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Unilateral hippocampal sparing
during whole brain radiotherapy
for multiple brain metastases:
narrative and critical review
Petr Pospisil 1,2, Ludmila Hynkova1,2, Lucie Hnidakova1,2,
Jana Maistryszinova1,2, Pavel Slampa1,2 and Tomas Kazda1,2*

1Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia, 2Department
of Radiation Oncology, Faculty of Medicine, Masaryk University, Brno, Czechia
Background: The landscape of brain metastases radiotherapy is evolving, with a

shift away from whole-brain radiotherapy (WBRT) toward targeted stereotactic

approaches aimed at preserving neurocognitive functions and maintaining

overall quality of life. For patients with multiple metastases, especially in cases

where targeted radiotherapy is no longer feasible due to widespread

dissemination, the concept of hippocampal sparing radiotherapy (HA_WBRT)

gains prominence.

Methods: In this narrative review we explore the role of the hippocampi in

memory formation and the implications of their postradiotherapy lateral damage.

We also consider the potential advantages of selectively sparing one

hippocampus during whole-brain radiotherapy (WBRT). Additionally, by

systematic evaluation of relevant papers published on PubMed database over

last 20 years, we provide a comprehensive overview of the various changes that

can occur in the left or right hippocampus as a consequence of radiotherapy.

Results: While it is important to note that various neurocognitive functions are

interconnected throughout the brain, we can discern certain specialized roles of

the hippocampi. The left hippocampus appears to play a predominant role in

verbal memory, whereas the right hippocampus is associated more with

visuospatial memory. Additionally, the anterior part of the hippocampus is

more involved in episodic memory and emotional processing, while the

posterior part is primarily responsible for spatial memory and pattern

separation. Notably, a substantial body of evidence demonstrates a significant

correlation between post-radiotherapy changes in the left hippocampus and

subsequent cognitive decline in patients.

Conclusion: In the context of individualized palliative radiotherapy, sparing the

unilateral (specifically, the left, which is dominant in most individuals)

hippocampus could expand the repertoire of strategies available for adapted
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WBRT in cases involving multiple brain metastases where stereotactic

radiotherapy is not a viable option. Prospective ongoing studies assessing

various memory-sparing radiotherapy techniques will define new standard of

radiotherapy care of patients with multiple brain metastases.
KEYWORDS

whole brain radiotherapy, hippocampus, uni lateral , brain metastases,
neurocognitive function
1 Introduction

Brain metastases (BM) are the most common intracranial

tumors in adults, accounting for more than half of all brain

tumors. The incidence of BM is steadily increasing, primarily due

to advances in comprehensive cancer care, better control of

extracranial disease through improved systemic therapy, and

enhanced detection of small metastases using more easily

accessible magnetic resonance imaging. It is estimated that BM

occur in up to 30 percent of adult patients with solid malignancies

(1). Consequently, the prevalence and incidence of BM are

continuously rising, making BM a significant social and health

problem. Until recently, due to limited therapeutic options, BM

were typically treated in a standardized manner, with whole-brain

radiotherapy (WBRT) being the primary treatment for decades.

Current treatments for BM include surgery, stereotactic

radiosurgery (SRS), WBRT, chemotherapy, and modern targeted

therapy (2).

Although the role of WBRT in patients with brain metastases

has evolved in recent years, and its usage has decreased, WBRT

remains a crucial tool in the standard treatment for the majority of

patients with multiple BM (3). While radiotherapy has made

significant advancements in general, WBRT itself has not seen

substantial changes in recent decades. It has long been recognized

that WBRT can lead to serious, irreversible side effects on the

central nervous system. Neurocognitive dysfunction has become an

increasingly relevant concern in patients with BM who receive

WBRT. Preserving a good quality of life (QoL) for as long as

possible and minimizing potential iatrogenic side effects of

treatment are currently top priorities, not only in palliative

medicine (4).

