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Purpose: The aim of this study was to investigate the value of a deep learning

model (DLM) based on breast tumor ultrasound image segmentation in

predicting pathological response to neoadjuvant chemotherapy (NAC) in

breast cancer.

Methods: The dataset contains a total of 1393 ultrasound images of 913 patients

from Renmin Hospital of Wuhan University, of which 956 ultrasound images of 856

patients were used as the training set, and 437 ultrasound images of 57 patients

underwent NAC were used as the test set. A U-Net-based end-to-end DLM was

developed for automatically tumor segmentation and area calculation. The

predictive abilities of the DLM, manual segmentation model (MSM), and two

traditional ultrasound measurement methods (longest axis model [LAM] and dual-

axis model [DAM]) for pathological complete response (pCR) were compared using

changes in tumor size ratios to develop receiver operating characteristic curves.

Results: The average intersection over union value of the DLM was 0.856. The

early-stage ultrasound-predicted area under curve (AUC) values of pCR were not

significantly different from those of the intermediate and late stages (p< 0.05).

The AUCs for MSM, DLM, LAM and DAM were 0.840, 0.756, 0.778 and 0.796,

respectively. There was no significant difference in AUC values of the predictive

ability of the four models.

Conclusion: Ultrasonography was predictive of pCR in the early stages of NAC.

DLM have a similar predictive value to conventional ultrasound for pCR, with an

add benefit in effectively improving workflow.
KEYWORDS

breast cancer, ultrasound image, deep learning, neoadjuvant chemotherapy,
pathological complete response
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Introduction

According to the 2023 cancer statistics from the American

Cancer Society, breast cancer remains the most prevalent malignant

tumor worldwide, and its incidence continues to rise (1). Thus,

developing treatment and evaluation strategies remains crucial.

Neoadjuvant chemotherapy (NAC) represents systemic

medication administered before surgical tumor excision and is a

standard treatment for locally advanced breast cancer (2). NAC can

downstage tumors, rendering initially inoperable tumors eligible for

surgery and enhancing the breast conservation rate (3). NAC can be

used to evaluate tumor response to treatment by monitoring

changes in tumor size during treatment (4).

Conventional assessment for tumor response including clinical

examination, pathological examination and imaging examinations.

The frequency of assessment of tumor response during NAC

remains controversial. The National Comprehensive Cancer

Network (NCCN) guidelines advocate for routine clinical

examination to assess tumor response, with imaging evaluations

only warranted if tumor progression is suspected (5). However,

domestic guidelines recommend that imaging evaluations should be

performed at least once every two cycles (6). Pathological

examination post-NAC and surgery remains the gold standard for

tumor response assessment (7). Pathological complete response

(pCR) is the absence of residual invasive disease in the breast and

axilla (8). Patients with pCR achieve long-term disease-free survival

and improved overall survival rates (9, 10). Imaging examinations

such as mammography, ultrasound, and magnetic resonance

imaging (MRI) are employed to evaluate patients undergoing

NAC (11, 12). Mammography can serve as an effective means for

the primary tumor assessment and the detect ion of

microcalcifications. Ultrasound provides real-time monitoring, is

widely accessible and cost-effective (12, 13). Contrast-enhanced

MRI is considered as the most sensitive imaging modality for

assessing tumor response (14).

In addition to these conventional imaging examinations, artificial

intelligence (AI) has been increasingly used to automatically improve

early breast cancer detection and treatment. AI algorithms such as

deep learning (DL) can efficiently and automatically analyze medical

images, with outstanding capabilities in locating lesions and

extracting characteristic features from medical images (15). DL has

been introduced to assist clinicians in breast lesion identification and

segmentation, cancer grading while allowing reproducibility and

visualization (16–18). AI has been applied for ultrasound

assessment of NAC treatment response in breast cancer (19).

Ultrasound images exhibit speckle noise, variable tumor size and

shape, and tumor-like breast tissue along with echo pattern modality

imaging (20), which reduce diagnostic accuracy; therefore,

developing precise tumor detection algorithms that lack noise and

ambiguity represents considerable challenges.

However, certain aspects that require further exploration. First,

the relationship between tumor size and NAC has long been a

subject of research interest. Second, deep learning algorithms based

on ultrasound images for predicting NAC response can be

developed (21–23). Especially for breast ultrasound image

segmentation, algorithms could be categorized into two methods.
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One algorithm is the CNN-based networks which utilize the fixed

receptive region to extract information, such as U-net (24), FCN

(25) and Mask R-CNN (26). Due to the special computer kernel, the

networks pay more attention to the local features (27), which work

poorly in evaluating the tumor-resemble, shadows and speckle

noise. Though many researchers have creatively proposed many

multi-scale and attention mechanisms, the improvement is limited.

