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Osteoarthritis (OA) is characterized by irreversible joint destruction, pain, and
dysfunction. Piper longum L. [Piperaceae] (PL) is an East Asian herbal medicine
with reported anti-inflammatory, analgesic, antioxidant, anti-stress, and anti-
osteoporotic effects. This study aimed to evaluate the efficacy of PL in
inhibiting pain and progressive joint destruction in OA based on its anti-
inflammatory activity, and to explore its potential mechanisms using in vivo
and in vitro models of OA. We predicted the potential hub targets and
signaling pathways of PL through network analysis and molecular docking.
Network analysis results showed that the possible hub targets of PL against OA
were F2R, F3, MMP1, MMP2, MMP9, and PTGS2. The molecular docking results
predicted strong binding affinities for the core compounds in PL: piperlongumine,
piperlonguminine, and piperine. In vitro experiments showed that PL inhibited the
expression of LPS-induced pro-inflammatory factors, such as F2R, F3, IL-1β, IL-6,
IL-17A, MMP-1, MMP-2, MMP-3, MMP-9, MMP-13, NOS2, PTGS2, PGE2, and TNF-
β. These mechanisms and effects were dose-dependent in vivo models.
Furthermore, PL inhibited cartilage degradation in an OA-induced rat model.
Thus, this study demonstrated that multiple components of PL may inhibit the
multilayered pathology of OA by acting on multiple targets and pathways. These
findings highlight the potential of PL as a disease-modifying OA drug candidate,
which warrants further investigation.
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1 Introduction

Osteoarthritis (OA) affects millions of people worldwide
(Pigeolet et al., 2021) and is the most common type of arthritis
and it is characterized by joint pain and reduced physical function
(Katz et al., 2021). Recently, the economic impact of OA has
increased in most nations (Al Saleh et al., 2023; Yang G. et al.,
2023; Hallberg et al., 2023). According to the Global Burden of
Disease study, the age-standardized incidence of OA is increasing by
0.32% annually worldwide (Jin et al., 2020). Additionally,
epidemiological studies from most countries have shown that the
prevalence of OA has increased by 7.8% per year between 1990 and
2019 (Yang G. et al., 2023). The inherent challenges of this disease
are the relentless progression of chronic pain and gradual joint
deterioration, which reduce the quality of life and ability of
individuals to perform daily tasks (Mahmoudian et al., 2021;
Tong et al., 2022a). Comorbid conditions associated with the
chronic inflammatory response, such as cardiovascular disease,
fibromyalgia, thromboembolic disease, and drug abuse due to
toxicity, affect one-third of patients with OA, which increase
mortality by 20%. (Katz et al., 2021; Kamps et al., 2023). As life
expectancy increases, OA will become an increasingly heavy global
burden, causing financial distress and patient mortality. The
development of therapies that can alleviate OA symptoms and
inhibit their progression is an urgent healthcare priority.

OA is traditionally recognized as a degenerative disease caused
by the accumulation of mechanical stress-related damage,
predominantly in musculoskeletal tissues (Wan et al., 2021). Age-
related degenerative changes in the musculoskeletal system that
cause pain are thought to be the dominant pathophysiological
characteristics of OA (Berenbaum et al., 2018; Whittaker et al.,
2021). However, recent research has shown that OA is not simply a
localized anatomical lesion, but rather a disease with a complex
pathophysiology centered on inflammation throughout the whole
human body (Greene and Loeser, 2015). In particular, therapeutic
targets that can partially reverse the course of the disease, including
persistent low-grade inflammation and cartilage degeneration, have
recently emerged as the most prominent pathophysiologies of OA
(Mobasheri and Batt, 2016; Tong et al., 2022b). Similarly, increasing
evidence suggests that low-grade intra-articular synovial
inflammation directly contributes to pain and radiographic
progression of OA (Sanchez-Lopez et al., 2022a). To achieve
therapeutic goals, such as pain reduction and prevention of
structural damage in OA, targeting anti-inflammatory activity to
mitigate the pro-inflammatorymediators produced by the synovium
and cartilage of affected joints holds considerable promise (Arra and
Abu-Amer, 2023; Knights et al., 2023).

The current primary treatment strategy for OA is short-term
symptomatic relief with acetaminophen and nonsteroidal anti-
inflammatory drugs (NSAIDs) in combination with exercise
(Leopoldino et al., 2019; Weng et al., 2023). However, these
interventions are not only unsatisfactory in terms of effect size
but they also present a substantial limitation in that they do not
prevent the progression of OA, which is the most important long-
term goal (Gregori et al., 2018; Mahmoudian et al., 2021). Moreover,
safety concerns related to the increased risk of serious hepatic,
gastrointestinal, cardiovascular, and renal side effects associated
with the routine drugs represent one of the most important

unmet medical needs in the treatment of patients with OA
(Roberts et al., 2016; Leopoldino et al., 2019; Zádori et al., 2023).
The development of disease-modifying OA drugs (DMOADs), a
novel class of drugs that may potentially alleviate the disease burden
and disrupt the natural history of OA, including progressive joint
breakdown, is facilitated by advances in our understanding of OA
pathophysiology (Oo, 2022). To date, no DMOADs have received
regulatory approval for long-term efficacy and safety (Vincent,
2020). The difficulty in developing such therapies is that the
inflammatory pathology of OA is not based on a single
phenotype, gene target, or signaling pathway (Tong et al., 2022a;
Hadzic and Beier, 2023; Yao et al., 2023). Consequently, the search
for candidates that can simultaneously modulate multiple
therapeutic targets and pathways involved in the pathogenesis of
OA may be a prerequisite for the development of drugs that can
sufficiently reduce symptoms and joint destruction, while ensuring
safety during long-term administration.

Natural substances offer various pharmacologically active
constituents, which have a long history of human use for the
treatment of various diseases (Jo et al., 2023c; Lee et al., 2023).
The unique properties of natural products, such as multitarget
effects based on multiple compounds, are thought to be well
adapted to the requirements of DMOADs in drug discovery
(Yang et al., 2017; Luo et al., 2020; Jo et al., 2021; 2023b;
Panossian, 2023; Ren et al., 2023). Especially, East Asian herbal
medicines (EAHM) have a long history of use by many people in
East Asia, and in recent years, considerable scientific evidence has
been compiled regarding their mechanisms for improving clinical
arthritis symptoms and inhibiting inflammatory pathology, which
can be considered the best data source for anti-OA drug
development (Li and Zhang, 2020; Wang et al., 2020; 2022; Jo
et al., 2022; Liang et al., 2022; Zhang et al., 2022; Li et al., 2023).
Recent EAHM studies have shown that several traditionally used
herbs can inhibit the complex pathology of OA, including
generalized inflammation, subchondral bone destruction, cartilage
loss, and synovial defects, and this inhibition is based on their multi-
component pharmacology. Among the many EAHMs, Piper longum
L. [Piperaceae] (PL) is a promising DMOAD candidate because it
has been extensively studied for its anti-inflammatory, analgesic,
antioxidant, anti-stress, and anti-osteoporosis activities (Yadav et al.,
2020). The oral administration of PL to rats resulted in a marked
dose-dependent analgesic effect in a hot plate test (Yadav et al.,
2016). Additionally, studies have shown that PL has stronger anti-
inflammatory activity than indomethacin, a widely used and proven
indole acid NSAID (Guo et al., 2019). Interestingly, the
pharmacological activity that could contribute to the treatment of
OA is thought to involve the known antioxidant activity of PL
(Biswas et al., 2022). In fact, many recent studies have suggested that
antioxidants may be beneficial for alleviating the symptoms and
pathology of OA (Ansari et al., 2020; Tudorachi et al., 2021;
Nejadhosseinian et al., 2022). However, further research is
required to provide more conclusive information.

