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Abstract: EEG signal analysis is difficult because there are so many unwanted 
impulses from non-cerebral sources. Presently, methods for eliminating noise 
through selective frequency filtering are afflicted with a notable deprivation of EEG 
information. Therefore, even if the noise is decreased, the signal's uniqueness 
should be preserved, and decomposition of the signal should be more accurate for 
feature extraction in order to facilitate the classification of diseases. This step 
makes the diagnosis faster. In this study, three types of wavelet transforms were 
applied: Discrete Wavelet Transform (DWT), Wavelet Packet Transform (WPT), and 
Stationary Wavelet Transform (SWT), with three mother functions: Haar, Symlet2, 
and Coiflet2. Three parameters were used to evaluate the performance: Signal-to-
Noise Ratio (SNR), Mean Square Error (MSE), and Peak Signal-to-Noise Ratio 
(PSNR). Most of the higher values of SNR and PSNR were 27.3189 and 40.019, 
respectively, and the lowest value of MSE was 5.0853 when using Symlet2-SWT 
level four. To decompose the signal, we relied on the best filter used in the 
denoising process and applied four methods: DWT, Maximal Overlap DWTs 
(MODWT), Empirical Mode Decomposition (EMD), and Variational Mode 
Decomposition (VMD). The comparison has been made between the four methods 
based on three metrics: energy, correlation coefficient, and distances between the 
Power Spectral Density (PSD), where the highest value of energy was 5.09E+08 
and the lowest value of the PSD was -1.2596 when using EMD. 

Keywords: Wavelet transform, mother wavelet, empirical mode decomposition, 
variational mode decomposition. 
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I. INTRODUCTION 

The ElectroEncephaloGraphy (EEG) is a non-invasive degree of the electrical 
interest of the mind thru the location of electrodes at the scalp in regions of the mind, 
and used as the primary sign to pick out an expansion of brain-related conditions, 
inclusive of narcolepsy, Sleep apnea syndrome, Insomnia, Parasomnia, and Epileptic 
seizures. There are two origins of the artifacts that impact the EEG signal, namely 
physiological and non-physiological. The physiological origins consist of 
ElectroOculoGraphy (EOG) artifacts, ocular artifacts; muscular noise in 
ElectroMyoGraphy (EMG), cardiac signals, whilst non-physiological factors 
encompass line disruptions and electrode interference Therefore, removing noise from 
the EEG signal is of utmost importance during the preprocessing phase. Additionally, 
decomposition of the EEG signal performs a good function in feature extraction for 
the classification of epileptic seizures. 

When recording EEG data, it is important to be aware of signal artifacts as 
they can greatly affect the quality of the data. These artifacts have the potential to 
contaminate the EEG data and must be addressed in order to ensure accurate 
results. Artifacts refer to undesirable signals that primarily stem from outside of the 
body like environmental, and inside of the body like ocular, muscle, and cardiac 
artifacts that produce notable distortions in EEG recordings originate from the body 
itself [1]. Muscle artifacts are another origin of artifacts. The electrical signals 
produced by the muscles when they contract can be detected on the surface of the 
body by means of the EMG technique [2]. This type of artifact may arise from actions 
such as swallowing, chewing, grimacing, frowning, talking and hiccupping, both 
during wakefulness and sleep. In addition, the activity of the heart can also generate 
artifacts in the EEG signal. Depending on the location of the electrodes and the shape 
of the body, the electrical signals produced by the heart (as reflected in the ECG) may 
interfere with the EEG [3]. 

Denoising and decomposition of the EEG signal have been proposed using 
multiple techniques. The wavelet is the best method for denoising than others in [4]. 
A numerous noise elimination technique from EEG signal is studied in [5], and the 
best result was obtained when using WPT. The efficacy of denoising techniques based 
on wavelets for EEG signals has been investigated in a study on EEG signals [6]. Four 
distinct discrete wavelet functions were employed to eliminate noise from the 
Electroencephalogram signal obtained from two different patient groups (healthy and 
epileptic) to demonstrate the efficiency of DWT in eliminating EEG noise.  

