyte

death, is also closely associated with the onset of OA (94, 119).

3 Melatonin targeting oxidative stress,
inflammation, and chondrocytes
death in OA

3.1 Melatonin

The fat-soluble indole hormone melatonin (N-acetyl-5-

methoxytryptamine) was initially isolated by Aaron B. Lerner and
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colleagues in 1958 (120). The synthesis of melatonin in mammals

primarily occurs in the pineal gland, although it is also secreted by

non-pineal cells and tissues such as lymphocytes, platelets,

megakaryocytes, retina, ovary, testis, liver, and skin. These

extrapineal sources of melatonin function in an autocrine or

paracrine manner (121, 122). The production of melatonin

exhibits a distinct circadian rhythm, being synthesized

predominantly during the night and suppressed during the day

(123). Melatonin is biosynthesized through a complex enzymatic

pathway originating from the essential amino acid tryptophan

under the catalytic action of a series of enzymes (124). Melatonin

is rapidly delivered to its targeted cells or organelles via the

bloodstream or cerebrospinal fluid upon production (125). Once

integrated with the target, melatonin exerts a diverse range of

physiological effects through both receptor-dependent and

receptor-independent pathways (126, 127). The melatonin

receptors 1 (MT1) and melatonin receptor 2 (MT2) are G-

protein-coupled receptors that are localized on both the

mitochondria and the cell membrane. In addition, there is a

cytosolic melatonin receptor 3 (MT3) found in several species but

absent in humans. Furthermore, nuclear binding receptors such as

retinoid acid-related orphan receptors (RORs)/RZR also function as

receptors that melatonin targets (128, 129). The production of MT1

and MT2, which respectively regulate rapid eye movement sleep

and non-rapid eye movement sleep, can be synchronized by

melatonin in physiological sleep to regulate circadian rhythms

(130). In addition to targeting MT1 and MT2 receptors for

circadian rhythm modulation, melatonin also interacts with
Frontiers in Immunology 06
nuclear receptors such as RORs to modulate the circadian rhythm

(131). Alongside regulating circadian rhythms, the binding of

melatonin to MT1 and MT2 receptors enhances the expression of

silent information regulator 1 (SIRT1) while inhibiting the

phosphorylation of p38 and JNK MAPKs, thereby facilitating cell

survival (132). Moreover, melatonin acts as an effective scavenger of

free radicals by activating antioxidant enzymes and reducing the

damaged cellular macromolecules and organelles through a

receptor-independent pathway (133–135). The latest research has

demonstrated that melatonin exerts a mitigating effect on

inflammation, oxidative stress, and chondrocyte death in order to

prevent cartilage destruction and further deterioration of OA, and

the effects of melatonin on animals are listed in Table 1.
3.2 Melatonin as an inhibitor of
oxidative stress

The hydrophilic and lipophilic properties of melatonin enable it

to traverse all biological barriers, exerting an antioxidative impact

on the cytosol, mitochondria, and cellular membrane (146, 147).

Melatonin not only directly scavenges free radicals, but also

enhances the activity of antioxidant enzymes such as SOD, CAT,

and GPX to effectively inhibit oxidative stress (135, 148–150)

(Figure 2). The nuclear factor-erythroid 2-related factor 2 (Nrf2)

functions as a crucial transcription factor for antioxidant defense.

Melatonin acts as an effective antioxidant, regulating the

homeostasis of the cartilage matrix through the Nrf2 signaling
TABLE 1 A list of reports studying the effect of melatonin on animal.

Animal Model Treatment Effect Reference

Twelve-week-old male
Sprague-Dawley rats

DMM Intraarticular injection 100 mL MT (10 mg/mL) for
one month

Prevents Cartilage Degrada -tion in DMM-
induced OA

Zhou
et al. (136)

Seven-week-old male
Sprague-Dawley rats

DMM Intraarticular injection 100 mL MT (10 mg/mL)
once a week for twelve weeks.

Recharges of chondrocyte mitochondria to
protect ca- rtilage matrix homeostasis

Zhang
et al. (137)

Sprague-Dawley rats
(weight 210±20 g)

ACLT Intraarticular injection 10 mg/kg or 20 mg/kg MT
(10 mg/mL) once a wee for one month.

Inhibites matrix metallopr- oteinasesa in a
concentration -dependent manner

Zhao
et al. (138)

Eight-week-old male
Sprague–Dawley rats

Intraarticular
injection
collagenase

Subcutaneous injection 10 mg/kg MT (10 mg/mL)
twice daily for one month

Downregulates the levels of MMP-13 and
upregulates the expression of COL2A1.

Hong
et al. (139)

Five-month-old male
Sprague–Dawley rats

ACLT Intraperitoneal injection 20 mg/kg or 60 mg/kg MT
(10 mg/mL) once daily for six weeks

Abolishes proinflammatory factor expression in
a conc- entration -dependent manner

Liu et al. (140)

Nine-week-old male
C57BL/6J mice

DMM Intraarticular injection 10 mL MT (10 mg/mL) twice
a week for one month.

Prevents Cartilage Degradat -ion in DMM-
induced OA

Zhang
et al. (141)

Six–seven month-old
female New Zealand

white rabbits

ACLT Intraarticular injection 20 mg/kg
MT weekly for one month.

Anti-inflammatory effects to ameliorate OA Lim
et al. (142)

Eight-week-old female
C57BL/6 mice

ACLT Intraarticular injection 10 µL MT (50 mM) twice a
week for eight weeks

Exerts protective effect on chondrocytes against
inflammatory damage

Liang
et al. (143)

Eight-week-old male
Sprague-Dawley rats

DMM Intraperitoneal injection (15mg/k- g ) or (30 mg/kg)
MT (10 mg/mL) every other day for eight weeks.

