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TRiP: a transfer learning based
rice disease phenotype
recognition platform using
SENet and microservices
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Agriculture, Nanjing Agricultural University, Nanjing, China
Classification of rice disease is one significant research topics in rice

phenotyping. Recognition of rice diseases such as Bacterialblight, Blast,

Brownspot, Leaf smut, and Tungro are a critical research field in rice

phenotyping. However, accurately identifying these diseases is a challenging

issue due to their high phenotypic similarity. To address this challenge, we

propose a rice disease phenotype identification framework which utilizing the

transfer learning and SENet with attentionmechanism on the cloud platform. The

pre-trained parameters are transferred to the SENet network for parameters

optimization. To capture distinctive features of rice diseases, the attention

mechanism is applied for feature extracting. Experiment test and comparative

analysis are conducted on the real rice disease datasets. The experimental results

show that the accuracy of our method reaches 0.9573. Furthermore, we

implemented a rice disease phenotype recognition platform based

microservices architecture and deployed it on the cloud, which can provide

rice disease phenotype recognition task as a service for easy usage.
KEYWORDS

rice disease recognition, SENet, transfer learning, machine learning as service,
microservices framework
1 Introduction

Plant phenotype (Zhou et al., 2023) represents the visible morphological characteristics

of plants within a specific environment, which plays significant role in areas such as plant

protection, breeding, and so on (Kolhar and Jagtap, 2023; Pan et al., 2023). Rice is one of

main global crops, and has gained a great deal of attention in plant science, especially

regarding phenotypic identification research. These investigations are crucial for generating

socio-economic benefits (Xu et al., 2020a). However, the increasing prevalence of rice

diseases, exacerbated by fluctuating agricultural practices and climate change, has

compromised yield, quality, and the economic viability of rice cultivation (Shahriar et

al., 2020; Klaram et al., 2022).
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This paper concentrates on the following rice diseases and their

phenotypic characteristics: Bacterial blight, caused by Xanthomonas

oryzae, leads to leaf yellowing and wilting, significantly reducing

yield. Blast, induced byMagnaporthe oryzae, ranks among the most

devastating global rice diseases, causing grain sterility and yield

reduction. Brown spot, attributable to Bipolaris oryzae, manifests as

brown leaf spots, adversely affecting grain quality and yield. Leaf

smut, resulting from Entyloma oryzae, produces black, powdery

spores on leaves, severely impairing photosynthesis. Tungro, a viral

affliction, leads to stunted growth and leaf yellowing, causing

substantial damage in affected regions, though it is less widespread.

Rice disease phenotype recognition is an important research

field in phytoprotection, which includes traditional manual

recognition, classical machine learning-based image processing,

and deep learning-based techniques (Hasan et al., 2019).

Traditional approaches rely heavily on the visual expertise of

trained professionals, demanding extensive experience and

knowledge (Patil and Burkpalli, 2021). The advent of smart

phytoprotection leverages machine learning capabilities attracted

a lot of attention and gained huge success. However, traditional

image processing methods often involve manual feature extraction,

a process that proves inefficient for disease image feature extraction.

The application of deep learning in phenotype recognition

(Xiong et al., 2021) automates feature extraction and inference,

which has become a preferred method for identifying rice diseases.

With the emergence of various network models such as VGG16

(Chen et al., 2020), Xception (Nayak et al., 2023; Sudhesh, 2023),

and Inception (Yang et al., 2023), optimized for plant disease

phenotyping, the accuracy of recognition has seen a significant

enhancement compared to traditional methods. For instance, Picon

et al. (2019) addressed the issue of yield losses due to fungal

infections, proposing the use of deep convolutional neural

networks for automatic disease image recognition, thereby

improving treatment effectiveness and minimizing yield losses. Xu

et al. (2020) developed a two-stage RiceNet, utilizing YoloX for

detection and a Siamese network for rapid and precise rice disease

identification, enhancing rice yield and quality. K.M. et al (Sudhesh,

2023). introduced an attention-driven preprocessing mechanism

based on dynamic modal decomposition for rice leaf disease

identification. Wang et al. (2021) proposed an attention-based

depthwise separable neural network combined with a Bayesian

optimization model for efficient detection and classification of

rice diseases from leaf images.