Although cognitive impairment in patients with BM is likely

influenced by multiple factors, post-radiation changes in the

hippocampus are considered one of the primary factors affecting

neurocognitive function (NCF), particularly memory, and

ultimately overall QoL (5–7). This article presents multiple

clinical and preclinical data on radiation-induced damage to

neural progenitor cells located in the subgranular zone of the

hippocampus and its impact on radiation-induced neurocognitive

decline, specifically in terms of short-term memory formation and
02
recall (8). Additionally, by systematic evaluation of relevant papers

published on PubMed database over last 20 years, we provide a

comprehensive overview of the various changes that can occur in

the left or right hippocampus as a consequence of radiotherapy with

consideration of the potential benefits of sparing unilateral

hippocampus during WBRT in patients with multiple brain

metastases (presented in section 4.2 and 4.3 after necessary

gradual description of relevant implicatons).
2 Hippocampus – basic overview

Due to bilateral brain symmetry, the hippocampus is situated in

each cerebral hemisphere. It can be simplified that if there is

unilateral damage to the hippocampus, with the structure in the

other hemisphere remaining intact, memory functions of the brain

can generally remain almost normal (9). Conversely, severe damage

to both hippocampi in both hemispheres can lead to significant

difficulties in forming new memories. Nevertheless, clinical

observations and numerous studies demonstrate that damage to

different regions of the hippocampus can result in specific memory

disorders. For instance, verbal memory retention is most likely

associated with the anterior part of the left hippocampus, while the

right hippocampus plays a more prominent role in executive

functions and regulation during verbal memory retrieval. The

posterior part of the left hippocampus could then be linked to

verbal memory capacity (10). The findings of our previous research

are consistent with these observations, as discussed in further details

(11, 12).

The hippocampus does not appear to have a uniform structure

along its longitudinal axis. There is evidence of differences in both

structure and function. The anterior part of the hippocampus is

preferentially connected to the amygdala and orbitofrontal cortex

and is believed to be mainly involved in episodic memory and the

mediation of anxiety-related behaviors. In contrast, the posterior

part of the hippocampus is preferentially connected to the

retrosplenial and posterior parietal cortex and is thought to be

especially engaged in memory and spatial navigation (13). Other

parts of the brain (amygdala, fornix, etc.) are involved in the

neurocognitive function in the complex brain organization.
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In addition to the functional distinctions between the anterior

and posterior hippocampus, there is substantial evidence regarding

the lateralization of hippocampal functioning, highlighting that the

roles of the right and left hippocampus are not identical. This

knowledge is derived from findings in patients with unilateral

hippocampal lesions, including those with conditions such as

schizophrenia and mild cognitive impairment, as well as

individuals who have undergone unilateral hippocampal resection

as a treatment for epilepsy. In broad terms, it can be asserted that

spatial memory is primarily associated with the right hippocampus,

while episodic memory is linked to the left hippocampus.

Furthermore, gender differences in hippocampal lateralization

during spatial tasks have been observed, with greater activation on

the left in females and on the right in males. This discrepancy is

likely attributed to the fact that females tend to rely more on verbal

strategies, whereas males exhibit a preference for nonverbal spatial

strategies (14). Additionally, several other studies discussed below

have described varying clinical significance in the postradiotherapy

changes between the left and right hippocampus.

It has been shown that radiation-induced microstructural

changes in the brain, which can subsequently lead to cognitive

impairment, occur soon after radiation exposure. These alterations

may occur without obvious radiographic manifestations and may be

detectable, for example, by diffusion tensor imaging (DTI) as white

matter changes. Further information about radiation damages can

be provided by MR perfusion a diffusion-weighted imaging (DWI).

MR spectroscopy (MRS) is able to evaluate radiation-induced brain

injury by assessing the metabolic concentrations at the molecular

levels (15, 16).
3 Laterality in hippocampal function

Much of the information on this topic has been gleaned from

non-oncology patients or healthy volunteers. Patients with BM

possess unique characteristics; their cognitive and neurological

functions may be influenced by the oncology disease itself,

typically resulting in a poor prognosis and short life expectancy.

The primary treatment goal is to enhance or sustain the quality of

life. The view of this issue from the point of view of radiation

oncology must be somewhat different from, for example, epilepsy

surgery. In neurobiology, it is understood that explicit memory is

primarily housed in the brain’s temporal lobes, specifically within

the hippocampus, as well as in the amygdala and neocortex.

While both episodic and spatial memory rely on the hippocampus,

distinctions in these functions suggest partial separation and distinct

structural neural foundations, as well as varying connections with other

brain regions. Notably, the anterior and posterior hippocampus exhibit

differences in structure and connectivity within the brain. Some studies

suggest that the posterior hippocampus plays a greater role in spatial

memory, whereas the anterior hippocampus is primarily associated

with episodic memory (17, 18).