IIR low pass filter, FIR low pass and wavelet transform method were applied to 
the distorted EEG signal; the mother wavelet (symlet) has been more compatible with 
the EEG signal founded by determining the higher SNR and minimum MSE than the 
all other filters and wavelets in [7]. Wavelet transform with different kinds of filters 
such as db2, db4, coif2, coif4, sym2, and sym4 are used to decompose the signal into 
low and high frequency components in [8]. It is observed that minimax threshold 
estimation with soft thresholding using the wavelet filter coif4 performs better in 
terms of PSNR. Various wavelet transform based denoising techniques were discussed 
in [9]. Several methods have presented the decomposition of a signal, and a 
comparative study between DWT and maximal overlap DWT for testing stationarity 
was described in [10]. EMD and VMD and its comparison was made between them in 
[11]. In [12], a comparison between EMD and Intrinsic timescale decomposition (ITD) 
was provided. 
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II. METHODS AND MATERIALS 

To achieve the goals of this study, at first, a dataset from the University of 
Bonn has been used. Secondly, the signal has been denoised in three scenarios. In 
scenario one, the DWT was used with different mother functions, including Haar, 
Symlet2, and Coiflet2. In scenario two, the WPT was applied using the same mother 
functions that were employed in scenario one. In scenario three, a SWT was utilized 
with the same mother functions that were employed in scenario one, then the three 
scenarios have been evaluated by three parameters: SNR, MSE, and PSNR. In step 
three, the signal has been decomposed using four approaches. In approach one, a 
DWT was applied, in approach two, a maximal overlap DWT was applied. In approach 
three, the EMD was applied. In approach four, the VMD was applied, then the four 
approaches have been compared using three parameters: energy, correlation, and 
distances between the power spectral densities. The schematic representation of the 
suggested approach is illustrated in Figure 1. 

 

 

Fig. 1 diagram of the proposal method 

EEG signals dataset from university of Bonn 
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A. Dataset 

The University of Bonn's publicly available benchmark database was used to 
in this study [13]. The database consists of five subsets (A, B, C, D, and E), the 
sampling rate of the EEG data is 173.61 Hz, and each of them has a duration of 23.6 
s (4096 samples), recorded using a 12-bit resolution, while the spectral bandwidth is 
0.5 to 86.8 Hz. A total of 500 EEG epochs belonging to three categories: healthy open 
and close eyes respectively (A, B), seizure (E), and seizure free (C, D), shown in 
Figures 2 and 3, respectively. 

 

Fig. 2 Original healthy signals plotted in MATLAB, (A) eyes open (B) eyes close 

 

Fig. 3 Signals plotted in MATLAB, epileptic during seizure (E), and epileptic 
seizure free (C, D). 

B. Denoising Of EEG Signal Based On Wavelet Transforms 

The EEG signals that used in this study have a sampling frequency is 173.61 
Hz, and thus the frequency range is 0–86. 8 Hz. Therefore, we utilized filters that 
eliminate unnecessary frequencies and concentrate solely on the range corresponding 
to the five EEG rhythms that are medically recognized, specifically delta (0–4 Hz), 
theta (4–8 Hz), alpha (8–16 Hz), beta (16–32 Hz), and gamma (32–64 Hz). The wavelet 
transform is good tool used for analysis the EEG signal [14]. WT illustrates the signal 
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in the time frequency domain. Generally, a wavelet is defined as the following 
equation [15]. 

��,�(�) = |�|
�

�� ��
���

�
��         (1) 

where t and, s ≠ 0, denotes the scale and translation parameters. In this study, we 
used symlet2, haar, and coiflet2 mother function for denoising of the EEG signal; 
Figure 4 showed the mother wavelet functions Plotted in MATLAB. The steps of 
denoising algorithms based on the wavelet transform are: (1) EEG Decomposition 
using the (DWT), (WPT), and (SWT), (2) Thresholding and (3) EEG Reconstruction 
using the inverse WT. 
 

 

Fig. 4 Mother functions used for denoising signal in MATLAB. 