Nevertheless, deep learning models, characterized by their

complex structures and extensive parameter sets, necessitate

substantial data for effective model training. Transfer learning,

involving the adaptation of knowledge from a pre-trained model

to a new, related task, has emerged as a method to augment the

performance of target tasks in plant disease identification (Hossain

et al., 2020; Feng et al., 2021; Feng et al., 2022). Zhao et al. (2022)

proposed a transfer learning-based approach for identifying corn

leaf diseases in natural scene images.

Currently, Machine Learning as a Service (MLaaS) is emerging

as a new trend for deploying machine learning applications (Ribeiro
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et al., 2015; Li et al., 2017; Wang et al., 2018). Deployed on cloud

infrastructure, MLaaS facilitates the task reasoning services (Ribeiro

et al., 2015). Integrating MLaaS with a microservices architecture

enhances its advantages, offering scalable approach for developing

and deploying machine learning applications (Labreche et al., 2022;

Lohit et al., 2022). This approach allows developers to integrate

machine learning into their application architectures without the

need to manage infrastructure or possess specialized skills (Manley

et al., 2022).

This paper propose a Transfer learning-based Rice disease

phenotype recognition Platform (TRiP for short), which integrates

the advanced SENet neural network and a microservices architecture.

TRiP leverages the cutting-edge concept of machine learning as a

service and offers scalable and adaptable solutions for the dynamic

needs of rice disease diagnostics (Cherradi et al., 2017; Yi et al., 2019;

Daradkeh and Agarwal, 2023).

The contributions are summarized as follows: (1) proposed and

developed an innovative rice disease phenotype recognition

framework, combining the power of transfer learning with the

SENet architecture; (2) The implementation of a customized

attention mechanism within the SENet network significantly

enhances its ability to focus on and accurately extract features

critical to identifying rice diseases; (3) The microservices

architecture of TRiP platform brought advanced computational

capabilities to edge computing in for rice disease recognition.
2 Material

2.1 Rice disease dataset

The dataset of rice disease is selected from IP102 and icgroupcas

(http://www.icgroupcas.cn/). IP102 is a dataset of crop disease and

pest data and widely used in crop disease research. It contains

75,000 images of 102 crop diseases and pests, which covers a wide

range of crops including rice, wheat, corn, tomato, etc. In this paper,

five diseases Bacterialblight, Blast, Brownspot, Leaf smut, Tungro are

selected from IP102 dataset, because they are the most prevalent

rice diseases and can cause significant yield losses. Figure 1

illustrates the examples of the rice disease images and the

healthy one.

In our experiments, each category of the rice pest dataset was

randomly divided into the training set and the test set at the rate of

7:3. The training set contained a total of 4322 pictures, the test set

contained a total of 1853 pictures, and the whole dataset contained a

total of 6175 pictures. Table 1 shows the detail of the rice disease

image dataset used in this paper.
2.2 Dataset for transfer learning

The dataset used for transfer learning in this paper was

selected from the PlantVillage dataset to ensure a diverse

representation of plant diseases. 10 plant diseases from the
frontiersin.o
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PlantVillage dataset are selected, including Apple black rot, Apple

healthy, Apple rust, Apple scab, Blueberry healthy, Cherry healthy,

Cherry powdery mildew, Corn common rust, Corn gray leaf spot,

and Corn healthy. The details of dataset for transfer learning are

shown in Table 2. In our experiment, each category of the disease

dataset was randomly divided into a training set and a test set at

the rate of 7:3. The training set contained 8143 images, the test set

contained 3867 images, and the whole dataset contained 12010

images in total.

By including a wide range of plant diseases, the effectiveness of

the proposed transfer learning method in addressing the challenge

of limited training data for specific plant diseases can be evaluated.

Furthermore, this diverse dataset can be used for the developing a
Frontiers in Plant Science 03
more robust and generalized model, which can be applied to a wider

range of plant disease diagnosis and monitoring tasks. Figure 2 is an

illustration of 10 plant disease images in the PlantVillage dataset for

transfer learning in our experiments.
3 Methods

3.1 Data preprocessing

To ensure uniformity across the dataset and elevate the quality

of input data, we adhered to the following pivotal procedures:
1. Image format standardizat ion : To mainta in

computational consistency, all images were transmuted

into a 3-channel RGB configuration.

2. Dimensional homogenization: Conforming to the

prerequisites of the model input, every image was

adjusted to a resolution of 64 ∗ 64 pixels.

3. Random cropping strategy: Aiming to enhance the

model’s focal attributes, random cropping was employed

with the image’s centroid serving as the pivot.