Based on the aforementioned studies, we hypothesized that PL
could be a potential DMOAD candidate to inhibit both the
pathological progression and symptoms of OA based on its
multicomponent and multitargeted pharmacological actions.
Although PL is a useful medicinal plant with a wide range of
pharmacological effects that have been studied, we tested its
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potential as a DMOAD for the first time. To investigate this
hypothesis in a multifaceted manner, we performed network
analysis to comprehensively predict the pharmacological actions
of PL and evaluated the effects of PL on certain biochemical
parameters, inflammatory status, and morphological features of
sodium iodoacetate (MIA)-induced knee OA in rats.
Additionally, we evaluated the analgesic effects in an acetic acid-
induced mouse writhing model and induced the pathophysiology of
OA with in vitro experiments using various inflammatory cytokines
and catabolic markers to predict and verify possible mechanisms of
action.

2 Materials and methods

2.1 Network analysis prediction of PL for OA

2.1.1 Screening of active compounds of PL
against OA

The potential active compounds of PL were searched for in five
databases: the Traditional Chinese Medicine Systems Pharmacology
Database and Analysis platform (TCMSP, https://old.tcmsp-e.com/
tcmsp.php), Traditional Chinese Medicine Information database
(TCM-ID, http://bidd.group/TCMID/), Encyclopedia of Traditional
Chinese Medicine (ETCM, http://www.tcmip.cn/ETCM/), Linking
of Traditional Chinese Medicine with Modern Medicine at the
Molecular and Phenotypic Levels (LTM-TCM, http://cloud.tasly.
com/#/tcm/home), and High-Throughput Experiment and
Reference-Guided Database of Traditional Chinese Medicine
(HERB, http://herb.ac.cn/) (Xue et al., 2013; Ru et al., 2014; Xu
et al., 2019; Fang et al., 2021; Li et al., 2022). The compounds
collected from each database were standardized using PubChem
(https://pubchem.ncbi.nlm.nih.gov/) and duplicates were removed.
Subsequently, a drug-like (DL) threshold of 0.18 and an oral
bioavailability (OB) threshold of 30% were used to screen
candidate active compounds for analysis (Xu et al., 2012; Gu
et al., 2020).

2.1.2 Common target prediction of PL against OA
Swiss TargetPrediction (http://www.swisstargetprediction.ch)

was used to compile a list of potential PL targets (Daina et al.,
2019). Using the term “osteoarthritis” and “OA”, information on
OA-related target genes was retrieved fromDrugBank (https://www.
drugbank.ca/), GeneCards (http://www.genecards.org), OMIM
(https://omim.org/), and TTD (https://db.idrblab.org/ttd/) (Zhou
et al., 2022). Only targets in GeneCards with a score ≥10 were
screened (Stelzer et al., 2016). The “Homo sapiens” species filter in
the Uniprot database (http://www.uniprot.org) was used to
standardize all potential target information (The UniProt
Consortium, 2021). Venn diagrams of common targets between
PL and OA were generated using the Bioinformatics and
Evolutionary Genomics website (https://bioinformatics.psb.ugent.
be/webtools/Venn/).

2.1.3 Protein–protein interaction (PPI) network
construction

For the identified common targets, a PPI network was generated
using the String database (version 11.5; https://string-db.org/), with

the minimum required interaction score is set to 0.4 (medium
confidence). For topological analysis of the PPI network, the PPI
network was acquired, irrelevant protein nodes were removed, and
the data were imported into Cytoscape (version 3.9.1) and
Cytohubba plug-ins (Shannon et al., 2003; Chin et al., 2014).
Genes with the top 25% degree of centrality were selected as hub
targets.

2.1.4 Gene ontology (GO) and kyoto encyclopedia
of genes and genomes (KEGG) analysis

Metascape (https://metascape.org/gp/index.html) incorporates
more than 40 gene functional annotation databases into a web-
based tool for gene enrichment analysis (Zhou et al., 2019). Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) analyses were performed using this tool. After limiting
the species to “H. sapiens,” setting the cutoff p-value at 0.01 and
the minimum overlap at three for enrichment analysis,
encompassing biological processe (BP), cellular component
(CC), molecular function (MF), and KEGG pathways, we
investigated the gene symbols of common targets in
Metascape. The results were visualized using the Science and
Research Plot platform (SRPLOT, http://www.bioinformatics.
com.cn/en?p=6) and the KEGG mapper (https://www.genome.
jp/kegg/mapper/) was used to explore the underlying molecular
mechanisms (Kanehisa et al., 2022).

2.1.5 Establishment of a drug-compound-target-
pathway-disease (D-C-T-P-D) network

Cytoscape was used to generate the D-C-T-P-D network model,
and information on drugs, compounds, genes, pathways, and
diseases was used as appropriate. We inserted the enriched key
pathways to establish the relationships between these elements and
used degree values to complete the regulatory network.

2.1.6 Molecular docking
SwissDock was used for the molecular docking prediction

analysis of the key compounds in PL and key targets in OA
(Grosdidier et al., 2011). The chemical structures of the key
compounds were downloaded from the PubChem database in
SDF 3D format and converted to the mol2 format using
OpenBabel software for analysis. Target protein resolution and
release time data were obtained from the RCSB Protein Data
Bank (RCSB.org) (Berman et al., 2000; Burley et al., 2023).
Specific compound-target binding sites and atomic distances were
expressed using the UCSF chimera software (Pettersen et al., 2004).