Anti-Apoptosis and Autop- hagy effects in a
concentra- tion-dependent manner

Chen
et al. (144)

Ten–twelve week-old
male C57/BL mice

ACLT Intraperitoneal injection (50 mg/k- g) or (150 mg/
kg) MT (10 mg/mL) once a day for eight weeks

Attenuates mouse chondroc- yte apoptosis in a
concen- tration-dependent manner

Qin
et al. (145)
MT, melatonin; OA, osteoarthritis; DMM, destabilization of the medial meniscus; ACLT, anterior cruciate ligament transection.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1331934
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xiong et al. 10.3389/fimmu.2024.1331934
pathway. This is evidenced by the increased expression of Nrf2 in

melatonin-treated chondrocytes, which led to a reduction of

intracellular ROS levels and a significant elevation in the

expression of SOD1, SOD2, CAT, and HO-1 (136). The

expression of Nrf2 and antioxidant enzymes could be significantly

inhibited by miR-146a, which was markedly elevated in OA

chondrocyte. Moreover, overexpression of miR-146a reduced the

level of Nrf2, thereby diminishing the protective effects of melatonin

in articular cartilage of rats (136).

Mitochondria, the primary producers of ROS, serve as the key

target organelles for melatonin in inhibiting oxidative damage. An

in vitro showed that melatonin treatment restored mitochondrial

homeostasis in OA chondrocytes by upregulating the expression of

ATP, mtDNA, and respiratory chain factors such as CoxIV2, Sdha,

Nd4, and Atp5a, thereby leading to a reduction in mitochondrial

ROS levels and promotes an antioxidative effect (137) (Figure 2).

The antioxidative benefits of melatonin, however, are compromised

in mitochondrial homeostasis when the expression of SOD2 is

inhibited, suggesting that SOD2 plays an essential role as a

downstream component in mediating the protective effects of

melatonin. Additionally, SIRT1, a histone deacetylase enzyme

involved in nicotinamide adenine dinucleotide (NAD+)

metabolism, is crucial for maintaining the activities of

antioxidative enzymes (151, 152). Patients with OA who exhibited

lower levels of SIRT1 showed an accelerated deterioration of

articular cartilage, thereby suggesting that SIRT1 plays a

protective role in the development of OA (153). The

administration of melatonin significantly enhanced the expression

of SIRT1, thereby promoting SOD2 activity and expression through
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its involvement in histone deacetylation. In contrast, the inhibition

of SIRT1 significantly diminished the protective effects of

melatonin, suggesting that melatonin plays a crucial role in

maintaining mitochondrial function to suppress oxidative stress

by modulating the level of SIRT1 in OA progression (137). The

effects of melatonin on OA through SIRT1 are listed in Table 2.
3.3 Melatonin as an inhibitor
of inflammation

The pathophysiology of OA is primarily influenced by chronic

inflammation, as indicated by a growing body of research (156,

157). IL-1b is commonly utilized as an in vitro model to simulate

the inflammatory process of OA. The treatment with IL-1b induced

upregulation of MMP-3, MMP-9, MMP-13, ADAMTS-4, COX-2

and iNOS levels, while downregulation of chondrogenic marker

COL2A1 in human mesenchymal stem cells (hMSCs) and

chondrocytes. However, melatonin significantly mitigated the

detrimental effects caused by IL-1b (154, 155, 158). By inhibiting

the JAK2/STAT3 signaling pathway, melatonin effectively reduced

the levels of MMP-3, MMP-9, and MMP-13, thereby attenuating

cartilage degradation (138) (Figure 3). Moreover, Ke et al. have

demonstrated that melatonin suppressed the production of IL-1b,
IL-6, and COX-2 to mitigate the progression of OA in rats (159). It

has been reported that TNF-a inhibited extracellular matrix

synthesis by upregulating the expression of catabolic enzymes and

downregulating the expression of anabolic enzymes in

chondrocytes. Melatonin could effectively downregulate the levels
FIGURE 2

Melatonin inhibits oxidative stress in OA by restoring mitochondrial homeostasis and enhancing the level of antioxidant enzymes including SOD,
CAT, and GPX. MTR1, melatonin receptor 1; MTR2, melatonin receptor 2; SIRT1, silent information regulator 1; Nrf2, nuclear factor-erythroid 2-
related factor 2.
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of MMP-13 and upregulate the expression of COL2A1, thereby

counteracting the inhibitory effect exerted by TNF-a on ECM (160)

(Figure 3). Interestingly, this effect was further enhanced when

combined with suitable exercise (160). The study conducted by

Hong et al. demonstrated that the combination of melatonin and

exercise treatment effectively suppressed abnormal catabolic

upregulation, thereby reducing cartilage degradation (139).

Besides, melatonin could directly bind to the MT1 receptor and

thus inhibit the production of proinflammatory cytokines such as

TNF-a and IL-8 in human OA synovial fibroblasts by antagonizing
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the PI3K/Akt and ERK signaling pathways, subsequently leading to

an upregulation of miR-185a expression (140). It was found that

melatonin enhanced the expression of miR-140, thereby abolishing

IL-1b-induced matrix degradation in chondrocytes (141). In

addition, melatonin could induce the upregulation of

circRNA3503 to counteract the ECM degradation induced by

TNF-a and IL-1b (161).