4. Image normalization techniques: Every image underwent

a meticulous normalization procedure, with pixel values

scaled between 0 and 1, complemented by a subtle Gaussian

blur to attenuate potential noise disturbances.
TABLE 1 IP102 rice disease image dataset.

ID Name Training set size Test set size

1 Bacterialblight 1111 476

2 Blast 1008 432

3 Brownspot 1120 480

4 Leaf smut 28 12

5 Tungro 915 393

6 Healthy 140 60
Bacterialblight Blast Brownspot

Leaf smut Tungro Healthy

B C

D E F

A

FIGURE 1

Example of rice disease dataset.
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3.2 SENet network

In this paper, the SENet neural network was used, which is an

improved version of the ResNet50 architecture (Joshy and Rajan,

2023; Zhu et al., 2023). The ResNet50 neural network is

characterized by consisting of an initial convolutional layer, four

Layer layers, two pooling layers, and one softmax activation layer.

Each Layer layer is composed of multiple residual blocks, enhancing

the network’s ability to effectively propagate gradients and learn

complex features.

SENet incorporates a Squeeze-and-Excitation (SE) module after

each residual block of ResNet50, which enhances the network’s

capacity for selective feature emphasis. This module is designed to

selectively weight the feature maps produced by the previous layer

based on their importance for classification. Therefore, SENet

allows for more focused attention on pertinent features in the
B C D

E F G H

I

A

J

FIGURE 2

Examples of PlantVillage dataset for transfer learning.
TABLE 2 PlantVillage transfer learning dataset.

ID Name Training set size Test set size

1 Apple black rot 700 300

2 Apple scab 700 300

3 Apple healthy 1151 493

4 Apple rust 700 300

5 Blueberry healthy 1051 451

6 Cherry healthy 739 317

7 Cherry powdery mildew 700 300

8 Corn common rust 836 356

9 Corn gray leaf spot 700 300

10 Corn healthy 816 350
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input image, significantly improving performance in fine-grained

image recognition tasks.

The choice of SENet for rice disease phenotype recognition is

motivated by its advanced feature recalibration capability, which

significantly enhances the model’s focus on relevant features.

SENet’s unique Squeeze-and-Excitation block dynamically adjusts

channel-wise feature responses, allowing the model to emphasize

informative features while suppressing less useful ones. This

is particularly effective in rice disease recognition, where

distinguishing between subtle variations in disease symptoms is

crucial. SENet’s ability to adaptively recalibrate feature maps leads

to more accurate and robust recognition of rice disease patterns,

making it an ideal choice for this application.

Table 3 provides a detailed summary of the ResNet50

architecture used in this paper, including the number of filters in

each convolutional layer, the kernel size, and the stride. The final

output of the ResNet50 network is input into the SENet module,

culminating in a softmax probability distribution of the 10 plant

subclasses in the PlantVillage dataset.

The structure of SENet is shown in Figure 3. In SENet, each

layer comprises two distinct residual blocks. The first one is referred

to as residual block one, which consists of three convolutional layers

with a kernel size of 1*1, and an additional convolutional.

layer with a kernel size of 3*3. The input to residual block one is

a matrix with a channel number of C, length of L, and width of W.

However, in our work, we performed preprocessing on the

images to resize both the length and width toW. Consequently, the

input matrix dimensions of residual block one become (C,W,W).

The output of residual block one is a matrix with 4C channels, and

the length and width are halved, resulting in a data matrix of size

(4C,W/2,W/2). Therefore, the residual block increases the number
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of channels to extract features. The first type of residual block

structure is depicted in Figure 4.

The residual block 2 is used to accomplish identity mapping and

illustrated in Figure 5. It is composed of two convolutional layers

with a kernel size of 1*1, along with an additional convolutional

layer with a kernel size of 3*3. Similar to residual block 1, the input

to residual block 2 is a matrix with a channel number of C, length of

L, and width of W. However, in our study, we performed

preprocessing on the images to ensure that their length and width

are both adjusted toW. Consequently, the input matrix dimensions

of residual block 2 become (C,W,W). The output of residual block 2

remains identical to the input.

The number of convolution kernels in the convolution layer of

each residual block in the model is summarized in Table 4.

After four sets of layer, the final characteristic matrix is

obtained. The last layer is the global average pooling layer, and

the softmax is used as the activation function.

