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Background: The microbiome plays a pivotal role in mediating immune deviation 
during the development of early-life viral infections. Recurrent infections in 
children are considered a risk factor for disease development. This study delves 
into the metagenomics of the microbiome in children suffering from severe 
infections, seeking to identify potential sources of these infections.

Aims: The aim of this study was to identify the specific microorganisms and 
factors that significantly influence the treatment duration in patients suffering 
from severe infections. We  sought to understand how these microbial 
communities and other variables may affect the treatment duration and the use 
of antibiotics of these patients with severe infections.

Method: Whole-genome shotgun sequencing was conducted on samples 
collected from children aged 0–14  years with severe infections, admitted to 
the Pediatrics Department of Xiamen First Hospital. The Kraken2 algorithm 
was used for taxonomic identification from sequence reads, and linear mixed 
models were employed to identify significant microorganisms influencing 
treatment duration. Colwellia, Cryptococcus, and Citrobacter were found to 
significantly correlate with the duration of clinical treatment. Further analysis 
using propensity score matching (PSM) and rank-sum test identified clinical 
indicators significantly associated with the presence of these microorganisms.

Results: Using a linear mixed model after removed the outliers, we  identified 
that the abundance of Colwellia, Cryptococcus, and Citrobacter significantly 
influences the treatment duration. The presence of these microorganisms is 
associated with a longer treatment duration for patients. Furthermore, these 
microorganisms were found to impact various clinical measures. Notably, an 
increase in hospitalization durations and medication costs was observed in 
patients with these microorganisms. In patients with Colwellia, Cryptococcus, 
and Citrobacter, we discover significant differences in platelets levels. We also 
find that in patients with Cryptococcus, white blood cells, hemoglobin, and 
neutrophils levels are lower.

Conclusion: These findings suggest that Colwellia, Cryptococcus, and 
Citrobacter, particularly Cryptococcus, could potentially contribute to the 
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severity of infections observed in this cohort, possibly as co-infections. These 
microorganisms warrant further investigation into their pathogenic roles and 
mechanisms of action, as their presence in combination with disease-causing 
organisms may have a synergistic effect on disease severity. Understanding the 
interplay between these microorganisms and pathogenic agents could provide 
valuable insights into the complex nature of severe pediatric infections and 
guide the development of targeted therapeutic strategies.
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1 Introduction

Children are known to be  more susceptible to severe 
infections, and these infections can have significant physical and 
economic consequences for patients (Tiru et al., 2015; Sultana 
et  al., 2021). Therefore, accurate identification of pathogenic 
bacteria is crucial for effective treatment (Brook, 2017). 
Metagenomic next-generation sequencing (NGS) has emerged as 
a valuable clinical tool for diagnosing severe infections, 
particularly those caused by rare pathogens (Wu et  al., 2019; 
Consensus Group of Experts on Application of Metagenomic Next 
Generation Sequencing in The Pathogen Diagnosis in Clinical 
Moderate and Severe Infections et al., 2020; Wang et al., 2022). In 
terms of technological capabilities, shotgun sequencing offers a 
more powerful tool compared to 16S rRNA sequencing (Bender 
and Dien, 2018). Its higher resolution and functional profiling 
capability make it an advantageous approach, particularly as very 
few studies have applied metagenomic sequencing in 
pediatric populations.

Shotgun sequencing can simultaneously detect multiple 
pathogens such as bacteria, fungi, and viruses, thereby 
broadening the detection spectrum and enhancing the overall 
pathogen detection rate (Chiu and Miller, 2019). In this study, 
we  aimed to utilize whole-genome shotgun sequencing and 
taxonomic identification algorithms to identify the microbial 
species present in samples collected from pediatric patients with 
severe infections. We hypothesize that the microbiomes of these 
patients may play a crucial role in influencing disease progression 
and treatment outcomes.

Therefore, our goals were twofold: (1) we aimed to characterize 
and analyze the microbiomes present in the infection samples of 
pediatric patients with severe infections, using shotgun 
sequencing. This approach allows us to identify and understand 
the roles and interactions of these microorganisms within the 
host, which could potentially be contributing to the severity of the 
infections, and (2) to explore the relationship between 
microbiomes and clinical characteristic, with a particular focus on 
identifying microorganisms that may contribute to disease 
severity through their association with various clinical indicators. 
This comprehensive analysis of the microbiome composition in 
different sample types will provide valuable insights into the 
potential origins of severe infections in children and may 
contribute to the development of targeted prevention and 
treatment strategies.