In addition to the functional differences between the anterior

and posterior hippocampi, numerous examples support the

presence of lateralization in hippocampal functions, meaning that

the left and right hippocampus serve distinct functions. Much of
Frontiers in Oncology 03
this evidence is derived from studies involving patients with

unilateral hippocampal lesions and unilateral hippocampal

resections. Research on patients who have undergone resection of

the left hippocampus for the treatment of epilepsy suggests

impairment verbal memory tasks, specifically affecting learning

and retention of story content, word recognition, recall, and

verbal associative memory (19–21). In contrast, resections of the

right hippocampus and parahippocampal cortex lead to deficits in

visuospatial tasks (22). This aligns with findings of lateralized

hippocampal activation in functional neuroimaging studies.

Lateralization of hippocampal function is also evident in spatial

memory, depending on whether verbalizable stimuli or abstract

nonverbal stimuli are employed. This suggests possible differences

in different cognitive strategies. These results provide support for

the concept of functional lateralization within specific aspects of

spatial memory (23).

Consequently, it can be inferred that the previous hypothesis of

strictly lateralized organization of brain functions, with verbal

memory components residing exclusively in the left hemisphere

and spatial memory components solely in the right hemisphere,

may not be so pronounced (24). Thus, with the advancement of

cognitive neuroscience, the idea of strict structural specificity is now

being questioned (25).Thus, the specific neurocognitive functions

attributed to the left and right hippocampus are not as clear-cut as a

following Figure 1 might suggest. While there are some general

trends in terms of lateralization of functions in the brain, the

hippocampus is a complex structure, and many functions involve

both sides working together. Additionally, individual differences, as

gender aspects, can play a significant role.

Conversely, the recovery and compensation of memory

functions represent a demonstration of a particular functional

plasticity within the brain (26). For instance, memory deficits

typically associated with the contralateral temporal lobe function

in patients with unilateral hippocampal sclerosis may show

improvement after surgery (27). However, in patients with brain

tumors, who are further burdened by oncological treatments,

including radiation injury, it is not possible to assume the same

ability for compensation.

From a radiotherapy perspective, the feasibility of sparing both

hippocampi, only the right hippocampus, or only the left hippocampus

is often influenced by the presence or proximity of individual BM

within the hippocampus. The consideration of which functions are

associated with each hippocampus is secondary in this context.

Conversely, the discussed differences in lateralization are a significant

factor to consider when contemplating unilateral hippocampal

investigation in WBRT as discussed below. In this scenario, one of

the hippocampi remains covered by full dose of radiation while only

the other is protected. This experimental approach may offer greater

sparing possibilities when focusing on a single hippocampus, along

with improved rest of the brain irradiation (28).
3.1 Radiotherapy and hippocampus

The side effects of radiotherapy on the brain are highly specific

to the tissues and structures involved. This specificity arises from
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the combined impact of radiation on brain vasculature, neuroglial

cells, and their precursors, including stem cells. Radiation-induced

inflammatory effects and the disruption of the blood-brain barrier

also play a role (29).

The radiation-induced inflammatory response leads to an

increased activation of microglia, which release cytokines like

tumor necrosis factor-alpha and interleukin-1 beta. Radiation is

particularly cytotoxic to proliferating neuroglial progenitor cells,

disrupting both gliogenesis and neurogenesis and resulting in a

reduction in the number of newly formed neurons. One region in

the brain known for its neurogenic potential is the hippocampus,

specifically the subgranular zone of the hippocampal gyrus

dentatus, housing a niche of neural stem cells crucial for memory

formation. In our previous work, we hypothesized that the loss of

neuronal cells in the hippocampal region that occurs after

irradiation can be measured by changes in N-acetylaspartate

(NAA) concentration using MRS. Our results showed that after

whole brain radiotherapy (WBRT), there was a decrease in NAA

concentration in both hippocampi, and these changes were

associated with a decline in cognitive function as assessed by a

battery of neurocognitive tests focused on memory, including the

Auditory Verbal Learning Test and the Short Test of Visual-Spatial

Memory-Revised. We observed a moderate positive correlation

between the decrease in NAA concentration in the left

hippocampus and some subtests related to verbal memory (12). A

radiation technique employing intensity-modulated RT (IMRT) to

administer a therapeutic dose to the entire brain region while

sparing the bilateral hippocampi is known as hippocampal

avoidance whole brain radiotherapy (HA-WBRT) (30–33).