The softmax function is a commonly used probability

distribution function in deep learning, which maps a set of output

values x = [x1, x2,…, xn] to a probability distribution p = [p1, p2,…,

pn]. The softmax function is given by Equation 1:

sof tmax(x)i  =
exp(xi)

on
j=1exp(xj)

,  for i  =  1,  2,  …,  n (1)

The softmax function exponentiates each element of the input

vector x and then normalizes them to ensure that their sum equals

to 1. The resulting values p can be interpreted as class probabilities

in multi-class classification tasks. The softmax function simplifies

the computation of loss functions and the optimization of models.
3.3 Transfer learning of TRiP

Transfer learning aims to leverage knowledge acquired from

previously trained tasks to solve related tasks more efficiently

(Abbas et al., 2021; Rajpoot et al., 2023). In the context of rice

disease recognition, this approach is particularly valuable due to the

limited availability of large, annotated datasets specific to this task.

This approach mitigates issues associated with overfitting when

training on small datasets and reduces the time needed for training

on large datasets (Fan et al., 2022; Saberi Anari, 2022).

As illustrated in Figure 6, we first train the SENet on the

PlantVillage dataset to obtain a pre-trained model. This pre-

training step enables the SENet to learn general features of plant

diseases, which can then be fine-tuned for the specific task of rice

disease recognition. Then, we incorporate the parameters of the

pre-trained model as transfer knowledge into the network training

of the small dataset for the target task. This fine-tuning process

tailors the model to the specific characteristics of rice diseases,

enhancing its accuracy and efficiency for this application. Finally,

we obtain a new model tailored to solving the target task. The

integration of transfer learning with SENet thus allows for effective

utilization of existing knowledge, significantly improving the

performance of rice disease recognition.

By combining transfer learning with the SENet architecture, we

effectively leveraged prior knowledge to enhance rice disease
TABLE 3 Structure of ResNet50 used in this paper.

Layer name Layer configuration

Initial convolution layer
3*3 max pool stride=2

7*7 64 stride=2

Layer1 1 ∗ 1     64

3 ∗ 3     64

1 ∗ 1     256

2
66664

3
77775 ∗ 3

Layer2 1 ∗ 1     128

3 ∗ 3     128

1 ∗ 1     512

2
66664

3
77775 ∗ 4

Layer3 1 ∗ 1     256

3 ∗ 3     256

1 ∗ 1     1024

2
66664

3
77775 ∗ 6

Layer4 1 ∗ 1     512

3 ∗ 3     512

1 ∗ 1     2049

2
66664

3
77775 ∗ 3

Average Pool
1000-d fc softmax
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recognition. To fine-tune the pre-trained SENet model for the new

task, we added new layers to the network and retrained the model

on a small dataset of rice disease images.

The heuristic principle is adopted to determine which layers

were most suitable for fine-tuning. Generally, the early layers of a

network capture more generic features, such as edges and textures,

while the later layers capture task-specific features. Thus, we

typically fine-tune the later layers while keeping the early layers

fixed. This process, known as fine-tuning, involves adjusting the

parameters of the pre-trained model to the new task, enhancing its

ability to handle task-specific features and improve performance on

the rice disease recognition task.

In this paper, we utilized the cross-validation skill to determine

the optimal fine-tuning strategy to enhance the performance of our

SENet model in the task of rice disease recognition. Initially, we

designed a candidate set encompassing a variety of potential fine-

tuning strategies. These strategies considered the unfreezing of

different numbers of layers, such as the last layer, the last two

layers, the last three layers, and so on.
3.4 Attention mechanism

The attention mechanism has emerged as a pivotal technique in

fine-grained image recognition, enhancing the nuances and

subtleties of images (Lee et al., 2022; Hu et al., 2023; Jiang et al.,
FIGURE 3

SENet network structure.
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FIGURE 4

The first type of residual block structure.
FIGURE 5

The second type of residual block structure.
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2023). The attention mechanism rapidly scans the global context,

pinpoints the pertinent target regions, and dampens unrelated

information. Consequently, the significant areas without

necessitating auxiliary labeling information can be emphasized

(Liu et al., 2022; Peng et al., 2023). Mathematically, the attention

mechanism can be represented as Equation 2:

Attention(Q,  K ,  V)  =  sof tmax
QKTffiffiffiffiffi

dk
p

 !
V (2)

In Equation 2, Q is the query vector and K and V stand for

matrices of key and value vectors, respectively. dk denotes the

dimensionality of the keys. The attention process can be broken

down into three core steps:

Gauging the similarity between the query and each key.