2 Materials and methods

2.1 Patients

123 hospitalized children aged 0–14 years who were admitted to 
the pediatric department of Xiamen First Hospital with severe 
infections who were tested for metagenomics next-generation 
sequencing from 2020 to 2022 were recruited. Children with severe 
infections exhibit the following characteristics: (1) persistent 
inflammation (continual presence of fever or abnormal laboratory 
findings such as procalcitonin (PCT), C-reactive protein (CRP) or 
sustained white blood cell counts) or disruption of normal activities 
for more than 1 week (Alkhater, 2009), (2) meeting diagnostic criteria 
for severe pneumonia (National Health Commission of the People’s 
Republic of China, State Administration of Traditional Chinese 
Medicine, 2019), (3) concurrent organ failure (Dellinger et al., 2013), 
and (4) those with extracorporeal metagenomic specimens. The 
Medical Ethics Committee of Xiamen University approved the study, 
including all procedures (recruitment of participants and all 
experimental protocols). Written informed consent was obtained from 
patients selected from Xiamen First Hospital. A total of 123 patients 
with severe infections were diagnosed by pathological examination. 
All participants were Chinese residents of Fujian Province, China.

2.2 Data collection for clinical information

The patient’s private information, such as name and medical 
record number, has been removed from the system. The unique 
identifier for each patient is a 6-character code composed of letters 
and numbers. The data under investigation does not contain any 
personally identifiable information, and all sensitive fields have been 
anonymized. Clinical information includes visit time, age, sex, 
treatment time, the cost of medicine, type of antibiotics, diagnosis and 
laboratory indexes. Laboratory indexes consist in white blood cell 
count (WBC), neutrophil percentage (NE%), hemoglobin levels 
(HGB), platelet count (PLT), procalcitonin (PCT), albumin, 
transaminase, LDH and coagulation function.

2.3 Sample collection

For each patient, multiple samples of the same type were collected 
at different stages of the disease to monitor the progression and 
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response to treatment. In addition, samples were also collected from 
different sites of the same patient, which might indicate possible 
infection sites. For instance, in cases of suspected pulmonary 
infection, bronchoalveolar lavage fluid was collected multiple times 
throughout the course of the disease. In cases where other systemic 
infections were suspected, a selection of samples from cerebrospinal 
fluid, urine, intraperitoneal effusion, and blood were collected, 
specifically from the sites where infection was suspected. All samples 
were collected according to the standard procedures described above.

(a) As for the bronchoalveolar lavage fluid (BALF), 
bronchoalveolar lavage was performed on every patient diagnosed 
with pneumonia. In localized disease, the lavage is most likely 
perfumed on the segment where the disease is most prominent. In 
diffuse disease, the right middle lobe or lingula is usually lavage. 
We want to instill sterilized saline which is prewarming to 37°C by 
1 mL/kg aliquots. After performing sufficient suction and recovery, a 
5 mL sample was collected for examination. (b) For cerebrospinal 
fluid, standard lumbar puncture was performed on the patient, and 
more than 2 mL of cerebrospinal fluid was collected. (c) Regarding 
urine samples, local digestion of the meatus and adult mucosa were 
performed with a non-foaming antiseptic solution, such as Dakin’s 
solution. The initial stream of the voided specifics was discarded. At 
least 5 mL midstream sample was collected and sent to the companies 
for analysis. (d) Abdominal puncture was performed to collect 
intraperitoneal effusion, and a minimum volume of 5 mL was obtained 
for analysis. (e) As for blood samples, the typical procedure involves 
disinfecting the venous puncture site with 2% chlorhexidine alcohol 
or alcoholic iodine. Subsequently, a butterfly needle is used to extract 
3–5 mL of blood (the specific volume depends on the age of the 
individual) for testing purposes. All specimens were collected and 
stored in a −20°C refrigerator. Subsequently, they were collected by 
the corresponding company and transported under dry ice conditions 
to ensure proper storage and preservation during transportation.

2.4 Shotgun metagenomic sequencing for 
each sample

Total genomic DNA and RNA were extracted from five different 
types of samples, and both DNA and RNA samples were used for 
shotgun library construction. Subsequently, high-throughput 
sequencing was performed on the samples using four platforms, 
including Thermo Fisher Scientific (DA8600), Illumina NextSeq 550, 
MGI 200/2000, and Q-mNGS™3.0. The sequencing was conducted 
in paired-end mode with a read length of 150 base pairs (PE150). It is 
noteworthy that the three batches of samples were obtained from 
distinct companies. Whole-genome shotgun sequencing was 
employed to generate paired-end outputs with a read length of 150 
base pairs.