DWT decomposes a discrete time signal � [�]into two signals: Detail (��) and 
Approximation(��), described as: - 

��[�] = ∑ �[�]. ℎ[2. � − �]�       (2) 

��[�] = ∑ �[�]. �[2. � − �]�                  (3) 

Choosing the proper number of wavelet decomposition levels (or scale levels) ��is the 
first stage in the DWT decomposition. For the initial level,� = 1 signal �[�] passes 
through both the high and low pass filter, ℎ[�] and �[�] respectively, then the 
procedure of down-sampling by two [16], as illustrated in Figure 5 and denoising by 
using DWT is shown in Figure 6. 
 

 

Fig. 5DWT for scale level 2. 
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Fig. 6 Denoising by using DWT. (1) haar, (2) symlet2, (3) coiletf2 

C.  Wavelet Packet Transform 

 A development of the standard wavelet transform is the WPT (WPT). In the 
WPT, the detail coefficients are broken down at the initial level of decomposition, 
forming a structure referred to as the wavelet packet tree in literature [17]. This 
procedure is illustrated in Figure 7. As a result, the outcomes achieved possess 
superior resolution in both the time and frequency domains. The WPT of a signal x(t) 
is defined in equation: - 

��
�,�

= 2�
�

� ∫ �(�)��(2��� − �)��                (4) 

The symbol � stands for the number of decomposition levels, also known as scale 
parameters; the symbol � stands for the position parameter; and the number � is the 
number of packets as a result of the decomposition process. µ(�) Is the function 
wavelet packet. The denoising outputs using WPT is shown in Figure 8. 

 
Fig. 7 WPT  for scale level 2. 

D. Stationary Wavelet Transform 

 While time invariance is important for statistical signal processing 
applications, DWT is affected by time variance.SWT overcomes the DWT's translation 
invariance problem. However, SWT is sluggish and contains duplicate data [18]. The 



 

wavelet toolbox has been used in MATLAB for SWT. 
is shown in Figure 9. 

Fig. 8 WPT method
 

Fig. 9 SWT

E. Threshold 

 The primary concept of wavelet denoising is to achieve the perfect elements of 
the signal from the signal that has noise. This process demands the assessment of 
the degree of noise. There are many possible approac
noise level [19]. In this study, we used the universal threshold technique for 
estimation noise because we applied different threshold techniques on random 
selected signal and this method gave better results.
estimates are computed using the WT factors
Calculate the median and 

where |c0 |, |c1 |..., |c
rescaled by 0.6745 in the denominator 

where � is the estimated noise. 
The wavelet toolbox in MATLAB has been used for
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wavelet toolbox has been used in MATLAB for SWT. The denoising outputs using SWT 

 
WPT method. (1) haar, (2) symlet2, and (3) coiflet2.

SWT method. (1) haar, (2) symlet2, and (3) coiflet2.

The primary concept of wavelet denoising is to achieve the perfect elements of 
the signal from the signal that has noise. This process demands the assessment of 

. There are many possible approaches to the estimation of the 
]. In this study, we used the universal threshold technique for 

estimation noise because we applied different threshold techniques on random 
selected signal and this method gave better results. The threshold and 
estimates are computed using the WT factors. 

and δ by 

σ =
������{|��|,|�� |,……..,|���� |}

�.����
                

, |c(n-1) | are the wavelet coefficients, and where the numerator is 
scaled by 0.6745 in the denominator [20]. The threshold, τ, is calculated

�ℎ���ℎ���, � = �√ln �       
is the estimated noise. � is the total number of samples for the EEG signal. 

The wavelet toolbox in MATLAB has been used for the threshold. 
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The denoising outputs using SWT 

 

(1) haar, (2) symlet2, and (3) coiflet2. 

 
) symlet2, and (3) coiflet2. 

The primary concept of wavelet denoising is to achieve the perfect elements of 
the signal from the signal that has noise. This process demands the assessment of 

hes to the estimation of the 
]. In this study, we used the universal threshold technique for 

estimation noise because we applied different threshold techniques on random 
The threshold and noise 

   (5) 

| are the wavelet coefficients, and where the numerator is 
calculated by 

  (6) 
is the total number of samples for the EEG signal. 