The NF-kB pathway plays a crucial role in orchestrating the

expression of multiple proinflammatory cytokines, including IL-6,

TNF-a, COX-2, and iNOS (162). Melatonin inhibited the activation

of NF-kB stimulated by H2O2 and also blocked the phosphorylation

of upstream signaling pathways including JNK, p38 MAPK, ERK,

PI3K, and Akt to improve the anti-inflammatory effects in

chondrocytes (142). The inhibitory effects of melatonin on NF-kB
and its upstream signaling pathways markedly are reversed by the

downregulation of the SIRT1 level, in other words, the SIRT1

pathway participates in the cytoprotective and anti-inflammatory

effects of melatonin via the inhibition of NF-kB signaling pathways

on H2O2-induced articular cartilage destruction (142). Zhao et al.

likewise testified that melatonin downregulates IL-1b-induced
phosphorylation levels of P65 and IkBa in chondrocytes via

SIRT1 pathways, thus abolishing NF-kB activation to function in

cytoprotective and anti-inflammatory effects (155). It has been

demonstrated that the toll-like receptor (TLR) mediates

inflammatory responses triggered by chemical and physical
FIGURE 3

Melatonin inhibits inflammation through various signaling pathways to ameliorate the cartilage destruction in OA. ECM, extracellular matrix; MMP,
matrix metalloprotease; ADAMTS, a disintegrin and metalloproteinase with thrombospondin motifs; MTR1, melatonin receptor 1; SIRT1, silent
information regulator 1; TLR, toll-like receptor; COL2A1, collagen type II alpha-1.
TABLE 2 The effects of melatonin on OA via SIRT1 .

Reference Signaling
pathway

Effect

Lim
et al. (142)

SIRT1/NF-kB Modulate the anti-
inflammatory effects

Guo
et al. (154)

SIRT1/NAMPT
and NFAT5

Attenuate MMP-3 and MMP-
13 production

Zhang
et al. (137)

SIRT1/SOD2 Regain the chondrocyte
mitochondrial function

Zhao
et al. (155)

SIRT1/NF-kB Prevent chondrocyte
matrix degradation

Qin
et al. (145)

SIRT1/IRE1a-
XBP1- CHOP

Eliminate chondrocyte apoptosis
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stressors, such as cytokines and mechanical damage, ultimately

leading to the development of OA (163). Hence, targeting the TLR

signaling pathway may potentially serve as an efficacious

therapeutic strategy for OA by attenuating the inflammatory

damage. It was shown that melatonin exerted its protective effect

on chondrocytes against inflammatory damage by inhibiting the

TLR2/4-MyD88-NF-kB signaling pathway (143).

The expression of nicotinamide phosphoribosyltransferase

(NAMPT), the rate-limiting enzyme in NAD+ biosynthesis, is

enhanced by SIRT1 (164, 165). Activation of SIRT1 also

promotes the synthesis of nuclear factor of activated T cells 5

(NFAT5), thereby enhancing the expression of pro-inflammatory

cytokines in articular cartilage, including IL-1b, IL-6, TNF-a, COX-
2, and iNOS (166, 167). Guo et al. demonstrated that melatonin

significantly alleviated the expression of MMP-3 and MMP-13

induced by IL-1b in chondrocytes through the inhibition of

SIRT1-mediated NAMPT and NFAT5 signaling pathways (154).

Moreover, melatonin enhanced the expression of COL2A1 by

regulating SIRT1, thereby restoring dexamethasone-induced ECM

deterioration in chondrocytes (168). Several studies have shown

that the synthesis of ECM and the differentiation, migration, and

adhesion of chondrocytes were all significantly influenced by TGF-

b1 (169, 170). Activation of the TGF-b1/Smad2 pathway stimulated

by melatonin in IL-1b-induced chondrocytes was found

contributing to the synthesis of ECM (155). It was suggested that

melatonin administration in chondrocytes increased the

upregulation of key chondrogenic marker genes, including Sox9,

aggrecan, and collagen II via the TGF-b1 signaling pathway (171).
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3.4 Melatonin as a modulator of
chondrocyte death

As the sole cell type in cartilage, chondrocytes function as the

core factor in regulating the homeostasis in cartilage metabolism

(172). Previous studies have indicated that chondrocyte apoptosis

plays a significant role in the development of OA (173, 174). The

initiation of apoptosis is believed to occur as an early response to the

depolarization of mitochondria, which impairs the mitochondrial

membrane’s potential. Substantial reductions in membrane

potential promote permeabilization of the outer mitochondrial

membrane, facilitating the release of apoptosis-related factors that

trigger apoptosis (175, 176). Treatment with melatonin could

restore the reduction of mitochondrial membrane potential and

decrease the levels of caspase-3 and PARP, thereby ameliorating

apoptosis in chondrocytes exposed to H2O2 (144) (Figure 4). A key

regulator of energy homeostasis, known as 5’-AMP-activated

protein kinase (AMPK), is a serine/threonine kinase composed of

multiple catalytic subunits (a, b, and g) (177). Multiple studies

indicate that AMPK activation effectively inhibits apoptosis induced

by the mitochondrial pathway through sustaining redox status and

maintaining mitochondrial membrane potential, thereby restoring

optimal mitochondrial function (178). The mammalian forked box

transcription factor Class O (Foxo) family includes Foxo3, which

functions as a downstream transcriptional factor in the AMPK

signaling pathway and plays a crucial role in regulating antioxidant

defenses and the autophagy process (179–181). Through the

activation of AMPK/Foxo3 signaling pathways, melatonin exerted
FIGURE 4

Treatment of melatonin inhibits chondrocyte apoptosis and autophagy. MMP, matrix metalloprotease; ADAMTS, a disintegrin and metalloproteinase
with thrombospondin motifs; SIRT1, silent information regulator 1; Foxo3, forked box transcription factor Class O 3; IRE1-a, inositol-requiring
enzyme 1-a; XBP1, X-box binding protein 1; CHOP, C/EBP homologous protein.
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an inhibitory effect on apoptosis and induced upregulation of

autophagy in chondrocytes to attenuate the progression of OA

(144) (Figure 4).