The other method utilized the transformer (28, 29), which splits the

ultrasound image into tokens, which employ the sequence

information to acquire the global relationship from the global

dimension. Therefore, the transformer would extract more

features especially avoiding the interference from tumor-resemble

tissue. However, because the transformer most focuses on the global

features, it detects boundaries of tumor would be sensitive. To

enhance the accuracy of tumor detection, the network which

balances the local and global features has challenges and has the

potential to widespread in radiology (30). In comparison to the

conventional manual delineation of tumor regions by sonographers,

this model holds advantages in terms of segmentation speed and

reduction of experiential bias. Moreover, existing studies primarily

focus on early-stage treatment or predicting efficacy at individual

time points (31–33). The continuous evaluation of treatment

response of breast cancer during the process of NAC, rather than

at isolated time points, remains to be investigated.

Herein, we prospectively collected data from patients with

breast cancer who underwent NAC and designed a deep learning-

based tumor detection model to analyze regions of interest (ROI) in

ultrasound images. Next, we verified the ability of the model to

detect breast tumors without noise interference and blurry

boundaries using statistical methods to monitor ultrasound

images during NAC, extract information from feature maps, and

provide an intuitive and quantitative picture of tumor alterations.

Furthermore, we examined the performance of proportional

changes in tumor size measured using conventional models and

DLM for predicting the response to chemotherapy. We employed

DLM and conventional ultrasound throughout all phases of the

NAC treatment to monitor its efficacy. The study aimed to assess

the ability of DLM in predicting pCR in breast cancer patients

undergoing NAC and its ability to evaluate the treatment response

at various stages of NAC.
Methods

Patients

Between December 2020 and December 2022, researchers

collected a total of 1393 ultrasound images from 913 patients at

Renmin Hospital of Wuhan University. Among these, 956

ultrasound images from 856 patients were retrospectively

collected and used as the training dataset. Additionally, 437

ultrasound images from 57 patients who underwent NAC were

prospectively collected and utilized as the test dataset. This study

was conducted according to the Declaration of Helsinki and

relevant Chinese clinical trial research norms and regulations.

Ethical approval was obtained from the Ethics Committee of
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https://doi.org/10.3389/fonc.2024.1255618
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2024.1255618
Renmin Hospital of Wuhan University (approval number:

WDRY2022-K217). All patients provided written informed

consent for ultrasound examinations, surgical intervention, and

use of data. Figure 1 presents the patient selection flowchart.

Patient eligibility criteria included 1) a definitive diagnosis of

primary invasive breast cancer by biopsy; 2) no previous treatment,

and at least one of the following indications for NAC: tumor size >

5 cm; HER2 positive; estrogen receptor/progesterone receptor and

human epidermal growth factor receptor (HER) 2 negative; axillary

lymph node metastasis or strong breast-conserving intention; 3)

underwent 6–8 cycles of complete NAC; 4) breast ultrasound

examination before initiating NAC, after each NAC cycle, and after

NAC completion; and 5) surgical resection after NAC completion.

Exclusion criteria were 1) patients who did not complete the

NAC regimen or underwent treatment at another center; 2) breast

surgery performed before NAC completion; 3) insufficient

ultrasound image quality for feature extraction; and 4) lack of

pathological results post-surgery.
Neoadjuvant chemotherapy regimen

The National Comprehensive Cancer Network guidelines for

Breast Cancer (Version 3.2020) recommend selecting the NAC

regimen based on the breast cancer molecular subtype. All

patients underwent 6–8 NAC cycles. The most common regimen

for patients with luminal or triple-negative breast cancer includes a
Frontiers in Oncology 03
combination of epirubicin, cyclophosphamide, and paclitaxel,

administered every 21 days. Patients with HER2-positive tumors

received either the THP (paclitaxel, trastuzumab, and pertuzumab

every 21 days) or TCbHP (paclitaxel, carboplatin, trastuzumab, and

pertuzumab every 21 days) regimens.
Ultrasound imaging

An ESOTE MEGAS GPX FD570A ultrasound diagnostic

instrument was used for patient examination, with probe

frequencies ranging 5–13 MHz. All patients were placed in the

supine or side-lying position with both arms lifted and abducted to

fully expose the breast. Diagnostic criteria were based on the

American College of Radiology Breast Imaging Reporting and

Data System. Experienced breast sonographers independently

performed each ultrasonographic examination. Measurements

were extracted from the ultrasound report and confirmed by

another breast sonographer based on captured images. Two

experienced breast sonographers manually segmented ROIs from

original ultrasound images using a 3D slicer software (version 4).
Tumor response assessment

Tumor size was assessed using ultrasound after each NAC cycle.