Normalizing these similarity scores via a softmax function to

derive attention weights. Taking a weighted sum of the value

vectors, modulated by the aforementioned attention weights. This

attention mechanism’s dynamism and adaptability lead to a marked

enhancement in performance compared to conventional models. Its

strength lies in its capacity to zoom into specific input components

based on their relevance to the current query (Tang et al., 2023).

There are two broad types of attention mechanisms: self-

attention and soft attention (Yang et al., 2023). This paper makes

use of the advantage the of the soft attention mechanism with the

Squeeze-and-Excitation Networks (SENet). Within our research,

the soft attention mechanism hones in on regional aspects,

assigning them attention weights between 0 and 1. This

determinate attention profile is crafted through rigorous training,

empowering the network to fine-tune feature selection based on

these trained weights.
3.5 Cross-validation

In this paper, the 10-fold cross-validation is adopted for testing

the results. The dataset was divided into 10 subsets. For each

iteration, one subset was used for validation while the other nine

for training, cycling through all subsets. This approach reduces
TABLE 4 Output channels of each network layer.

Layer index Network layer Output channels

1 Input 0

2 conv 64

3 Maxpooling 64

4 conv 64

5 conv 64

6 conv 256

7 conv 256

8 conv 256

9 conv 256

10 conv 256

11 conv 256

12 conv 256

13 conv 128

14 conv 128

15 conv 512

16 conv 512

17 conv 512

18 conv 512

19 conv 512

20 conv 512

21 conv 512

22 conv 512

23 conv 512

24 conv 512

25 conv 256

26 conv 256

27 conv 1024

28 conv 1024

29 conv 1024

30 conv 1024

31 conv 1024

32 conv 1024

33 conv 1024

34 conv 1024

35 conv 1024

36 conv 1024

37 conv 1024

38 conv 1024

39 conv 1024

(Continued)
TABLE 4 Continued

Layer index Network layer Output channels

40 conv 1024

41 conv 1024

42 conv 512

43 conv 512

44 conv 2048

45
46
47
48
49
50
51

conv
conv
conv
conv
conv
conv

Average pool

2048
2048
2048
2048
2048
2048
0
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data-specific biases, ensuring a thorough evaluation. Importantly,

we used precision as our evaluation metric, prioritizing the accuracy

of positive identifications in our rice disease phenotype

detection task.
4 Experimental results and analysis

4.1 Experimental environment

The experiments were conducted on CentOS 2.1903 64-bit,

included 8 vCPU cores and an NVIDIA V100 GPU with 32 GB of

memory. The algorithms were implemented with Tensorflow

1.14.0, Keras 2.25, Python 3.6. GPU and CUDA 11.8.
Frontiers in Plant Science 08
4.2 Experimental parameters

The size of image pixel segmentation S is 64*64, the number of input

channels C is RGB-3 color, the batch size of batch B is 8, the number of

iterations E is 50, the discard rate P is 0.5, momentum b is 0.9, the initial
learning rate h is 1e−2, and the fixed learning rate attenuates to 1e−2. We

use VGG16, ResNet50, Inception as the baseline for comparison.
4.3 Results evaluation metrics

We evaluate the results using accuracy, Macro-Precision, Macro-

recall, Macro-F1, and Cross entropy loss. In the following definition,

TP and TN refer to correct predictions of positive and negative
FIGURE 6

The framework of transfer learning of TRiP.
FIGURE 7

Comparative analysis of loss functions for four networks under non-transfer learning on the training set.
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examples, respectively. FP and FN represent incorrect predictions,

where FP is a positive example incorrectly classified as unfavorable,

and FN is a negative example incorrectly classified as positive.

1. Accuracy (A) primarily measures the overall effectiveness of

the model and indicates the proportion of correctly predicted

samples among all samples. The equation is shown as Equation 3:

A =
TP  +  TN

TP  +  TN  +  FP  +  FN
(3)

2. Macro-Precision (Pmacro) is chiefly concerned with the

prediction results, specifically the average precision across all

classes. It represents the proportion of samples that are correctly

identified as positive, and is illustrated as Equation 4:

Pmacro =
1
no

n

i=1

TPi

TPi +  FPi
(4)

3. Macro-Recall (Rmacro) focuses on the true positive rate

among actual positive samples. It calculates the average recall

across all classes, and is given by Equation 5:

Rmacro =
1
no

n

i=1

TPi

TPi +  FNi
(5)
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4. Macro- F1 -Score (F1macro
) is the harmonic mean between

Macro-Precision and Macro-Recall, offering a balanced measure

that takes both into account. The equation is defined as Equation 6:

