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Pulsed electromagnetic field (PEMF) stimulation is a prospective non-invasive and
safe physical therapy strategy for accelerating bone repair. PEMFs can activate
signalling pathways, modulate ion channels, and regulate the expression of bone-
related genes to enhance osteoblast activity and promote the regeneration of
neural and vascular tissues, thereby accelerating bone formation during bone
repair. Although their mechanisms of action remain unclear, recent studies
provide ample evidence of the effects of PEMF on bone repair. In this review,
we present the progress of research exploring the effects of PEMF on bone repair
and systematically elucidate the mechanisms involved in PEMF-induced bone
repair. Additionally, the potential clinical significance of PEMF therapy in fracture
healing is underscored. Thus, this review seeks to provide a sufficient theoretical
basis for the application of PEMFs in bone repair.
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1 Introduction

Non-union or delayed bone healing is a general orthopaedic disease with difficult
healing. The probability of a delayed healing fracture is 5%–10% worldwide (Valiya
Kambrath et al., 2020). Multiple bone defects, such as severe injuries, surgical removal
of infected bones or tumours, and congenital skeletal anomalies, can reduce the regenerative
capacity of bones, thereby affecting patient health and quality of life (El-Rashidy et al., 2017;
Collon et al., 2021; Li et al., 2021). Major treatments for bone defects include autologous and
allogeneic bone grafting, bone grafting with vascularised tips, the Masquelet technique, and
bone tissue engineering (Wang and Yeung, 2017; Hofmann et al., 2020; Zhang et al., 2020;
Dalisson et al., 2021). Autologous bone grafting is considered the gold standard for the
clinical treatment of bone defects. However, autografting techniques have some
unavoidable disadvantages, including limited bone volume, increased bleeding and
surgery time, and pain in the donor area (Yu et al., 2020; Zhu et al., 2021; He et al.,
2022). Pulsed electromagnetic fields (PEMFs) are non-invasive, safe, and have wide
indications. Therefore, they have been increasingly used to treat bone diseases, such as
fractures and delayed bone healing, in recent years. This review briefly discusses recent
research progress on the application of PEMFs in bone repair, with a particular focus on the
molecular mechanisms underlying PEMF-induced bone repair. Furthermore, this review
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aims to provide a sufficient theoretical basis for the clinical
application of PEMFs in bone repair.

2 Research progress on PEMF
applications in bone repair

Norton et al. (1977) first attempted the electrical stimulation
method to treat bone non-union in 1812, achieving some
progressive results. However, he did not have the relevant
theoretical foundation for the clinical application of this method.
In 1953, Yasuda (1977a) reported the presence of piezoelectric
effects in bone tissue, leading to a considerably increased focus
on electrical signals in bone. Yasuda (1977b) later examined rabbit
bone repair using external electrodes, revealing that bone connected
to the negative electrode would grow a bone scab in the direction of
the anode under electrical stimulation. Furthermore, electrical
stimulation can promote bone scab growth without relying on
mechanical external forces. These findings led to a preliminary
understanding of the role of electrical stimulation in bone
growth, repair, and reconstruction. Thus, Qiu et al. (2020)
pioneered the use of PEMFs to treat bone fractures in the 1970s,
demonstrating that PEMFs promote fracture healing. In 1979,
PEMFs were approved by the United States Food and Drug
Administration Agency as a safe and effective treatment for non-
healing bone (Cadossi et al., 2020).

PEMFs play an unusual role in the treatment of fractures, bone
defects, and bone non-union. They artificially provide
electromagnetic signals to the target area, thereby mobilising the
tissues or organs at the site of injury to actively play an osteogenic
role. All electromagnetic field devices work by generating a small
amount of current within the bone; they only differ in the modes of
action. The earliest type of electrical stimulation was invasive direct
current (DC) stimulation. This technique utilised a current
generator that delivered DC stimulation to a designated area via
a metal wire and electrodes. The negative electrode was implanted in
the area of bone repair, whereas the positive electrode was placed in

the nearby soft tissue (Kooistra et al., 2009). However, the current
generator is usually surgically removed after 6–9 months or after
healing occurs. Therefore, the wires and electrodes may not be
removed; this can lead to complications, such as re-infection and
injury (Leppik et al., 2020). Contrastingly, non-invasive capacitive
coupling involves placing two capacitive plates on the skin on either
side of the fracture area. An external power source is subsequently
connected to create an electric field with a voltage gradient between
the two plates. Despite the obvious advantages of capacitively
coupled stimulation, including small size, light weight, non-
invasiveness, and ease of use, patients must change the batteries
daily; this can present a problem of patient noncompliance (Cook
et al., 2015). Inductive coupling is the basic principle for applying
PEMFs. It involves the use of two electromagnetic coils connected to
a signal generator over the skin. The coils generate an
electromagnetic field that induces a time-varying secondary
electric field within the bone to trigger enhanced growth and
remodel biological effects on the bone (Yuan et al., 2018)
(Figure 1). As a non-invasive physical factor therapy, PEMFs
reduce pain, improve bone quality, and improve the functional
prognosis of patients. As such, they are recommended as an effective
physical therapy factor by domestic and international guidelines
(Khalifeh et al., 2018). PEMFs improve bone metabolism by
generating a specific frequency and size of pulsed current and
using the resonance effect to change the bioelectricity and
biomagnetic field of the body. Corresponding biological changes
can occur when the frequency of the pulsed current generated by
PEMFs matches the cyclotron resonance frequency of key ions (e.g.,
Na+, K+, and Ca2+), owing to the alteration of ion channel activity
(Tong et al., 2017). In addition, high-frequency electric fields can
penetrate the cytoplasm to affect mitochondrial activity and regulate
energy metabolism levels (Chalidis et al., 2011). Pettersen et al.
(2021) recently found that PEMFs markedly contribute to improved
osteoblast survival and soluble collagen production. Furthermore,
there was no significant difference in pH between stimulated
experimental groups and the controls. Similarly, Kim et al.
(2006) demonstrated that PEMFs induce osteoblast proliferation

FIGURE 1
Schematic diagram demonstrating the mechanisms of clinical electrical stimulation devices.
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TABLE 1 Animal-level studies of electromagnetic fields for the treatment of fractures.

