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Introduction: We aimed to predict platinum sensitivity using routine baseline

multimodal magnetic resonance imaging (MRI) and established clinical data in a

radiomics framework.

Methods: We evaluated 96 patients with ovarian cancer who underwent

multimodal MRI and routine laboratory tests between January 2016 and

December 2020. The patients underwent diffusion-weighted, contrast-

enhanced T1-weighted, and T2-weighted MRI. Subsequently, 293 radiomic

features were extracted by manually identifying tumor regions of interest. The

features were subjected to the least absolute shrinkage and selection operators,

leaving only a few selected features. We built the first prediction model with a

tree-based classifier using selected radiomics features. A second prediction

model was built by combining the selected radiomic features with four

established clinical factors: age, disease stage, initial tumor marker level, and

treatment course. Both models were built and tested using a five-fold

cross-validation.

Results:Our radiomics model predicted platinum sensitivity with an AUC of 0.65

using a few radiomics features related to heterogeneity. The second combined

model had an AUC of 0.77, confirming the incremental benefits of the radiomics

model in addition to models using established clinical factors.

Conclusion: Our combined radiomics-clinical data model was effective in

predicting platinum sensitivity in patients with advanced ovarian cancer.
KEYWORDS

ovarian high-grade serous carcinoma, platinum sensitivity, radiomics, machine learning,
magnetic resonance imaging
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Introduction

Ovarian cancer is referred to as a ‘silent killer,’ due to its limited

symptoms during the early stages. Therefore, 70% of cases are

diagnosed at advanced stages (i.e., stages III/IV) resulting in a

survival rate of less than 50% five years after the initial diagnosis (1–

3). A combination of surgery and chemotherapy is recommended,

and the extent of surgery varies widely according to individuals’

disease volume, from simple hysterectomy with bilateral salpingo-

oophorectomy to multiple intestinal surgical procedures (4).

Platinum-based chemotherapy is the standard first-line treatment

option, and patients who relapse within 6 months of the end offirst-

line treatment are classified as ‘platinum-resistant’ and other

patients as ‘platinum-sensitive’ (5). Approximately 25% of

patients are platinum-resistant (6). These two types of patients

undergo different subsequent treatment options; thus, it is

important to distinguish between them as early as possible (5–7).

Monitoring the response to platinum-based treatment with a

change in tumor size is feasible, but requires significant manual

effort. In addition, the treatment of recurrent ovarian cancer is more

difficult, so delaying the first recurrence as much as possible is

crucial, especially in advanced-stage patients (8, 9). Treatment

options of recurrent disease should be individualized but

generally include systemic therapy, secondary cytoreduction and

radiotherapy (10). Thus, an efficient method, possibly one using

machine learning, is required to predict platinum sensitivity.

Previous studies have investigated various factors to predict

platinum sensitivity, including histological subtypes, BRCA1/2

mutations, homologous recombination deficiency (HRD), and

further subclassifications based on genomic expression profiles

(11–15). Numerous studies have demonstrated that germline

BRCA1/2 mutations positively impact the overall survival and

platinum response (16). Pennington et al. showed that the

presence of germline and somatic homologous recombination

mutations was highly predictive of primary platinum sensitivity

(17). In a blood-based study, Matte et al. investigated the differences

in cancer antigen 125 (CA125) and leptin levels in preoperative

serum and intraoperative ascites between platinum-sensitive and

platinum-resistant patients. Their results suggested that the serum

CA125 to ascites leptin ratio is a novel biomarker for poor outcomes

in patients with platinum-resistant high-grade serous carcinoma

(HGSC) (18).

Magnetic resonance imaging (MRI) is a useful diagnostic

modality in epithelial ovarian cancer. Diffusion-weighted imaging

(DWI) is particularly helpful in assessing operability in this disease

type (19, 20). DWI has high sensitivity for distinguishing between

benign and malignant tumors based on their shape and texture

information (21). However, previous studies using MRI-based

radiomics have predominantly focused on improving precision

diagnostics and the classification of histologic subtypes, and only

a few studies have explored the utility of this imaging tool in

developing models for predicting platinum sensitivity (22–24). In

this study, we used multimodal MRI to comprehensively assess

ovarian-cancer-related information, specifically focusing on

platinum sensitivity.
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Radiomics is a non-invasive method for extracting and

analyzing high-dimensional quantifiable imaging features from

routine medical imaging (25). Numerous studies have utilized this

method for cancer analysis within machine learning frameworks

(26–28). This method can evaluate tumor heterogeneity through

shape and texture features and has been extensively used as an

imaging-based biomarker for diagnosis, prognosis, and response

assessment (29–31).