2.5 Sequence data pre-processing

The quality control checks on all the raw sequence data by using 
the FastQC (Andrews, 2010) version 0.11.9 and MultiQC (Ewels, 
2016) version 1.12. The raw reads were pre-processed using 
KneadData (McIver et al., 2018) version 0.10.0 for quality control and 
host sequence decontamination (based on Trimmomatic version 0.39) 

(Bolger et  al., 2014) and Bowtie2 version 2.4.5 (Langmead and 
Salzberg, 2012) with the recommended human reference database. In 
summary, the quality control and criteria of the pre-process procedure: 
(1) filtering out of the human genome contaminated reads by aligning 
raw reads to the human reference genome (GRCh37/hg19) (2) 
removal of adaptor sequences using Trimmomatic (trimming: 
SLIDINGWINDOW:4:20 MINLEN:25) and (3) ensuring quality 
scores adhere to phred33 standards. Additionally, (4) Tandem Repeats 
Finder is not employed to locate and remove reads resembling 
tandem repeats.

2.6 Taxonomic analysis

Taxonomy assignment were performed using Kraken2 (Wood 
et al., 2019) version 2.7.7 with default settings. Based on the standard 
reference database of clade specific marker genes embracing viruses, 
archaea, bacteria, eukaryotes, human and carriers. In all cases we use 
the defaults for k-mer length, minimizer length, and minimizer 
spacing. Results were visualized by MEGAN6 (Beier et al., 2017) and 
R package phyloseq (McMurdie and Holmes, 2013). In order to reduce 
the differences in concentration between different samples, the raw 
data were converted to percentages, and OTUs with a Median 
Absolute Deviation (MAD) value greater than 0.5 were selected to 
retain those that had a significant impact on sample differences. The 
selected OTUs will be used for subsequent multivariate analysis to 
explore the differences in microbial communities among 
different samples.

2.7 Statistical analysis

2.7.1 Principal component analysis (PCA)
Due to the diversity of measures and samples included in the 

study, we expected to observe heterogeneity in effect size estimates. To 
address potential batch effects between samples, we  conducted a 
principal component analysis and identified outliers based on the first 
principal component (Leek et al., 2010). Based on the scores of the 
first principal component, we selected and removed outlier samples 
in downstream analyses to minimize the impact of batch effects.

2.7.2 Linear mixed models
To account for the within-individual correlations of multiple 

samples, we  used linear mixed-effects models in our statistical 
analysis. In our statistical analysis, we treated these multiple samples 
as repeated measures from the same individual and used appropriate 
statistical methods (mixed-effects models) to account for the within-
individual correlations. Linear mixed models (De Boeck et al., 2011) 
were constructed via R package lme4. In order to assess the 
significance of differences in clinical variables across samples, the 
analysis of variance (ANOVA) (McHugh, 2011) with repeated 
measurements was used. The likelihood ratio tests with Benjamini-
Hochberg FDR correction (Benjamini and Hochberg, 1995) were used 
to screen out non-significant models and non-significant clinical 
variables. Effect size was estimated using marginal and conditional 
(pseudo-R2) linear association between standardized variables. Linear 
mixed models (with random intercepts and slopes) were applied. 
Firstly, likelihood ratio tests (with Benjamini Hochberg correction) 
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were applied to the simple models (no condition effects) to assess the 
significance of the regression coefficient and effect size was estimated 
by marginal and conditional (pseudo-R2). Then, likelihood ratio tests 
(with Benjamini-Hochberg correction) were applied to compare 
simple and extended models to determine whether regression 
coefficient differ significantly between samples. We tested a series of 
nested models that included the relevant clinical variables such as age 
group, gender, and sample type as fixed effects. In these models, the 
batch was incorporated as a random effect. Based on the proposed 
empirical importance and practical considerations, individual clinical 
characteristics were introduced into the model, and the final best-fit 
model was identified as the one with the lowest Akaike information 
criterion (AIC) (Liang et  al., 2008) value and with statistical 
significance. After conducting the final screening, we developed a 
model that included fixed effects such as age group, gender, treatment 
outcome, and ID specialist antibiotics. The data source was considered 
as a random effect in the model, taking into account the three different 
batches from which the data was sourced. In analyzing the taxonomic 
profiles of the microbial community, we utilized a significant model 
to compare differences between genera. We  performed separate 
inclusion of each genus in the model as a fixed effect to assess which 
genus caused the effect on the clinical variable under study. We then 
selected the microorganisms that were found to have a significant 
impact on the treatment time, which was the outcome of interest in 
our study. This study considered potential microorganisms that 
displayed consistent statistical significance from all analyses above.

2.7.3 Propensity score matching (PSM)
Propensity score matching (PSM) (Hill and Reiter, 2006; Caliendo 

and Kopeinig, 2008) was performed to match individuals between the 
presence of pathogens group and the absence of pathogens group 
based on age group, gender, and sample types in a 1:2 ratio. By using 
age group, gender, and sample types as covariates for matching, 
we effectively control for potential confounding factors that could 
influence the presence of pathogens and treatment outcomes in the 
dataset. The 1:2 ratio in matching ensures that for each individual in 
the presence of pathogens group, two individuals with similar age 
group, gender, and sample type characteristics are selected from the 
absence of pathogens group, thereby creating a more comparable and 
representative dataset.