Fracture model Treatment parameters Results References Year

Rabbit Femur Type: PEMF - Smith and Nagel (1983) 1983

Settings: repetitive pulse-72 Hz

Duration: 12 h/day

Sheep Tibia Type: PEMF - Law et al. (1985) 1985

Settings: 1.6 mT

Duration: 24 h/day

Horse Tibia Type: PEMF + Kold et al. (1987) 1987

Settings: asymmetric pulse burst of 30 m duration repeated at 1.5 Hz

Horse Metatarsal Type: PEMF - Sanders-Shamis et al. (1989) 1989

Settings: 20 G; 15 Hz

Duration: 8 h/day

Rat Tibia Type: PEMF - Muhsin et al. (1991) 1991

Duration: 8 weeks

Horse Metacarpus Type: PEMF + Canè et al. (1991) 1991

Settings: 28 G; 75 Hz

Rat Mandible Type: PEMF + Takano-Yamamoto et al. (1992) 1992

Settings: 1.5–1.8 G; 100 Hz

Dog Mandible Type: PEMF + Ortman et al. (1992) 1992

Duration: 1 h/day

Rat Tibia Type: PEMF + Sarker et al. (1993) 1993

Duration: 1 h/day

Rat Spine Type: PEMF + Guizzardi et al. (1994) 1994

Duration: 18 h/day

Dog Lumbar spine Type: PEMF - Kahanovitz et al. (1994) 1994

Settings: 1 G; 1.5 Hz

Duration: 0.5–1 h/day

Rabbit Humerus Type: PEMF + Yonemori et al. (1996) 1996

Settings: 2 G, 25 µs pulses at 10 Hz

Duration: 12 h/day for 14 days

Rabbits Femur Type: PEMF + Matsumoto et al. (2000) 2000

Settings: 0.8 mT

Duration: 4 h/day

Rabbits Tibia Type: PEMF + Fredericks et al. (2000) 2000

Duration: 1 h/day

Dog Tibia Type: PEMF + Inoue et al. (2002) 2002

Settings: 0–2.4 G

Duration: 4 h/day

(Continued on following page)

Frontiers in Bioengineering and Biotechnology frontiersin.org03

Wang et al. 10.3389/fbioe.2024.1333566

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1333566


TABLE 1 (Continued) Animal-level studies of electromagnetic fields for the treatment of fractures.

Fracture model Treatment parameters Results References Year

Rabbits Tibia Type: PEMF + Ottani et al. (2002) 2002

Settings: 8 mT; 50 Hz

Duration: 0.5 h/day

Rabbits Tibia Type: PEMF - Buzzá et al. (2003) 2003

Settings: pulse width 85 µs

Duration: 30 min/day

Rabbits Tibia Type: PEMF + Fredericks et al. (2003) 2003

Settings: time-varying field 1.5 Hz

Duration: 1 h/day

Rabbits Tibia Type: PEMF + Shimizu et al. (2004) 2004

Settings: 1.8 G; 1.5 Hz

Rat Tibia Type: PEMF + Lirani-Galvão et al. (2006) 2006

Settings: 30 mW/cm2; 1.5 MHz

Rabbits Tibia Type: PEMF - Taylor et al. (2006) 2006

Duration: 1 h/day for 20 days

Sheep Femur Type: PEMF + Benazzo et al. (2008) 2008

Settings: 1.5 mT; 75 Hz

Duration: 6 h/day

Rat Tibia Type: PEMF + Grana et al. (2008) 2008

Settings: 72 mT; 30 Hz

Duration: 1 h/day

Rat Femur Type: PEMF + Puricelli et al. (2009) 2009

Settings: 41 G

Rat Tibia Type: PEMF + Shen and Zhao (2010) 2010

Settings: 8 G; 15 Hz

Duration: 2 h/day

Rabbits Femur Type: PEMF + Aydin and Bezer (2011) 2011

Settings: 220–260 G

Rabbit Tibia Type: PEMF - Taylor et al. (2012) 2012

Settings: asymmetric pulse 1.5 Hz

Duration: 20 days continuous

Rat Tibia Type: PEMF - van der Jagt et al. (2012) 2012

Settings: 1 G; 5 m pulse; 15 Hz

Duration: 2 h/day

Rat Femur Type: PEMF + Atalay et al. (2015) 2015

Settings: 1.5 mT; 50 Hz

Duration: 6 h/day for 30 days

(Continued on following page)
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and vascular endothelial growth factor (VEGF) production. In vivo
and ex vivo studies have shown the effects of electromagnetic fields
on bone density, bone tissue morphology, bone marrow
mesenchymal stem cells, osteoblasts, and osteoclasts (Zhou et al.,
2019). Table 1 lists recent in vivo studies conducted on the use of
electromagnetic fields to treat fractures in animal models. Table 2
lists the bioeffects of electromagnetic fields on osteoblasts and
osteoclasts in vitro. The optimal waveform and parameter
regimen for a particular site of fracture, as well as the
electromagnetic field sensation and signalling mechanisms in
osteoblasts, remain unclear. Therefore, further exploration of
these parameters and mechanisms is required to guide clinical
treatment (Maziarz et al., 2016; Yan et al., 2022).