F1macro
= 2� Pmacro � Rmacro

Pmacro + Rmacro
(6)

5. Cross Entropy Loss (Lce) It is commonly used for

classification and identification tasks. The cross-entropy function

for multi-classification problems is shown in the formula, where y is

the accurate probability distribution, q is the predicted probability

distribution, N is the number of samples, and K is the number of

label values. The equation is shown as Equation 7:

Lce(y,  q)  =   −
1
No

K

i=1
o
K

j=1
yi j log(qi j) (7)
4.4 Non-transfer learning
experimental results

4.4.1 Training loss result
In this paper, the performance of four different types of neural

networks, i.e. ResNet50, VGG16, Inception, and the method
FIGURE 8

Comparative analysis of loss functions for three networks under non-transfer learning on the test set.
TABLE 5 Accuracy of network training set based on non-
transfer learning.

Method Accuracy Relative change

The method of TRiP 0.9313 –

ResNet50 0.8822 5.27%

VGG16 0.9189 1.33%

Inception 0.9034 2.99%
TABLE 6 Accuracy of network test set based on non-transfer learning.

Method Accuracy Relative change

The method of TRiP 0.9417 –

ResNet50 0.8379 4.68%

VGG16 0.9213 2.17%

Inception 0.9179 2.53%
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proposed in this paper, was evaluated using non-transfer learning.

The non-transfer learning method involves training the network

from scratch on the given dataset, without leveraging any pre-

existing knowledge from other datasets.

Figure 7 gives the comparative analysis of loss functions for four

networks under nontransfer learning on the training set. In

Figure 7, a comparison of loss functions for four distinct

networks Inception, ResNet50, VGG16, and the avant-garde TRiP
Frontiers in Plant Science 10
is provided, all within the realm of non-transfer learning on a

training set. As the iterations progress, all networks exhibit a

downward trajectory in loss values, indicating ongoing learning

refinement. Of particular note is the TRiP, which starts with an

impressive low of 0.66 and swiftly converges to near-zero values in

approximately 30 iterations, marking its pinnacle of adaptability

and efficiency. Inception, in contrast, commences with a significant

loss of 1.90 and diminishes at a more measured pace, suggesting
FIGURE 9

Comparative analysis of loss functions for three networks under transfer learning on training set.
FIGURE 10

Comparative analysis of loss functions for three networks under transfer learning on test set.
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possible adaptability nuances. ResNet50’s trajectory, starting at 1.49

and seeing a steady decline, underscores its unwavering stability,

while VGG16, beginning at 1.34, displays competence but might

benefit from extended iterations for optimum convergence.

Figure 8 is the comparative analysis of loss functions for three

networks under non-transfer learning on the test set. Right from the

outset, Inception’s fluctuating journey, commencing with a loss of

1.90 and seeing erratic oscillations, signals challenges in dataset

generalization. Contrarily, both ResNet50 and VGG16 begin with

losses of 1.49 and 1.34 respectively and showcase a consistent

decline, championing their adaptability. However, deeper into the

iterations, ResNet50 and VGG16 maintain a tempered reduction,

with ResNet’s lowest reaching 0.8463 and VGG16’s touching

0.2051. Meanwhile, Inception’s remains tumultuous.

4.4.2 Accuracy result
Table 5 presents the accuracy of different network training

methodologies rooted in non-transfer learning, it is evident that the

TRiP method stands superior, achieving the highest accuracy of

0.9313. VGG16 closely follows with an accuracy that is 1.33% lower,

while Inception lags by 2.99%. Of note, ResNet50, despite its wide

acclaim in numerous applications, registered the lowest accuracy in
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this context, being 5.27% less accurate than the TRiP method. This

indicates that, for the dataset and conditions under review, TRiP

offers the most promising results, with VGG16 and Inception as

worthy contenders, whereas ResNet50 may not be the

optimal choice.

Table 6 delineates the accuracy metrics for various network

test methodologies predicated upon non-transfer learning. The

TRiP method emerges as the most effective, registering an

accuracy of 0.9417. In its wake, VGG16 records an accuracy

rate of 0.9213, trailing TRiP by 2.17%. Inception is only

marginally behind VGG16 with an accuracy of 0.9179,

indicating a 2.53% decrease compared to TRiP. It’s significant

to highlight that ResNet50, in this analysis, lags notably with an

accuracy score of 0.8379, showing a reduction of 4.68% in

comparison to the TRiP method. The result means that for the

specific test set and context, TRiP maintains its lead in accuracy,

with VGG16 and Inception closely contesting, while ResNet50 is

discernibly less effective.