 

 

 

F. EEG Signal Decomposition

 The DWT has also been u
method was explained in the part EEG denois
other three methods used for the decomposition of EEG signal.
decomposition outputs using DWT are shown in 

Fig. 10 DWT method. (1) denoised EEG signal by using 
epileptic person seizure free, (2) detail1, (3) detail 2.

Fig. 11 DWT method. (1) Detail3, (2) detail4, and (3) approximation.

G. Maximal Overlap Discrete Wavelet T

 Is similar to the 
input signal at each level. 
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����� = �
���|�| > �

0             ��|�|  ≤ �
�                       

 

����� = �
|�| − |�|��|�| > �

0                         ��|�|  ≤ �
�               

Signal Decomposition 

has also been used for the decomposition of EEG signal, and this 
method was explained in the part EEG denoising.  In this part will be discussed the 
other three methods used for the decomposition of EEG signal. 
decomposition outputs using DWT are shown in Figures 10 and 11. 

method. (1) denoised EEG signal by using SWT 
epileptic person seizure free, (2) detail1, (3) detail 2.

method. (1) Detail3, (2) detail4, and (3) approximation.

Maximal Overlap Discrete Wavelet Transform 

Is similar to the DWT in that low-pass and high-pass filters are applied to the 
input signal at each level. The number of wavelet and scaling coefficients, however, is 
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sed for the decomposition of EEG signal, and this 
In this part will be discussed the 

 The EEG signal 

 

 symlet2 for 
epileptic person seizure free, (2) detail1, (3) detail 2. 

 

method. (1) Detail3, (2) detail4, and (3) approximation. 

pass filters are applied to the 
The number of wavelet and scaling coefficients, however, is 
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equal to the number of sample observations at every step of the transform, and the 
MODWT does not decimate the coefficients. Put differently, the MODWT coefficients 
take into account the outcome of a basic modification made to the pyramid algorithm 
employed for computing DWT coefficients. This modification involves not down-
sampling the output at every level and including zeros between the coefficients in the 
scaling and wavelet filters [10]. The EEG signal decomposition outputs using MODWT 
are shown in Figures 12 and 13. 

 

 

Fig. 12 MODWT method. (1) denoised EEG signal using the SWT symlet2 for 
epileptic person seizure free, (2) Detail1, (3) detail 2. 

 

Fig. 13 MODWT method. (1) Detail3, (2) detail4, and (3) approximate. 

H. Empirical Mode Decomposition 

 EMD technique examines signals that are not stationary and has gained 
widespread acceptance for the analysis of biological signals. This method 
decomposing a signal �(�) into Intrinsic Mode Functions (IMFs) and residual. These 
IMFs should meet the following two conditions: 
 1. There can be no more than one difference in the number of extrema or zero 
crossings.  
 2. The average value of the envelopes formed by local maxima and local 
minima is zero at all times[21]. 
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� = ∑ �� +
��
��� ��                 (9) 

where �� is ���IMF and ��  is the residue. The EEG signal decomposition outputs using 

EMD are shown in Figures 14 and 15. 

 

Fig. 14 EMD method. (1) denoised EEG signal by using SWT symlet2 for 
epileptic person seizure free, (2) IMF1, (3) IMF2, and (4) IMF3 

 

Fig. 15 EMD method (1) IMF4, (2) IMF5, (3) IMF6, (4) IMF7, and (5) residual  

I. Variational Mode Decomposition 

 VMD is method for time frequency decomposition of EEG signals. The process 
of VMD is listed as follows [11]: 1. Obtain the unilateral frequency spectrum of each 
mode by computing the associated analytic signal by using the Hilbert transform (in 
which  �� =  −1): 

��(�) +
�

��
� × ��(�)                                 (10) 

  2. By multiplying an exponential tuned with the expected center frequency, 
convert the frequency spectrum of each mode to baseband.: 

���(�) +
�

��
� × ��(�)� ������                   (11) 

 3. Calculate the bandwidth of each mode by using the squared �� -norm of the 
gradient.  

��(�) ���(�) +
�

��
� × ��(�)� �������

�

�

          (12) 

The EEG signal decomposition outputs using VMD are shown in Figures 16 and 17. 
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Fig. 16 VMD method. (1) denoised EEG signal using the SWT symlet2 for 
epileptic person seizure free, (2) IMF1, and (3) IMF2  