2.2 PL extract (PLE) preparation

Dried PL fruit (CK20-G032-2-272; Indonesia) were purchased
from Yaksudang Pharmaceutical Co. (Seoul, Korea). The plants
were certified by Donghun Lee and voucher specimens (No.
2009150006) were entrusted to the College of Korean Medicine
at Gachon University. The dried fruit was extracted using a reflux
apparatus with 30% EtOH at 85°C for 3 h. The extract was
concentrated, filtered under decreased pressure, and lyophilized
to yield a powder (extraction yield: 8.26%) (Lee et al., 2021; Jo
et al., 2023a).
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2.3 High performance liquid
chromatographic analysis of PLE

For the component analysis of PLE, high performance liquid
chromatography (HPLC) was performed using a 1,100 series HPLC
system (Agilent, United States), and the analysis conditions are
shown in Table 1. PLE (10 mg) was diluted with methanol (1 mL)
and sonicated for 10 min. Samples were filtered using a 0.45-μm
syringe filter (Waters Corp., United States) (Lee et al., 2020; Jo et al.,
2023a).

2.4 Cell culture

Mouse leukemia cells derived from RAW264.7 macrophages
were purchased from the American Type Culture Collection
(ATCC, TIB-71 ™). Cells were incubated at 37°C and 5% CO2 in
complete media (DMEM+10% FBS+100 U/mL
penicillin–streptomycin; Gibco™ Inc., United States) (Guo et al.,
2019; Lee et al., 2020).

2.5 NO production and cell toxicity analysis

RAW264.7 cells were seeded and grown at 37°C and 5% CO2 for
24 h. RAW264.7 cells were cultured in 1 μg/mL dexamethasone
(Sigma, United States), 10–300 μg/mL PLE and 500 ng/mL
lipopolysaccharide (LPS) for 24 h. Then, cell supernatants were
mixed with Griess reagent (1:1 ratio), and the NO concentration
was measured at 540 nm (Lee et al., 2019; Jo et al., 2020). Cell
viability was analyzed using Ez-Cytox reagent (DoGenBio, Korea)
according to the manufacturer’s protocols (Yu et al., 2020; Jo et al.,
2023a). This experiment was repeated triplicated.

2.6 Animals

Male Sprague–Dawley (SD) rats and ICR mice were provided by
DBL Co., Ltd. (DBL, Korea). The rats andmice were housed in open-
top cages (W260 × D420 × H180 mm, W200 × D260 × H130 mm,
Jeung Do Bio&Plant Co. Ltd., Korea) with SAFE® 40 bedding (SAFE
Inc., France). For at least 7 days prior to the experiment, animals
were acclimatized to regular laboratory settings (55% ± 10%
humidity, 22°C ± 2°C, and a 12-h light–dark cycle). The animals

were allowed free access to food and water. All the procedures were
approved by the Gachon University Center of Animal Care and Use
(GIACUC-R2020028).

2.7 Acetic acid (AA)-induced writhing test

ICR mice (35 ± 5 g) were randomly separated into five groups
(n = 8 per group): control, ibuprofen, PLE 200 and 600 mg/kg. Mice
were injected intraperitoneally on the right side of the abdominal
midline with 10 mL/kg of 0.7% AA in 0.9% saline using a 23-gauge
needle and a 1 mL syringe (Korea Vaccine Co., Ltd, Korea). The
number of writhes was measured for 10 min, starting from when the
AA solution was administered. Writhing is defined as abdominal
muscle contraction with elongation of the body and rear limbs.
Thirty minutes before AA injection, the mice were administered
200 mg/kg ibuprofen (Sigma, United States) and 200 or 600 mg/kg
PLE. The analgesic response was characterized by a significant
reduction in writhing in the experimental group compared to
that of the control group (Yin et al., 2016; Lee et al., 2020). The
experimental data was cross-checked by four people. Mice were
sacrificed using CO2 after the counting period for the writhing was
completed.

2.8 OA induction by monosodium
iodoacetate (MIA) injection

SD Rats (190–210 g) were randomly divided into five groups
(n = 9 per group, NT; n = 3) as follows: non-treated (NT), MIA,
indomethacin, and PLE 100 and 300 mg/kg groups. Animals were
anesthetized using isoflurane with N2O and O2 (7:3), and were
injected with 50 µL sterile 0.9% saline with 40 mg/mL of MIA (cat
no. I2512-25, Sigma, United States) into the right knee joint, except
for the rats in the NT group (Yin et al., 2016; Jo et al., 2023a).

2.9 Diet

Experimental rats were treated as follows: NT andMIA rats were
fed a basic diet (AIN-93G; Saeronbio., Inc, Korea), indomethacin-
treated rats were fed an AIN-93G diet including 0.003%
indomethacin (final dose: 3 mg/kg; Sigma, United States), and
both PLE groups were fed an AIN-93G diet including 0.11% and

TABLE 1 Analytical conditions of PLE.

Condition 1 Condition 2

Column Luna C18 column (250 mm × 4.6 mm, 5 μm; Phenomenex, United States) Triart C18 column (150 mm × 4.6 mm id, 5 μm) (YMC-PACK ®, Japan)

Mobil phase MeOH:Water (0.1% acetic acid) at 70:30% Acetonitrile:Water (50:50%)

Flow rate 1.0 mL/min 1.0 mL/min

Injection volume 10 µL 10 µL

Detection wavelength 338 nm 325 nm

Temperature 30°C 30°C
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0.33% of PLE (final dose: 100 and 300 mg/kg). After the induction of
OA using MIA, a diet of 10 g food per 100 g body weight was
provided daily for 24 days.

2.10 Weight-bearing measurement of
hind leg

An Incapacitance Meter Tester 600 series 8 (IITC Life
Science Inc., United States) was used to monitor weight-
bearing from OA-induction until 24 days after MIA injection.
The strength recorded for each limb was averaged over 10 s
(Sahin et al., 2023). The experimental data was cross-checked by
two experimenters. The following equation was used to
determine the percentage of weight distributed in the right
rear limb on the treated side:

weight bearing ratio %( ) � weight on right hind limb/(

weight on left and right hind limb) × 100

2.11 Cartilage degradation evaluation

After the mice were sacrificed, the right knees were
disarticulated and imaged for macroscopic scoring. The erosion
of the articular cartilage was graded according to the macroscopic
scoring system. Macroscopic scores are shown in Supplementary
Table S4 (Tian et al., 2021).

2.12 Serum analysis of the OA-induced
model

Blood was drawn from the abdominal vein of rats 24 days after
OA induction and allowed to clot for 30 min. After 10 min of
centrifugation at 4,000 rpm, the serum was divided and kept
at −70°C. To measure cytokine in the serum, a multiplex assay
for IL-6 and TNF-α was performed using a Premixed-MultiAnalyte
Kit (R&D Systems, United States). All multiplex assays were
performed according to the manufacturer’s instructions (Jo et al.,
2020; Kimmerling et al., 2020). This experiment was repeated
triplicated.