NAC-treated tumors were also evaluated using the Response
FIGURE 1

Flowchart of inclusion and exclusion for patients in the test set. US, ultrasound.
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Evaluation Criteria for Solid Tumors (RECIST 1.1) (34). In this

prospective study, tumor size was defined as the sum of the size of

each tumor if the patient had multifocal disease. Four models were

established to calculate tumor size before and after each treatment:

the longest axis model (LAM), the product of two perpendicular

axes model (dual-axis model [DAM]), the manual segmentation

model (MSM), and the deep learning model (DLM). To compare

changes in tumor size, the relative ratio was calculated after each

treatment cycle using the following formula:

Ratio N =
untrasound tumor size after N cycles of NAC

ultrsound tumor size before NAC
Histopathological assessment

Breast cancer was diagnosed by needle biopsy of the tumor.

HER2 status was assessed using immunohistochemistry and

fluorescence in situ hybridization analysis (35). Breast tumors

were classified as HER2-negative and HER2-positive subtypes.

After completing NAC, surgically resected breast tumor tissue

was delivered to the Department of Pathology, where a

specialized breast pathologist examined the specimens to establish

the pathological diagnosis. The residual cancer burden (RCB) index

was used as a criterion for assessing residual tumors after NAC for

breast cancer. A pCR or RCB-0 was defined as the complete absence

of invasive cancer in the breast and axillary lymph nodes (8).
Development of the deep learning-
based model

Given that breast ultrasound images are characterized by low

resolution and contrast and ambiguous boundaries, we utilized a

custom U-Net neural network to capture tumor features by

applying data augmentation (23), attention mechanism, and

multi-scale method. As U-Net segments each pixel into classes, it
Frontiers in Oncology 04
can directly infer the ultrasound image and generate a tumor

distribution map with the same dimensions as the input image.

We adopted U-Net as a cancer-detection architecture and creatively

added modules to construct a custom U-Net for enhancing

extracted model features.

Figure 2 presents the algorithm construction process. To

promote the generation and prevent overfitting, we adopted a

data-augmentation technique and several network construction

algorithms. During image processing, breast tumor features on

the ultrasound image varied in all directions, lightness, and

contrast; we utilized data-augmentation techniques such as

cropping, rotation, and adjusting lighting conditions, including

contrast and lightness, to extract general tumor features without

intervention. We used batch normalization and dropout at each

convolution layer in the neural network to avoid model oscillations

and facilitate robustness. Additionally, we exploited the grayscale

intensity as the input image, given that the grayscale ultrasound

image contained sufficient information for the diagnosis, affording

efficiency by reducing three channels into one. In the network, we

introduced an attention mechanism after each convolution block,

namely, the SCSE module (36), allocating more computing

resources to abnormal regions and improving inference speed.

Considering variations in breast tumor shape and size, a constant

kernel size from the convolution layer was constrained to capture

the tumor with a feasible receptive field. Therefore, we implemented

multi-scale imaging to acquire different tumor sizes in ultrasound

images, specifically atrous spatial pyramid pooling, with the

capacity to extract multi-scale contextual information.

To ensure accurate tumor regions and contours, we proposed a

hybrid loss function for model refinement. The loss function is

crucial in selecting an optimizer for the model weight. We expanded

the hybrid loss function for model adjustment based on the region

and boundary. To obtain a more accurate intersection with the

ground truth, we adopted the dice coefficient loss accompanying the

binary cross-entropy loss to promote the accuracy of each pixel.

Owing to the ambiguous tumor contour due to poor contrast, we

adopted the active contour (37) and Hausdorff distance loss (38) to
FIGURE 2

Algorithm construction Construction of the deep learning model.
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calculate the refined boundary. After applying the above techniques

and changing the network, our model could precisely segment

breast tumors in ultrasound images.
Model training and model performance
evaluation metrics

All datasets were collected from breast tissues examined in the

ultrasound department. The dataset contains 1393 ultrasound (US)

images. 956 US images of 856 patients were used as a training set to

train our model, covering a variety of US images of benign breast

tumors, malignant breast tumors, and post-chemotherapy breast

cancer. And 437 NAC US images of 57 patients with complete NAC

cycles were used as a test set to display network ability. There was

no data overlap between the training set and the test set. We

employed two experts to diagnose the whole dataset and

generated corresponding ground truth masks. In detail, one

expert annotated each image, while the other one reviewed it.