In contrast to the internal mitochondrial pathway and extrinsic

death receptor pathway, the ERS-mediated apoptosis pathway is

initiated by the accumulation of misfolded proteins in the ER

lumen, leading to ERS. The unfolded protein response (UPR) is a

defensive mechanism that alleviates ERS and restores ER

homeostasis (182, 183). However, if the ERS surpasses the

threshold of UPR, it can trigger cellular apoptosis (184). UPR is

initiated by transmembrane proteins, namely inositol-requiring

enzyme 1-alpha (IRE1-alpha), protein kinase R-like ER kinase

(PERK), and activating transcription factor 6 (ATF6) (185). The

three primary signaling pathways in ERS-mediated apoptosis are

IRE1a-X-box binding protein 1 (XBP1)-C/EBP homologous

protein (CHOP), PERK-eukaryotic initiation factor 2a (eIF2a)-
CHOP, and ATF6-XBP1-CHOP (186). The signaling pathway of

IRE1a-XBP1-CHOP in chondrocyte apoptosis has been extensively

investigated (187). The inhibition of the IRE1a-XBP1-CHOP

signaling pathway is considered a promising target for delaying

the progression of OA by blocking chondrocyte apoptosis (187). It

was shown that melatonin enhanced the expression of SIRT1, which

suppressed the IRE1a-XBP1-CHOP signaling pathway, thereby

attenuating ERS-induced apoptosis in chondrocytes (145).

The utilization of BMSCs presents a promising strategy for

alleviating articular cartilage degradation, given the wide availability

of resources for harvesting BMSCs and their capacity to differentiate

into various cell lineages including chondrocytes and osteoblasts

(188, 189). The potential of regenerating damaged articular cartilage

through the chondrogenesis of BMSCs is appealing, however, the

inflammatory environment in cases of OA poses challenges for

the survival of BMSCs. It has been demonstrated that the

administration of melatonin could reduce the expression of Bax

in IL-1b-induced BMSCs, thereby conferring protection to BMSCs

against IL-1b-triggered apoptosis (190). Moreover, melatonin was

found to inhibit the expression of proapoptotic markers such as

ADAMTS4, MMP9, and MMP13, thus rescuing IL-1b-induced
apoptosis of BMSCs and impaired chondrogenesis through the

NF-kB signaling pathway (158).

As the leading risk factor for the development of OA, aging can

induce senescence-associated phenotypes in joints, such as

increased levels of cytokines, MMPs, and ROS, and reduced

expression of aggrecan and collagen II (191). Due to its buffering

and lubricating properties, hyaluronic acid plays a significant

protective role in mitigating mechanical stresses on articular

cartilage, and its synthesis can be hindered by chondrocyte

senescence and death. It was reported that melatonin could

effectively downregulate the expression of senescence-related

proteins p16, p21, and p-p65, and thus counteract chondrocyte

senescence and the subsequent downregulation of hyaluronic acid

triggered by D-galactose through activation of the SIRT1 signaling

pathway (192). Ferroptosis and pyroptosis, as novel forms of PCD,

have been found implicated in the pathogenesis of OA (80, 118).

Although there is currently no research reporting the impact of

melatonin on ferroptosis and pyroptosis of chondrocytes, the

antioxidative properties and anti-inflammatory actions of
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melatonin suggest its potential role as a significant inhibitor of

ferroptosis and pyroptosis in chondrocytes.
4 Melatonin as a desirable pain-
relieving drug in OA

OA is a primary contributor to chronic pain, significantly

impacting the quality of life in individuals with OA. The

exacerbation of chronic pain leads to sleep disorders, including

reduced sleep efficiency and shortened total sleeping duration (193).

The development of drugs to enhance the management of chronic

pain in OA patients is therefore of utmost urgency. Numerous

studies have suggested that melatonin exhibits analgesic effects in

animal models of both acute and neuropathic pain (194–197).

Several clinical trials have also confirmed the analgesic effect of

melatonin in chronic pain conditions such as fibromyalgia,

migraine headaches, and irritable bowel syndrome (198–200). Liu

et al. demonstrated that the combination of melatonin and MT2

receptor yielded analgesic effects in rats with temporomandibular

OA (201). The application of auricular acupressure has been found

to enhance melatonin levels, thereby providing relief for chronic

pain and addressing sleep disorders in elderly individuals with OA

(202). The conventional therapeutic approaches for alleviating

chronic pain, such as intra-articular steroid injections and oral

nonsteroidal anti-inflammatory drugs (NSAIDs), are associated

with undesirable side effects. For instance, long-term oral

administration of NSAIDs can lead to gastritis and peptic ulcers,

while repeated intra-articular steroid injections may result in

decreased bone density and infection (203, 204). Significantly,

melatonin to organs such as the liver and kidneys is associated

with almost no toxicity and adverse effects (205). Collectively, the

antioxidative, anti-inflammatory, and analgesic properties of

melatonin render it a promising pharmaceutical agent for the

treatment of OA.
5 Novel potential delivery systems
of melatonin

The closed nature of the knee joint and the absence of blood

vessels in the articular cartilage pose challenges for medications to

accumulate within the joint via systemic circulation, leading to

reduced efficacy and potential systemic adverse effects. Intra-

articular administration is considered the optimal method for

treating joint disorders, as it allows direct delivery of the drug to

the articular cavity, thereby overcoming the aforementioned

disadvantage. The frequent intra-articular injections, however, are

invasive procedures that incur additional expenses, diminish patient

adherence, and increase the risk of infection (206). The

development of novel drug delivery systems that minimize the

frequency of injections may hold the key to overcome the

limitations of conventional intra-articular injection, which lacks

long-term efficacy. Due to the challenge of finding suitable delivery

carriers to arrive at the chondrocytes, therapeutic or preventative
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options for healing damaged articular cartilage in OA remains

limited (207). For this reason, numerous researchers have devoted

themselves to developing melatonin sustained release delivery

systems for the treatment of OA (Figure 5). Up to now, several

promising melatonin sustained release delivery systems have been

successfully developed (Table 3).
5.1 Extracellular vesicles

Extracellular vesicles (EVs), which can be classified into three

subtypes based on their size, namely apoptotic bodies, ectosomes,

and exosomes, are proteolipid nanoparticles secreted by diverse cell
Frontiers in Immunology 11
types including bacteria, archaea, and eukaryotic cells. Apoptotic

bodies, ranging in diameter from 800 to 5,000 nm, are generated

through cellular shedding during the process of apoptosis.