Based on the above experimental results, the performance of the

method in this paper is the best under non-transfer learning

because this network model introduces an SE module and

attention mechanism, which can bias some specific features of the

input image, and has a better effect on identifying fine-grained

images such as rice disease images.
4.5 Transfer learning experimental results

4.5.1 Training loss result
The results of transfer learning method are compared with

the three kinds of networks, VGG16 and Inception on the

training set and test set. Figure 9 shows the comparative

analysis of loss functions for three networks under transfer

learning on training set. In Figure 9, under the transfer

learning framework on a training set, the loss functions of

Inception, VGG16, and the TRiP method are compared. The

TRiP method starts with a distinct advantage, registering an

initial loss of 0.5219, in contrast to Inception’s 1.0716 and

VGG16 ’s 0.9600. Through subsequent iterations, TRiP

consistently manifests superior convergence, reaching a loss of

0.1702 at the 5th iteration. The loss of Inception and VGG16

methods reached 0.6670 and 0.6977, respectively. At the 19th

iteration, while VGG16 approaches a loss of 0.1981 and

Inception achieves 0.1116, TRiP’s loss changed slightly.

Figure 10 presents the comparative analysis of loss functions for

three networks under transfer learning on test set. In Figure 10,

focusing on a test set, the comparative analysis of the three networks

unfolds. TRiP immediately stands out with an initial loss of 0.4328, a

significant improvement over Inception’s 1.0651 and VGG16’s 0.6660.

Progressing through the iterations, TRiP’s advantage becomes even

more pronounced, recording a loss of 0.2614 by the 5th iteration,

overshadowing Inception’s 0.6042 and VGG16’s 0.3906. By the 20th

iteration, TRiP’s loss is approximately 0.0393. In comparison, Inception
TABLE 9 Macro-level precision, recall, and F1 of different models.

Method PMacro RMacro F1Macro

The method of TRiP 0.9012 0.9012 0.9012

SENet 0.8585 0.8585 0.8585

ResNet50 0.8434 0.8433 0.8434

VGG16 0.8571 0.8570 0.8571

VGG16 (Transfer Learning) 0.8793 0.8793 0.8793

Inception 0.8500 0.8500 0.8500

Inception (Transfer Learning) 0.8750 0.8750 0.8750
TABLE 8 Accuracy of network test set based on transfer learning.

Method Accuracy Relative change

The method of TRiP 0.9573 –

VGG16(transfer learning) 0.9423 1.57%

Inception(transfer learning) 0.9332 2.52%
TABLE 7 Accuracy of network training set based on transfer learning.

Method Accuracy Relative change

The method of TRiP 0.9521 –

VGG16(transfer learning) 0.9363 1.66%

Inception(transfer learning) 0.9282 2.51%
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and VGG16 stabilize at 0.1742 and 0.0899, respectively. Across the

evaluation, TRiP consistently demonstrates optimal performance in

terms of convergence, outclassing both Inception and VGG16.

4.5.2 Accuracy result
Table 7 gives the accuracy of different network on the training

set when transfer learning is applied. The TRiPmethod consistently

demonstrates robust results, achieving a top accuracy of 0.9521.

When transfer learning is employed with VGG16, its accuracy

noticeably improves, reaching 0.9363, which is still 1.66% less than

that achieved by TRiP. The accuracy of Inception when transfer

learning is 0.9282, a 2.51% reduction compared to TRiP. The data

emphasizes the efficacy of transfer learning in enhancing model

performance, albeit TRiP retains its predominant position in this

comparative evaluation.

Table 8 shows the accuracy utilizing transfer learning on the test

set. From Table 8, the TRiP method once again excels, achieving an

unparalleled accuracy of 0.9573. When VGG16 benefits from transfer

learning, its performance escalates, reaching an accuracy of 0.9423, yet

it remains 1.57% shy of the TRiPmethod. Similarly, leveraging transfer

learning with Inception results in an accuracy score of 0.9332, which is

2.52% less compared to TRiP. These figures accentuate the potent

impact of transfer learning in enhancing model precision. Nonetheless,

the TRiP method remains the benchmark, delivering superior

outcomes even in the face of enhanced competitors.