In a pivotal phase II trial (RTOG 0933), HA-WBRT in BM

patients was linked to the preservation of tested cognitive function

and reported quality of life compared to historical controls (31).

Subsequently, the results of a randomized phase III study (NRG

CC001, published in 2020) comparing HA-WBRT plus memantine,

the N-methyl-D-aspartate (NMDA) receptor antagonist, to WBRT

plus memantine in 518 BM patients demonstrated a significantly
Frontiers in Oncology 04
lower risk of cognitive failure (adjusted hazard ratio, 0.74; P = .02)

with hippocampal sparing, while there was no difference in

intracranial progression or overall survival. HA-WBRT in

combination with memantine can now be considered a new

standard of care for the treatment of multiple brain metastases (34).

However, the planning process for HA-WBRT is significantly

more labor-intensive compared to traditional WBRT. The key

challenge lies in accurately defining the target volume and

identifying critical structures and organs at risk (OAR), such as

the hippocampus and hippocampal-avoiding zones (33). To address

this, a consensus-based atlas for contouring in Neuro-Oncology can

help reduce inter- and intra-observer delineation variability (35).

Recently, an MRI-based OAR autosegmentation atlases are

developed as well. Autosegmentation allows for high-quality

contouring in a limited time frame. The accuracy of hippocampal

contouring in the HA-WBRT technique is enhanced through

automatic hippocampal segmentation using multitasking

learning (36).

Other areas that may be relatively sensitive to radiation include

periventricular regions (such as the subventricular zone) and white

matter tracts containing oligodendrocyte precursor cells. These

areas are relevant to brain neuroplasticity, which pertains to the

brain’s ability to establish or modify connections with other brain

regions. Neuroplasticity is an essential property, particularly for

brain injury recovery, among other functions.

The importance of preserving intact white matter integrity in

maintaining cognitive function has also been highlighted in a

secondary analysis of the RTOG 0933 trial. In their study, Bovi

et al. established a correlation between neurocognitive decline and

the pretreatment volume of MRI-determined white matter injury.

They found a positive correlation (r = 0.54, P <.05) between a larger

volume of pretreatment white matter injury and declines in

recognition, as assessed by the Hopkins Verbal Learning Test-

Revised (37).

A recently published prospective longitudinal trial assessed

associations between changes in amygdala morphometry and
FIGURE 1

Summary of simplified division of different neurocognitive domains according to hippocampal location and laterality.
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functional outcomes in patients with primary brain tumors

receiving radiation therapy. Radiation dependent atrophy in

bilateral amygdalae was associated with poorer memory, mood,

and emotional well-being.

Advanced radiotherapeutic techniques such as volumetric

modulated arc therapy (VMAT) enable the simultaneous sparing

of other limbic brain structures involved in cognitive function for

patients undergoing WBRT. While hippocampal sparing is already

common practice in many cancer centers, the feasibility of

extending this approach has, thus far, only been tested at the

planning study level. The process of preparing a radiation plan is

more time-consuming, and the homogeneity of radiation with

respect to PTV (Planning Target Volume) dose coverage may be

lower. Implementing an extended sparing approach for certain

brain regions carries the risk of potentially impacting oncologic

outcomes, including intracranial control and subsequent overall

survival. Therefore, prospective studies are deemed necessary (38).