This careful matching process strengthens the validity of our 
analysis and allows for a more robust assessment of the causal impact 
of, Cryptococcus, and Citrobacter on treatment time and various 
clinical indicators in pediatric infections. By controlling for these 
important covariates, we can more confidently attribute any observed 
differences in outcomes to the presence or absence of these 
three pathogens.

2.7.4 Wilcoxon rank-sum tests
Wilcoxon rank-sum tests were performed to assess the significance 

of various clinical indicators in relation to the presence or absence of 
the pathogens. These tests allowed for a robust comparison of clinical 
metrics between the groups with and without Cryptococcus, 
Citrobacter, and Colwellia.

The nonparametric rank sum tests were chosen because they do 
not assume a specific distribution for the data, making them 
suitable for analyzing clinical indicators that may not follow a 
normal distribution. By using rank sum tests, we could determine 

whether there were significant differences in clinical indicators, 
such as treatment duration, lymphocyte percentage (LY%), 
neutrophil percentage (NE%), hemoglobin levels (HGB), platelet 
count (PLT), and white blood cell count (WBC), between the 
two groups.

By combining the results of propensity score matching (PSM) 
with Wilcoxon rank-sum test, we were able to gain deeper insights 
into the potential impact of Cryptococcus, Citrobacter and Colwellia on 
various clinical outcomes in severe pediatric infections. These 
statistical analyses strengthen the validity of our findings and support 
the conclusions drawn from the study.

In the aforementioned statistical analyses, a significance threshold 
of p < 0.05 was utilized to ensure statistical significance across all 
conducted tests. All statistical analyses were performed using the R 
environment (version 4.3.0). Bash and R script implementations of the 
analysis are available on GitHub (https://github.com/iChronostasis/
EnvMicrobePediatricTreatmentAnalysis) for academic use.

3 Results

3.1 Patient characteristics and sample 
analysis in severe infections

123 diagnosed severe infected patients were enrolled in our 
study, including 69 males and 54 females, and their average age was 
3.814 ± 4.15 years. 172 samples were collected for inclusion in this 
analysis from three batches (Table 1). The 172 samples included in 
this analysis were collected from 123 patients, with 34 patients 
contributing multiple samples (Supplementary Table S1). The 
clinical information of these samples, including gender and age, was 

TABLE 1 Demographic of enrolled patients.

Demographic of enrolled patients (n  =  123)

Gender Male Female

69 54

Age group 4 years old and above Under 4 years old

51 72

Age Mean SD

3.814 4.15

Marrow depression Yes No NA

23 99 1

Antibiotic treatment Yes No

121 2

ID specialist antibiotics Yes No

78 45

This table outlines the demographic and clinical characteristics of the 123 patients with 
severe infections who participated in our study. The data is categorized by sex (69 males and 
54 females) and age group (51 patients aged 4 years and above, and 72 patients under 4 years 
old). The mean age of the patients is 3.814 years with a standard deviation of 4.15 years. In 
terms of clinical characteristics, 23 patients presented with marrow depression while 99 did 
not. One patient’s marrow depression status was not available. The source of infection was 
classified as pulmonary (57 patients), intracranial (19 patients), urinary tract (6 patients), 
and bloodstream (41 patients). The majority of patients (121 out of 123) received antibiotic 
treatment. The use of ID specialist antibiotics was reported in 78 patients, while 45 patients 
did not receive these medications.

https://doi.org/10.3389/fmicb.2024.1308871
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://github.com/iChronostasis/EnvMicrobePediatricTreatmentAnalysis
https://github.com/iChronostasis/EnvMicrobePediatricTreatmentAnalysis


Li et al. 10.3389/fmicb.2024.1308871

Frontiers in Microbiology 05 frontiersin.org

recorded at the time of sample collection. To account for the 
potential within-individual correlations, we compared the gender 
and age group using mixed-effects models that included the 
individual as a random effect. We did not observe any significant 
differences in gender or age between the three batches. (a) These 
three batches’ samples number were 106, 33, and 33, respectively 
(Supplementary Table S2). (b) Blood, bronchoalveolar lavage fluid 
(BALF), cerebrospinal fluid (CSF), urine, and ascites were collected 
from patients separately, with sample sizes of 74, 53, 36, 4, and 5, 
respectively (Supplementary Figure S1A). (c) The distribution of 
treatment time in all samples is shown in 
Supplementary Figure S1B. (d) Metagenomic results showed a total 
of 104 samples were positive, 67 were negative and 1 was not 
analyzed (Supplementary Figure S1C). (e) The culture results of the 
samples showed that a total of 50 samples were positive, 120 were 
negative and 2 were not analyzed (Supplementary Figure S1D).