3 Mechanisms underlying osteogenesis
induced by PEMFs

PEMFs primarily function through electromagnetic signals that
can activate cell membrane ion channels and regulate cell signalling
pathways to promote the directional migration and differentiation of
osteoblasts, nerve regeneration, and blood vessel growth.
Furthermore, they promote bone repair, a considerably complex
process. However, their specific mechanisms remain unclear. At a
macroscopic level, the introduction of electromagnetic fields creates
an energetic electric field in the body to regulate cell proliferation and
differentiation, thereby mediating bone repair (Zhao et al., 2006;
Isaacson and Bloebaum, 2010; Reid and Zhao, 2014; Vadlamani
et al., 2019). At a microscopic level, electromagnetic signals may
affect cell membrane polarisation or ionic displacement, thereby
altering intracellular homeostasis and regulating some cellular
behaviours (Sundelacruz et al., 2008). PEMFs induce faster passage
of ions through the cell membrane, contributing to signalling in the
interior of the cell and regulating membrane potential and the
cytokinesis axis for osteogenesis (Martin-Granados and McCaig,
2014; Kim et al., 2020). These findings demonstrate that
electromagnetic fields play an important role in bone
reconstruction. Thus, studying the mechanism of electromagnetic
fields affecting bone regeneration and how they affect the behaviour of
bone cells and regulate cell physiological activities could facilitate an
in-depth understanding of the bone repair process.

3.1 Effects of PEMFs on bone cells

The positive osteogenic effects of PEMFs at the cellular level
demonstrated its potential mechanism in promoting osteogenesis
(Huang et al., 2008; Leppik et al., 2020; deVet et al., 2021). The use
of capacitively coupled electric fields on human cranial osteoblasts
revealed substantial upregulation of the expression of many
transforming growth factor-β (TGF-β) family genes (TGF-β1,
β2, and β3) and fibroblast growth factor-2 (FGF-2) and
enhanced ALP mRNA expression. The proteins encoded by
these genes play pivotal roles in fracture healing. Bodamyali
et al. (1998) used PEMFs to verify alterations in mRNA levels
of TGF-β and bone morphogenetic protein 2 (BMP-2) in
osteoblasts. The effects of varying pulse waveforms of PEMFs
on osteoblast proliferation and differentiation showed
variability. Zhou et al. observed that square electromagnetic
fields promoted osteoblast proliferation but did not support
osteogenic differentiation. Conversely, SEMFs inhibited cell
proliferation while enhancing osteogenic differentiation. In
contrast, triangular electromagnetic fields had no effect on cell
proliferation but induced the strongest osteogenic activity (Zhou
et al., 2014). Moreover, PEMFs can modulate osteoclast formation,
differentiation, and activity by altering the electromagnetic
frequency. Hong et al. (2014) discovered that 45 Hz PEMFs
inhibited RANKL-induced IκB phosphorylation to hinder
osteoclast formation. Conversely, 7.5 Hz PEMFs promoted
osteoclast differentiation by activating extracellular regulated
protein kinase (ERK) and p38 mitogen-activated protein kinase
(MAPK). Although scholars are increasingly investigating the
effects of PEMFs on cells, the precise mechanisms underlying
cellular sensitivity, interpretation, and transformation of
electromagnetic signals necessitate further investigation
(Eischen-Loges et al., 2018). Skeletal and bone tissue encompass
numerous cell types, including mesenchymal stem cells,
chondrocytes, chondroblasts, osteoblasts, and osteoclasts.
Electromagnetic fields influence bone and bone tissue by
modulating the behaviour of these bone-related cells. Given the
significant roles of osteoblasts and osteoclasts in fracture healing
and the maintenance of bone homeostasis, this review
comprehensively evaluates the effects and potential mechanisms
of PEMFs on osteoblasts and osteoclasts.

TABLE 1 (Continued) Animal-level studies of electromagnetic fields for the treatment of fractures.

Fracture model Treatment parameters Results References Year

Rat Femur Type: PEMF + Oltean-Dan et al. (2019) 2019

Settings: 6.65 mT; 27.12 MHz

Duration: 10 min/day for 14 days

Rabbit Tibia Type: PEMF + Fredericks et al. (2019) 2019

Settings: 6.2 mT; 15 Hz

Duration: 6 h/day

Rat Femur Type: PEMF + Umiatin et al. (2021) 2021

Settings: 1.6 mT; 50 Hz

Duration: 4 h/day for 28 days
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TABLE 2 Studies of electromagnetic fields bioeffects on osteoblasts and osteoclasts.