2.13 Quantitative real-time polymerase
chain reaction (qRT-PCR) analysis

Total RNA was extracted from OA-induced cartilage tissues
(articular cartilage and meniscus) and LPS-stimulated
RAW264.7 cells using the AccuPrep® universal RNA Extraction
Kit (Bioneer corp., Korea) and then reverse-transcribed into cDNA
using the CycleScript™ RT Pre&Master Mix (Bioneer, Korea),
following the manufacturer’s protocol. mRNA expression was
quantified using 2X-GreenStar qPCR MasterMix (Bioneer, Korea)
(Lu et al., 2018; Lee et al., 2020). This experiment was repeated
triplicated. The primer sequences are listed in Supplementary
Tables S1, S2.

2.14 Protein expression analysis

Western blotting (WB) was performed to examine the protein
expression levels of F2R, F3, IL-17A, MMP-1, MMP-2, MMP-9,
PTGS2, and GAPDH. Total protein was extracted fromOA-induced
cartilage using RIPA buffer (CST Inc., United States) and a
cOmplete Protease Inhibitor Cocktail (Sigma, United States) in a
homogenizer (Nissei Corp., Japan). Protein samples (10 μg) were
placed onto Mini-PROTEAN TGX Precast Gel (BioRad
Laboratories, Inc., United States), and the extracted proteins were
transferred onto PVDF membranes for 1 h using the Mini Trans-
Blot Cell (BioRad, United States) at 100 V. To inhibit non-specific
antibody binding, membranes were washed using EveryBlot
blocking buffer (BioRad, United States) for 15 min at RT. The
primary antibodies (F2R, F3, IL-17A, MMP-1, MMP-2, MMP-9,
PTGS2, and GAPDH) were applied to react for 24 h at 4°C. CST Inc.,
BOSTER Inc., Proteintech Inc., and Abcam Inc. supplied the
antibodies (cat No. A03352-1, M00342, ab214588, 10371-2-AP,
M00286-3, M00139, ab179800 and 2118). The membrane was
probed with a secondary antibody for 1 h at RT before reacting
with Clarity Western ECL Substrate (Bio-Rad) solution. WB was
performed using an Azure 280 (Azure Biosystems, United States).
This experiment was repeated triplicated.

2.15 Statistics

GraphPad Prism® 5.0 (GraphPad Software, San Diego,
United States) was used for statistical analysis, including 1-way
ANOVA with Dunnett’s post hoc test. 2-way ANOVA with Tukey’s
multiple comparisons test was used to compared with doses and the
treatment group at the different times. Significance level was set at
p < 0.05, and measurements data was as mean ± standard error of
the mean.

3 Results

3.1 Network analysis prediction of PL
against OA

3.1.1 Screening of target genes related to the active
compounds of PL and target genes of OA

After collecting the components of PL from five databases and
screening them according to the criteria of OB ≥ 30% and DL ≥ 0.18,
28 potential active compounds were identified (Table 2). The Swiss
TargetPrediction database was used to search for targets of each
compound, and a total of 533 targets were obtained, excluding
duplicates (Supplementary Table S3). A total of 288 OA targets with
a relevance score ≥10 were obtained from the Genecard database.
Based on the Venn diagram of targets in PL and OA, 27 overlapping
gene targets were considered potential targets for PL against OA
(Figure 1A).

3.1.2 Protein–protein interaction (PPI) network
construction

After importing the identified common targets into the STRING
11.5 platform, a PPI network model (minimum required interaction

Frontiers in Pharmacology frontiersin.org05

Jo et al. 10.3389/fphar.2023.1282943

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1282943


TABLE 2 Potential active compounds of Piper longum L. [Piperaceae].

Pubchem ID Compound name Structure OB (%) DL

72,307 sesamin 56.55 0.83

101,689 Pisatin 88.05 0.64

124,416 Trijuganone B 38.75 0.36

267,400 Laurotetanine 55.41 0.51

441,737 Hypaconitine 31.39 0.26

532,276 N-(2,5-dimethoxyphenyl)-4-methoxybenzamide 60.7 0.18

(Continued on following page)
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TABLE 2 (Continued) Potential active compounds of Piper longum L. [Piperaceae].

Pubchem ID Compound name Structure OB (%) DL

637,858 Piperlongumine 96.65 0.24

638,024 piperine 42.52 0.23

643,764 cis-Piplartine 96.65 0.24

5,315,472 Bisdemethoxycurcumin 77.38 0.26

5,320,621 Piperlonguminine 30.71 0.18

5,372,162 Pipercide 42.72 0.43

(Continued on following page)
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TABLE 2 (Continued) Potential active compounds of Piper longum L. [Piperaceae].

Pubchem ID Compound name Structure OB (%) DL

6,439,947 Dehydropipernonaline 47.73 0.41

6,441,067 N-Isobutyl-2,4-icosadienamide 38.86 0.32

6,442,405 Guineensine 42.64 0.53

6,453,083 (E,E,E)-11-(1,3-Benzodioxol-5-yl)-N-(2-methylpropyl)-2,4,10-undecatrienenamide 42.72 0.43

7,299,790 (−)-Epieudesmin 52.35 0.62

9,974,595 pipernonaline 51.32 0.41

(Continued on following page)
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TABLE 2 (Continued) Potential active compounds of Piper longum L. [Piperaceae].

Pubchem ID Compound name Structure OB (%) DL

11,012,859 Retrofractamide A 65.9 0.33

11,870,467 ZINC03982454 36.91 0.76

44,453,654 Piperundecalidine 29.96 0.52

78,358,503 3-Deoxyaconitine 30.96 0.24

90,472,536 (2E,4E)-5-(1,3-benzodioxol-5-yl)-N-[(E)-10-methylundec-5-enyl]penta-2,4-dienamide 44 0.51

71,448,929 Ignavine 84.08 0.25

(Continued on following page)
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score:0.4) was generated by restricting the organism to H. sapiens.
Three genes (MTAP, PDK1, and SLC22A12) that did not interact
with the other targets were excluded from the PPI network. We
identified 56 nodes with 56 edges and an average node degree of
4.67. Cytoscape software was used to visualize and analyze the
network by calculating centrality metrics. A higher centrality
value indicates a more important role in the network. Finally, six
key gene targets that satisfied a high degree centrality of >7.0,
corresponding to the top 25% centrality were identified: F2R, F3,
MMP1, MMP2, MMP9, and PTGS2 (Figure 1B).

3.1.3 Construction of the D-C-T-P-D network
Functional GO analysis was used to comprehensively identify

the pharmacodynamic properties of the potential key compounds in
PL. This analysis was performed by importing common targets into
the Metascape platform. The identified BPs included extracellular
matrix degradation, inflammatory response, blood circulation, fatty
acid biosynthetic processes, and regulation of protein secretion
(Figures 2A, B). A total of 25 items were identified for MF,

including serine-type endopeptide activity, oxidoreductase
activity, G protein-coupled peptide receptor activity, protease
binding, and sulfur compound binding (Figures 2A, B). Fifteen
items were identified as CCs, including the extracellular matrix,
organelle outer membrane, membrane raft, and side of the
membrane (Figures 2A, B). The KEGG pathway enrichment
analysis revealed that PL was mainly involved in 37 pathways
(Figures 2C, D). The main pharmacological mechanisms of PL in
OA have been found to be related to pathways in cancer,
complement and coagulation cascades, and the IL-17 signaling
pathway. The three major pathway targets were colored using a
KEGG mapper to further illustrate the mechanism of action
(Figures 3A–C).