The purpose of this study was to evaluate whether a machine-

learning model combining radiomics features derived from

multimodal MRI and known clinical factors (e.g., age and disease

stage) available at baseline can predict platinum response in patients

with advanced-stage ovarian HGSC.
Materials and methods

Patient selection and
clinicopathogical parameters

This retrospective study was approved by the Institutional

Review Board, and the requirement for informed consent was

waived. The study population (n = 100) was selected from

patients diagnosed with ovarian HGSC at a tertiary academic

medical center (Samsung Medical Center in Seoul, South Korea)

between January 2016 and December 2020. The inclusion criteria

were pretreatment pelvic MRI, histologically confirmed HGSC of

the ovary, International Federation of Gynecology and Obstetrics

(FIGO) stage IIIC – IVB, standard treatment with primary

debulking surgery (PDS) followed by first-line platinum-based

chemotherapy or neoadjuvant platinum-based chemotherapy

followed by interval debulking surgery (IDS), and available

follow-up records after chemotherapy for at least 6 months.

Exclusion criteria were absence of clinical data, poor imaging

quality, and incomplete chemotherapy treatment. The clinical

factors analyzed included age at diagnosis, initial CA125 levels,

tumor differentiation grades classified by the FIGO system (grades 2

and 3), extent of disease status classified by the FIGO system (FIGO

2014 stage IIIC through IVB), and residual disease after PDS or IDS.

We analyzed 96 patients after applying the exclusion criteria.
MRI acquisition protocols and tumor
region of interest

All patients underwent pelvic MRI before treatment. In the

present institution, computed tomography (CT) and magnetic

resonance (MR) images are taken in all patients suspected to have

ovarian malignancies for detailed characterization of adnexal

masses. Axial T2-weight images (T2WI), fat-suppressed contrast-

enhanced T1-weighted images (CE-T1WI), and DWI were used for

the analysis (Figure 1). A genitourinary radiologist with 15 years of

experience in interpreting female pelvic MRI was blinded to the

patients’ clinical data and follow-up results and manually placed the
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region of interest (ROI) along the boundary of the primary tumor

layer-by-layer to include the whole volume (cystic and solid

components) on T2WI and CE-T1WI. The procedure was

performed on each axial slice of the tumor using the 3D Slicer

software (version 5.2.2). The tumor ROI measurements

encompassed the maximum possible lesion extent in the image

with the greatest visibility, as shown in Figure 2. For patients with

multiple tumors, we identified the two largest tumors. The ROIs

defined on DWI were transferred to T2WI and CE-T1WI with rigid

image registration. All MRI images were voxel space-resampled

with a spacing of 1 × 1 × 5 mm3 and interpolated using a B-spline.
Frontiers in Oncology 03
Radiomics features extraction
and preprocessing

Radiomics features were extracted from each ROI of DWI, T2,

and CET1 sequences using the open-source Python package

“Pyradiomics” (version 3.0.1) (Python Software Foundation,

Wilmington, DE, United States) (32). A total of 107 features were

extracted, consisting of 14 shape-based features, 18 first-order

statistical features, and 75 texture-based features (24 from the

gray-level co-occurrence matrix, 16 from the gray-level size zone

matrix, 16 from the gray-level run length matrix, 5 from the
FIGURE 1

Overall procedures of the study.
FIGURE 2

Representative placement of ROIs. The green contour indicates the largest tumor, while the red contour indicates the second-largest tumor for
DWI, CET1, and T2 images.
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neighboring gray-tone difference matrix, and 14 from the gray-level

dependence matrix) (Supplementary Table 1). Shape-based features

were extracted from DWI alone, resulting in 293 features per

patient. If a patient had multiple lesions, a weighted sum was

performed based on the volume of the lesions, except for the

“voxel volume” feature, which used the sum of the lesions. All

radiomics features were z-score-normalized based on the mean and

standard deviation of the training set. Details regarding the splitting

of the data into training and test sets are provided below.
Feature selection and model building

From the radiomics features, the top five features with the

highest absolute value of the coefficient for each fold were selected

using least absolute shrinkage and selection operator (LASSO)

logistic regression with the target variable of initial platinum

sensitivity. This reduces overfitting of the model. For comparison,

we established two additional feature sets: one consisting of four

clinical variables and the other combining five radiomic features

with four clinical variables. The four clinical variables selected were

patient age at diagnosis, disease stage, initial CA125 level, and

whether the patient underwent PDS followed by platinum-based

chemotherapy or platinum-based neoadjuvant chemotherapy

followed by IDS. These four variables were selected because they

are usually considered prognostic factors for the survival of women

with advanced epithelial ovarian cancer (33, 34).