On the other hand, as advancements in stereotactic

radiotherapy delivery continue, one might argue that preserving

various other parts of the brain is safe, even in cases with multiple

brain metastases (e.g., more than 15 lesions), especially when

regular brain MR imaging follow-ups are conducted (38). The left

and right hippocampus, left and right amygdala, fornix, and corpus

callosum are crucial neurocognitive structures, and it is reasonable

to assume that sparing all of them is essential to maximize the

preservation of neurocognitive function. Indeed, in the NRG CC001

study, approximately 50% of patients treated with HA-WBRT and

memantine experienced neurocognitive decline (34). It is

conceivable that sparing more than just the hippocampi is

necessary, as is being explored in the concept of Memory

Avoidance WBRT, currently under evaluation in an ongoing

phase II clinical trial (39). The Memory Avoidance region

encompasses the left and right hippocampus, left and right

amygdala, fornix, and corpus callosum, with constraints set at

D100% ≤ 9 Gy and D0.03 cm3 ≤ 16 Gy in standard prescription

of 30Gy in 10 fractions. In a dosimetry study involving ten enrolled

patients (none of whom had brain metastases within the memory

sparing region), only two of them failed to meet the constraints for

achieving near-maximal dose sparing, as priority was given to target

coverage and homogeneity of target irradiation. Utilizing modern

LINAC-based volumetric modulated arc therapy, it is indeed

possible to create a homogeneous treatment plan while preserving

all critical neurocognitive function-related structures (40). For the

further development of this intriguing and innovative technique of

Memory Sparing-WBRT, the evaluation of post-treatment

neurocognitive function and the assessment of the risk of local

failure will be crucial.
3.2 Laterality of hippocampal changes
after RT

Designing appropriate strategies to reduce radiation dose to the

hippocampus would be enhanced if suitable imaging methods could

be discovered to detect hippocampal damage in vivo in patients with

brain tumors after cranial irradiation. Magnetic resonance imaging
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is a widely utilized neuroimaging method and is also employed in

cognitive neuroscience. It can be utilized to assess regional

morphology and physiology, including pathological issues, in the

entire brain or in its individual components.

An example would be hippocampal volume measured by

structural MRI. The utility of this method has been clinically

validated, as seen in conditions such as Alzheimer’s disease,

temporal lobe epilepsy, and traumatic brain injury (40, 41).

However, this technique has not yet been successfully employed

as a biomarker for radiation-induced hippocampal volume loss

(42). There is a notable correlation between the reduction in

hippocampal volume and the administered radiation dose to the

hippocampus. Nevertheless, at the lowest doses, the hippocampi

appear to exhibit an adaptive increase in volume, suggesting a

potential neuroplasticity effect. Consequently, it may be advisable to

shield at least one hippocampus by administering the lowest feasible

dose to preserve cognitive functions (43).

Recently, a systematic review was published, and a behavioral

meta-analysis was conducted on the association between cognitive

outcomes and multimodal MRI imaging in childhood

medulloblastoma (MB) survivors. As summarized in the article,

several studies have explored the link between hippocampal volume

changes following radiotherapy and memory function (44). One

study reported that smaller hippocampal volumes were associated

with poorer verbal associative memory (45), while another study

found a correlation between right hippocampal volume and

learning, attention, and memory (42). In one of the included

studies, significantly lower ADC (Apparent Diffusion Coefficient)

levels were observed in the hippocampi of MB patients compared to

the control group. This study highlights impaired hippocampal

microstructure, which may lead to decreased memory performance

in patients treated for MB.

The association between hippocampal volume and memory

functions was also validated in the opposite direction, as

demonstrated by a positive correlation between grey matter

volume in the posterior hippocampus of London taxi drivers and

their spatial memory, along with their navigational abilities (46).

Other studies show different changes occurring in the left and

right hippocampus after irradiation as discussed below (Table 1).

PubMed database was used on 20 July 2023 to extract scientific

articles describing different postradiotherapy changes in the leff,

versus right hippocampus (Figure 2). Out of 108 identified articles,

total of 18 studies was further evaluated (Table 1).

In patients whose left hippocampus received a mean dose of

30.7 Gy and 31 Gy, respectively, a statistically significant decrease in

mean total performance quotient score of >10% was observed at 3

and 5 years after fractionated RT (benign, low-grade juvenile

tumors), but no significant correlation was found with the doses

received by the right hippocampus (51).

Higher doses to the left hippocampus can lead to significant

impairment of verbal learning and memory; high doses to the left

hippocampus and other structures on the left side of the brain (left

temporal lobe, left frontal lobe, etc.) can result in impairment of

verbal fluency, executive functions, and working memory speed as

shown in a cross-sectional study of 78 primary brain tumor patients

after radiotherapy (50).
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TABLE 1 Summary of studies reporting different post-radiotherapy changes in left vs. right hippocampal region.

Author,
year

Diagnosis Number
of
patients

observation Laterality
of
greater
changes

Yang,
2022 (47)

Glioblastoma 133 Mean left hippocampus dose was significantly associated with post-radiotherapy decline in MMSE
scores (p = 0.005), while the right hippocampus not.