3.1.4 Construction of the D-C-T-P-D network
AD-C-T-P-D network summarizing the therapeutic mechanism

of PL against OA was constructed using Cytoscape (Figure 4). The
network consisted of 59 nodes and 162 edges, indicating that, even as
a single herb, PL acts in a multi-compound and multi-target manner

TABLE 2 (Continued) Potential active compounds of Piper longum L. [Piperaceae].

Pubchem ID Compound name Structure OB (%) DL

131,750,975 (E,E,E)-Sylvatine 44 0.51

131,752,411 (2E,8E)-Piperamide-C9:2 49.43 0.36

134,884,778 5-[(E)-undec-1-enyl]-1,3-benzodioxole 47.97 0.18

155,167,294 (2E,4E,8E)-N-(2-methylpropyl)icosa-2,4,8-trienamide 44.48 0.32

OB, oral bioavailability; DL, drug likness.
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against OA. The centrality of the active compounds was evaluated using
network analysis. The four compounds with the highest degree of
centrality in the network were piperlonguminine (11), piperlongumine
(8), piperine (8), and ignavine (8), all of which were considered core
compounds involved in the action of PL against OA.

3.1.5 Molecular docking
Finally, a molecular docking evaluation was performed to

predict the binding potential between the four core compounds
(piperlonguminine, piperlongumine, piperine, and ignavine) and six
important targets (F2R, F3, MMP1, MMP2, MMP9, and PTGS2)
selected by the PPI network analysis using the Swiss Dock website

(Figure 5A). According to previous studies, a binding affinity
of −4.25 kcal/mol means that the two molecules bind with
average performance, −5.0 kcal/mol means good binding,
and −7.0 kcal/mol means strong binding energy (Saikia and
Bordoloi, 2019). All docking results were close to or higher
than −7.0 kcal/mol, and piperlongumine showed the strongest
binding energy (−8.81 kcal/mol) for F2R. Piperine exhibited
strong binding energy values of −8.74 kcal/mol and −8.19 kcal/
mol for F2R and PTGS2, respectively. Piperlongumine also
showed a strong binding energy (−8.48 kcal/mol) for F2R, and
binding energies higher than −7.0 kcal/mol for all other targets.
In addition, piperlonguminine, piperine, and ignavine exhibited

FIGURE 1
(A) Venn diagram of potential targets for PL in the treatment of OA. PL: Piper longum L. [Piperaceae]; OA: osteoarthritis. (B) PPI network construction
sequence of PL-OA genes by degree centrality. GO and KEGG analysis.
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good overall binding energies. Figures 5B–D show representative 3D
binding conformations corresponding to < −8.5 kcal/mol.

3.2 Network analysis prediction of PL against
OA HPLC analysis

Piperlongumine, piperlonguminine, and piperine were
identified in PLE by HPLC-UV. Fist, we measured the

conditions; 338 nm, A Luna C18 column (250 mm × 4.6 mm,
5 μm; Phenomenex, United States). The contents of
piperlongumine, piperlonguminine, and piperine in PLE were
0.92 mg/g, 3.88 mg/g, and 89.34 mg/g, respectively. The
retention times of piperlongumine, piperlonguminine, and
piperine were 6.347 min, 10.315 min, and 12.332 min,
respectively (Figure 6A). Next, we analyzed another
condition; 232 nm, A Triart C18 column (150 mm × 4.6 mm
id, 5 μm) (YMC-PACK®, Japan) (Figure 6B). The contents of

FIGURE 2
(A) Top 5 gene ontology (GO) enrichment terms for biological process, cellular components, and molecular functions. (B) Bubble plot of GO
enrichment results. (C) Horizontal bar plot of Kyoto Encyclopedia of genes and genomes (KEGG) pathway enrichment analysis illustrating eight enriched
pathways. (D) GO chord diagram of KEGG pathway analysis.
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FIGURE 3
(A) Pathways related to cancer were colored using the KEGGmapper. (B) The complement and coagulation cascade were colored using the KEGG
mapper. (C) The IL-17 signaling pathway was colored using the KEGGmapper. In all figures, pink represents PL compounds that alleviate OA, cyan colors
represent targets of PLs not involved in OA treatment, and yellow colors represent other OA-related targets in each pathway.
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piperlongumine, piperlonguminine, and piperine in PLE were
0.21 mg/g, 2.52 mg/g, and 34.78 mg/g, respectively. The
retention times of piperlongumine, piperlonguminine, and
piperine were 5.598 min, 8.146 min, and 9.411 min. The
HPLC chromatogram of the analysis and the chemical
structure of the component compounds are shown in Figure 1.

PLE demonstrated anti-inflammatory effects in LPS-
stimulated RAW264.7 cells by reducing nitric oxide (NO).
PLE did not exhibit cytotoxicity in RAW264.7 cells up to a
concentration of 300 μg/mL (Figure 7A). PLE downregulated
LPS-induced NO production in a dose-dependent manner
(Figure 7B).

3.3 Effects of PLE on inflammatory
responses in LPS-stimulated RAW264.7 cells

Anti-inflammatory effects of PLEonLPS-stimulatedRAW264.7 cells
were evaluated through qRT-PCR and WB. As shown in Figures 8A–N;
Supplementary Table S11, PLE and indomethacin decreased the mRNA
expression levels of F2R, F3, IL-1β, IL-6, IL-17A,MMP-1,MMP-2,MMP-
3, MMP-9, MMP-13, NOS2, PTGS2, PGE2, and TNF- α. PLE (300 μg/
mL) showed similar effects to those of dexamethasone, and the anti-
inflammatory effect of PLE was dose-dependent. WB was performed to
evaluate the anti-inflammatory effects of PLE on LPS-activated
RAW264.7 cells. PLE treatment suppressed the protein expression

FIGURE 4
The therapeutic mechanisms of PL in OA are represented by the drug-target-compound-pathway-disease network. Drugs are represented by
green octagons, key compounds by lime green circles, targets by squares that range in color from blue to yellow depending on degree centrality, top
eight pathways of action by pink triangles, and OA by orange hexagons.
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levels of F2R, F3, IL-17A, MMP-1, MMP-2, MMP-9, and PTGS2, as well
as pro-inflammatory cytokines and mediators in LPS-stimulated
RAW264 cells. As shown in the WB image, the expression of F2R, F3,

IL-17A,MMP-1,MMP-2,MMP-9, andPTGS2was decreased by PLE in a
dose-dependent manner. Remarkably, 300 μg/mL PLE showed stronger
anti-inflammatory effects than those of the positive control (Figure 8O).