Conversely, ectosomes are formed by the plasma membrane via

budding mechanisms and have a size range of 50 to 1000 nm.

Additionally, exosomes (40–200 nm) are secreted from intracellular

multivesicular bodies that merge with the cytoplasmic membrane.

Exosomes play a crucial role in facilitating intercellular

communication by transporting lipids, proteins, and various

nucleic acids such as mRNAs, circular RNA, and miRNA (215).

Recent studies have demonstrated the significant potential of

exosomes derived from MSCs as nano-carriers for delivering

therapeutic genetic materials and drugs (216). Compared to
FIGURE 5

Melatonin sustained release delivery systems for the treatment of OA. MT, melatonin; PLEL, poly (D, L-lactide)-poly (ethylene glycol)-poly (D, L-
lactide); EVs, extracellular vesicles; NVs, nanovesicles; PLGA, polylactic-co-glycolic acid; PCL, polycaprolactone; HA, hyaluronic acid; CD,
cyclodextrins; MIP-NSs, molecularly imprinted nanosponges; GelMA-DOPA, gelatin methacryloyl-dopamine; DSPC, phosphatidylcholine; PNIPAM,
poly (N-isopropyl acrylamide); GG, gellan gum; LGNF, lignocellulose nanofibrils; FS, forsterite.t of OA.
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MSCs, exosomes are non-viable, resulting in lower costs for storage

and maintenance, as a viable state is needed in maintaining cells.

Additionally, exosomes possess hypoimmunogenic properties and

have a nano-scale size, which significantly reduce the likelihood of

rejection (217, 218). Furthermore, exosomes possess the potential to

traverse the blood-brain barrier, thereby facilitating the

development of therapeutic interventions targeting the central

nervous system (219). The versatility of exosomes allows for facile

engineering to specifically target molecules. The current focus of

numerous investigations lies in elucidating the mechanisms and

functions of exosomes as efficacious drug delivery systems for

various disorders. The ability of EVs to penetrate cartilage and

target chondrocytes renders them as promising nano-carriers for

therapeutic drugs in the treatment of OA (220). The evidence has

demonstrated that EVs function as nano-carriers capable of

delivering drugs to chondrocytes, thereby alleviating the

progression of OA (161, 221). In conclusion, it is speculated that

melatonin-loaded EVs can effectively penetrate articular cartilage

and selectively target chondrocytes to attenuate the degeneration of

articular cartilage by inhibiting oxidative stress, inflammation, and

chondrocyte death.

The poly (D, L-lactide)-poly (ethylene glycol)-poly (D, L-lactide)

(PDLLA-PEG-PDLLA; PLEL) triblock copolymer gels, which possess

reversible, injectable, and thermosensitive properties, have been

widely utilized in nano-drug delivery systems (222). The use of
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PLEL as a carrier for EVs has been employed to significantly

enhance the sustained release of drugs loaded in EVs (161). The

PLEL-entrapped EVs may offer promising delivery systems for

achieving sustained release of melatonin, thereby presenting a

potential therapeutic approach to alleviate the progression of OA.

The limited production efficiency and laborious extraction and

purification procedures of EVs, however, hinder the potential

utilization of EVs in clinical practice. To address the challenges

associated with EVs, EVs mimicking nanovesicles (NVs) which

have similar biophysical characteristics to EVs have been generated

via durably extruding cells through a microfilter (223, 224). EVs

mimicking NVs are promising carriers which can be engineered to

load with a variety of therapeutic drugs (225). Findings have

demonstrated that melatonin-loaded EVs mimicking NVs effectively

alleviated atopic dermatitis induced by 2,4-Dinitrofluorobenzene

through the suppression of mast cell infiltration and local

inflammation. Additionally, these EVs also promoted myocardial

repair in cases of myocardial infarction by enhancing mitochondrial

functions and reducing oxidative stress (208, 226). Taking together, it

is very likely that the use of EVs mimicking NVs is a promising

approach for delivering melatonin in the treatment of OA.
5.2 Nanopolymers

Nanopolymers possess exceptional mechanical properties, facile

assembly, high biocompatibility, remarkable stability, scalability,

and chemical modifiability, thereby offering favorable conditions

for the design of nano-carrier delivery systems. Nanopolymers are

broadly applied for the design of sustained release and site-specific

drug delivery, resulting in improved therapeutic efficacy with fewer

side effects (206, 227). Polylactic-co-glycolic acid (PLGA), a type of

nanopolymer material, is widely employed in the field of drug

delivery (228). The melatonin-loaded nano-delivery system was

formed by encapsulating melatonin in PLGA, and the surface of

PLGA was then modified with collagen II targeting polypeptides to

enhance the targeting of such nanoparticles (143). What’s exciting

was that the sustained release of melatonin for at least 14 days in the

mice joint cavity was achieved by this nanoparticle, significantly

reducing the frequency of injections compared to using melatonin

alone (143). The PLGA nanoparticles loaded with melatonin enable

precise targeting of cartilage and sustained release, thereby reducing

the degradation of cartilage and the progression of OA.

Consequently, intra-articular injection of these nanoparticles may

represent a novel therapeutic approach for OA treatment.

