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Abstract:  Astronomical imaging technologies are basic tools for the exploration of the universe, providing basic data for the research of
astronomy and space physics. The Soft X-ray Imager (SXI) carried by the Solar wind Magnetosphere Ionosphere Link Explorer (SMILE) aims
to capture two-dimensional (2-D) images of the Earth’s magnetosheath by using soft X-ray imaging. However, the observed 2-D images
are affected by many noise factors, destroying the contained information, which is not conducive to the subsequent reconstruction of the
three-dimensional (3-D) structure of the magnetopause. The analysis of SXI-simulated observation images shows that such damage
cannot be evaluated with traditional restoration models. This makes it difficult to establish the mapping relationship between SXI-
simulated observation images and target images by using mathematical models. We propose an image restoration algorithm for SXI-
simulated observation images that can recover large-scale structure information on the magnetosphere. The idea is to train a patch
estimator by selecting noise–clean patch pairs with the same distribution through the Classification–Expectation Maximization algorithm
to achieve the restoration estimation of the SXI-simulated observation image, whose mapping relationship with the target image is
established by the patch estimator. The Classification–Expectation Maximization algorithm is used to select multiple patch clusters with
the same distribution and then train different patch estimators so as to improve the accuracy of the estimator. Experimental results
showed that our image restoration algorithm is superior to other classical image restoration algorithms in the SXI-simulated observation
image restoration task, according to the peak signal-to-noise ratio and structural similarity. The restoration results of SXI-simulated
observation images are used in the tangent fitting approach and the computed tomography approach toward magnetospheric
reconstruction techniques, significantly improving the reconstruction results. Hence, the proposed technology may be feasible for
processing SXI-simulated observation images.
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1.  Introduction
Since Röntgen discovered X-rays  in  1895,  they have been widely

used in various fields (Röntgen, 1896; Ewald, 1962). Among them,

X-ray detectors  and  telescopes  play  a  prominent  role  in  astro-

physics (Gorenstein, 2010). In 1960, the team led by Riccardo Giac-

coni  used  a  probe  rocket  to  detect  X-ray  radiation  from  outside

the solar  system  for  the  first  time,  opening  a  new  area  of  explo-

ration (Giacconi et al., 1962; Tucker and Giacconi, 1985). X-rays are

electromagnetic  waves  that  travel  at  the  speed  of  light  in  a

vacuum. Because of the blocking effect of the Earth’s atmosphere,

X-rays  from  outer  space  cannot  reach  the  ground.  To  receive

cosmic  X-ray  signals,  a  probe  must  be  placed  tens  of  kilometers

above  the  upper  atmosphere;  the  best  environment  is  the  orbit

around  the  Earth  in  space.  This  has  made  X-ray  astronomy  an

important area of space science research, with X-rays also known

as “invisible” cosmic  messengers  (Bhardwaj  et  al.,  2007;

Branduardi-Raymont et al., 2012).

The periodic changes and short-term violent activities of the solar

wind  are  important  driving  factors  affecting  the  Earth’s  space

environment. When heavy ions contained in the solar wind collide
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with neutral atoms or molecules in the outer space of the Earth, a
solar wind charge exchange (SWCX) occurs, resulting in soft X-ray
radiation  (Lisse  et  al.,  1996; Cravens,  1997; Snowden  et  al.,  2009;
Carter  et  al.,  2010).  The  SWCX  offers  a  new  method  for  remote
detection  of  a  large-scale  magnetopause:  soft  X-ray  imaging
(Walsh  et  al.,  2016; Sibeck  et  al.,  2018). The  Solar  wind Magneto-
sphere  Ionosphere  Link  Explorer  (SMILE)  is  a  collaborative  space
science exploration project sponsored by the Chinese Academy of
Sciences  and  the  European  Space  Agency  (Branduardi-Raymont
et  al.,  2016; Wang  C  et  al.,  2017),  which  is  expected  to  launch  in
2025.  The  SMILE  satellite  will  be  equipped  with  a  telescopic  Soft
X-ray  Imager  (SXI)  to  acquire  large-scale images  of  the  magne-
topause  near  the  subpolar  regions,  with  a  lobster-eye  optical
system (Collier et al., 2012). The SXI has a large field of view (FOV):
16°  ×  27°  (Peele  et  al.,  2004).  The  observation  data  (0.2–5.0  keV
soft X-rays) obtained by the SXI, known as two-dimensional (2-D)
soft  X-ray  images,  carry  much  information  about  the  large-scale
magnetosheath structure, which is of great significance for study-
ing the changes in the Earth’s magnetosheath under the influence
of the solar wind.