FIGURE 5
(A) The binding energy between the six most important targets and the core compounds was calculated via molecular docking models. (B)
Piperlongumine and PTGS2, binding energy = −8.56 kcal/mol. (C) Piperlongumine and F2R, binding energy = −8.81 kcal/mol. (D) Piperine and F2R,
binding energy = −8.74 kcal/mol.
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3.4 Effect of PLE on AA-induced writhing

The writhing test in AA-induced mice was used to investigate
the analgesic effects of PLE. The analgesic effect of PLE was observed

in AA-induced mice via writhing responses. For the 10-min
counting period, the average writhing number in the AA group
was 100. When compared to the control, the PLE treatment reduced
the amount of writhing. The average writhing number of the mice

FIGURE 6
High-performance liquid chromatography (HPLC) chromatogram of Piper longum extract (PLE) at 338 nm. X-axis is retention time; Y-axis is
absorbance unit. (A) Piperlongumine, piperlonguminine, and piperine retention times = 6.347 min, 10.315 min, and 12.332 min, respectively. A Luna
C18 column (250 mm × 4.6 mm, 5 μm; Phenomenex, United States) was used for chromatic separation at 30°C. (B) Wavelength was 232 nm:
Piperlongumine, Piperlonguminine, and Piperine Retention time = 5.598 min, 8.146 min, and 9.411 min, respectively. A Triart C18 column
(150 mm × 4.6 mm id, 5 μm) (YMC-PACK

®
, Japan) is used for chromatic separation at 30°C.Effects of PLE on cell viability in stimulated RAW264.7 cells

stimulated by LPS.
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fed 600 PLE was 32.14, which was lower than that of the positive AA
(44.17). This result demonstrated the analgesic effects of PLE
(Figure 9; Supplementary Table S7).

3.5 Effects of PLE on the weight-bearing
index (WBI) of OA-induced rats

In OA-induced rats, WBI of the hind legs is often measured to
assess the analgesic effects of natural compounds on OA. WBI
between the left and right legs was recorded for 24 days after OA
induction using MIA. As shown in Figure 10A, WBI in the MIA
rats were significantly reduced on day 7 and remained lower
afterwards, compared with that of the NT rats. Notably, WBI was
significantly improved in PLE-treated rats. Particularly,
300 mg/kg PLE-treated rats recovered to a level comparable to
that of the group treated with 3 mg/kg indomethacin (Figures
10B, C; Supplementary Table S5).

3.6 Effects of PLE on knee joint erosion in
OA-induced rats

Representative images of the knee joints of each experimental
group indicated that PLE prevented cartilage degradation induced
by MIA injection. In contrast to the cartilage of the MIA rats, which
was less smooth and more damaged in some places, the knee joints
of the NT rats were glossy and smooth. Rats treated with PLE and
indomethacin showed significant recovery from cartilage damage
caused by MIA. The recovery of cartilage erosion in PLE-treated rats
was comparable to that in indomethacin-treated rats (Figure 11A).
Characteristics of OA, such as cartilage erosion on the side of the
femoral condyles, were found in the MIA group. The cartilage injury
worsened over time. However, based on gross appearance, the PLE
group showed less bone degradation and cartilage erosion than the
MIA group during the same time period. When compared to the
MIA group, the macroscopic score of the PLE groups was lowered by
55.17% (Figure 11B; Supplementary Table S6).

3.7 Effects on inflammatory cytokines in the
serum of OA inducted rat model

After isolating blood sera from each experimental group, the
levels of TNF-α and IL-6 were assessed. Serum concentrations of
TNF-α and IL-6 were significantly lower in PLE-treated rats than in
MIA rats, in a dose-dependent manner. PLE-treated rats (300 mg/kg
body weight) showed reduced cytokine levels, consistent with those
of the positive control (Figure 12; Supplementary Table S9).

3.8 Effects of PLE on cytokine responses in
the knee cartilage tissue of OA-induced rats

The analysis of F2R, F3, IL-1β, IL-6, IL-17A, MMP-1, MMP-2,
MMP-3, MMP-9, MMP-13, NOS2, PTGS2, PGE2, and TNF-β
mRNA levels (Figures 13A–L) in OA-induced rats determined
that PLE-treated rats had significantly reduced knee cartilage
tissue compared with that of the MIA rats. The anti-
inflammatory effects of PLE were dose-dependently comparable
to those of dexamethasone at 300 mg/kg. WB analysis indicated that
PLE inhibited F2R, F3, IL-17A, MMP-1, MMP-2, MMP-9, and
PTGS2 in MIA rats (Figure 13M; Supplementary Table S10).

4 Discussion

In this study, we used a network analysis approach to predict the
major compounds and target genes and pathways of PL that are
expected to play a key role in attenuating OA symptoms and
progression. We then investigated these predictions by designing
in vivo and in vitro experiments that mimicked the pathophysiology
of OA. From a network analysis perspective, the compounds
predicted to be the most important for anti-OA potential in PL
were piperlongumine, piperlonguminine, and piperine. Based on
their multi-target, multi-pathway pharmacology, they were
predicted to exert their inhibitory effects on OA through six
targets, primarily F2R, F3, MMP1, MMP2, MMP9, and PTGS2,

FIGURE 7
Effects of PLE on (A) cell viability and (B) NO production in stimulated RAW264.7 cells by LPS. Cell were included with PLE (10–300 μg/mL) and LPS
(500 ng/mL) for 24 h ###p < 0.001 vs. NT, *p < 0.05 vs. control, **p < 0.01 vs. control, ***p < 0.005 vs. control. NT: non-treated, DEX 1: dexamethasone
1 μg/mL, LPS: lipopolysaccharide.
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FIGURE 8
Effects of PLE on (A–N) qRT-PCR analysis (O)Western blotting in LPS-stimulated RAW264.7 cells. Cells were treated with PLE (30, 100, and 300 μg/
mL) and LPS (500 ng/mL) for 24 h ###p < 0.001 vs. NT, *p < 0.05 vs. control, **p < 0.01 vs. control, ***p < 0.005 vs. control. NT: non-treated, DEX 1:
dexamethasone 1 μg/mL.
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and three major signaling pathways: “pathways in cancer,”
“complement and coagulation cascades,” and “IL-17 signaling
pathway.” Meanwhile, PL exhibited significant anti-inflammatory

activity compared to the that of the control by reducing NO levels in
RAW264.7 and effectively inhibited the expression of various
mRNA and proteins, including F2R, F3, IL-17A, MMP-1, MMP-

FIGURE 8
(Continued).
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2, MMP-9, and PTGS2. PL showed a statistically significant effect on
writhing responses in vivo, an apparent pathological ameliorating
effect in the weight-bearing test, and amelioration of knee joint
degradation in the OA-induced rats. After 24 days of treatment with
PLE, a significant improvement was observed in the weight-bearing
capacity of rat compared to that of the MIAs, which suggests that
PLE has an analgesic effect against pain associated with OA.