L

van der
Weide,
2022 (48)

Low
grade gliomas

17 The subgroup with left-sided tumors performed significantly lower on verbal tests. In the
subgroup with right-sided tumors, RT dose in the left cerebrum was related to lower verbal
memory performance

L

Qiu,
2021 (49)

Nasopharyngeal
carcinoma

146 RT-associated progressive radial diffusivity reduction in the left cingulate angular bundle
correlated with progressive cognitive impairment post-RT

L

Haldbo-
Classen,
2020 (50)

Primary
brain tumors

78 High RT dose to the left hippocampus associated with impaired verbal learning and memory (p =
0.04). RT dose to the left hippocampus, left temporal lobe, left frontal lobe and total frontal lobe
associated with verbal fluency impairment (p < 0.05) and doses to the thalamus and the left
frontal lobe with impaired executive functioning

L

Goda,
2020 (51)

Benign or low-
grade
brain tumors

48 A mean dose of ≤30 Gy to the left hippocampus as a dose constraint for preserving intelligence
quotient is suggested

L

Tringale,
2019 (52)

Primary
brain tumors

27 Higher mean dose to the left temporal pole white matter was significantly associated with
decreased fractional anisotropy.

L

Shi,
2018 (53)

Nasopharyngeal
carcinoma

56 Compared to pre-treatment group, cortical volumes of gray matter were significantly smaller in
the left hippocampus, the right pulvinar and the right middle temporal gyrus

L

Raghubar,
2018 (54)

Pediatric
brain tumor

26 Word Pair delayed recall was significantly associated with whole brain and right hippocampus
mean dose, Integral biological effective dose, and Generalized equivalent uniform dose; and left
hippocampus Generalized equivalent uniform dose

L/R

Zureick,
2018 (55)

Pediatric
brain tumor

70 A higher left hippocampal V20GyE (percentage of the volume of a particular anatomical region
receiving at least a 20 gray equivalent) was correlated with a score decline in all 4 measures.

L

Kim,
2018 (56)

Primary
brain tumors

26 The mean dose of the left hippocampus and bilateral hippocampi were significantly higher in
patients showing deterioration of the Seoul Verbal Learning Test for total recall and Recognition
than in those without deterioration.

L

Pospisil,
2017 (12)

Brain metastases 35 Moderate positive correlation was observed between left hippocampal N-acetyl aspartat
concentration decrease and Auditory Verbal Learning Test_total recall decline as well as with
delayed recall decline. No correlation between right hippocampus h-tNAA and memory decline
(AVLT) was observed.

L

Simo,
2016 (57)

Brain metastases
from small cell
lung cancer

22 decrease in gray matter over time in the right subcortical regions, bilateral insular cortex, and
superior temporal gyrus plus in the right parahippocampal gyrus and hippocampus

R

Bodensohn,
2016 (58)

High
grade gliomas

44 In the ‘verbal memory test’ lower percentile ranks were achieved in left-sided tumors compared to
right-sided tumors. a correlation was detected between decreased figural recognition and the
radiation dose to the left hippocampus

L

Tsai,
2015 (59)

Brain metastases 40 dosimetric parameters specific to left sided hippocampus exerted an influence on immediate recall
of verbal predicting patients’ neurocognitive decline after receiving HS-WBRT

L

Farjam,
2015 (60)

Low-grade
glioma or
benign tumor

27 vascular dose response in the left hippocampus of females correlated significantly with changes in
memory function at 6 and 18-months post radiotherapy

L

Greenberger,
2014 (61)

Pediatric
patients with
low-
grade gliomas

32 subgroup analysis indicated some significant decline in neurocognitive outcomes for young
children (<7 years) and those with significant dose to the left temporal lobe/hippocampus

L

Peiffer,
2013 (62)

Primary
brain tumor

57 Regions of adult neurogenesis primarily predicted cognition at %v40 (percent of region of interest
receiving 40 Gy) except for the right hippocampus which predicted at %v10

R

Redmond,
2013 (63)

Pediatric
primary brain
tumors
and controls

74 significant relationship between reduced performance on verbal learning and increasing dose to
the cerebrum and reduced performance on visual perception and increasing dose to the left
temporal lobe

L

F
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In a prospective study, Zureick et al. explored the correlation

between cognitive function and the dose received by the

hippocampus in pediatric patients after proton irradiation. The

results revealed a significant decrease in scores for delayed verbal

memory and a borderline decrease for immediate verbal memory.

However, no significant change was observed in scores for

immediate and delayed visual memory. Furthermore, they

identified a correlation between higher V20GyE (volume receiving

20 GyE or equivalent) on the left hippocampus and a decline in

memory scores. Based on these findings, it is advisable to consider

investigating the left hippocampus in pediatric brain tumor patients

during proton/photon radiation therapy (55).

