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Introduction

Magnetic Resonance Imaging (MRI) has been available for over 40 years and has made great
strides in the diagnosis of numerous pathologies. The advancements in MRI methods, pulse
sequences, electronics, radiofrequency (RF) coils, and the improvedmagnetic fields and gradients,
have continuously broadened and deepened the applications of MRI and make it the primary
imaging assessment tool formany diseases and an important part inmanagement decisions.MRI
biomarkers are specific and measurable characteristics obtained from MRI scans, which can
include structural, functional, molecular, or quantitative information, offering important insights
into biological processes, diseases, or conditions within the body.

The goal of this Research Topic “Novel MRI Biomarkers” was to provide a platform for
researchers to share findings and exchange ideas. The articles featured in this Research Topic
contributed unique perspectives and innovative approaches to their fields. Here we
summarize these articles in this editorial.

T1ρ imaging at ultra-high field

T1ρ, the spin lattice relaxation time in the rotating frame, has been used extensively to probe
the relatively slow macromolecular processes, making it a practical tool for gaining information
about water spin dynamics and interactions with endogenous macromolecules [1–3]. Studies
have indicated that at high static fields (3.0T and beyond), chemical exchange significantly
contributes to T1ρ relaxation [4–6]. Therefore, at higher static fields, T1ρ may improve its
capability to investigate the content of labile protons associated with macromolecules. The study
presented by Liu Y et al. conducted the T1ρ imaging in human brain at ultra-high field (5.0T) and
compared the results with 3.0T. They found that there was no significant difference in T1ρ values
between 3.0T and 5.0T, but the signal-to-noise ratio (SNR) was significantly improved at 5.0T,
indicating the benefits of using 5.0T in investigating neurological disorders. It is worth noting that
T1ρ imaging at higher field strengths is prone to image artifacts arising from field
inhomogeneities. There have been significant efforts previously to address this Research
Topic [7–10]; another Research Topic at higher fields is the high specific absorption rate
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(SAR) that potentially prolongs the imaging time. The study showed
that both issues were manageable at ultra-high field 5.0T.

Correction of post-irradiation T1-relaxation
effect in chemical exchange-sensitive MRI

Chemical exchange-sensitive MRI sequences, such as chemical
exchange saturation transfer (CEST) or chemical exchange-sensitive
spin-lock (CESL), are MRI techniques used to detect and visualize
certain molecules or compounds in biological tissues based on their
chemical exchange properties [11–14]. Both CEST and CESL
techniques have been used in studying biological systems and which
can offer insights into various physiological and pathological conditions.
In both CEST and CESL, there is a time delay between the irradiation
preparation and the imaging acquisition, during which the T1-
relaxation can reduce the chemical exchange contrast and affect the
quantification of such methods. The conventional correction method
requires a separate T1 map scan to compensate for the T1-relaxation
effect [15], but this approach increases the total imaging time. In the
paper by Chung and Jin a formula was derived from theoretical analysis
to compensate for the T1-relaxation effect. This proposed method
involves post-acquisition correction and holds potential for
application in other scenarios, such as multi-slice T1-weighted
imaging or diffusion-weighted imaging.

Ghost correction for measurements based
on multi-band interleaved EPI

Multi-band interleaved EPI (echo-planar imaging) involves the
simultaneous excitation of multiple slices in an MRI sequence,
allowing for the rapid acquisition of multiple slices in a single
imaging volume. This technique improves the speed of image
acquisition, enabling faster whole-brain coverage and higher temporal
resolution compared to traditional methods. Two-dimensional single-
shot EPI (2D-ssEPI) is the typical MRI method used in diffusion and
functional MRI because of its rapid acquisition. However, EPI suffers
from Nyquist ghost artifacts caused by gradient delay associated with
alternating readout polarity [16]. In the study by Liu et al., a robust 2D
Nyquist ghost correction method for multi-band interleaved EPI,
without the need for a reference scan and iterative calculation, was
proposed. This method demonstrates promise in enhancing multiple
imaging biomarkers including DWI, DTI, or multi-shot EPI.

Correction for fat quantification errors in
radial multi-echo dixon imaging

Dixon imaging with multi-echo Stack-of-star radial k-space
trajectories and golden angle ordering shows promise in fat
quantification, specifically the estimation of proton density fat
fraction (PDFF). However, imperfections in the gradient chain, such
as eddy currents and system delays, might influence radial imaging and
distort the estimation of fat fraction. In the work by Zöllner et al., a
retrospective trajectory correction method was proposed. This method,
based on a simple gradient modulation transfer function (GMTF)
measurement, aims to predict and correct k-space trajectory errors

induced by the gradient chain. The results indicated that the GMTF-
based k-space trajectory correction is a rapid alternative to mitigate
PDFF quantitation errors caused by the gradient system. The authors
validated this method using 3D radial multi-echo gradient-echo
acquisitions.

Conclusion

Although a limited number of articles have been received in this
Research Topic, each one offers significant insights into technical
improvements addressing important Research Topic in clinical
application or has important clinical implication. The future of MRI
biomarkers holds immense potential. Through ongoing research and
technological innovations, we can anticipate the development of even
more sophisticated biomarkers that provide unprecedented levels of
insight into disease processes. Moreover, the integration of artificial
intelligence and machine learning algorithms is poised to further
enhance the utility of MRI biomarkers. These technologies will
automate data analysis, reduce diagnostic errors, and enable the
creation of predictive models for disease progression and
treatment response.
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