 

Fig. 17 VMD method. (1) IMF3, (2) IMF4, (3) IMF5, and (4) residual 

3. RESULTS  

Various performance metrics such as MSE, PSNR, and SNR are used to 
evaluate the best method used for denoise EEG signal. SNR suggests the artifact 
rejection functionality of a set of rules for any noisy signal, the SNR is typically 
expressed in terms of decibels, the higher the SNR value indicates that a filter is 
better [22]. If �shows authentic signal and �1shows signal after removing artifacts, 
then: 

��� = 10 log��
�

����
                          (13) 

 The MSE, which measures how closely the denoise signal resembles the 
authentic signal, is described as the mean or average of the square of the distinction 
between the authentic and denoised signal. A filter is preferable if its value is lower 
[23]. MSE is described as:  

��� =
�

�
∑ (� − �1)��

���                      (14) 

PSNR is an expression for the ratio between a signal's highest possible value (power) 
and the power of a noise source that distorts the signal and lowers the quality of its 
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representation, PSNR is usually expressed as a logarithmic quantity using the decibel 
scale. A filter that has a higher PSNR value is more effective [23]. ���� is given as: 

���� = 20 log��
���(�)

√���
                   (15) 

���(�) Is the maximum signal value that exists in signal with artifacts. Tables 1 to 3 
shows the obtained performance measures for different conditions.  
 

Table 1. SNR, PSNR, and MSE for DWT at different body conditions 
 

Mother function 
sets 

A B C D E 
Parameters 

Haar 
SNR 21.4802 22.8111 23.6227 21.8542 41.8816 
PSNR 34.3592 35.7386 36.3121 31.5154 53.1772 
MSE 13.2309 13.5053 11.9401 10.6726 14.9888 

symlet2 
SNR 21.9555 23.2114 24.7907 22.669 42.1068 
PSNR 34.9603 36.1389 37.694 32.3301 53.4025 
MSE 11.8595 12.3161 9.1245 8.847 14.2311 

coiflet2 
SNR 22.5283 23.6161 25.6416 23.0007 42.5305 
PSNR 35.4072 36.5436 38.331 32.6619 53.8261 
MSE 10.3941 11.2203 7.501 8.1964 12.9086 

 
Table 2. SNR, PSNR, and MSE for WPT at different body conditions 

 

Mother function 
sets 

A B C D E 
Parameters 

Haar 
SNR 21.9005 23.2162 24.1449 22.2452 42.2192 
PSNR 34.7794 36.1437 36.9013 31.9064 53.5148 
MSE 12.0106 12.3025 10.5874 9.7538 13.8677 

symlet2 
SNR 22.4571 23.6626 25.2804 23.0509 42.3157 
PSNR 35.336 36.5901 38.157 32.7121 53.6113 
MSE 10.5658 11.1008 8.1515 8.1022 13.5631 

coiflet2 
SNR 23.1862 24.0247 26.1768 23.5853 42.5109 
PSNR 36.0651 36.9523 38.8661 33.2464 53.8065 
MSE 8.9329 10.2127 6.6314 7.1642 12.9669 

 
Table 3. SNR, PSNR, and MSE for SWT at different body conditions 

 

Mother function 
sets 

A B C D E 
Parameters 

Haar 
SNR 23.6171 24.896 27.1995 24.081 44.9039 
PSNR 36.4898 37.835 39.8996 33.743 56.2107 
MSE 8.1008 8.3342 5.2271 6.2156 7.4544 

symlet2 
SNR 24.1258 25.2941 27.3189 24.1905 45.7613 
PSNR 36.9985 38.2331 40.019 33.8627 57.0681 
MSE 7.2055 7.6042 5.0853 6.0145 6.119 

coiflet2 
SNR 24.2198 25.1129 27.2572 24.1309 45.9033 
PSNR 37.0925 38.052 39.9573 33.8031 57.2101 
MSE 7.0512 7.9281 5.2581 6.3024 5.9221 
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 Also, Various performance metrics such Energy, correlation (corrcoef), and 
distances between the power spectral densities (PSD) are used to evaluate the best 
method used to decompose the EEG signal [24]. These metrics were calculated for 
each sub -bands from DWT, MODWT, EMD, and VMD. The energies of all IMF are 
determined in Eq. (16). 