Cellular
source

Treatment
parameters

Results References Year

Human Osteoblasts Type: SEMF Enhanced mRNA expression of COL1 Heermeier et al.
(1998)

1998

Settings: 6 mT; 20 Hz

Rat Osteoclasts Type: PEMF Inhibition of osteoclastogenesis Chang et al. (2004a) 2004

Settings: 7.5 Hz

Duration: 0.5, 1, 2 and
8 h/day

Rat Osteoclasts Type: PEMF Increase in osteoclastogenesis Chang et al. (2005) 2005

Settings: 7.5 Hz

Duration: 0.5, 2, 8 h/day

Mouse Osteoclasts Type: PEMF Increase in cell apoptotic rate Chang et al. (2006) 2006

Settings: 7.5 Hz

Duration: 8 and 16 h

Rat Osteoblasts Type: PEMF Inhibition of cell proliferation and enhancement of ALP activity Tsai et al. (2007) 2007

Settings: 0.32 mT; 7.5 Hz

Mouse Osteoblasts Type: SMF Inhibition of proliferation rate, enhancement of ALP activity Chiu et al. (2007) 2007

Settings: 0.1, 0.25, and 0.4 mT

Duration: 24 h

Mouse Osteoblasts Type: ELF-EMF Increase in collagen synthesis Soda et al. (2008) 2008

Settings: 3 mT; 60 Hz

Rat Osteoblasts Type: PEMF Increase in cell proliferation rate, increase in ALP activity, decrease of percentage of S
and G (2)M phase

Wei et al. (2008) 2008

Settings: 1.55 mT; 48 Hz

Duration: 48 h

Human Osteoblasts Type: SMF Inhibition of ALP activity Denaro et al. (2008) 2008

Settings: 0.9 μT

Duration: 3, 7, and 14 days

Rat Osteoblasts Type: PEMF Induce the uptake of intracellular calcium Zhang et al. (2010) 2010

Settings: 0.8 mT; 50 Hz

Duration: 9 min

Human Osteoblasts Type: SMF Inhibition of cell proliferation rate, increase in ALP activity Yang et al. (2010) 2010

Settings: 400 mT

Duration: 72 h

Mouse Osteoblasts Type: PEMF Release more NO, enhancement of cell proliferation, inhibition of ALP activity Lin and Lin (2011) 2011

Settings: 1.5 mT; 75 Hz

Duration: 9 h

Rat Osteoblasts Type: SEMF Inhibits osteoblast proliferation and promotes osteoclast differentiation and
mineralization

Zhou et al. (2011) 2011

Settings: 0.9–4.8 mT; 50 Hz

Duration: 30 min/day for
15 days

(Continued on following page)
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TABLE 2 (Continued) Studies of electromagnetic fields bioeffects on osteoblasts and osteoclasts.

Cellular
source

Treatment
parameters

Results References Year

Mouse Osteoblasts Type: PEMF Increase in cellular proliferation, positive effects on differentiation Esmail et al. (2012) 2012

Settings: 4 mT; 15 Hz

Duration: 30 min/day for
2 days

Human Osteoclasts Type: PEMF Less differentiated phenotype, inhibition of TRAP activity Barnaba et al. (2012) 2012

Settings: 0.4 mT; 50 Hz

Duration: 7 days

Human Osteoblasts Type: PEMF Enhanced cell proliferation and increased ALP activity Barnaba et al. (2013) 2013

Settings: 0.4 Mt; 14.9 Hz

Duration: 72 h, 7 and 10 days

Rat Osteoblasts Type: SEMF Inhibition of proliferation rate at day 3, increase in osteogenic differentiation at day
9 and 12

Zhou et al. (2014) 2014

Settings: 1.8 mT; 50 Hz

Duration: 30 min/day

Mouse Osteoclasts Type: SEMF Increase in osteoclastogenesis Hong et al. (2014) 2014

Settings: 1 mT; 7.5 Hz

Duration: 4 and 5 days

Mouse Osteoclasts Type: PEMF Inhibition of the number of osteoclast-like cells He et al. (2015) 2015

Settings: 3.8 mT; 8 Hz

Duration: 40 min/day for
3 days

Human Osteoblasts Type: PEMF Increase osteoblast viability and maturation Ehnert et al. (2015) 2015

Settings: 10–90.6 Hz

Duration: 3 times/week for
21 days

Human Osteoblasts Type: PEMF Enhanced expression of OCN, ALP and RUNX-2 Hiemer et al. (2016) 2016

Settings: 3 mT; 20 Hz

Duration: 135 min/day for
3 days

Mouse Osteoblasts Type: SEMF Enhancement of immature osteoblasts proliferation at days 1, 5, and 10 increase ALP
expression at days 5 and 14

Bique et al. (2016) 2016

Settings: 1 mT; 50 Hz

Duration: 30 min/day

Human Osteoblasts Type: SMF Enhancement of osteoblastic differentiation Kim et al. (2017) 2017

Settings: 15 mT

Duration: 3, 7, and 14 days

Mouse Osteoclasts Type: PEMF Inhibition of osteoclast formation and maturation Wang et al. (2017) 2017

Settings: 0.5 mT; 15 Hz

Duration: 2 h/day for 7 days

Mouse Osteoblasts Type: SMF Increase in osteoblast differentiation and mineralization Yang et al. (2018) 2018

Settings: 500 nT and 0.2 T

Duration: 8 days

(Continued on following page)
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3.1.1 Osteoblasts
Osteoblasts are direct contributors to bone formation that also

regulate the proliferation and differentiation of osteoclasts through

various mechanisms. This pivotal role makes these cells essential for
bone regeneration. Nonetheless, the impact of PEMFs on osteoblasts
remains a subject of contention. PEMFs exhibit a ‘window effect’

TABLE 2 (Continued) Studies of electromagnetic fields bioeffects on osteoblasts and osteoclasts.