How  to  reconstruct  a  three-dimensional  (3-D)  magnetopause
profile  by  using  2-D  soft  X-ray  images  is  an  oft-studied  problem
(Collier  et  al.,  2018; Jorgensen  et  al.,  2019b; Sun  TR  et  al.,  2020).
The newly proposed computed tomography approach (CTA)  can
reconstruct the complete magnetopause profile by using 2-D soft
X-ray  images  from  different  angles  and  has  proved  feasible
(Jorgensen  et  al.,  2022; Wang  RC  et  al.,  2023).  The  CTA  uses  the
geometric relationship between 2-D soft X-ray images and imaging
from  different  angles  to  reconstruct  a  3-D  Earth  magnetopause
profile  through  a  reconstruction  algorithm.  Previous  studies  on
CTA  methods  were  based  on  theoretical  clean  2-D  soft  X-ray
images  obtained  by  a  magnetohydrodynamic  (MHD)  model  and
did not consider the influence of various factors on SXI imaging in
actual situations. In practice, the imaging process of the SXI will be
affected  by  many  factors,  such  as  the  cosmic  sky  background  of
soft  X-ray  bands,  the  noise  of  the  imaging  instruments,  and  the
fluctuation noise (Guo YH et  al.,  2021, 2022),  resulting in the loss
of some edge information from the 2-D soft X-ray images and the
blurring of structural features, which will bring about difficulties in
the  reconstruction  of  the  3-D  magnetopause  (Wang  RC  et  al.,
2023). Therefore, how to extract useful magnetospheric structure
information from SXI observation images for the reconstruction of
the 3-D magnetopause is both scientific and practical work.

yyy = HHHxxx + eee

The  rapidly  changing  space  environment  and  the  impact  of  the
SXI observation instrument itself will contribute some interference
in the magnetospheric observation imaging. Therefore, a problem
to be solved is image restoration of the SXI observation images to
help the CTA method better reconstruct the 3-D magnetospheric
X-ray  emissivity  profiles  (Jorgensen  et  al.,  2019a, 2022; Wang  RC
et al.,  2023). The purpose of image restoration is to recover high-
quality images from low-quality observation data, a classic problem
in  image  processing  and  computer  vision  (Gu  SH  and  Timofte,
2019). Our research objective is to estimate and recover 2-D soft X-
ray  images x of  the  Earth’s  magnetosheath from different  angles
through SXI observation data y, with the form , where x
is the unknown high-quality original image (target image); H is the
matrix  model  for  the  observation  or  degradation  process  (e.g.,

fuzzy, convoluted, projection), which may vary with some variables
or may be fixed; y is the observation data; and e is the noise error
(Niknejad et al., 2019). The restoration results must retain most of
the magnetospheric structure and edge information and eliminate
2-D soft X-ray image discretization and blurring caused by fluctua-
tion noise.