Cotton fabrics functionalized by polycaprolactone (PCL)

nanoparticles are designed as a transdermal patch for the release

of melatonin (209). The biodegradation process of PCL could last

up to one year, making it a widely used delivery system for sustained

drug release (229). Melatonin-loaded PCL nanoparticles, when

distributed on cotton fibers, exhibited a controlled and sustained

release of melatonin (209). This transdermal delivery system

significantly enhanced the skin permeation and sustained release

of melatonin through a non-invasive approach. In conclusion, it is
TABLE 3 The promising sustained release delivery systems of melatonin.

Materials Delivery
systems

Usage Reference

Extracellular
vesicles

PLEL-EVs@MT injection Tao
et al. (161)

EVs
mimicking NVs@MT

injection Kim et al. (208)

Nanopolymer PLGA@MT injection Liang et al. (143)

Cotton
fabrics-PCL@MT

transdermal
patch

Massella
et al. (209)

Cyclodextrin HA-CD@MT injection Zhang et al.,
2022 (137)

CD-based
MIP-NSs@MT

transdermal
patch

Hoti et al. (210)

Liposomes GelMA-
DOPA liposomes@MT

injection Xiao et al. (211)

DSPC liposomes@MT injection Ji et al. (212)

Hydrogel PNIPAM/
HA hydrogels@MT

injection Atoufi et al. (213)

GG/LGNF/
FS hydrogel@MT

injection Kouhi et al. (214)
MT, melatonin; PLEL, poly(D, L-lactide)-poly(ethylene glycol)-poly(D, L-lactide); EVs,
extracellular vesicles; NVs, nanovesicles; PLGA, polylactic-co-glycolic acid; PCL,
polycaprolactone; HA, hyaluronic acid; CD, cyclodextrins; MIP-NSs, molecularly imprinted
nanosponges; GelMA-DOPA, gelatin methacryloyl-dopamine; DSPC, phosphatidylcholine;
PNIPAM, poly(N-isopropyl acrylamide); GG, gellan gum; LGNF, lignocellulose nanofibrils;
FS, forsterite.
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speculated that transdermal delivery systems may hold great

potential in the treatment of OA.
5.3 Cyclodextrins

Cyclodextrins (CDs), which are cyclic oligosaccharides derived

from starch hydrolysis, possess internal hydrophobicity and

external hydrophilicity (230). Due to their unique characteristics,

CDs have the ability to form host-guest complexes with suitable

molecules to improve their stability, bioavailability, solubility, and

controlled release. The CDs-based drug delivery system has

facilitated the sustained release of the medication for OA

treatment (231). The CD was incorporated into the hyaluronic

acid (HA) solution to construct the HA-CD drug delivery system.

Subsequently, melatonin was integrated into the HA-CD-based

drug delivery system. The HA-CD melatonin delivery system

achieved sustained release of melatonin over an extended period,

effectively repairing dysfunctional mitochondria in OA

chondrocytes (137). Furthermore, CDs could undergo

polymerization with the cross-linking agent citric acid, followed

by the addition of melatonin as a template molecule to form CD-

based molecularly imprinted nanosponges (MIP-NSs) (210).

Alongside these, CD-based MIP-NSs were incorporated into

cream formulations to enhance their direct applicability to the

skin. These skin formulations offered an innovative transdermal

delivery system that enhanced the permeation of the skin and

improved the sustained release of melatonin (210). The

transdermal delivery systems of CD-based MIP-NSs provided a

more advanced approach for delivering melatonin into the skin

compared to traditional methods, such as intra-articular injection,

thereby avoiding undesirable effects.
5.4 Liposomes

Liposomes have been extensively employed as drug delivery

systems due to their exceptional biocompatibility and proficient

capacity to regulate drug release (232, 233). Due to its excellent

biocompatibility and strong adhesive properties, gelatin

methacryloyl-dopamine (GelMA-DOPA) is widely used in the

field of bone tissue engineering (234). The liposomes loaded with

melatonin were combined with a GelMA-DOPA solution to

fabricate the melatonin delivery system. The GelMA-DOPA

liposomes delivery system was advantageous for regulating the

sustained release of melatonin (211). The GelMA-DOPA

liposomes delivery system for melatonin, although its application

is limited to osteoporosis therapy right now, holds significant

potential for alleviating OA. In addition, phosphatidylcholine

(DSPC) liposomes could be employed as highly effective

lubricants to reduce friction, in addition to their role as drug

delivery systems (235). It was reported that the utilization of

DSPC liposomes as a carrier for glucosamine sulphate enabled the

delivery of effective boundary lubrication at the outermost layer of

the joint while also facilitating the controlled and sustained release

of glucosamine sulphate (212). As a result, DSPC liposomes may
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offer a more direct and practical approach for the intra-articular

administration of melatonin in OA treatment.
5.5 Hydrogel

Hydrogel, a type of polymeric material, is extensively

investigated in tissue engineering due to its exceptional

biocompatibility, predictable degradation rate, appropriate

elasticity, porous structure, and resemblance to the ECM (236,

237). The thermosensitive injectable hydrogel, poly (N-isopropyl

acrylamide) (PNIPAM), has gained significant attention due to its

ability to be directly injected into the injured area and effectively fill

irregular flaws (238). PNIPAM has minimal cell adhesiveness and

bioactivity despite its significant ability to replicate the architecture

of some tissues. Accordingly, the combination of in situ injectable

hydrogels with cells and bioactive compounds has garnered

significant attention in the field of bone/cartilage tissue

regeneration (239). The lubricating polysaccharide hyaluronic

acid facilitated cellular adhesion, migration, and proliferation,

thereby decreasing syneresis and hydrogel shrinkage (240).

Various studies have shown that surface modification of PLGA

with chitosan-g-acrylic acid (PLGA-ACH) can enhance

adaptability, mucoadhesive properties, and regulate drug release

(241, 242). The addition of PLGA-ACH particles as crosslinkers to

PNIPAM enhanced the mechanical properties of PNIPAM,

resulting in a closer resemblance to natural cartilage tissue (213).