3.2 Comprehensive analysis reveals high 
microbial diversity in pediatric infection 
samples

At the kingdom level, WGS identified 312 archaeas, 6,843 bacteria, 
660 viruses, and 127 eukaryotes. The abundance information across 
all samples for each species was calculated and ranked to identify the 
most abundant species, which is the default parameter implemented 
in Kraken2, using MEGAN6 to obtain the taxonomic profile in 
kingdom, phylum and genus. We utilized MEGAN6 to visualize the 
abundance information of all identified microorganisms at the 
phylum level in a radial tree chart. This visualization provided a 
comprehensive view of the microbial composition across all 172 
pediatric infection samples, highlighting the relative abundance of 
different phyla (Supplementary Figure S2). We generated a Taxonomy 
Rarefaction Plot to assess the microbial diversity in our study. This 
plot provides valuable insights into the richness and evenness of the 
microbial taxa across the sampled pediatric infection dataset. As 
shown in the plot, the rarefaction curve reaches a plateau, indicating 
that the sampling effort has adequately captured the majority of the 
microbial diversity present in the samples. This analysis highlights the 
comprehensive nature of our dataset and strengthens the reliability of 
our findings (Supplementary Figure S3). After filtering the host 
sequences of the raw data with quality control and criteria (Method), 
we identified a total of 7,943 OTUs in this dataset, with an average of 
46.18 (n = 172) OTUs per sample.

3.3 Batch effects in taxonomic profiles of 
pediatric infection samples from diverse 
data sources

Based on the taxonomic profiles from Karken2 and MEGAN6, the 
principal component analysis was performed on the abundance 
information of all identified microorganisms in all 172 samples in 
each phylum (Figure 1A). From the figure of PCA, it can be seen that 
some samples are far away from most of the samples, and these 
samples contribute a lot to the first component. In total, six samples 
contributed abnormally to the first principal component, which 

means that these samples may show the batch effects compared to the 
other samples, so these anomalous sample points should be removed 
and not included in the subsequent analysis (Figure  1B). Upon 
examining the clinical information of these sample outliers, it was 
observed that these samples were from cohorts 1, 2, and 3, with the 
sample types being bronchoalveolar lavage fluid (BALF), cerebrospinal 
fluid (CSF), and blood, respectively. Out of the six patients from 
whom these samples were sourced, five were under the age of four. All 
of these patients received antibiotics during their hospitalization and 
exhibited improved outcomes upon discharge 
(Supplementary Table S3). However, these six samples are planned to 
be  excluded from further analysis. After excluding these outlier 
samples, the distribution of sample types and sources of infection in 
the remaining dataset can be observed in the (Figures 1C,D).

3.4 The existence of Cryptococcus, 
Citrobacter and Colwellia significantly 
associates with high costs and prolonged 
treatment duration in pediatric infections

In Figure 2A, we compared multiple models and selected Model 
2, which demonstrated the lowest AIC and BIC values and a significant 
value of p. The final best-fit model, as mentioned in the methods 
section, incorporated age group, gender, sample type, and the use of 
ID specialist antibiotics as fixed effects, while the batch was included 
as a random effect. The estimates of this optimal model is presented 
in Supplementary Table S4 and Figure 2B. Utilizing the final best-fit 
model, we incorporated each genus into the analysis. This allowed us 
to screen for microorganisms that were both relevant and clinically 
significant for our variables of interest (Supplementary Figure S4). 
Our results revealed that Colwellia, Cryptococcus, and Citrobacter all 
had a statistically significant impact on treatment time according to 
the linear mixed models (Figure 3A). Moreover, we compared the new 
models constructed by incorporating each of these three 
microorganisms. As depicted in Figure 3B, all three microorganisms 
exert a significant influence on the treatment time, which is our 
primary concern.

The genus Colwellia, which includes some of the most extreme 
cold-loving and pressure-tolerant species known to date, are 
heterotrophic and facultatively anaerobic. They thrive in persistently 
cold marine environments, such as the sea ice of the Arctic and 
Antarctic. Colwellia species have been isolated from organic-rich 
marine habitats, including sediments or homogenates originating 
from marine invertebrates like amphipods and squid, or vertebrates 
like fish (Peoples et  al., 2020). However, the microorganisms of 
Cryptococcus and Citrobacter spp., are more associated with infections. 
Cryptococcus mainly causes meningoencephalitis, as well as other 
diseases affecting the central nervous system (CNS) and lungs, and is 
associated with severe morbidity (Chen et al., 2014; Setianingrum 
et al., 2019). Citrobacter spp. belong to a group of parthenogenic, 
anaerobic, gram-negative rods in the Enterobacteriaceae family. They 
are frequently found in water, soil, food, and the intestinal tract of 
animals and humans. Previously considered low virulence 
environmental contaminants or colonizing bacteria, they are now 
known to cause a wide range of infections, including urinary tract, 
liver, biliary tract, peritoneum, intestine, bone, respiratory tract, 
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endocardium, wounds, soft tissues, meninges, and blood (Liu et al., 
2018; Lee et al., 2019; Liu et al., 2021).