We built three machine learning models to predict initial

platinum sensitivity using the XGBoost classifier, which

sequentially trains and ensembles multiple tree-based classifiers.

These are referred to as radiomic, clinical, and combined models.

SHapley Additive exPlanations (SHAP) was adopted to explain the

extent to which each feature in the models influenced the

prediction, which allowed us to see a positive or negative

correlation with platinum sensitivity.
Statistical analysis

To compare the clinical characteristics between platinum-

sensitive and platinum-resistant patients, Student’s t-test was used

for continuous data (age, CA125), Mann–Whitney U test was used

for ordinal data (grade, FIGO stage, residual disease), chi-square

test was used for nominal data (PDS/neoadjuvant chemotherapy

[NAC]), and log-rank test was used for time-to-event data

(recurrence-free survival and overall survival). Survival analysis

was performed by estimating Kaplan–Meier survival curves for

recurrence and survival. Continuous data were presented as mean

and standard deviation (SD) or median and interquartile range

(IQR), and categorical data (nominal and ordinal data) were

presented as numbers of values and percentages.

To evaluate the generalization performance of the models, we

performed 5-fold cross-validation. The 96 patients were divided

into five groups while maintaining the ratio of sensitive/resistant

patients, using 4 folds as the training set and the remaining fold as

the test set. The procedure was repeated five times, using a different
Frontiers in Oncology 04
fold as the test set. We performed data preprocessing, feature

selection, model training with the training set, and model

evaluation with the test set for a total of 5 times resulting in 5

models built. To evaluate the performance of the model in

classifying platinum sensitivity, we calculated the accuracy,

specificity, sensitivity, and area under the curve (AUC) of the

receiver operating characteristic curves. The thresholds for

accuracy, specificity, and sensitivity were set to 0.5. Finally, the

mean and SD were presented together to comprehensively evaluate

the performance of the models over five folds.
Results

The clinical characteristics of the platinum-sensitive and

platinum-resistant patients are compared in Table 1. Univariate

analysis revealed that no clinical factors were significantly

associated with platinum sensitivity (age, tumor differentiation

grade, disease stage, CA125, PDS/NAC, or residual tumor after

surgery; all p-values > 0.05). However, the patients who relapsed

within 6 months of the last administration of a platinum-based

chemotherapy demonstrated significantly shorter overall survival in

comparison to those who relapsed 6 months after the last platinum-

based chemotherapy (13.3 months vs. 53.1 months in platinum-

resistant patients vs. platinum-sensitive patients; p-value < 0.001)

(Table 1 and Supplementary Figure 1).

Table 2 shows the frequently selected features more than one-

fold as a result of the LASSO feature selection. The texture-based

feature of small dependence low grey level emphasis (SDLGLE)

extracted from the gray level dependence matrix (GLDM) of CE-

T1WI was selected in all five folds.

Each fold-specific model was trained with nine features,

combining four clinical variables and five radiomics features.

Supplementary Figure 2 shows the SHAP values of the training

set for each feature of the trained XGBoost classifier. For example,

for the FIGO stage, there are many pink dots where the SHAP value

is negative. This can be interpreted as the FIGO stage negatively

correlating with platinum sensitivity. Conversely, if there were more

pink dots where the SHAP value was positive, the features were

positively correlated. Among the top three most frequently selected

radiomic features, the SDLGLE feature calculated from the GLDM

of CET1-MRI was negatively correlated with platinum sensitivity,

busyness features calculated from the NGTDM of DWI were

positively correlated, and flatness was negatively correlated.

Table 3 summarizes the performance of the test set for each fold

of the radiomic, clinical, and combined models to classify platinum

sensitivity and platinum resistance. The combined model, which

combines radiomics features and clinical variables, showed the best

classification performance with an average accuracy of 0.71 and an

AUC of 0.77.
Discussion

The present study investigated the role of a combined

radiomics-clinical data model in predicting platinum sensitivity in
frontiersin.org
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patients with advanced ovarian HGSC. The combined model, which

was developed by integrating MRI radiomic features and clinical

data, performed better than the MRI model or the clinical model

alone in predicting platinum sensitivity.