PL also showed statistically significant dose-dependent effects
on inflammatory cytokine levels in the serum of OA rats. These
results suggest that PL may contribute to the reduction of pain and
functional impairment in OA, as well as the suppression of
progressive joint destruction, owing to its potent and varied anti-
inflammatory activities. Cartilage loss is a predominant indicator of
degenerative OA, and cartilage erosion observed in MIA rats is
similar to the pathological features of human degenerative OA
(Hayer et al., 2016). In addition, the experimental results of this
study demonstrated marked consistency with the network analysis
predictions of the multi-target, multi-pathway, and multi-
compound effects of PL.

In the inflammatory pathology of OA, chondrocytes in the
affected joints produce significant amounts of NO, which
mediate the production of inflammatory mediators, angiogenesis,
and cartilage destruction (Farrell et al., 1992; Sanchez-Lopez et al.,
2022b). The synovial fluid of patients with OA contains high levels
of nitrite and inducible nitric oxide synthase (iNOS), an enzyme
involved in NO production. Blocking iNOS can prevent the
development of OA in dogs by dramatically reducing catabolic
and pro-inflammatory factors in the joints (Melchiorri et al.,
1998; Pelletier et al., 1999; Sanchez-Lopez et al., 2022b). In this
study, hub gene targets predicted by network analysis and

experimentally investigated to support the anti-OA activity of PL
were consistently associated with the inflammation-based OA
pathology described above. This provided logical support for the
observation that PL showed dose-dependent superiority over
indomethacin in terms of anti-inflammatory activity against
targets such as F2R, MMP1, and PTGS2. F2R is a thrombin
receptor, also known as proteinase-activated receptor-1 (PAR1),
which induces the release of prostaglandin E2 (PGE2) and
phosphorylation of MAP kinases; upregulation of PTGS2 and is
strongly associated with osteoblast function and repair of various
bone injuries (Maeda et al., 2015; Sato et al., 2016a). Furthermore,
overexpression of F2R negatively affects both osteoclast formation
and regulation of function, making it a potential target for the
treatment of bone diseases such as osteoporosis and suggesting its
potential utility in progressive bone destruction in OA; therefore, we
investigated F2R in this study (Zhang et al., 2020). Since interstitial
collagenases such as MMP1 are critical in the pathogenesis of OA,
therapeutic strategies to impede these targets have also been actively
investigated, although it is known that modulation of these targets
does not inhibit the inflammatory pathology of OA (Karila et al.,
2022). Nevertheless, MMP1 has been strongly associated with pain
in symptomatic knee OA in clinical studies and is involved in
accelerating osteogenic differentiation, which may contribute to
the direct suppression of OA-induced pain and the restoration of
damaged joint tissue (Wyatt et al., 2019; Wu et al., 2020). On the
other hand, PTGS2, also known as cyclooxygenase-2, is a well-
known pathological factor whose increased expression in osteocytes
of the subchondral bone is associated with both OA and rheumatoid
arthritis (RA) (Tu et al., 2019). Therefore, PTGS2 blockade is
expected to delay the course of both subchondral bone

FIGURE 9
Analgesic effect of PLE in on nociceptive responses in the acetic acid (AA)-induced-writhing test (A) Timeline for the AA-induced writhing test. The
writhing number of AA-induced ICRmice. (B)After 30 min of oral treatment, micewere intraperitoneally injectedwith 0.7% AA before counting for 10 min
(eight mice per group); ###p < 0.001 vs. IBU 200, **p < 0.05 vs. AA, ***p < 0.001 vs. AA. IBU: ibuprofen 200 mg/kg.
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destruction and joint structural pathologies in OA, such as cartilage
degeneration (Chang et al., 2021). Several PTGS2 inhibitors have
already been shown to relieve pain and inflammation associated

with OA; however, there is no evidence that they can halt disease
progression. The results of this study, combined with recent
preclinical evidence for highly selective PTGS2 inhibitors, suggest

FIGURE 10
The effects of PLE on weight-bearing index (WBI) of hind legs in monosodium-iodoacetate (MIA) induced rats. (A) Timeline for the MIA-induced OA
model. (B)WBI of MIA rats at 0–24 days treated with 100 and 300 mg/kg PLE or 3 mg/kg indomethacin and (C) incapacitance meter analysis area under
the curve (AUC). Tukey’s multiple comparison test after 2-way ANOVA: ###p < 0.001 vs. NT, *p < 0.05 vs. MIA, **p < 0.01 vs. MIA, ***p < 0.001 vs. MIA.
INDO 3: indomethacin 3 mg/kg.
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that PTGS2 may be a promising therapeutic target to inhibit both
symptoms and disease progression in OA, and merits further
investigation (Timur et al., 2020; Su et al., 2022). In addition, the
gene targets predicted and investigated in this study, including F3,
MMP2, and MMP9, consistently supported OA mitigation in vivo
experiments. In this experiment, PLE reduced the writhing response,
a quantitative indicator of peripheral pain, in AA-injected mice in a
dose-dependent manner compared to the positive control (Sugita
et al., 2016). By reducing the writhing response in AA-induced mice,

the analgesic effect of PLE on peripheral pain observed in this study
may be due to providing pain relief in MIA rats.

In this study, network analysis predicted pharmacological
targets, and the positive results in rats based on these targets
were also supported by the signaling pathways and multi-
component information through which PL acts. In this study, we
predicted that PTGS2, iNOS, and MMPs, which are key OA
therapeutic targets of PL, were mainly related to cancer
pathways. More specifically, among the aforementioned

FIGURE 12
Inflammatory cytokine levels in the sera of OA-induced rats. Rats were treated with 100 and 300 mg/kg of PLE for 24 d ###p < 0.001 vs. NT, **p <
0.05 vs. MIA, ***p < 0.001 vs. MIA. NT: non-treated, INDO 3: indomethacin 3 mg/kg.