3.5 Significant association between 
abundance of Colwellia, Cryptococcus, 
and Citrobacter, and multiple clinical 
indicators in severe infections

Propensity score matching (PSM) was employed to evaluate 
the causal impact of three previously identified microorganisms 
(Colwellia, Cryptococcus, Citrobacter) on outcomes. The presence 
or absence of these pathogens was transformed into binary 
variables to indicate their presence or absence. Gender, age 
group, and sample type were used as covariates to balance the 
data between the treatment and control groups. Following 
matching, the Standardized Mean Difference (SMD) in the 

distribution of covariates between the two groups mostly 
remained below the threshold of 0.1, indicating high matching 
quality (Supplementary Figures S5A–C). The similarity in the 
distribution of covariates between the treatment and control 
groups is visually demonstrated through jitter plots 
(Supplementary Figures S5D–F) and histograms of propensity 
score distribution (Supplementary Figures S5G–I). The matching 
process helps to mitigate potential confounding factors, ensuring 
a more accurate assessment of the causal impact of Cryptococcus, 
Citrobacter and Colwellia on the treatment outcomes and clinical 
metrics of pediatric infections. Figure 4 is composed of two parts. 
Figure 4A presents the number of samples, post-propensity score 
matching (PSM), that are either infected with or free from  
the three pathogens. Additionally, Figure  4B displays the 
distribution of samples across different sample types, each 
categorized based on the presence or absence of the 
three pathogens.

FIGURE 1

Principal Component Analysis (PCA) and Outlier Removal. (A) PCA Results Delineated by Data Source: Each batch is uniquely represented by a color 
scheme, with red, green, and blue corresponding to three distinct batches. (B) Identification of Outliers Based on Principal Component 1 (PC1) Scores: 
The outliers in each batch are represented by inverted triangle symbols, with the batches themselves distinguished by the same color scheme as in 
(A) – red, green, and blue. (C) Post-Outlier Removal Distribution of Samples by Sample Type: Different sample types are color-coded for clarity. Red 
signifies ascites, yellow-green denotes bronchoalveolar lavage fluid (BALF), green represents blood, blue is indicative of cerebrospinal fluid (CSF), and 
purple corresponds to urine. (D) Distribution of Treatment Time in All Samples.
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FIGURE 2

Comparison of Statistical Models and Summary of the Optimal Model. (A) This figure compares five different statistical models using radar charts, 
where each axis represents a model and the distance from the center corresponds to the Akaike information criterion (AIC) and Bayesian information 
criterion (BIC) values. Each model is color-coded as follows: Blue (Model 1): TreatmentTime  ~  Gender  +  AgeGroup  +  SampleType  +  MarrowDepression. 
Orange (Model 2): TreatmentTime ~ Gender + AgeGroup + SampleType + MarrowDepression + IDSpecialistAntibiotics. Yellow (Model 3): 
TreatmentTime ~ Gender + AgeGroup + MarrowDepression + IDSpecialistAntibiotics + AntibioticTreatment. Green (Model 4): TreatmentTime ~ Gender 
+ AgeGroup + MarrowDepression + IDSpecialistAntibiotics + AntibioticTreatment + MetagenomicResults. Red (Model 5): TreatmentTime ~ Gender + 
AgeGroup + MarrowDepression + IDSpecialistAntibiotics + AntibioticTreatment + MetagenomicResults + CultureResults. The proximity to the center 
indicates the model’s performance, with a closer distance representing better performance. Among the models, the orange model (Model 2) 
performed the best, exhibiting the lowest AIC and BIC values and significant p-values. (B) After selecting Model 2 as the best model, this figure provides 
a comprehensive summary of the model. As described in the Methods section, Model 2 includes age group, gender, sample type, marrow depression, 
and ID specialist antibiotic use as fixed effects, with data source considered as a random effect. The summary offers detailed information on 
coefficients, standard errors, z-values, and p-values associated with each factor, providing a complete overview of the model’s performance and 
statistical significance.