When differences in diagnosis were encountered, the final

annotation utilized the latter expert’s results. Meanwhile, due to

variation in US image size, during network training, we rescaled the

ultrasound image with a fixed resolution of 448×384 pixels. Besides,

in order to quickly find the optimizer weights, we adopted the

Adam algorithm (39) with the betas from 0.5 to 0.999. When

conducting experiments, we set the batch size 4 learning rate of

0.002 and stopped the iteration when the model was updated for

100 epochs, saving the most accurate model parameters and

avoiding overfitting. All experiments were conducted in PyTorch

under an Ubuntu OS server with an Intel Xeon (R) CPU E5‐2680 v4

@2.40 GHz, 40 GB of RAM, and an NVIDIA GeForce RTX 3090 Ti

with 24 GB of VRAM to boost training processing. We achieved our

network on the 64-bits operation system and constructed algorithm

on the Pytorch 2.0.1 framework with CuDNN 11.8. The training

processing took up to 20 hours and the test phase lasted 76 seconds.

Finally, the well-trained model generated a breast tumor

distribution map for each ultrasound image and quantitatively

analyzed performance.

To demonstrate the segmentation performance of our model,

we utilized five metrics to quantitatively analyze the prediction

output by comparing areas of prediction and annotation: accuracy,

intersection over union (IoU), precision, recall, and the F1. All the

metric formulas are show in Formula 1, 2, 3, 4, 5, and the TP, TF, FP

and FN of each formula demonstrate the true positive, true negative,

false positive and false negative. Among these metrics, accuracy,

precision, recall, and the F1 score reflect the model’s ability to

capture specific features. Specifically, accuracy showcases the

correctness of pixel predictions, precision demonstrates the

model’s capability to predict positive samples accurately, recall

reflects the model’s ability to capture positive samples, and the F1

score provides a balanced measure considering both positive and

negative samples. As for the IoU, it denotes the intersection between

the predicted segmentation and the ground truth divided by the

area of union, which is commonly used in segmentation tasks.

Considering the definition of the IoUmetric, the value belongs to 0–
Frontiers in Oncology 05
1, and the closer the value is to 1, the more similar the prediction to

the ground truth. To automatically calculate tumor parameters, we

generated geometric parameters from an ultrasound image. After

processing the model, we acquired a prediction mask for the tumor

region. We first annotated each image with a scale bar, which could

assist in precisely calculating the geometric information.

Subsequently, we calculated the tumor number, area, diameter,

area ratio, and length-to-width ratio using the scale bar and

prediction mask. Accordingly, the IoU metric supported the

overall network performance, whereas geometric parameters

indicated the breast mass condition of each breast ultrasound

image.

Accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

(1)

IOU  ¼ TP
TPþ FPþ FN

(2)

Precision  ¼  
TP

TPþ FP
(3)

Recall =
TP

TP + FN
(4)

F1 =
2� TP

2� TP + FP + FN
(5)
Statistical analysis

Statistical analyses were performed using R version 4.2.1 (R

Foundation for Statistical Computing, Vienna, Austria). Normally

distributed data are presented as the mean ± standard deviation.

Normality was tested using the Shapiro–Wilk normality test. For

comparisons between two groups, Student’s t-test was used for

normally distributed data, and the Wilcoxon rank-sum test was

used for non-normally distributed data. For categorical variables,

the chi-square test was used to determine differences between

groups. The Kruskal–Wallis method was used to compare

multiple groups. By utilizing the percentage reduction of tumors

relative to their initial state at a specific time point (cycle N), as the

predictor variable, and considering whether pCR was achieved as

the outcome indicator, we compared the predictive performance of

different models by constructing receiver operating characteristic

(ROC) curves (Figure 3). We created ROC curves for all patients

after completing the entire treatment cycle using four measurement

models (Figure 3A); after each treatment cycle using the DLM

(Figure 3C); after each treatment cycle using the MSM (Figure 3D);

after each treatment cycle using the LAM (Figure 3E); and after each

treatment cycle using the DAM (Figure 3F). It is essential to

emphasize that Figure 3A includes patients who completed both 6

and 8 cycles of NAC. Therefore, the ROC curve in Figure 3A does

not overlap with any ROC curves in Figures 3C–F. The p values of

the area under the curve (AUC) were calculated using the DeLong

test. A p-value<0.05 was considered statistically significant.
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Results