Previous  image restoration methods  have usually  addressed one
observation  and  noise  model,  and  image  restoration  work  has
been  applied  to  Gaussian  denoising,  that  is,  observation  matrix
H = I (unit matrix). Some of these methods rely solely on the noisy
image  itself,  without  considering  clean  images  (Buades  et  al.,
2005, 2009; Elad and Aharon,  2006; Dabov et  al.,  2007; Dong WS
et  al.,  2013; Niknejad et  al.,  2015; Teodoro et  al.,  2015).  However,
this  causes  some  limitations  to  the  restoration  results.  Hence,
researchers  have considered methods that  rely  on a clean image
dataset  (Luo  EM  et  al.,  2015)  and  a  dataset  of  noisy  and  clean
images  (Mosseri  et  al.,  2013; Chen  F  et  al.,  2015),  with  excellent
results in  various  classic  image  restoration  tasks.  With  the  devel-
opment  of  deep  neural  networks,  deep  learning  methods  have
brought rapid development to various fields of computer imaging
and  vision,  including  degraded  image  restoration  (Krizhevsky
et al., 2012). Deep learning methods for image restoration include
full convolutional networks (Shelhamer et al., 2017), autoencoders
(Liou  et  al.,  2008, 2014),  and  generative  adversarial  networks
(GANs; Goodfellow et al., 2014), which learn the mapping relation-
ship  between  the  clean  and  observed  images  to  train  an  image
estimator  whose  input  is  the  observed  image  and  output  is  the
clean image.  However,  these methods require  a  large number of
external datasets as training data, and most such methods require
separate  training  for  different  image  restoration  tasks,  or  even
different parameters  of  the  observation  model  (i.e.,  noise  vari-
ance).  As  a  result,  datasets  must  be  retrained for  different  image
restoration tasks, which makes for poor self-adaptability. Another
image  restoration  method  that  relies  on  some  external  datasets
but  does  not  need  large-scale  training  is  able  to  learn  some
parameter  distributions  from  image  patches  based  on  Gaussian
mixture  models  and  regularize  the  restored  image  by  using  the
learned  models  (Zoran  and  Weiss,  2011).  Because  this  method  is
limited  to  the  linear  inverse  problem  of  Gaussian  noise,  namely,
that it is difficult to obtain the maximum a posteriori or minimum
mean  square  error  estimation  of  other  noise  models,  it  achieves
good  results  only  in  the  image  restoration  task  of  Gaussian
denoising.  However,  it  opens up a new perspective on the study
of image restoration methods.

The  use  of  image  sample  patches  based  on  external  datasets
(rather  than  learning  parameter  models)  to  restore  observed
image patches has  gradually  become an effective image restora-
tion  method  (Freeman  et  al.,  2002; Hays  and  Efros,  2007; Adams
et  al.,  2009; Zontak  and  Irani,  2011; Chan  SH  et  al.,  2014).  Most
such methods calculate a weighted average of the center pixels of
a clean image patch (selected from an external dataset) to estimate
the center  pixels  of  the  target  patch.  The weight  is  derived from
the  exponent  of  the  negative  distance  between  the  noisy  and
clean  patches.  This  idea  originates  from  the  internal  nonlocal
means (I-NLM) filtering method (Buades et  al.,  2005),  which is  an
improved  filtering  denoising  method  among  the  traditional
neighborhood filtering methods. Inspired by the I-NLM, the exter-
nal  nonlocal  mean  (E-NLM)  method  (Levin  and  Nadler,  2011)
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selects a similar set of patches from an external dataset to estimate
the  patch  of  the  observed  image,  which  requires  calculating  the
distance between the patch of the image to be restored and that
of  the  external  dataset.  Initially,  the  distance  between  patches  is
obtained  by  dividing  the  L2  norm  of  the  difference  between
patches  by  the  noise  variance  of  the  observed  image  patches
(Levin et  al.,  2012),  but  it  does not  apply  to all  image restoration
tasks.  The  similarity  and  accessibility  of  various  image  patches
give this  method a  strong adaptive ability,  but  large-scale  image
patch-matching  has  huge  computational  costs.  Several
approaches  have  addressed  this  issue  by  speeding  up  patch
matching  (Barnes  et  al.,  2010; He  KM  and  Sun  J,  2012).  These
methods are usually heuristic and rely on some clustering hierar-
chical approach.