FIGURE 3

Visualization of p-values and Model Comparisons. (A) Scatterplot of p-values versus Standard Errors: This plot visualizes the p-values corresponding to 
each Genus in the model. The color scheme is used to indicate significance, with red denoting significance and gray indicating non-significance. 
(B) Comparison of Models Derived from Significant Microorganisms: The models are color-coded to represent different scenarios. Purple represents a 
fixed model without the inclusion of microorganisms. Green, blue, and red, respectively, represent models that include Colwellia, Citrobacter, and 
Cryptococcus. Regarding the p-values, the significance levels are annotated as follows: Asterisks denote statistical significance levels (*p <  0.05, 
**p <  0.01, ***p <  0.001). Additionally, non-significant results (p ≥  0.05) are denoted as “n.s.” (not statistically significant).
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Subsequently, the newly constructed dataset was analyzed to 
investigate the impact of these pathogens’ presence or absence on 
treatment time and other clinical metrics using the matched dataset. 
We performed a reanalysis of the matched dataset obtained through 
propensity score matching (PSM) and explored the associations 
between the presence or absence of these three pathogens and various 
clinical indicators using Wilcoxon rank-sum tests.

The reanalyzed results revealed significant differences in the duration 
of treatment, total cost of hospitalization, and overall hospitalization 
expenses between the groups with and without these microorganisms 
(Supplementary Table S5). Additionally, the presence or absence of these 
microorganisms was found to be associated with lymphocyte percentage 
(LY%), neutrophil percentage (NE%), hemoglobin levels (HGB), platelet 
count (PLT), and white blood cell count (WBC).

In our findings, the presence of Cryptococcus, Citrobacter, and 
Colwellia significantly extended the treatment duration for patients 
(Figure  5A), resulted in a substantial increase in medication costs 
(Figure 5B), and caused a noticeable decrease in platelet count (PLT) 
(Figure 5C). Patients with Citrobacter and Colwellia also had significantly 
higher hospitalization costs (Figure  5D). Furthermore, compared to 
patients without these pathogens, those with Cryptococcus showed a 
significant increase in lymphocyte percentage (LY%), while their 
neutrophil percentage (NE%), hemoglobin (HGB), and white blood cell 
count (WBC) significantly decreased (Figures 5E–H).

These findings suggest that the co-occurrence of Cryptococcus, 
Citrobacter and Colwellia with the pathogenic organism responsible 
for the severe infection may contribute to prolonged hospital stays and 
increased treatment costs. Especially, the presence of Cryptococcus is 
significantly correlated with multiple clinical indicators, which may 
signify a potential impact on the overall health status of patients. This 
highlights the complexity and multifaceted nature of pediatric 
infections, emphasizing the importance of considering the presence 

of these microorganisms in the context of co-infections to better 
understand and manage the disease course effectively.

4 Discussion

While this study provides valuable insights, it is important to 
acknowledge its limitations. Firstly, the small sample size and single-
center design may limit the generalizability of the findings. 
Conducting future studies with larger cohorts and multiple centers 
would be beneficial to validate and extend these results. Additionally, 
the retrospective nature of the study and the relatively short duration 
of data collection may introduce biases and restrict the depth of 
analysis. The identified pathogens in our study are not primary 
causative agents of the patients’ infections; all three of these pathogens 
are considered background pathogens. Speculations regarding their 
association with prolonged hospitalization and the use of ID specialist 
antibiotics include: (a) These three pathogens may potentially 
participate in influencing the formation of biofilms, thereby affecting 
the host’s defense mechanisms or influencing the drug resistance of 
colonized bacteria (Van Baarlen et al., 2007; Domínguez-Díaz et al., 
2019; Mirzaei et  al., 2020). (b) The production of endotoxins or 
peptides by these three pathogens might lead to the depletion or 
reduction of cellular ATP levels, thereby enhancing the pathogen’s 
tolerance to antibiotics (Huemer et  al., 2020). (c) These three 
pathogens may release corresponding endotoxins during the host’s 
diseased state, influencing the release of inflammatory factors and 
sustaining inflammation (Domínguez-Díaz et al., 2019; Rippon et al., 
2022). (d) These three pathogens could potentially impact the host’s 
metabolomics, such as carbon or nitrogen sources, thereby enhancing 
the virulence of pathogenic bacteria (Rohmer et al., 2011). In the 
future, prospective studies could be  conducted to investigate the 

FIGURE 4

Impact of Pathogen Presence on Sample Distribution. (A) Number of Samples Post-Propensity Score Matching (PSM): This part of 
Supplementary Figure S7 presents the number of samples, after propensity score matching, that are either infected with or free from the three 
pathogens (Colwellia, Cryptococcus, and Citrobacter). The samples are categorized based on the presence or absence of these pathogens. 
(B) Distribution of Samples across Different Sample Types: This part of Supplementary Figure S7 displays the distribution of samples across different 
sample types, such as blood, bronchoalveolar lavage fluid (BALF), cerebrospinal fluid (CSF), urine, and ascites. The samples in each sample type are 
further categorized based on the presence or absence of the three pathogens (Colwellia, Cryptococcus, and Citrobacter).
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relevant biological mechanisms associated with severe pediatric 
infections. By incorporating control and experimental groups, these 
studies would provide a more comprehensive understanding of the 
relationships between microorganism co-infections and clinical 
outcomes. By exploring the biological functions and interactions of 
these microorganisms, researchers can gain insights into the 
pathogenesis of severe infections in children. This knowledge can 
contribute to the development of targeted interventions and improved 
patient management strategies.