Patient information

We included 57 patients who underwent complete per-cycle

ultrasound assessment for primary invasive breast cancer. Table 1

summarizes basic patient data. The mean patient age was 49 years

(range 28–70 years). Mean tumor size prior to NAC was calculated

as follows: LAM 3.059 ± 1.283 cm, dual-axis model (DAM) 6.198 ±

5.734 cm2, manual segmentation model (MSM) 4.190 ± 3.330 cm2,

and DLM 4.233 ± 3.638 cm2. Considering all patients with breast

cancer, 29 (50.9%) achieved pCR after NAC and 28 (49.1%) failed to

achieve pCR. The pCR and non-pCR groups differed significantly in
Frontiers in Oncology 06
age (p=0.020), HER2 status (p<0.001), and post-NAC tumor size

(LAM, p=0.030; DAM, p=0.008; MSM, p=0.031; DLM, p=0.009).
Performance of the DL-based model

After predicting the test-set images, we achieved a mean IoU of

0.856. Meantime, the model achieved best results on the dataset

from the NAC, with an average accuracy of 0.973, average recall of

0.912 and average F1 score of 0. 918. Additionally, the segmentation

capabilities of this model were quantitatively represented through

ROC curve and PR curve (Supplementary Figure S1). The AUC for

the ROC curve reached 0.99, and for the PR curve, it reached 0.92.
B

C D

E F

A

FIGURE 3

ROC curve for different models in predicting pCR. (A) The ROC curves were plotted to compare the ability of four different models in predicting
pCR. (B) A radar chart shows the predictive ability of the four models at each cycle of the NAC. (C–F) After each cycle of NAC, tumor size was
measured using four models and ROC curves were developed to predict pCR. The ROC curves for all cycles of the same model are drawn in
one graph.
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The DLM demonstrated good discrimination ability in addressing

challenges related to delineating the boundary of breast cancer

ultrasound images (e.g., blurred boundary, irregular shape, uneven

brightness, and interference of contrast). And the DLM could also

extract breast cancer feature of ultrasound image. Simultaneously,

we also tested the model’s computational complexity to display our

network with more information. Our network contains 51.6 M

parameters and 197.15G FLOPs and could detect a US within 0.08

seconds. In summary, the discrimination ability of the DLM was

satisfactory for benign breast tumors and early-stage cancers
Frontiers in Oncology 07
undergoing NAC, but relatively poor for images of late-stage

NAC and pCR.
Ablation experiment

To deepen our understanding of the mechanisms of our model, we

conducted an ablation experiment. Based on the functionality of the

model, we divided the algorithm into three modules: U-Net, ASPP, and

self-attention. We designated U-Net as the baseline, named the model

with combined multi-scale ASPP as baseline-M, and the U-Net with

combined self-attention module as baseline-A. All experiments were

conducted using the same ultrasound images and identical data

preprocessing methods to analyze the effects of each module and the

overall experimental performance. Additionally, we selected four

ultrasound images with different manifestations for visual analysis,

providing a comprehensive examination of the algorithm’s

performance from quantitative to qualitative perspectives.

In terms of cancer segmentation, the baseline model exhibited

the weakest performance, with an average IoU index of only 0.742.

The baseline-M, incorporating a multi-scale ASPP module,

demonstrated superior performance by capturing ultrasound

information at multiple scales and avoiding interference from

noise or shadow areas. However, baseline-A, which integrated a

self-attention mechanism into the baseline model, showed

improved performance by directing more computational

resources to cancer regions. Through comparative analysis, the

performance gain of the baseline-A model was not as high as that

of baseline-M. Nevertheless, the final model output results indicate

that modules combining multi-scale and self-attention mechanisms

can complement each other’s shortcomings, achieving optimal

performance. Finally, the model achieved the best results on the

NAC dataset, with an average accuracy of 0.973, average recall of

0.912, average IoU of 0.856, and average F1 score of 0.918 (Table 2).