On  the  basis  of  the  E-NLM,  deep  learning,  and  the  correlation
analysis  of  the  matrix H for  observation  process  modeling  in
Section  2.3,  we  propose  an  image  restoration  method  for  SXI
observation  images  that  is  suitable  for  large-scale  external
datasets and observation models that cannot be modeled gener-
ally. The method constructs a large-scale patch pair dataset of 2-D
soft  X-ray  images  based on the MHD model  and SXI  observation
images.  We  use  classification  expectation–maximization  (CEM;
Celeux  and  Govaert,  1992)  to  classify  datasets  of  large-scale
patches,  and  the  patch  dataset  corresponding  to  each  cluster  is
used  to  train  the  patch  estimator  based  on  the  deep  neural
network to obtain each cluster estimator. Classification expectation
–maximization  is  used  to  divide  the  observation  model H into
several local observation models h. The idea is similar to polynomial
fitting,  where several  models h can be infinitely approximated to
H.  This  method can improve the training efficiency and accuracy
of  the  estimator  and  further  enhance  the  generalization  of  the
overall regression method. The patch estimator is used to establish
the potential relationship between the SXI-simulated observation
image  patch  and  the  MHD  model  2-D  X-ray  image  patch  (i.e.,  to
model  the  local  observation  model h). In  experimental  verifica-
tion,  we  split  the  SXI  observation  images  of  the  test  set  into
several  image  patches.  According  to  the  CEM  algorithm,  the
patches  of  these  observed  images  are  classified,  and  the  patch
estimator trained by each cluster is used to estimate the observed
image  patches  divided  into  clusters.  The  estimated  patch  is
returned to the original position in the image, and the pixel values
of  the  overlapping  area  are  averaged.  The  restored  image  is
smoothed by an adaptive smoothing filter.

The  remainder  of  this  article  is  organized  as  follows.  Section  2
outlines  the  data  used  in  this  work,  as  used  in  the  experiments
presented in Section 4. Section 3 introduces the proposed image
restoration method. Section 4 reports the experimental results of
SXI-simulated  observation  image  restoration.  Section  5  provides
concluding remarks and a discussion of future work. 

2.  Mission Data Introduction
Here,  we  introduce  the  X-ray  emissions  and  X-ray intensity  tech-
niques  for  obtaining  the  2-D  MHD  X-ray  images  and  SXI  photon
count images that are analyzed in Section 2.3. 

2.1  X-Ray Emissions
The global MHD code was used to simulate solar wind–magneto-
sphere interactions, and the piecewise parabolic method–magne-

−300 RE ≤ x ≤
30 RE −150 RE ≤ y, z ≤ 150 RE

RE RE

tohydrodynamic  model  (PPMLR-MHD; Hu  YQ  et  al.,  2007)  was
applied  to  generate  3-D  X-ray  emissivity  data.  The  code  used  an
extended  Lagrangian  version  of  the  PPMLR  to  solve  the  MHD
equation  in  the  solution  domain,  whose  scope  is 

, ,  with  a  minimum  grid  spacing  of
0.1 ,  and  the  resolution  near  the  subsolar  point  is  0.4 .  The
ionosphere was simplified to a spherical shell with uniform Peder-
sen conductance (5 S in this work) and zero Hall conductance. The
influence of dipole tilt was not considered.

M × N × L M L
X Y Z

During simulation, the solution domain was divided into a grid of
size  of ,  where , N,  and  are  the  numbers  of  grids  in
the , ,  and  directions,  respectively.  The  method  of Cravens
(2000) was  used  to  estimate  the  volumetric  emissivity  of  each
point in the grid,

P = acxnHnsw⟨g⟩, (1)

eV ⋅ cm−3 ⋅ s−1 acx nH nsw ⟨g⟩
acx

acx 6 × 10−16

6 × 10−15eV ⋅ cm2

acx = 1 × 10−15eV ⋅ cm2

nsw nH
nH = n0[10( RE)/r]3 cm−3

n0 ⟨g⟩ = √
u2
sw + u2

th

usw uth

where P is  in ; , , ,  and ,  respectively,
denote effective interaction factors,  the density of neutral  hydro-
gen in the exosphere, the density of solar wind ions, and the relative
wind velocity.  The term  depends on the charge transfer cross
section  and  the  composition  and  density  of  highly  charged  ions
in  the  solar  wind.  Because  ranges  from  to

 according  to  Cravens  (2000),  we  adopt
 in  this  work  (Jorgensen  et  al.,  2019a).  The

term  was provided by MHD simulation data, and  is approxi-
mated  by  the  formula   (Hodges,  1994;

Cravens  et  al.,  2001).  The  value  of  is  25,  and ,

which  is  the  average  collision  speed  estimated  from  the  plasma
bulk speed  and the thermal speed .