����� = ∑ |����[�]|�� = 1,2, … … �.���
���           (16) 

 
The correlation coefficient(corrcoef) is a methodology used to indicate the relationship 
between two signals, and the (corrcoef) of all IMF is obtained, as demonstratedin Eq. 
(17). 

��, ���� =
��,����

��,�����

      (17) 

Here, ��, ���� is the crosscovariance of the authentic signal and ��ℎ IMF, ��, �����
 are 

the standard deviations, and� denotes the (corrcoef). Every other selection approach, 
primarily based on (PSD) become also used by the usage of the (PSD) of the authentic 
signal and IMFs. The energy contained within the signal as a characteristic of 
frequency, per unit frequency, is described through the (PSD) of the signal. The 
Kullback Liebler distance (KLD) method is used to calculated distances between 
PSDs, is a type of statistical distance that measures how one possibility distribution 
isn't the same as a 2nd reference possibility distribution, as proven in Eq. (18) 

������(�, ����) = ∑ log
��(��)

�����
(��)

 , �� =
��

�
����

���     (18) 

Here��(. )is the power spectrum of the authentic signal, �����
(. )is the power spectrum 

of the IMF, the ������(�, ����)illustrates the KLD between��(. ) and �����
(. ). Tables 41 

to 7 shows the obtained performance measures for different conditions. 
 

Table 4 . Calculated corrcoef, psd distance, energy for DWT (symlet2) at 
different body conditions 

 

coefficient 
sets 

A B C D E Parameters 
 

detail1 
psddistance 0.09 0.1349 0.0608 0.1837 0.0197 

energy 4.79E+04 6.37E+04 7.08E+03 4.74E+03 8.91E+06 

corrcoef 0.0829 0.0801 0.0271 0.0384 0.0977 

detail2 
psddistance 0.4742 0.4682 0.5086 0.4582 0.5577 

energy 3.29E+05 4.72E+05 6.69E+04 3.19E+04 7.77E+07 

corrcoef 0.2173 0.2187 0.0831 0.1004 0.2886 

detail3 
psddistance 0.4978 0.5724 0.4203 0.3876 0.5396 

energy 1.21E+06 1.83E+06 4.27E+05 1.38E+05 2.66E+08 

corrcoef 0.4171 0.4305 0.2102 0.2081 0.5343 

detail4 
psd distance 0.3747 0.4835 0.3289 0.3883 0.5055 

energy 1.83E+06 2.29E+06 1.88E+06 3.18E+05 1.91E+08 

corrcoef 0.5142 0.4802 0.4412 0.3158 0.452 

approxi 
psd distance 0.0424 0.0185 0.0245 0.0012 0.1907 

energy 3.74E+06 5.35E+06 8.59E+06 6.04E+06 3.99E+08 

corrcoef 0.7137 0.7276 0.8681 0.9193 0.6459 
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Table 5. Calculated corrcoef, psd distance, energy for MODWT (symlet2) at 
different body conditions 

 

coefficient 
sets 

A B C D E 
Parameters 

detail1 
psd distance 2.3452 2.489 4.3018 2.703 5.4989 

energy 8.59E+03 1.63E+04 1.02E+03 1.29E+03 8.61E+05 

corrcoef 0.1885 0.1675 0.0731 0.0753 0.3037 

detail2 
psd distance 2.2042 2.2778 3.1751 2.0445 2.6913 

energy 1.08E+05 1.34E+05 1.32E+04 9.24E+03 2.13E+07 

corrcoef 0.3861 0.3972 0.1872 0.1823 0.5438 

detail3 
psd distance 1.3424 1.2981 2.0828 1.3692 0.847 

energy 6.13E+05 9.50E+05 1.36E+05 5.65E+04 1.57E+08 

corrcoef 0.6187 0.6322 0.3675 0.3183 0.701 

detail4 
psd distance 1.291 1.2805 1.5436 1.4288 1.3722 

energy 8.17E+05 1.08E+06 7.19E+05 1.50E+05 9.12E+07 

corrcoef 0.6913 0.6682 0.6168 0.4961 0.7174 

approximate 
psd distance 0.0338 0.0216 0.0232 2.00E-04 0.2567 

energy 3.51E+06 5.03E+06 8.06E+06 5.86E+06 3.15E+08 

corrcoef 0.7629 0.752 0.9341 0.9436 0.6934 
. 