In other study, 40 cancer patients underwent HA-WBRT, and

their neurocognitive functions were assessed before and four

months after treatment. The results indicated stable

hippocampus-dependent memory but significant associations

between certain radiation doses to the hippocampus and verbal

memory preservation. Specifically, lower radiation doses to the left

hippocampus were linked to preserved immediate verbal

memory (59).

In another study, eighty patients aged at least 6 years but less

than 21 years with low-grade glioma were treated with RT to 54 Gy.

On multivariate regression, after accounting for hydrocephalus,

decline in short-delay recall was associated with the volume of right

or left hippocampus receiving 40 Gy (V40 Gy) (64). This is an

example of studies, where no difference between left and right

postradiotherapy changes is presented.
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3.3 Concept of unilateral
hippocampal sparing

There is sufficient evidence supporting the crucial role of the

hippocampus in both episodic and spatial memory functions.

Numerous reports have documented that bilateral damage to this

structure leads to severe memory impairments, often resulting in

severe amnesia (9). Notably, the randomized NRG-CC001 trial

demonstrated a reduced incidence of memory impairment when

both hippocampi were spared during WBRT.

Whether the hippocampus sustains damage or protection

during radiotherapy, such changes typically affect both

hippocampi. Maintaining the integrity of both hippocampi is

considered essential for normal cognitive function. However, the

precise involvement of the dominant and non-dominant

hemispheres’ hippocampi in specific neurocognitive functions

remains incompletely understood. From a radiobiological

perspective, the hippocampus cannot be viewed as a solely serial

or parallel organ. In cases where there is evidence of metastatic

involvement in one hippocampus, it is advisable to consider at least

a unilateral or partial sparing of the hippocampal region possibly

even just the amygdala region (65–67). This approach represents a

compromise, aiming to preserve neurocognitive functions partially

while achieving more uniform irradiation of the brain region. Such

an approach could significantly expand the indications for

hippocampal avoidance whole-brain radiation therapy (HA

WBRT), even for patients with unilateral hippocampal metastasis

involvement or metastases in close proximity to the hippocampi.

In cases where patients have multiple brain metastases,

particularly when these are unfortunately situated within

memory-related structures (as previously discussed regarding

Memory Sparing WBRT), it may be advisable to consider sparing

at least one hippocampal region. To be more specific, given the

higher frequency of post-radiotherapy changes in the left

hippocampus, a strategy involving the sparing of the dominant

left hippocampus during WBRT could be considered as an

alternative approach in the palliative radiotherapy of multiple BM.
3.4 Clinical implications and
future directions

In our previous in-silico virtual planning study involving 10

patients, we developed radiation therapy treatment plans that

incorporated unilateral left hippocampal sparing. Our aim was

twofold: first, to maintain the same dosimetry for the left

hippocampus as typically achieved in both hippocampal-avoiding

WBRT to demonstrate improvements in brain target coverage, and

second, to achieve the same left hippocampal dosimetry as usual but

with only unilateral left hippocampal sparing to illustrate the

potential for further reducing radiation dose to the spared left

hippocampus (28).

With the implementation of unilateral left hippocampal

sparing, we were able to achieve a significant reduction in brain

radiotherapy homogeneity index. This approach also led to a

decrease in near-maximal dose (D2%) to the brain and an
FIGURE 2

Flowchart summarizing the selection of studies describing different
postradiotherapy changes in left vs. right hippocampal region. The
search terms ,,hippocamp*”, ,,radioth*”, irrad*, left and right were
used to search papers published during last 20 years (since 2003). In
total, 108 articles was received using he search terms ,,
(“hippocamp*”[All Fields]) AND ((radioth*) OR (irrad*)) AND ((left) OR
(right))” with limitation for english written papers. Abstracts were
reviewed and articles describing the other than brain cancer, case
report, animal studies, virtual, in silico studies, studies with no
specification of left vs. right changes were excluded.
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increase in the near-minimal dose (D98%), thereby improving

overall brain radiation dosage. Alternatively, by maintaining

similar brain coverage, we could significantly reduce the radiation

doses deposited in the left (spared) hippocampus (28).

Figure 3 illustrates the case of 47-year old women with

melanoma, who developed multifocal brain metastases presented

supra- and infratentorially. One metastasis was presented in the

close proximity to the right hippocampus. Unilateral left

hippocampal sparing WBRT was performed with dose

prescription to planning target volume 30Gy in 10 fractions. Dose

within left hippocampus was reduced to D0.03Gy = 18.64Gy and to

D100% = 9.65Gy.