FIGURE 11
Representative images of articular cartilage in OA-induced rats treated with MIA. (A) representative picture showed cartilage degradation. (B)
Macroscopic score. MIA rats were treated with 3 mg/kg indomethacin and 100 or 300 mg/kg PLE. NT: non-treated, INDO 3: indomethacin 3 mg/kg.
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molecular pathways, these targets appear to be primarily involved in
angiogenesis signaling. Increased angiogenesis in the subchondral
bone due to vascular invasion of avascular cartilage is the most
widely recognized pathological characteristic of OA (MacDonald
et al., 2018). Previous studies have reported that in mice with medial
meniscal instability, subchondral bone neovascularization occurs at
the pre-osteoarthritic stage, before articular cartilage damage (Su
et al., 2020). Thus, selective inhibition of synovial angiogenesis has
emerged as an important therapeutic target for both OA and RA. In
this context, PL could potentially be developed as a treatment for
joint diseases that simultaneously inhibits joint inflammation and
synovial angiogenesis. In contrast, PL acts on several proteinase-
activated receptors during OA treatment, as confirmed by network

analysis and experimental studies. KEGG enrichment analysis
confirmed that these targets were predominantly involved in the
regulation of platelet activation within the complement and
coagulation pathways. This mechanism of action may have been
observed in a previous study showing that thrombin, a cytokine
encoded by the F2 gene, can modulate the mechanism of action in
mouse MC3T3-E1 osteoblasts (Sato et al., 2016b). In the previous
study, thrombin-stimulated osteoblasts produced a monocyte
chemoattractant protein that induced the migration of
macrophage RAW264 cells; this effect was inhibited by a
selective non-peptide thrombin receptor inhibitor. These results
indicate that thrombin may be involved in the regulation of
osteoblast function, in addition to blood coagulation. Therefore,

FIGURE 13
Cytokine levels in the knee cartilage tissue of 100 and 300 mg/kg PLE-treated rats. (A–L) mRNA expression of F2R, F3, IL-1β, IL-6, IL-17A, MMP-1,
MMP-2, MMP-3, MMP-9, MMP-13, NOS2, PTGS2, PGE2, and TNF-α determined by qRT-PCR. (M)WB analysis of the protein expression of F2R, F3, IL-17A,
MMP-1, MMP-2, MMP-9, and PTGS2. ###p < 0.001 vs. NT, **p < 0.05 vs. MIA, ***p < 0.001 vs. MIA. NT: non-treated, INDO 3: indomethacin 3 mg/kg.
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this gene may serve as a target for therapeutic interventions to
inhibit osteoporotic changes in OA. This partially explains why PL
may inhibit joint destruction in patients with OA. In addition, this
study predicted that MMP1, MMP3, MMP9, and MMP13, which
are important targets of PL, are involved in tissue remodeling
signaling in the IL-17 pathway. This finding was investigated by
experimental studies. These results, together with previous
bioinformatic studies showing that IL-17A is highly expressed
in synovitis and chondrocyte death in OA mouse models,
partially support the observation in this study that PL
simultaneously alleviates two OA phenotypes, synovitis, and

cartilage destruction (Yang L. et al., 2023). Furthermore, these
findings are consistent with previous observations that IL-17A is
involved in immune, angiogenic, and complement pathways in
both chondrocytes and synovial fibroblasts from patients with
late-stage OA (Mimpen et al., 2021).

The major druggable compounds identified in this study could
explain the multifaceted anti-OA therapeutic effects of PL, as
discussed above. Piperlonguminine, which exhibits high binding
affinity to hub targets, has been reported to have potent activities
such as inhibition of vascular inflammation by regulating TNF-α
and NF-κB production, as confirmed in this study, and anti-

FIGURE 13
(Continued).
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proliferative effects against drug-resistant cancer cells bymodulating
the Akt/mTOR signaling pathways (Lee et al., 2013; Zhu et al., 2020).
Piperlongumine has been widely reported to have multiple
mechanisms of action that support our findings, including anti-
inflammatory, antiplatelet aggregation, and anti-senolytic activities
(Zhu et al., 2021). Similarly, the anti-inflammatory activity of
piperine, based on the inhibition of MMP-3, MMP-13, iNOS,
and PTGS2 production in human OA chondrocytes, directly
underpins the findings of this study (Ying et al., 2013).

The results of this study are the first report to confirm the
potential value of PL as a DMOAD candidate for further research in
the future. However, this possibility should not be given more than
exploratory significance at this time because of the various study
limitations listed below. First, the network analysis used in this study
is not intended to be more than a hypothesis-generating tool.
Network analysis provides rich information about the multi-
component and multi-target actions of natural products, which
may contribute to a more precise and efficient experimental
design and therefore framing of subsequent studies. However,
considerable heterogeneity exists among the databases used in
this methodology, and even small variations in the network
science metrics used in the analysis can lead to very different
results. Therefore, from an information science perspective, it is
required to simultaneously use advanced analysis techniques such as
molecular docking and molecular dynamics to obtain more
reproducible results in this research network analysis.
Simultaneously, it is necessary to interpret the results by
recognizing that the efficacy evaluation of natural products,
including those obtained in this study, can only reach reliable
conclusions through laboratory studies. Second, molecular
docking analysis was performed to complement the results of the
network analysis. However, a distinct limitation of this study is that
the in silico approach was aimed at achieving an exploratory analysis
in order to confirm the initiation value of PL in animal models of
OA. Therefore, molecular dynamics simulations, which are
equivalent to a more complete bioinformatic validation, were not
performed. Molecular dynamics methods, such as Molecular
Mechanics/Poisson-Boltzmann Surface area and molecular
mechanics/generalized Born surface area, are known to perform
more accurate calculations of binding free energies, and we plan to
use them in our planned follow-up studies of PL, complemented by
more in-depth experimental techniques. Third, this study did not
provide a definitive conclusion regarding whether PL can completely
inhibit the destructive skeletal pathology of OA. To be recognized as
a promising DMOAD candidate, it is necessary to clearly
demonstrate its effect on the inflammatory pathology of OA and
the suppression of symptoms such as pain and functional disability,
as well as on the progressive pathology of OA itself. Based on the
promising pharmacological effects of PL on OA identified in this
study, we plan to design and conduct a follow-up study in order to
confirm its efficacy in inhibiting progressive cartilage destruction
and osteoporotic changes. Finally, ignavine was one of the leading
active components of PL predicted in this study. This compound has
recently gained attention as a multiple opioid receptor modulator in
various pain-related conditions. Although this may have contributed
positively to the analgesia experiments in this study, HPLC analysis
could not confirm its content because of difficulties in obtaining
standards. Future studies should address these limitations to

confirm and extend the promising results of the present study. A
successful follow-up study that fully compensates for the
aforementioned limitations is expected to reveal the efficacy of
PL, a valuable medicinal plant with multiple indications.
Additionally, it may reveal the potential of natural product-based
DMOADs, which have not been successful thus far.

5 Conclusion

Based on the observations of the present study, we conclude that
PL has broad anti-inflammatory effects that inhibit the overall
pathology of OA. Network analysis predictions suggest that the
treatment of OA with PL involves targets related to inflammatory
mediators, angiogenesis, and joint destruction. In vivo and in vitro
studies have shown that PL can attenuate pain and functional loss in
OA and prevent knee joint destruction in OA rats induced by MIA
injection. In addition, oral administration of PL causes broad
inhibition of proinflammatory cytokines. In conclusion, PL has a
significant potential for the treatment of OA and deserves further
investigation as a DMOAD candidate.
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