Cellular
source

Treatment
parameters

Results References Year

Human Osteoclasts Type: PEMF Inhibition of osteoclastogenesis He et al. (2018) 2018

Settings: 15 Hz

Duration: 4 h/day for 8 days

Rat Osteoblasts Type: PEMF ALP activity is elevated and the area of alizarin staining is increased Shao et al. (2019) 2019

Settings: 0.6 mT; 50 Hz

Duration: 1.5h/day

Rat Osteoblasts Type: PEMF PEMF caused a specific high expression of AP-1 in irradiated osteoblasts Yan et al. (2022) 2022

Settings: 2 mT; 15 Hz

Duration: 2 h/day

SEMF: sinusoidal electromagnetic field; ELF-EMF: extremely low frequency-electromagnetic field; SMF: static magnetic field; COL1: type I collagen; ALP: alkaline phosphatase; TRAP: tartrate-

resistant acid phosphatase; OCN: osteocalcin; RUNX-2: Runt-related transcription factor 2.

FIGURE 2
Schematic representation of molecular pathways activated by PEMFs in osteoblasts. AC = adenylyl cyclase. ALP = alkaline phosphatase. APC =
adenomatous polyposis coli. BMP = bone morphogenetic protein. BSP = bone sialoprotein. AXIN = axis inhibition protein. CaM = calmodulin. cAMP =
cyclic adenosine monophosphate. cGMP = cyclic guanosine monophosphate. CGRP = calcitonin gene-related peptide. COL1 = type I collagen. CREB =
cyclic adenosine monophosphate-responsive element binding protein. ERK = extracellular regulated protein kinases. GSK3 = glycogen synthase
kinase 3. IGF = insulin-like growth factor. MAPK=mitogen-activated protein kinase.mTOR=mammalian/mechanistic target of rapamycin. NICD=notch
intracellular domain. NOS = nitric oxide synthase. OCN = osteocalcin. OPN = osteopontin. PKA = protein kinase A. PKG = protein kinase G. PTH =
parathyroid hormone. Runx2 = runt-related transcription factor 2. sGC = guanylyl cyclase. Smad = drosophilamothers against decapentaplegic. TGF-β =
transforming growth factor-β.
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and can yield reproducible osteogenic outcomes. In addition,
different intensities of PEMFs and varying time points chosen for
analysis may have different effects. However, most studies have
shown that PEMFs can promote the expression of genes and
proteins through specific signalling pathways in osteoblasts,
thereby accelerating their proliferation (Chang et al., 2004b;
Ercan and Webster, 2008; Lin and Lin, 2011), differentiation
(Eischen-Loges et al., 2018; Hou et al., 2019; Leppik et al., 2019),
and mineralisation (Wiesmann et al., 2001; Qi et al., 2018). Figure 2
shows a schematic representation of molecular pathways activated
by PEMFs in osteoblasts.

Electromagnetic fields regulate the expression of downstream
osteogenesis-related genes and proteins by activating the Wnt/β-
catenin signalling pathway, thereby enhancing the functions of
associated osteoblasts, such as proliferation, differentiation, and
mineralisation, to promote osteogenesis (Zhai et al., 2016).
Mounting evidence indicates a close association between PEMFs
and the Wnt/β-catenin signalling pathway in osteogenesis. For
instance, both gene and protein expression of the classical Wnt/
β-catenin signalling pathway (including Wnt1, LRP6, and β-
catenin) were significantly upregulated following exposure to
PEMFs during the proliferation and differentiation stages of
MC3T3-E1 cells (Zhou et al., 2015; Jing et al., 2016). Moreover,
PEMF intervention reduced the expression of dickkopf1 (DKK1),
which typically inhibits the Wnt signalling pathway (Fathi and
Farahzadi, 2017). In addition, PEMF-enhanced Wnt/β-protein
signalling considerably increased the expression of proliferation-
phase-related target genes CCND1 and CCNE1 and differentiation-
phase-related genes ALP, OCN, COL 1, and RUNX-2. These genes
accelerated osteoblast proliferation, differentiation, and
mineralisation (Sun et al., 2010; Clark et al., 2014; Zhai et al.,
2016; Fathi and Farahzadi, 2017).

Ion channels are transmembrane proteins embedded in the lipid
bilayer of the cell membrane. Furthermore, they are hydrophilic
micropore channels that allow selective passage of ions through the
cell membrane. Ca2+ is an important cellular mediator with roles in
several activities, such as cell proliferation, differentiation, and
apoptosis. The transient increase in intracellular Ca2+ is an
immediate effect of electrical signal stimulation on cellular
response. Various electrical stimuli (e.g., DC, PEMFs, and
piezoelectric stimulation) can alter intracellular Ca2+ levels by
inducing Ca2+ influx or release from intracellular stores. This
promotes osteoblast proliferation and osteogenic protein
expression, potentially due to the accumulation of charge on the
cell membrane, ultimately leading to the opening of voltage-gated
calcium channels (VGCCs) (Kim et al., 2009; Xu et al., 2009; Shuai
et al., 2018; Cai et al., 2021). Exposure to electromagnetic fields
directly activates VGCCs in the plasma membrane, and the channel
can trigger multiple regulatory responses through the enzymatic
action of Ca2+/calmodulin (CaM)-dependent nitric oxide synthase
(NOS) (Pall, 2013). Xu et al. used signalling pathway inhibitors to
conclude that capacitively coupled electrical stimulation, which
regulates osteoblast proliferation, is mediated by VGCCs
(verapamil inhibition); this elevated intracellular calcium ion
concentrations and increased phospholipase A2 (PLA2) activity
(bromophenyl bromide blockade). The increased PLA2 activity
led to cyclooxygenase-dependent prostaglandin E2 synthesis
(blocked by anti-inflammatory pain). Contrastingly, the elevated

intracellular calcium ion concentrations led to CaM activation
(blocked by N-(6-aminohexyl)-5-chloro-1-
naphthalenesulphonamide hydrochloride, W-7). In addition,
PEMFs promoted the differentiation of osteogenesis-associated
cells by altering the Ca2+ oscillation pattern to resemble that of
osteoblasts. Calcium oscillations can improve the efficiency and
specificity of gene expression and direct cell differentiation.