Table 6. Calculated corrcoef, psd distance, energy for VMD at different body 
conditions 

 

IMF(n) 
sets 

A B C D E 
Parameters 

IMF1 
psd distance 0.3202 0.1261 0.3575 0.3633 0.319 

energy 1.49E+05 2.64E+05 1.54E+05 6.71E+04 2.53E+07 
corrcoef 0.2083 0.2212 0.1918 0.2127 0.247 

IMF2 
psd distance 0.3563 0.156 0.3023 0.409 0.2779 

energy 2.33E+05 1.46E+06 6.92E+05 1.57E+05 1.20E+08 
corrcoef 0.2969 0.4908 0.3849 0.3337 0.4866 

IMF3 
psd distance 0.097 0.2591 0.257 0.2733 0.2558 

energy 1.61E+06 1.42E+06 1.96E+06 4.95E+05 1.46E+08 
corrcoef 0.5688 0.508 0.6096 0.5407 0.5388 

IMF4 
psd distance 0.2474 0.3923 0.2249 0.2452 0.3585 

energy 1.35E+06 1.17E+06 3.07E+06 1.02E+06 1.11E+08 
corrcoef 0.5779 0.5016 0.7319 0.7514 0.5224 

IMF5 
psd distance 0.0544 0.0803 0.0395 0.0024 0.165 

energy 2.56E+06 3.66E+06 2.50E+06 3.89E+06 3.19E+08 
corrcoef 0.6569 0.674 0.5171 0.6066 0.6643 

Residual 
psd distance 2.0931 1.9103 5.5063 3.676 5.1793 

energy 5.89E+03 1.42E+04 2.42E+03 2.59E+03 1.44E+06 
corrcoef 0.1612 0.1292 0.123 0.1171 0.1623 
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Table 7. Calculated corrcoef, psd distance, energy for EMD at different body 