In conclusion, the proposed method performs the best when

transfer learning is used, due to the reason that transfer learning

allowing for pre-training on a larger dataset, which provides more

generalization ability compared to direct training on a small dataset

used in non-transfer learning.
4.6 Results analysis

Table 9 shows the results of theMacro-precision,Macro-recall rate,

and Macro-F1 value, and comparisons with transfer learning and non-

transfer learning on the test set. From Table 9, we can see that our

method has the best performance; the Macro-precision, Macro-recall

rate, and Macro-F1 are 0.9012 respectively. This is due to the

introduction of the SE module with an increased attention

mechanism to enhance the recognition ability of the model for fine-

grained rice disease images and the use of transfer learning methods to

reduce the over-fitting of the model due to the need for more

sample data.
5 System implementation
and deployment

5.1 Systems architecture of TRiP

The TRiP system is implemented based on PHP, MySQL and

Redis, which can be used and deployed for edge computing. PHP-
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based RESTful APIs are adopted to regulate the client-server

communications. The lightweight SQL server MariaDB is used for

storing datasets of different formats, including images and

phenotypic traits.

As illustrated in Figure 11, the architecture of TRiP includes: 1)

Web interface: Users can upload rice phenotype images through

the web interface and view recognition results on the page; 2)

Middleware: The middleware receives the uploaded images and

passes them to the core module for recognition, and receives the

model parameters provided by the user for model deployment; 3)

Core: The core module uses a pre-trained SNet model for feature

extraction and classification of the uploaded images. It can also use

some pre-processing techniques to enhance the quality of the

images. Task scheduling and task retrieval are performed; 4)

Database: The database is responsible for storing the uploaded

images and their corresponding recognition results. Keeps the

relevant parameters of the model and the model performance.
5.2 The flowchart of TRiP

The basic idea of TRiP is Machine Learning as a Service

(MLaaS), which utilizes machine learning algorithms and models

as cloud services to tackle the challenging problem of rice disease

classification. TRiP enables developers to build, deploy, manage

machine learning models and performance monitoring based on

the cloud infrastructure.

The system overview of TRiP is shown in Figure 12. The

processing steps include: Firstly, the rice disease image samples

are collected and annotated, with accurate annotations based on the

knowledge of domain experts. Then, the obtained images are

processed using image processing techniques, including grayscale

conversion, image filtering, image sharpening, and resizing.
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The data augmentation methods are used to increase the training

dataset, such as random rotation, flipping, and translation.

Subsequently, the sample images are input into the TRiP system

for training. The model is pre-trained on the PlantVillage dataset

firstly, then the transfer learning technique is employed and the

model is migrated to the IP102 dataset for further optimization.

After training and parameters fine-tuning, the model is used to

predict the disease categories of rice disease.
5.3 Microservices of TRiP

The rice disease recognition system is developed using

microservices architecture, such as Amazon Web Services (AWS).

Microservices architecture is a loosely coupled architecture that
Frontiers in Plant Science 13
splits a large application into a set of small and independent

services. Each service can be developed, tested, deployed, and

extended separately. The Microservice model structure of TRiP is

shown in Figure 13.
5.4 The accessibility of TRiP

The user interface of TRiP is illustrated in Figure 14. The

interface and interactive design of TRiP with navigation cues,

succinct layouts, and pertinent prompts messages for easy uasge.

Furthermore, TRiP’s adaptability across multiple devices and

can be used in the field or an office setting. This cross-device

compatibility, refined for desktops, tablets, and mobile phones,

guarantees a uniform experience for different users.
FIGURE 13

Microservice framework of TRiP.
FIGURE 12

The flowchart of transfer learning-based rice disease phenotype recognition TRiP platform.
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6 Conclusion

In this paper, we concentrated on identifying rice diseases such as

Bacterial blight, Blast, Brown spot, Leaf smut, and Tungro by analyzing

their phenotypes.Wemake use of the pre-trained PlantVillage database

model parameters as the initial setting for our SENet network in a

transfer learning context. We incorporated the Squeeze-and-Excitation

(SE)module to enhance the feature extraction process, thus refining the

network’s focus on critical disease indicators.

The performance of our trained SENet network was

benchmarked against other established neural networks,
Frontiers in Plant Science 14
demonstrating superior efficacy in disease identification.

Additionally, we developed a rice disease detection platform

employing a microservice architecture, tailored for efficient and

scalable deployment in edge computing environments. Our

research not only offers a promising method for accurate rice

disease phenotyping but also provides a user-friendly and

technologically advanced platform for agricultural disease

recognition applications.
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