Simultaneously, the PLGA core acted as a carrier for the sustained

release of melatonin (213). A previous study has demonstrated the

efficacy of melatonin as a delivery system for cartilage tissue

engineering, wherein injectable PNIPAM/hyaluronic acid

hydrogels containing PLGA-ACH nanopart ic les were

applicated (213).

The low immunogenicity, cost-effectiveness, and ease of

handling make Gellan gum (GG), which is composed of glucose,

rhamnose, and D-glucuronate residues, particularly attractive for

drug delivery (243). The GG-based hydrogel is used in cartilage

regeneration due to its appealing characteristics, including non-

cytotoxicity, biocompatibility, mild processing conditions, and

structural resemblance to native glycosaminoglycans (237, 243).

However, similar to other biodegradable hydrogels, it lacks the

necessary mechanical strength and bioactivity required for

reinforcement through nanoscale additions. Lignocellulose

nanofibrils (LGNF), characterized by their high modulus, reactive

surfaces, and large aspect ratio, present an ideal material for

enhancing both the mechanical and biological properties of

polymeric composites (244). The porous nanoparticle form of

forsterite (FS), a crystalline member of the olivine family

composed of magnesia and silicon, has been investigated for its

potential as a sustained drug delivery system (245). Accordingly, in

order to enhance the mechanical properties of GG-based hydrogel,

LGNF and FS nanoparticles were incorporated, and thus an

injectable delivery system based on GG/LGNF/FS hydrogel has

been developed for sustained release of melatonin and articular

cartilage repair (214).
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6 Conclusions and future directions

Increasing evidence suggests that inflammation, oxidative

stress, and chondrocyte death are closely linked to the severity

and progression of OA, rendering them potential targets for OA

treatment. The present review provides a comprehensive overview

of the role of melatonin in modulating inflammation, oxidative

stress, and chondrocyte death to attenuate OA progression through

the regulation of various signaling pathways including SIRT1, Nrf2,

NF-kB, JAK2/STAT3, TGF-b1/Smad2, AMPK/Foxo3, IRE1a-
XBP1-CHOP, PI3K/Akt and ERK. Obviously, numerous signaling

pathways are implicated in the potential mechanism of melatonin in

the treatment of OA. The primary source of ROS leading to

chondrocyte death and exacerbating inflammatory reactions,

thereby aggravating articular cartilage degradation, is

mitochondrial dysfunction. The melatonin-based treatment

restores impaired mitochondrial functions by recovering

reductions in membrane potential and enhancing the synthesis of

ATP, mtDNA, and respiratory chain factors to alleviate oxidative

stress and chondrocyte death. Although melatonin is considered as

an effective antioxidant for maintaining mitochondria, yet the

current research in this field still remains insufficient. Therefore,

future studies should aim to comprehensively and profoundly

investigate the interplay between melatonin and signaling

pathways on mitochondria in OA chondrocytes.

The efficacy of EVs as a well-researched carrier has been

demonstrated in the administration of melatonin for various

disorders. However, there is a lack of direct research to

substantiate the efficacy of melatonin-loaded EVs in the treatment

of OA. The efficacy of melatonin-loaded EVs will be validated in

future studies. In addition, various innovative bioactive materials,

including nanopolymers, cyclodextrins, liposomes, and hydrogels,

have been developed to ensure sustained release of melatonin and

target articular cartilage. The use of novel carriers for intra-articular

injection can effectively reduce the injection frequency, thereby

optimizing the therapeutic efficacy and bioavailability of melatonin

in the treatment of OA. Therefore, these biomaterials play an

indispensable role in advancing the potential clinical efficacy of

melatonin. In summary, combined melatonin with multiple

bioactive agents holds great promise as a strategy for OA treatment.
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Lebeaupin C, et al. Interactome screening identifies the ER luminal chaperone hsp47
as a regulator of the unfolded protein response transducer IRE1a. Mol Cell (2018) 69
(2):238–52.e237. doi: 10.1016/j.molcel.2017.12.028

185. Abdullah A, Ravanan P. The unknown face of IRE1a - Beyond ER stress. Eur J
Cell Biol (2018) 97(5):359–68. doi: 10.1016/j.ejcb.2018.05.002

186. Komoike Y, Matsuoka M. Endoplasmic reticulum stress-mediated neuronal
apoptosis by acrylamide exposure. Toxicol Appl Pharmacol (2016) 310:68–77. doi:
10.1016/j.taap.2016.09.005

187. Wu L, Liu H, Li L, Xu D, Gao Y, Guan Y, et al. 5,7,3',4'-Tetramethoxyflavone
protects chondrocytes from ER stress-induced apoptosis through regulation of the
IRE1a pathway. Connect Tissue Res (2018) 59(2):157–66. doi: 10.1080/
03008207.2017.1321639

188. Charbord P. Bone marrow mesenchymal stem cells: historical overview and
concepts. Hum Gene Ther (2010) 21(9):1045–56. doi: 10.1089/hum.2010.115

189. Raghav PK, Mann Z, Ahlawat S, Mohanty S. Mesenchymal stem cell-based
nanoparticles and scaffolds in regenerative medicine. Eur J Pharmacol (2022)
918:174657. doi: 10.1016/j.ejphar.2021.174657

190. Liu X, Gong Y, Xiong K, Ye Y, Xiong Y, Zhuang Z, et al. Melatonin mediates
protective effects on inflammatory response induced by interleukin-1 beta in human
mesenchymal stem cells. J Pineal Res (2013) 55(1):14–25. doi: 10.1111/jpi.12045

191. Li YS, Xiao WF, Luo W. Cellular aging towards osteoarthritis.Mech Ageing Dev
(2017) 162:80–4. doi: 10.1016/j.mad.2016.12.012