Although solar  wind  particles  can  indirectly  enter  the  magne-
tosheath, the density of highly charged ions in the magnetosheath
is very low, and the X-ray intensity is at least an order of magnitude
smaller than outside it (Sun TR et al., 2015). As such, X-ray emissivity
inside  the  magnetopause  was  ignored,  and  the  magnetic  flux
method was used to locate the magnetopause in the MHD model.
More specifically,  from  the  magnetosheath  to  the  magneto-
sphere,  the  plasma  flux  (density  ×  velocity)  sharply  decreases  at
the  magnetopause.  The  position  where  this  flux  was  reduced  to
half  the  solar  wind  level  was  considered  the  magnetopause
boundary, an approach that produced a relatively smooth magne-
topause.  Once  this  boundary  was  identified,  X-ray  emissivity
inside  the  magnetopause  was  set  to  0  (Jorgensen  et  al.,  2019a).
And our magnetospheric mask (the region where the emissivity is
set to be zero) does not include the cusps, whereas other studies
(Sun TR et  al.,  2019; Samsonov et  al.,  2022) do include the cusps.
Figure 1 shows the scope of 3-D magnetospheric X-ray emissivity
used  in  this  paper  and  visualizes  the  3-D shape  of  the  magne-
topause. 

2.2  X-Ray Intensity

O7+

The SXI on the SMILE satellite collects information concerning the
position  of  the  magnetopause  and  bow  shock  during  SWCX
processes  in  the  magnetosheath.  Solar  wind  charge  exchange
occurs  when  a  highly  charged  solar  wind  ion  (such  as )
encounters  a  neutral  atom  (such  as  H)  and  captures  an  electron
that stays in the excited state. This can be represented as
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O
7+ + H → O

6+* + H
+. (2)

When an ion decays to a lower energy state, it releases a photon,
and the SXI detects the resulting soft X-rays. The SXI measures the
integrated X-ray intensity along the look direction of  a pixel.  The
path  integrals  of  X-rays  emitted  at  different  distances  from  the
charge-coupled device (CCD) in the line of sight are

I = 1
4π ∫ Pdr = 1

4π ∫ acxnHnsw⟨g⟩dr, (3)

keV ⋅ cm−2 ⋅ s−1 ⋅ sr−1

acx nH nsw ⟨g⟩where I is  in ; P is  the  local  volume  energy
production rate (Figure 1), and , , , and  have the same
meaning as  in  Equation (1)  (Cravens,  2000).  We used X-ray emis-
sions  under  different  solar  wind conditions,  as  shown in Table  1,
to  simulate  2-D  X-ray  images.  In  previous  work,  the  ray-tracing
imaging  simulation  method  of  the  lobster-eye  model  based  on
the MHD model was studied and has been widely used (Peng SW
et al., 2018; Sun TR et al., 2019, 2020). By specifying the position of
the spacecraft and the direction of the SXI, the 2-D X-ray intensity
image  of  the  MHD  model  at  the  specified  position  on  the  SMILE
operation  orbit  can  be  obtained  according  to  Equation  (3).  The
lobster-eye imaging principle and integrated imaging process are

shown in Figure 2.