The findings presented here open up several avenues for future 
research. Firstly, it is crucial to understand the mechanisms underlying 
the observed associations between microorganism co-infections and 
clinical outcomes. Investigating the interplay between these 
microorganisms and the host immune response could shed light on 
the pathogenesis of severe pediatric infections. Secondly, exploring the 
impact of different treatment strategies on outcomes in the context of 
co-infections could guide the development of tailored therapeutic 
approaches. Moreover, further investigation is warranted to determine 
the potential role of these microorganisms as prognostic markers or 
targets for interventions, aiming to improve patient management and 
outcomes. The results of this study hold significant clinical 
implications. Identification of Colwellia, Cryptococcus, and Citrobacter 
in co-infections with pathogenic organisms appears to be associated 
with prolonged hospital stays and altered clinical indicators in severe 

pediatric infections. Recognizing the potential impact of these 
microorganisms could aid healthcare professionals in early risk 
assessment and appropriate treatment planning for affected patients. 
By considering the presence of these microorganisms in the clinical 
decision-making process, medical resources can be better allocated to 
improve patient care and optimize healthcare resource utilization.

While this study focused on a specific cohort of pediatric patients 
with severe infections, the results may have broader relevance. 
However, caution should be exercised when extrapolating the findings 
to other populations or infection types. Future studies encompassing 
diverse patient groups and a wide range of infectious diseases will 
be necessary to confirm the general applicability of these conclusions.

5 Conclusion

Although Cryptococcus, Citrobacter, and Colwellia are recognized 
as pathogens, they were not identified as the primary causative agents 
in the analyzed cases. However, the results of this study suggest that 
the co-infection of these three microorganisms with disease-causing 
organisms may significantly impact the treatment course in patients 
with severe pediatric infections. Especially, the presence of 
Cryptococcus was found to be significantly associated with prolonged 
treatment duration and multiple clinical indicators. These findings 

FIGURE 5

Influence of Microorganisms on Clinical Parameters and Costs. (A) Influence on Treatment time (days): A significant extension in treatment duration is 
observed in patients with Cryptococcus, Citrobacter, and Colwellia (represented by green bars) in comparison to those without these microorganisms 
(blue bars). (B) Impact on Medication Costs (RMB): The presence of Cryptococcus, Citrobacter, and Colwellia is associated with a substantial elevation 
in medication costs (green bars) when compared to patients not harboring these microorganisms (blue bars). (C) Effect on Platelet Count (PLT) 
(x  10^9/L): Patients with Cryptococcus, Citrobacter, and Colwellia exhibit a noticeable reduction in platelet count (PLT) (green bars) relative to those 
without these microorganisms (blue bars). (D) Influence on Hospitalization Expenses (RMB): The hospitalization costs are significantly higher for 
patients with Citrobacter and Colwellia (green bars) compared to those without these microorganisms (blue bars). (E) Impact on Lymphocyte 
Percentage (%): A significant increase in lymphocyte percentage (LY%) is noted in patients with Cryptococcus (green bars) as opposed to patients 
without this pathogen (blue bars). (F) Effect on Neutrophil Percentage (%): Patients with Cryptococcus manifest a significant reduction in neutrophil 
percentage (NE%) (green bars) in comparison to patients without this pathogen (blue bars). (G) Influence on Hemoglobin (HGB) Levels (g/L): A 
significant decrease in hemoglobin (HGB) levels is observed in patients with Cryptococcus (green bars) relative to patients without this pathogen (blue 
bars). (H) Impact on White Blood Cell Count (WBC) (x  10^9/L): Patients with Cryptococcus demonstrate a significant reduction in white blood cell 
count (WBC) (green bars) compared to patients without this pathogen (blue bars). These findings suggest that the presence of Cryptococcus, 
Citrobacter, and Colwellia is linked with adverse clinical outcomes, such as extended treatment duration, elevated medication costs, reduced platelet 
count, and increased hospitalization expenses. The significant alterations in lymphocyte percentage (LY%), neutrophil percentage (NE%), hemoglobin 
(HGB), and white blood cell count (WBC) further indicate potential impacts on the overall health status of patients harboring these microorganisms.
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highlight the potential role of Cryptococcus in particular, in 
contributing to longer hospital stays, and altered clinical indicators. It 
suggests that the presence of these microorganisms in co-infections 
may contribute to the complexity and severity of pediatric infections, 
warranting additional medical attention and allocation of resources.
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