High intracellular levels of Ca2+ can activate the NO/cyclic
guanosine monophosphate (cGMP)/protein kinase G (PKG)
pathway, owing to crosstalk between the Ca2+ and NO pathways
(Jeandroz et al., 2013). Moreover, NO regulates intercellular
information transfer and affects tissue blood flow. Thus, low NO
levels promote osteoblast proliferation, whereas high concentrations
inhibit the proliferation and differentiation of osteoblasts. Cheng
et al. examined the effects of SEMF on osteogenesis through the NO-
cGMP-PKG pathway by measuring ALP activity, Osterix (OSX)
gene expression, and mineralised bone nodules. NOS activity was
markedly higher than that in the control group after SEMF
treatment. Additionally, OSX gene expression, ALP activity, and
mineralised bone nodules were increased. Corresponding blockers
were subsequently used to block the NO-cGMP-PKG pathway to
determine whether SEMF-stimulated osteoblast maturation and
mineralisation would be inhibited; the corresponding indices
were all reduced (Cheng et al., 2011). As extracellular signals,
electromagnetic signals belong to the first messengers of the cell
and can act directly on VGCCs in the osteoblast membrane to
increase Ca2+ inward flow. The inward-flowing Ca2+ combines with
CaM to activate NOS, leading to increased NO production that
consequently increases cGMP synthesis. Subsequently, cGMP
activates PKG (Cheng et al., 2011; Pilla et al., 2011; Rangaswami
et al., 2012; Zhong et al., 2012), which regulates gene transcription
and mediates osteoblast proliferation and differentiation.

The MAPK signalling pathway transmits extracellular signals to
the inside of the cell to control various cellular processes, such as
proliferation, differentiation, migration, and death. This pathway is
one of the important pathways through which electromagnetic fields
cause the proliferation and differentiation of osteoblasts.
Conventional MAPKs include ERK1/2, JNK, and p38. Yumoto
et al. (2015) found that electromagnetic field radiation to
osteoblast MC3T3-E1 cells induced the ERK1/2 and p38 MAPK
pathways to enhance proliferation and upregulate the expression of
various growth factors, including VEGF and platelet-derived growth
factor. Ehnert et al. found that ELF-PEMFs increased total protein
content and ALP activity and promoted the formation of a
mineralised matrix by triggering the MAPK/ERK1/2 signalling
pathway in osteoblasts. Similarly, inhibition of the ERK1/
2 signalling pathway with U0126 prevented the activation of ALP
activity and matrix mineralisation. In addition, the positive effects of
ELF-PEMFs on osteoblast function were impaired (Ehnert et al.,
2015). The increase in total protein content and ALP activity
following ELF-PEMF treatment in osteoblasts was accompanied
by a substantial upregulation of mitochondrial activity. This is
consistent with a recent report that electromagnetic fields can
promote osteogenic differentiation and bone anabolism by
activating mitochondrial oxidative phosphorylation in bone
progenitor cells and osteoblasts. However, the exact signalling
pathway of their action is unknown (Hollenberg et al., 2021). In
addition, PEMFs promote the expression of antioxidant enzymes
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(Poh et al., 2018) and enhance the activity of cytoprotective enzymes
(Ehnert et al., 2017) through the MAPK/ERK signalling pathway,
thereby shaping the microenvironment that promotes osteogenic
differentiation.

TGF-β signalling pathways can promote osteoblast proliferation
and early differentiation to osteoblast-like cells. These pathways are
involved in PEMF-induced osteogenesis. BMP belongs to the TGF-β
family and is a major factor inducing bone and cartilage formation
in vivo. BMP initiates signalling cascade responses through typical
Smad-dependent and atypical Smad-independent signalling
pathways (Carreira et al., 2014; Salazar et al., 2016). Xie et al.
found that PEMFs could activate the BMP-Smad1/5/8 signalling
pathway by upregulating the expression of BMP II receptors on
primary cilia, thereby promoting osteoblast differentiation and
maturation in rats. Thus, the knockdown of BMP II receptors in
osteoblasts reduces the promotion of osteogenic differentiation and
maturation by PEMFs (Xie et al., 2016). Smad7, an antagonist of the
TGF-β signalling pathway, is the putative target gene of miR21-5p,
and PEMFs decreased Smad7 expression. RUNX2 expression was
increased by PEMF treatment. However, the miR21-5p inhibitor
prevented the PEMF-induced RUNX2 expression in differentiating
cells. These findings demonstrate that PEMFs regulate the
expression of microRNA21 to activate TGF-β signalling and
promote osteoblast differentiation (Selvamurugan et al., 2017).

The mTOR signalling pathway is an important molecular
cascade involved in various physiological cellular processes, such
as cell cycle and metabolic regulation, transcription, and translation,
as well as cell differentiation and apoptosis. Activation of this
pathway by PEMFs has been reported. Ferroni et al. (2018)
revealed that PEMFs increase the expression of mTOR pathway-
related proteins, such as AKT, MAPK kinase, and RRAGA.
Furthermore, inhibitors of the mTOR pathway can reduce the
osteogenic capacity of PEMFs. Considerable upregulation of the
expression of bone-specific genes due to activation of Akt has been
observed in cells after exposure to PEMFs at selected parameters
(Poh et al., 2018).