192. Han N, Wang Z, Li X. Melatonin alleviates d-galactose-decreased hyaluronic
acid production in synovial membrane cells via Sirt1 signalling. Cell Biochem Funct
(2021) 39(4):488–95. doi: 10.1002/cbf.3613

193. Jung JH, Seok H, Choi SJ, Bae J, Lee SH, Lee MH, et al. The association between
osteoarthritis and sleep duration in Koreans: a nationwide cross-sectional observational
study. Clin Rheumatol (2018) 37(6):1653–9. doi: 10.1007/s10067-018-4040-3

194. Lin TB, Hsieh MC, Lai CY, Cheng JK, Wang HH, Chau YP, et al. Melatonin
relieves neuropathic allodynia through spinal MT2-enhanced PP2Ac and downstream
HDAC4 shuttling-dependent epigenetic modification of hmgb1 transcription. J Pineal
Res (2016) 60(3):263–76. doi: 10.1111/jpi.12307

195. Lin JJ, Lin Y, Zhao TZ, Zhang CK, Zhang T, Chen XL, et al. Melatonin
suppresses neuropathic pain viaMT2-dependent and -independent pathways in dorsal
root ganglia neurons of mice. Theranostics (2017) 7(7):2015–32. doi: 10.7150/
thno.19500
frontiersin.org

https://doi.org/10.1139/cjpp-2016-0409
https://doi.org/10.1111/fcp.12303
https://doi.org/10.1038/s41467-020-16348-9
https://doi.org/10.1089/ars.2012.4713
https://doi.org/10.1089/ars.2012.4713
https://doi.org/10.1186/s13018-016-0477-8
https://doi.org/10.18632/oncotarget.18356
https://doi.org/10.3390/nu14193966
https://doi.org/10.3390/nu14193966
https://doi.org/10.1038/nrrheum.2014.162
https://doi.org/10.1016/j.freeradbiomed.2013.12.012
https://doi.org/10.1016/j.freeradbiomed.2013.12.012
https://doi.org/10.1186/s13287-018-0892-3
https://doi.org/10.1111/os.13408
https://doi.org/10.1111/os.13408
https://doi.org/10.1111/jpi.12143
https://doi.org/10.1016/j.bioactmat.2021.04.031
https://doi.org/10.1186/1476-4598-12-86
https://doi.org/10.1186/s13075-015-0645-y
https://doi.org/10.1111/acel.12135
https://doi.org/10.1002/1521-4141(200211)32:11%3C3225::AID-IMMU3225%3E3.0.CO;2-L
https://doi.org/10.1002/1521-4141(200211)32:11%3C3225::AID-IMMU3225%3E3.0.CO;2-L
https://doi.org/10.1016/j.cellsig.2015.08.013
https://doi.org/10.1016/j.matbio.2014.08.014
https://doi.org/10.1016/j.steroids.2017.08.005
https://doi.org/10.1186/ar3798
https://doi.org/10.1186/ar3798
https://doi.org/10.1016/j.joca.2018.01.017
https://doi.org/10.1111/j.1600-079X.2008.00646.x
https://doi.org/10.1111/j.1600-079X.2008.00646.x
https://doi.org/10.1016/j.joca.2006.06.012
https://doi.org/10.1016/j.biomaterials.2018.07.011
https://doi.org/10.1002/mc.22284
https://doi.org/10.1038/s41418-022-01094-w
https://doi.org/10.1016/j.biocel.2009.05.001
https://doi.org/10.1038/s41573-019-0019-2
https://doi.org/10.1038/s41573-019-0019-2
https://doi.org/10.1186/s13287-020-01948-5
https://doi.org/10.1016/j.yexcr.2017.08.019
https://doi.org/10.3390/ijms19123794
https://doi.org/10.3390/ijms19123794
https://doi.org/10.1002/art.38868
https://doi.org/10.1038/s41580-020-0250-z
https://doi.org/10.1038/s41580-020-0250-z
https://doi.org/10.1038/ncb3518
https://doi.org/10.1016/j.molcel.2017.12.028
https://doi.org/10.1016/j.ejcb.2018.05.002
https://doi.org/10.1016/j.taap.2016.09.005
https://doi.org/10.1080/03008207.2017.1321639
https://doi.org/10.1080/03008207.2017.1321639
https://doi.org/10.1089/hum.2010.115
https://doi.org/10.1016/j.ejphar.2021.174657
https://doi.org/10.1111/jpi.12045
https://doi.org/10.1016/j.mad.2016.12.012
https://doi.org/10.1002/cbf.3613
https://doi.org/10.1007/s10067-018-4040-3
https://doi.org/10.1111/jpi.12307
https://doi.org/10.7150/thno.19500
https://doi.org/10.7150/thno.19500
https://doi.org/10.3389/fimmu.2024.1331934
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xiong et al. 10.3389/fimmu.2024.1331934
196. Posa L, Lopez-Canul M, Rullo L, De Gregorio D, Dominguez-Lopez S, Kaba
Aboud M, et al. Nociceptive responses in melatonin MT(2) receptor knockout mice
compared to MT(1) and double MT(1) /MT(2) receptor knockout mice. J Pineal Res
(2020) 69(3):e12671. doi: 10.1111/jpi.12671

197. Xie SS, Fan WG, Liu Q, Li JZ, Zheng MM, He HW, et al. Involvement of nNOS
in the antinociceptive activity of melatonin in inflammatory pain at the level of sensory
neurons. Eur Rev Med Pharmacol Sci (2020) 24(13):7399–411. doi: 10.26355/
eurrev_202007_21908

198. Hussain SA, Al K II, Jasim NA, Gorial FI. Adjuvant use of melatonin for
treatment of fibromyalgia. J Pineal Res (2011) 50(3):267–71. doi: 10.1111/j.1600-
079X.2010.00836.x
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