Platinum-based chemotherapy is the first-line treatment for

advanced ovarian HGSC. However, identifying patients who are

likely to demonstrate a treatment response to primary platinum-

based chemotherapy is challenging. Therefore, it is essential to

search for adequate predictive markers that can be easily performed
Frontiers in Oncology 05
in clinical practice to identify patients who can maximally benefit

from treatment. Previous studies have demonstrated that radiomic

information from MRI can improve the efficiency of precise

diagnosis by leveraging high-resolution morphological images and

providing various functional information, such as tissue

oxygenation, perfusion, or diffusion (35–38). In addition, recent

studies have demonstrated that radiomics information from MRI

can be used to predict the treatment response to platinum, risk of

recurrence, and residual disease in patients with ovarian HGSC
TABLE 1 Characteristics of patients. Various clinical parameters are presented for the platinum-sensitive and -resistant groups.

Clinical parameters
All

(N=96)
Platinum-Sensitive

(N=63, 65.6%)
Platinum-Resistant

(N=33, 34.4%)
p-value

Follow-up duration, months, median (IQR)
45.29

(25.96-59.63)
53.03

(41.81-71.61)
18.83

(14.92-28.81)
NA

Age, years, mean ± SD
57.15
± 10.58

55.83
± 11.14

59.67
± 9.05

.09a

Grade, N (%) .09b

2 10 (10.4) 9 (14.3) 1 (3.0)

3 86 (89.6) 54 (85.7) 32 (97.0)

FIGO Stage 2014, N (%) .06b

IIIC 69 (71.9) 49 (77.8) 20 (60.6)

IVA 2 (2.1) 2 (3.2) 0 (0)

IVB 25 (26.0) 12 (19.0) 13 (39.4)

CA-125 baseline, mean ± SD
2001.30
± 2752.83

2124.76
± 3197.42

1765.62
± 1613.11

.47a

Presence of ascites before treatment (%) 75 (78) 48 (76) 27 (82) .53c

Germline BRCA mutation

.44c
Wildtype 79 51 30

BRCA1 mutant 11 8 2

BRCA2 mutant 6 4 1

Primary treatment strategy, N (%) .66c

PDS 71 (74.0) 48 (76.2) 23 (69.7)

NAC 25 (26.0) 15 (23.8) 10 (30.3)

Residual disease, N (%) .11b

No 34 (35.4) 25 (39.7) 9 (27.3)

< 5mm 22 (22.9) 15 (23.8) 7 (21.2)

5mm - 1cm 11 (11.5) 7 (11.1) 4 (12.1)

1cm - 2cm 6 (6.2) 4 (6.3) 2 (6.1)

> 2cm 23 (24.0) 12 (19.0) 11 (33.3)

Recurrence, N (%) 89 (92.7) 56 (88.9) 33 (100) <0.001d

Recurrence-free survival, months, median (IQR)
7.29

(4.21-11.93)
7.52

(6.21-13.68)
3.94

(2.79-4.67)

Death, N (%) 40 (41.7) 23 (36.5) 17 (51.5) <0.001d

Overall-survival, months, median (IQR)
33.50

(14.44-54.81)
53.06

(36.52-71.69)
13.27

(9.50-19.65)
fro
aStudent’s t-test, bMann-Whitney U test, cChi-square test, dLog-rank test.
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(39–41). By combining clinical predictive markers with radiomics

information extracted from pretreatment MRI data, the present

study successfully demonstrated the enhanced ability of the model

to predict platinum sensitivity in women with advanced

ovarian HGSC.

Based on frequently selected radiomics features, we can gain

insight into how each radiomics feature is associated with platinum

sensitivity. First, the SDLGLE of the GLDM is high when similar

patterns of low-intensity regions occur nearby. This suggests that
Frontiers in Oncology 06
the uniformly textured low-intensity regions of a tumor appearing

on CET1-MRI are related to platinum sensitivity. Second, the

busyness value of the NGTDM is high when the intensity

difference between neighboring pixels is large. This suggests that

the intensity of the tumor region on DWI-MRI is more platinum-

sensitive when it appears as a high-contrast and varied texture.