The Notch signalling pathway is highly evolutionarily
conserved. It is involved in important physiological activities,
such as cell survival, proliferation, differentiation, and
homeostatic regulation in vivo. When Notch receptors and their
ligands interact, the Notch intracellular domain (NICD) is released
and translocated to the nucleus to activate the transcription of target
genes (Tian et al., 2017). The expression of the Notch receptor, its
ligand DLL4, and target genes (Hey1, Hes1, and Hes5) was
upregulated during PEMF-induced osteogenic differentiation of
human bone marrow mesenchymal stem cells. Furthermore,
application of Notch pathway inhibitors effectively suppressed
the expression of osteogenic markers, including RUNX2, Dlx5,
OSX, Hes1, and Hes5, which further explains the activation of
the Notch pathway by PEMFs during osteogenesis (Bagheri
et al., 2018).

3.1.2 Osteoclasts
Physiological bone remodelling relies on a delicate equilibrium

between osteoblast- and osteoclast-mediated bone formation and
resorption, respectively. Osteoclasts, originating from the
monocyte-macrophage lineage, exclusively regulate bone
resorption. PEMFs can affect osteoclast function, thereby

altering skeletal phenotypes. Moreover, they can impede the
formation of osteoclasts, thereby reducing their numbers,
downregulating the expression of osteoclast-related genes such
as TRAP and CTSK, and diminishing the levels of inflammatory
factors, including tumour necrosis factor-alpha and interleukin-
1β. Additionally, PEMFs impact the differentiation and
maturation of osteoclasts by inhibiting the activities of
osteoclast transcription factors. Furthermore, they activate the
T-cell nuclear factor and hinder the nuclear translocation of
Ca2+ (Zhang et al., 2017; Song et al., 2018; Tschon et al., 2018;
Noh et al., 2020). Insulin-like growth factor (IGF), the most
abundant growth factor within the bone matrix, promotes
osteoclast differentiation by regulating the expression of RANK
and RANKL. Additionally, it facilitates the dynamic interaction
between osteoblasts and osteoclasts, contributing to the
maintenance of bone mass equilibrium during bone remodelling
(Wang et al., 2006). Electromagnetic fields can markedly increase
the mRNA expression level of IGF-1 in rat femur tissue in vitro to
promote bone formation and inhibit bone resorption (Zhou et al.,
2016). In addition, PEMFs at different frequencies can produce
varying effects through different pathways: low-frequency
stimulation enhances osteoclast differentiation and activity,
mainly by activating the ERK and p38 MAPK pathways.
Contrastingly, high-frequency stimulation inhibits osteoclast
differentiation and reduces bone resorption through suppressed
RANKL-induced phosphorylation of IκB (Hong et al., 2014). Hong
et al. found that osteoclastogenic markers, such as NFATc1, TRAP,
CTSK, MMP9, and DC-STAMP, were highly expressed at 7.5 Hz
electromagnetic fields, whereas they were decreased at 45 Hz.
Similarly, Nam found that electromagnetic fields at 10 G
intensity and 40 Hz frequency reduced NFATc4 expression by
decreasing TRPV1 and phosphorylated cyclic adenosine
monophosphate-responsive element binding protein (CREB)
levels, which regulated RANKL-induced osteoclast
differentiation (Nam et al., 2023). Owing to the lack of clinical
trial validation, the study of the mechanisms of different
parameters is only at the theoretical stage. Thus, more valuable
data could be obtained through clinical validation in the future.

3.2 Nerves

The nervous system regulates the development of various
tissues, organs, and systems in the body. Bone tissue is also
innervated by its corresponding peripheral nerves. Thus, the
mechanisms underlying the promotion of fracture healing
through the regulation of neuronal activity have garnered
research interest. Most nerves in bone are neuropeptide-
containing fibres, such as Aδ-fibres and C-fibres, which
predominantly (>50%) express the calcitonin gene-related peptide
(CGRP) and are sensitive to mechanical, chemical, and electrical
stimuli (Lau et al., 2015; Yuen-Chi Lau et al., 2017; Brazill et al.,
2019). CGRP, a 37-residue peptide produced by specific neurons
through selective splicing of the calcitonin gene, is an important
neuropeptide involved in bone growth and metabolism. It is
produced in the sensory nerve fibres of bone tissue at the
posterior root ganglion of the spinal cord and transported to the
nerve endings to perform its in vivo regulatory and biological
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functions in the form of secretory granules (Tepper, 2018; Hendrikse
et al., 2019). Clinical and experimental studies have confirmed that
electromagnetic fields act on the peripheral nervous system to
promote the biosynthesis and release of this peptide, which is
involved in bone repair and regeneration (Naot et al., 2019; Mi
et al., 2022). Electromagnetic field signals promote CGRP
biosynthesis and release by activating the Ca2+/calmodulin-
dependent protein kinase II/CREB signalling pathway. CGRP
subsequently binds to target cell-specific G protein-coupled
receptors to activate AC and elevate intracellular cAMP levels.
Moreover, the cAMP-PKA signalling system mediates the
essential pathway required to promote bone formation.
Furthermore, the activation of PKA catalyses subunit
phosphorylation and nuclear translocation, which phosphorylates
CREB to activate the c-fos and c-jun families of transcription factors.
This process ultimately enables the recognition of DNA-binding
sites by Runx-2 and OCN in their promoter regions and accelerates
osteoblast differentiation (Wang et al., 2019). This pathway also
regulates the expression balance between important transcription
factors for bone formation and resorption (e.g., RANKL,
osteoprotegerin (OPG)), resulting in considerably reduced mRNA
expression of RANKL and a substantial increase in the mRNA
expression of OPG. This inhibits osteoclast formation and function
and enhances fracture healing and bone metabolism (Villa et al.,
2006; Ding et al., 2013; Zhang et al., 2016; Xu et al., 2020). The
relationship between nerves and osteogenesis has been investigated
from multiple perspectives. However, the acceleration of
osteogenesis by electromagnetic fields through the neuronal
secretion of CGRP warrants further exploration.