Simultaneously, we visually demonstrated the performance of

each model. We selected ultrasound images from four NAC

treatment cycles, encompassing both pCR and non-pCR response,

as well as variations in tumor boundary clarity. In Figure 4, we

illustrated that the clearer the tumor boundary, the better the image

quality, the better the model’s performance. However, in

comparison to other models, our model resisted noise and

shadows, accurately distinguishing the boundaries of cancer. In

Figure 4, the baseline model exhibited the weakest resistance to

interference, easily influenced by shadows and tissue around the

tumor, especially in the second and third rows of the baseline

images. Baseline-M, introducing a multi-scale features mechanism,

significantly reduced interference from shadows and noise in

ultrasound images. However, its ability to extract global

information remains limited, and the accuracy of edge delineation

is not precise. In the visual results of baseline-A, we observe that the

attention mechanism consumes more computational resources on

suspicious areas, but its detection ability is insufficient. In contrast,

our proposed method, incorporating both multi-scale and self-

attention mechanisms, enhances the segmentation ability to
frontiersin.o
TABLE 1 Basic patient data.

Characteristics Patients (n=57) p-
value

pCR
(n=29)

Non-
pCR (n=28)

Age (mean ± SD) (years) 52 ± 11 47 ± 11 0.020*

Histologic type 0.862

Invasive
ductal carcinoma

18 18

Others 11 10

Clinical N stage 0.060

cN0 9 3

cN1-3 20 25

HER2 status <0.001*

HER2+ 21 4

HER2- 8 24

Pre-NAC tumor size (mean
± SD)

LAM (cm) 3.321
± 1.399

2.778 ± 1.103 0.114

DAM (cm2) 7.133
± 6.451

5.194 ± 4.765 0.209

MSM (cm2) 4.936
± 4.261

3.479 ± 2.704 0.112

DLM (cm2) 4.874
± 3.974

3.454 ± 2.316 0.135

Post-NAC tumor size
(mean ± SD)

LAM (cm) 1.148
± 0.663

1.607 ± 0.870 0.030*

DAM (cm2) 0.781
± 0.829

1.726 ± 1.647 0.008*

MSM (cm2) 0.549
± 0.575

1.189 ± 1.115 0.031*

DLM (cm2) 0.504
± 0.561

0.958 ± 0.936 0.009*
*p<0.05 was considered significant. NAC, neoadjuvant chemotherapy; HER2, human
epidermal growth factor receptor 2; pCR, pathological complete response; LAM, the longest
axis model; DAM, dual-axis model; MSM, manual segmentation model; DLM, deep learning
model; SD, standard deviation.
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capture global information. As a result, we ultimately achieve robust

cancer segmentation with improved resistance to interference.
Measures of tumor size ratios

Following NAC, both pCR and non-pCR groups exhibited

tumor shrinkage. However, tumor regression was more significant

in the pCR group than in the non-pCR group (p<0.01), particularly

during the early stages of treatment (Figures 5B, C). As shown in

Figure 5A, after the first two NAC cycles, the average residual tumor

size measured by MSM, DLM, and DAM was <50% for patients in

the pCR group, whereas the residual tumor size of patients in the

non-pCR group was >50% (detailed data are displayed in the

Supplementary Files).
Performance of the four models for
predicting pCR

ROC curves were established for the four models to predict the

possibility of obtaining pCR after the NAC completion in all

patients (Figure 3A). The AUCs for LAM, DAM, DLM, and

MSM were 0.778 (95% confidence interval [CI], 0.654–0.901),

0.796 (95% CI, 0.675–0.916), 0.756 (95% CI, 0.625–0.887), and

0.840 (95% CI, 0.731–0.949), respectively. The AUCs were

compared using the DeLong test (DLM vs. LAM, p=0.769; DLM

vs. DAM, p=0.769; DLM vs. MSM, p=0.133; LAM vs. DAM,

p=0.557; LAM vs. MSM, p=0.269; and DAM vs. MSM, p=0.358),

with no significance detected (p<0.05).

Subsequently, we plotted the ROC curves for each measurement

method separately across the entire course of NAC and calculated

the AUC to determine which model was more powerful in

predicting pCR at an early stage (Figures 3B–F). After the

DeLong’s test, there was no significant difference between the

AUCs of the different cycles (p>0.05), indicating that there was

no significant difference in the predictive effect of the percentage of

residual tumor size on pCR in the early (cycle 1-2), middle (cycle 3-

4) and late (after 4 cycles) stages of NAC treatment. The AUC

values of DLM for pCR prediction during all-phases of NAC

treatment are as follows: cycle 1 (C1): 0.826; C2: 0.833; C3: 0.782;

C4:0.872; C5:0.831; C6:0.844; C7: 0.851; C8:0.794 (p>0.05).
Discussion

In this study, we collected ultrasound images of breast cancer

patients underwent NAC and developed an efficient DLM for tumor

detection. In comparison to various methods employed for tumor

segmentation in other studies, such as He et al.’s (27) utilization of

the HCT-network, Xu et al.’s (40) implementation of region

attention, Lyu et al.’s (41) application of the pyramid attention,

and Chen et al.’s (42) use of the cascade network, our approach

stands out by efficiently extracting global and local features using

the WSA module and enhancing robustness using ASSP and FAM.