Finally, flatness was higher when the region of interest was flat and

thin. Our results suggest that tumors with plate-like structures are

platinum-resistant, whereas those with spherical or cylindrical

structures are platinum-sensitive. The first two features are

related to the intensity/texture heterogeneity within the ROI.

Similar to other tumors, heterogeneity may play an important

role in advanced HGSC.

Considerable efforts have been devoted to recent studies to

understanding the possible mechanisms of platinum resistance

along with poly ADP ribose polymerase (PARP) inhibitor

resistance (42). Most patients who relapse with a progression-free

interval of less than six months after platinum-based chemotherapy

exhibit little to no response to other agents. Consequently, survival

rates have not significantly improved for advanced-stage ovarian

cancer over the last several decades, with a 5-year survival rate of

20 – 27% (34, 43, 44). Driven by advances in the molecular and

genomic understanding of epithelial ovarian cancer, researchers are

slowly gaining insight into the potential mechanisms by which
TABLE 2 Frequently selected radiomics features over 5 folds.

Modality Category Feature Count

CE-T1
Texture
GLDMa

Small Dependence Low Gray
Level Emphasis

5

DWI
Texture
NGTDMa Busyness 4

DWI Shape Flatness 3

T2 Histogram 10 Percentile 2

DWI Shape Sphericity 2

T2 Histogram Interquartile Range 2
aGLDM, Gray Level Dependence Matrix; NGTDM, Neighbouring Gray-Tone
Difference Matrix.
TABLE 3 Classification performance of radiomics, clinical, and combined models over 5 folds to distinguish between the platinum-sensitive and
-resistant groups.

Radiomics Accuracy Sensitivity Specificity AUC

fold 1 0.8000 0.8571 0.7692 0.8242

fold 2 0.5263 0.1667 0.6923 0.5769

fold 3 0.7895 0.5000 0.9231 0.7436

fold 4 0.6842 0.4286 0.8333 0.5952

fold 5 0.5789 0.2857 0.7500 0.5000

Mean ± SD 0.6758 ± 0.1097 0.4476 ± 0.2349 0.7936 ± 0.0789 0.648 ± 0.1182

Clinical Accuracy Sensitivity Specificity AUC

fold 1 0.7 0.5714 0.7692 0.6484

fold 2 0.6316 0.6667 0.6154 0.8077

fold 3 0.7368 0.3333 0.9231 0.6538

fold 4 0.6316 0.4286 0.75 0.5952

fold 5 0.7895 0.4286 1.0 0.7262

Mean ± SD 0.6979 ± 0.0612 0.4857 ± 0.1182 0.8115 ± 0.1357 0.6863 ± 0.0736

Combined Accuracy Sensitivity Specificity AUC

fold 1 0.75 0.5714 0.8462 0.7692

fold 2 0.6316 0.6667 0.6154 0.7564

fold 3 0.7368 0.3333 0.9231 0.8077

fold 4 0.7895 0.7143 0.8333 0.75

fold 5 0.6316 0.4286 0.75 0.75

Mean ± SD 0.7079 ± 0.0647 0.5429 ± 0.1432 0.7936 ± 0.1047 0.7667 ± 0.0217
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platinum resistance develops in this patient population. However,

our current understanding does not provide a clear view of

platinum sensitivity, and much remains to be explored.

Substantial advances in imaging techniques and their applications

have been achieved in recent years. Computational analysis

techniques that combine radiomics information and clinical

data that are already known to be associated with survival or

treatment response may enhance our ability to predict platinum

sensitivity. The potential role of radiomics information should be

further explored in relation to other already-known survival

predictors such as platinum sensitivity and tumor resectability.

Rigorous technical, biological, and clinical validation of this

rapidly emerging field of imaging research is required for

clinical applications.

Our study has several limitations. First, this was a single-

institution retrospective study. Thus, our findings need to be

validated in a multi-institution prospective setting. Second,

machine-learning studies are increasingly adopting deep-learning

methods; however, such methods require larger samples. Therefore,

such investigations are left for future research. Third, establishing a

direct link between radiomics features and the molecular

mechanism of HGSC requires a rich array of genomic data,

including BRCA mutations and HRD. This study did not

examine these parameters, which we plan to investigate in

future studies.

We demonstrated the effectiveness of our combined radiomics-

clinical data model in predicting platinum sensitivity in patients

with advanced ovarian HGSC. Our results may contribute to

enhanced personalized treatment of women with advanced

ovarian HGSC.
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