conditions 
 

IMF(n) 
sets 

A B C D E 
Parameters 

IMF1 
psddistance 0.3032 0.2207 1.4316 1.5733 0.1321 

energy 2.52E+06 3.98E+06 1.86E+06 2.84E+05 5.09E+08 

corrcoef 0.5664 0.5807 0.4682 0.2765 0.6281 

IMF2 
psddistance 0.2675 0.4372 0.4989 1.0369 -0.1435 

energy 1.96E+06 1.77E+06 4.24E+06 8.47E+05 4.43E+08 

corrcoef 0.4992 0.3463 0.6453 0.497 0.577 

IMF3 
psddistance 0.1971 0.1939 -0.0041 0.3027 0.1294 

energy 1.31E+06 2.14E+06 2.35E+06 9.98E+05 1.47E+08 

corrcoef 0.3537 0.4186 0.4795 0.5695 0.3079 

IMF4 
psddistance 0.0787 0.1019 -0.1286 0.2676 -1.0035 

energy 1.04E+06 1.69E+06 1.23E+06 9.43E+05 4.75E+07 

corrcoef 0.3843 0.3757 0.3317 0.523 0.0905 

IMF5 
psddistance 0.2459 -0.2614 1.4917 0.0707 -0.4614 

energy 5.56E+05 1.63E+06 9.42E+04 2.41E+05 6.84E+06 

corrcoef 0.2677 0.3089 0.1027 0.2007 0.0281 

IMF6 
psddistance 0.3342 0.0329 0.9268 -1.2596 0.5281 

energy 1.17E+05 1.72E+05 3.74E+04 6.00E+04 1.96E+06 

corrcoef 0.1431 0.0426 0.043 0.0157 0.0132 

IMF7 
psddistance 0.5073 0.04 4.0657 5.966 0.2705 

energy 3.79E+04 1.07E+05 6.16E+03 4.00E+03 1.13E+06 

corrcoef -0.0015 0.0415 0.0158 -0.0106 0.0078 

IMF8 
psddistance 0.4004 0.7533 NA 6.0852 0.0965 

energy 4.33E+04 4.19E+04 NA 1.81E+03 1.95E+06 

corrcoef -0.0139 0.0603 NA 0.0134 0.008 

Residual 
psddistance -0.6535 1.112 -0.311 0.0404 0.834 

energy 3.83E+05 7.35E+04 1.78E+06 3.22E+06 4.31E+06 

corrcoef -0.0197 -0.0417 0.0027 0.014 -7.00E-04 

4. DISCUSSIONS 

 According to the scenarios and approaches described in the methodology, the 
results were as follows. In scenario one for the denoising step when applied DWT with 
level four on all data sets and used different mother functions, Haar, Symlet2, and 
coiflet2, the result has been presented in figure 6 for set (C), and recorded the values 
of SNR, PSNR, and MSE for all five sets in Table 1 for evaluated. In scenario two, 
when applied WPT also with level four on all data sets with three mother functions, 
haar, Symlet2, and coiflet2, the result has been presented in figure 8 for set (C), and 
recorded the values of SNR, PSNR, and MSE for all five sets in Table 2.  
 In scenario three, when applied SWT with three mother functions, haar, 
Symlet2, and coiflet2, on all data set with level four, the result has been presented in 
figure 9 for set (C), and recorded the values of SNR, PSNR, and MSE for all five sets in 
Table 3. The result showed that the highest value of SNR and PSNR in set (A) and set 
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(E) when using coiflet2 stationary wavelet level four and the lowest value of MSE was 
found in these cases, while in set (B) and sets (C and D), the result showed that the 
highest value of SNR and PSNR and the lowest value of MSE when using symlet2 
stationary wavelet level four compared with coiflet2 stationary wavelet level four. 
 The result of approach one for the decomposition step has been shown in 
figures 10 and11 respectively, for set (C) when applied DWT with level four, and the 
values of energy, correlation, and distances between the PSDs for all five sets were 
recorded in Table 4.  The result of approach two has been shown in figures 12 and 
13, respectively, in set (C) when applied maximal overlap DWT with level four, and the 
values of energy, correlation, and distances between the PSDs for all five sets were 
recorded in Table5.  
 Also, the result of approach three has been shown in Figures14 and15, 
respectively, in set (C) when applied EMD, and the values of energy, correlation, and 
distances between the power spectral densities (PSD) for all five sets were recorded in 
Table 6. Finally, the result of approach four has been shown in Figures 16 and 17, 
respectively, in set (C) when applied VMD, and the values of energy, correlation, and 
distances between the power spectral densities (PSD) for all five sets were recorded in 
Table 7.  
 The result showed the highest value of energy of IMF1 in set (E) when used 
EMD compared with other methods, and the lowest value of the distances between 
PSD showed in IMF6 also when used EMD for epileptic in t set (D) compared with 
other methods, but the highest value of correlation showed in approximate of 
maximal overlap DWTs for epileptic in the set (D) compared with other methods. 

5. CONCLUSIONS 

 Research is always striving to improve denoising and decomposition 
techniques for EEG signals to make the diagnosis of epileptic seizures more accurate 
and faster.  In this study, the efficiency of nine filters, DWT, WPT, and SWT, with 
three mother functions, Haar, Symlet2, and coiflet2 have been evaluated and 
compared by using three parameters such as SNR, PSNR, MSE, and the result 
showed that the symlet2 SWT level four is the best method used for signal denoising. 
Then the efficiency of four decomposition methods, DWT, MODWT, EMD, and VMD 
have been compared and evaluated by using three parameters (Energy, correlation 
coefficient, distances between the PSD, and the result showed that the EMD is the 
best method used for signal decomposition. It is recommended to use other mother 
functions of the wavelet transform for denoising and decomposition of EEG signals 

and applied to the same data set that has been used. Also, it is recommended to 
apply this method to other data sets related to seizures and comparing results with 
results has been obtained in this study. 
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