Our model reaches the highest IOU of 0.856 among these studies
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while successfully distinguishing normal tissues and mitigating

noise and shadow interference. Additionally, our dataset was both

extensive and diverse which collected from clinical patients with a

variety of characteristics displaying the comprehensiveness of breast

ultrasound images, such as age, cancer grading, and pCR status.

moreover, the data size consisting of 913 patients and 1393 images,

significantly exceeds that of existing public datasets, such as the 780

images in BUSI (43) and the 163 images in DatasetB (44), ensuring

suitability for breast ultrasound-specific tasks. Therefore, our DLM

achieving excellent segmentation performance. Herein, we

employed the DLM to measure changes in tumor size during

NAC and predict pathological outcomes accordingly. We aimed

to assess the capability of DLM for predicting breast cancer

NAC outcomes.

Firstly, we compared the sensitivity of pCR and non-pCR breast

cancers to NAC by constructing tumor size change ratios and line

graphs. The percentage of tumor regression in patients with and

without pCR was the most notably distinguished after the first NAC

cycle, and the difference in the percentage of regression between the

two groups gradually decreased. Ultrasound images and DLMs have

been shown to predict the treatment response in the early (cycle 1–

2) or mid-treatment (cycle 4) stages of NAC (32, 33, 45). However,

follow-up observations of responses to all consecutive courses of

NAC are still lacking. Hence, we further explored the accuracy of

predicting pCR based on the percentage of tumor regression at

different treatment stages of NAC. Based on our findings, there was
Frontiers in Oncology 09
no significant difference in the predictive ability of ultrasound

assessment for pCR when performed at any NAC cycle; therefore,

ultrasound assessment can be performed at any time, regardless of

the treatment course.

Furthermore, we compared the predictive abilities of the four

models for pCR after NAC for breast cancer (Figure 3). Tumor size

is known to be closely related to the therapeutic effects of NAC (11).

Conventional ultrasound models such as LAM and DAM assess

tumor size by measuring dimensions. MSM and DLM assess tumor

size by measuring area. The constructed DLM possesses the same

level of capability as experienced sonographers in accurately

identifying tumor boundaries. There was no significant difference

in the predictive efficacy of the four models for pCR. Therefore, the

DLM can serve as a valuable tool for assisting sonographers in

manually measuring breast cancer, enabling more precise

calculations of tumor size. Notably, our DLM is still helpful in

clinical practice. First, it helps improve the workflow. The

algorithms rapidly and automatically identify tumor areas within

ultrasound images, allowing for precise segmentation and accurate

tumor size measurements. The DLM developed in this study offers a

time-efficient model to reduce the burden on the sonographers and

eliminate bias due to differences in experience. The predictive effect

of the DLM is also relatively stable throughout the treatment

process compared to conventional measurement models

(Figure 3B). Second, our DLM was learned from the database of a

large general hospital and reviewed by senior sonographers, and the
FIGURE 4

Performance of different components on four clinical ultrasound images during NAC. The results of ablation experiment. Baseline: U-Net; Baseline-
M: U-Net + Multi-scale ASPP; Baseline-A: U-Net + Self-Attention Module; US, ultrasound; GT, ground truth.
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DLM’s ability to recognize ultrasound images is equivalent to that of

an experienced sonographer. Therefore, the DLM is useful for

assisting junior sonographers or primary hospitals in breast

ultrasound examinations. Third, our research helps doctors and

patients by facilitating the tracking of tumor growth and treatment

responses. It enables the recording of tumor size and shape at

different time points, allowing for image comparisons. This

automatic cancer detection capability enables clinicians to
Frontiers in Oncology 10
evaluate treatment effectiveness and adjust treatment plans, as

necessary. Most importantly, predicting tumor responses and

tailor personalized treatment plans to ensure the best treatment

outcomes for patients.