The concept of partial hippocampal sparing in whole-brain

radiation therapy (WBRT) has also been proposed by McKay et al.

(66) and Sapienza et al. (65). Their work supports the idea of

unilateral hippocampal sparing as a compromise approach.

Additionally, their research suggests the potential for expanding

the indications of hippocampal avoidance WBRT to include

patients with unilateral metastatic involvement in the hippocampus.

The only currently ongoing and recruiting trial that focuses on

unilateral hippocampal sparing during radiotherapy is

NCT04801342, titled “Neurocognitive Outcome of Bilateral or

Unilateral Hippocampal Avoidance WBRT With Memantine for

Brain Metastases”. This phase 2 trial, conducted by researchers

from National Taiwan University Hospital, involves enrolling

patients with brain metastases located outside a 5-mm margin

around either hippocampus (68). Patients are then randomized

into two groups: the experimental arm, which receives unilateral

hippocampal sparing WBRT plus memantine, and the active

comparator arm, which undergoes bilateral hippocampal sparing

WBRT plus memantine. In both cases, the prescribed dose is 10

fractions of 3.0 Gy each. The primary outcome of this study is the

assessment of the decline in the Hopkins Verbal Learning Test-

Revised (HVLT-R) memory score, which includes the sum of total
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recall and recognition index, measured from baseline to 6 months

after the initiation of radiotherapy.
4 Conclusion

In summary, the human hippocampus plays a critical role in

both intact episodic memory and spatial memory. Previous research

indicates that there are notable structural and functional

distinctions between the anterior and posterior regions of the

hippocampus, reflecting differences in their connectivity to other

brain regions. The posterior hippocampus is closely connected to

the posterior parahippocampal cortex, which is involved in spatial

function. This connectivity suggests that the posterior hippocampus

is primarily responsible for spatial memory.

Conversely, the anterior hippocampus is associated with the

perirhinal cortex, anterior temporal cortex, and amygdala, implying

its involvement in episodic memory processes. It is worth noting

that the activation pattern for episodic memory tasks is somewhat

less distinct and tends to be more distributed in the left anterior

hippocampus. However, the lateralization of activation may depend

on the extent to which the task allows for the use of verbal strategies.

In essence, spatial tasks predominantly engage the right

posterior hippocampus, while the engagement of the left anterior

hippocampus is more prominent in episodic memory tasks,

although this can vary based on the specific demands of the task,

particularly in terms of verbal processing.

Differences in functional distribution along the longitudinal axis

of the hippocampus, as well as lateral differences, could potentially

account for sex differences in memory function. These distinctions

might then manifest as variations in behavior between genders.

However, the underlying neural mechanisms responsible for these

sex differences remain largely unexplored. Gaining insight into the

neural basis of sex differences in memory functions would not only
FIGURE 3

T1-weighted contrast enhancing MR examination with one metastasis located close to the right hippocampus (A). Unilateral hippocampal sparing
radiotherapy technique (B) was employed in the palliative RT.
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contribute to our theoretical understanding of hippocampal

function but also hold potential clinical significance. Notably,

gender disparities in spatial memory performance are evident in

variations in hippocampal activation patterns. Functional MRI

studies have revealed greater right-sided activation in the

posterior hippocampus among males. Furthermore, gender

differences in the impact of unilateral hippocampal resection as a

treatment for epilepsy have been observed, indicating that men and

women may respond differently in terms of memory effects to

this procedure.

Many patients with multiple BM are not suitable candidates for

stereotactic radiotherapy, often due to the limited availability of

advanced radiotherapy facilities and systems. Given that post-

radiotherapy changes in the left hippocampus are more frequently

associated with post-radiotherapy neurocognitive decline, the

concept of unilateral left (dominant) hippocampal sparing has

been proposed.

In addition to ongoing prospective clinical phase II trial

(NCT04801342), it will be essential to routinely document specific

doses administered to the left and right hippocampus. This

documentation will help in comparing pre- and post-radiotherapy

neurocognitive function. Determining the dominant hemisphere is

crutial as well. Meanwhile, on an individual patient basis, unilateral

(left, dominant) hippocampal sparing could expand the range of

modifications available for whole-brain radiation therapy in multiple

brain metastases unamenable for stereotactic radiotherapy.
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