3.3 Blood vessels

Osteogenesis and angiogenesis, including cell-cell
communication between vascular cells and osteoblasts, are
essential for bone repair. VEGF is a highly specific vascular
endothelial cell growth factor that binds to its receptor and
activates a downstream signalling cascade, thereby controlling
the survival, proliferation, and migration of vascular endothelial
cells, which subsequently promotes neovascularisation and
vascular permeability. VEGF contributes to endothelial
mesenchymal stem cell aggregation into the vascular plexus,
which plays a crucial role in neoangiogenesis and haemodialysis
at the fracture site. H-type blood vessels can induce bone
formation, and VEGF regulation of angiogenic processes has
been closely linked to H-type blood vessels (Peng et al., 2020;
Rodríguez-Merchán, 2021). In addition, electromagnetic field
signals activate the VEGF signalling pathway to increase blood
supply to the fracture region, thereby promoting bone repair
(Hopper et al., 2009; Chen et al., 2018). Chen et al. (2018)
showed that electromagnetic field signals activate VEGF
receptors, leading to activated downstream components, such as
PI3k/Akt, ERK1/2, and JNK. Furthermore, endothelial cell
tubulogenesis was attenuated using inhibitors. Electromagnetic
field-regulated angiogenesis during bone tissue regeneration can
act through multiple pathways, including FGF, IGF, and platelet-
derived growth factor pathways (Tepper et al., 2004; Chen et al.,
2018; Yuan et al., 2018).

4 Clinical implications of PEMFs on
bone healing

PEMFs affect biological tissues by generating electromagnetic
fields of specific frequencies and intensities. They are widely used to
treat various diseases and symptoms in clinical settings.
Furthermore, their clinical application has extended to bone
healing. In a randomised controlled trial, Shi et al. conducted a
long-term follow-up on patients with fractures treated using PEMFs.
Their findings indicated that early application of PEMF therapy
significantly improves healing rates and reduces overall pain
duration in patients with long bone fractures (Shi et al., 2013).
Despite these positive outcomes, some studies have raised questions
about the effectiveness of PEMF therapy. Hannemann et al.
observed no significant differences in fracture healing in the
PEMF group, sparking controversy over the therapeutic effects of
this therapy (Hannemann et al., 2014). Furthermore, the assessment
of clinical trial results on bone repair involving PEMFs raises
concerns about the reliability of the outcomes. However, the
inconsistency in PEMF parameters and treatment protocols used
in different trials may affect the comparability of studies.
Additionally, individual variations among patients and other
factors before and after treatment may impact trial results. Thus,
despite current research indicating the potential benefits of PEMFs
in bone fracture repair, further standardised clinical trials are needed
to confirm their efficacy. Furthermore, combining PEMF with other
therapeutic interventions could synergistically enhance bone
fracture repair outcomes. However, further in-depth research into
the specific mechanisms and optimal application methods is
required to fully leverage these synergistic effects. This could
provide a foundation for optimised treatment strategies that
better accommodate individual patient differences. Finally,
existing research findings can facilitate the development of
standardised guidelines for the use of PEMFs in bone repair,
ensuring consistency and feasibility in clinical practice.

5 Limitations of PEMF therapy

The clinical application of PEMFs in bone repair has shown
several limitations. Firstly, the diversity of treatment protocols poses
a significant challenge. Variations in PEMF parameters, such as
frequency, intensity, and treatment duration, in existing studies lead
to inconsistency in optimal application methods. Moreover, the lack
of standardised treatment protocols makes it difficult to compare
different studies and formulate uniform treatment guidelines in
clinical practice. Secondly, the variability in individual patient
responses is a major issue. The physiological response of the
human body to PEMFs may be influenced by factors such as age,
sex, and comorbidities. However, there remains a lack of sufficient
personalised research, making it challenging to accurately predict
patient responses to PEMF therapy. This hinders the
implementation of personalised treatment in clinical settings.
Additionally, the demand for standardised guidelines highlights
the knowledge gap in the use of PEMFs in bone repair
treatment. The lack of clear guidelines for PEMF application
makes it challenging for physicians to determine the optimal
treatment approach in practical settings, thereby increasing
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uncertainty for both patients and medical institutions when
choosing PEMF therapy. To overcome these obstacles, more
large-scale studies, personalised research, and clear treatment
guidelines are needed to advance the clinical application of
PEMFs and maximise their potential in bone repair.

6 Conclusion

The active role of PEMFs in the treatment of bone-related
diseases and their possible mechanisms have garnered
considerable research interest. Some potential mechanisms
underlying PEMF function have been elucidated, providing a
theoretical and clinical basis for further application of
electromagnetic fields to promote fracture healing.
Electromagnetic fields can enhance the expression of bone-related
genes and cellular activity by regulating ion channels and activating
cellular signalling pathways. This ultimately alters the behaviour or
function of osteoblasts to promote bone production and
remodelling. However, the lack of consistent study parameters
makes PEMF effects scientifically challenging to evaluate.
Therefore, high-quality clinical studies and basic experiments are
required to further clarify the optimal therapeutic parameters and
molecular mechanisms of PEMFs. Such in-depth investigation could
ensure the optimisation of electromagnetic fields to a more effective
and accurate alternative therapy for the treatment of bone disease
and regeneration.
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