The direct comparison of our results with those of other studies

can be challenging, given the differences in data collection and

analysis methods. To the best of our knowledge, this is the first

study to use DL to continuously monitor changes in tumor size
B

C

A

FIGURE 5

Changes in residual tumor with NAC cycles in the pCR and non-pCR groups. (A) The percentage of residual tumors decreased with the increase of
NAC cycle in both groups, with the most evident decrease in the first two cycles. (B) in ultrasound images of breast cancer of a patient who didn’t
receive pCR. (C) Changes in ultrasound images of breast cancer of a patient who received pCR. The green line denotes the prediction contour,
while the red line denotes the ground truth in the first column.
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during NAC. The previous studies similar to this research and their

AUC values for predicting pCR have been listed in Table 3.

Candelaria et al. (45) and Gounaris et al. (46) predicted pCR by

measuring the largest change in tumor diameter at mid-treatment.

Sannachi et al. (47) employed quantitative ultrasonography to

collect data at the 1st, 4th, and 8th NAC cycles. Byra et al. (32)

used a DL approach based on early treatment ultrasound images to

assess the treatment response. The authors also performed

consecutive predictions during the first four cycles, concluding

the absence of any significant difference in the prediction of

chemotherapy outcomes during the first four cycles (48),

consistent with our findings.

In the present study, the following innovations are pivotal. First,

the DL method for processing ultrasound images has several

advantages. 1) Our DL method based on U-Net is an automatic

end-to-end neural network that does not manually screen

handcrafted features. The model can infer the entire ultrasound

image and provide prediction results directly. Moreover, the model

can distinguish the tumor boundary from breast tissue by

intelligently extracting morphological features from cancer and

normal tissues. Meanwhile, the prediction image had the same

dimensions as the input image, displaying breast cancer

distribution. 2) Our model adopted a multi-scale method and

attention mechanism to improve the ability to extract and focus

on features for accurate and rapid tumor tissue identification.

Moreover, the multi-scale method considers context information

to improve boundary performance, particularly the relationship

between the tumor and normal tissue region. 3) To enhance the

detection capacity, we adopted a hybrid loss function to search for

optimal model parameters. By improving the accuracy of the tumor

contour and pixel segmentation, our hybrid loss function consists of

binary cross-entropy loss, dice loss, and active contour models.

Second, to the best of our knowledge, this is the first study to

evaluate ultrasound findings during NAC. Herein, the ultrasound

assessment values were similar for each cycle. Third, we compared

the effectiveness of conventional ultrasound tumor measurements

and DLM in predicting pathologic response, with the DLM as an

alternative to manual measurements.

Nevertheless, the limitations of the present study need to be

addressed. First, this was a single-center study. Although this study

was conducted over 2 years, recruiting an adequate number of

representative patients was challenging. Further external validation

should be performed by recruiting more patients in a multicenter

prospective study to demonstrate the accuracy of the DLM. Second,
Frontiers in Oncology 11
the DLM predictions were solely based on changes in tumor size.

Although size change is the most important and intuitive indicator of

tumors’ response to chemotherapy, this approach overlooks other

ultrasound image features related to the response to NAC, such as

texture changes, tumor shrinkage patterns, and lymph node status.

Including these additional features may further enhance the

predictive performance of the model. Third, although ultrasound is

one of the most important imaging modalities for breast cancer NAC,

predictions based on ultrasound images alone are insufficient to

determine whether the NAC treatment regimen should be stopped

or changed. Many guidelines suggest employing dynamic contrast

enhanced (DCE) MRI for assessing the efficacy of NAC. However,

this study lacks a comparative analysis between ultrasound and MRI.

Therefore, the clinical value of the DLM based on breast ultrasound

for pCR outcome prediction remains to be validated.

Future research will be primarily focused on several key areas.

First, there should be a focus on the multimodal fusion of medical

imaging data to provide a more comprehensive medical insight for

predicting the tumor’s response. Second, there is a need for

development of automated annotation tools to alleviate the

burden of data labeling for medical professionals and researchers.

Third, there should be a quantification of uncertainty and research

into interpretability, particularly in medical ultrasound imaging.

Fourth, there should be a focus on incremental learning to enable

continuous adaptation to new data, with a special emphasis on

monitoring long-term tumor changes and addressing new tumor

types. These research directions will help enhance the efficiency and

accuracy of medical image analysis, fostering ongoing

improvements in tumor diagnosis and treatment.
Conclusions

In conclusion, we constructed a U-Net-based end-to-end DLM

for processing ultrasound images during NAC treatment for breast

cancer, which offers advantages of accuracy, efficiency, and

automation to assist manual measurement. This study provides a

non-invasive method for predicting individualized responses in

breast cancer patients undergoing NAC at all stages of treatment.
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