On this basis, through the instrument computer simulation of the
SXI payload, combined with the relevant set of parameters, a soft
X-ray  photon  counting  image  that  we  expect  to  be  observed  by
the hypothetical SXI can be obtained. The methods and parameters
used  in  this  paper  are  consistent  with  the  simulation  principles
and  parameter  settings  of Guo  YH  et  al.  (2022).  The  observation
results will be affected by the sky background, so it is necessary to
add  this  background  to  the  computer  simulation  results  to
achieve  observation  results  closer  to  the  real  situation  (Guo  YH
et al., 2021). In the soft X-ray band, the sky background is primarily
a diffuse astrophysical X-ray background, and NASA’s High Energy
Astrophysical  Science  Archives  Research  Center  (HEASARC)
provides  an  X-ray  Sky  background  tool  (Sabol  and  Snowden,
2019) to calculate the average X-ray background count rate from
the  ROSAT  (Röntgensatellit)  All-Sky  Survey  diffuse  background
image.  The  sky  background  will  change  with  the  satellite  orbit
view,  and  its  influence  on  the  observation  results  should  be
reduced or possibly removed from the final imaging results of the
magnetosheath.  With  the  aforementioned  tools,  the  intensity  of
the  soft  X-ray  background  within  the  energy  range  of  SXI  (0.2–
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Figure 1.   Three-dimensional (3-D) simulation data (X-ray emissivity) produced by the PPMLR-MHD model. Solar wind conditions: ,

, . Size of the simulation data: 49 × 94 × 94; X-axis range: –0.2 to 20.4 ; Y- and Z-axis range: −25.9 to 25.9 . (a) X–Z section of

the 3-D magnetospheric X-ray emissivity data for Y = –0.2 ; (b) X–Y section of same region for Z = –0.2 ; (c) 3-D view.

 

Table 1.   Solar wind condition parameter setting of the MHD model.

Set class Case Number density (cm−3) Velocity (km·s−1) Bx (nT) By (nT) Bz (nT)

Training set

1 5 800 0 10 0

2 5 900 0 0 5

3 7 500 5 0 0

4 10 400 0 0 0

5 15 400 0 0 15

6 15 800 0 0 10

7 20 400 0 −10 −5

8 20 800 0 10 −15

Test set

1 5 600 0 0 0

2 10 600 0 0 0

3 15 600 0 0 0

4 20 600 0 0 0
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keV⋅cm−2 ⋅s−1 ⋅sr−1

40/√40 + 20 ∼ 5

5  keV  soft  X-ray) can  be  conservatively  estimated  to  be  approxi-
mately  50 .  The  soft  X-ray  energy  background
has a spectral shape similar to the emission of the SWCX, but the
expected maximum pixel  background count is  about half  that of
the  SWCX,  and  the  signal-to-noise  ratio  is  approximately

 sigma (Guo YH et al., 2022) at the integration time
of 300 s (which is used in this work). The foreground SWCX emission
is therefore easily detectable above the background.

Figure 3 shows the 2-D MHD X-ray images, with the X-ray emissivity
integrated  along  the  line  of  sight  by  using  Equation  (3),  under
different  solar  wind conditions  and the  corresponding computer
simulation of SXI photon count images. Twelve sets of solar wind
conditions are shown in Table 1. These 2-D MHD X-ray images and
SXI  photon  count  images  obtained  at  different  positions  under
solar  wind  conditions  in Table  1 were  used  in  the  experiments
described here.

RE

θ ϕ
RE

We randomly selected X-ray images of 8 solar wind conditions for
training,  and  the  purpose  of  the  test  set  was  to  train  the  patch
estimator described in Section 3.3. One purpose of our experiment
was to explore the restoration effect  of  the proposed restoration
method  on  SXI  photon  count  images  under  different  number
densities.  Therefore,  we  selected  four  sets  of  X-ray  images  with
different number densities  and other parameters  consistent with
the  solar  wind  conditions  as  the  test  set  for  image  restoration
methods. Figure  3 shows the  integrated X-ray  emissivity  and SXI
count maps for the observation point at (–3.5173, 2.6647, 19.5233)

 in  the  Geocentric  Solar  Magnetospheric  (GSM)  coordinate
system. The FOV of the SXI is 16° × 27° (the FOV range is −8° to 8°
in the  direction and −13.5° to 13.5° in the  direction),  and the
center is oriented toward the target point (10.8593, 0.0157, 0) .
All the aforementioned values are real orbit data that may be used
in SMILE satellite missions in the future.

From  a  visual  perspective,  with  the  increase  in  the  solar  wind
number density, the effective pixel information in the 2-D MHD X-
ray images retained by the SXI photon count images also gradually
increases. This also means that the SXI photon count images with
a high number density are less difficult to restore than those with
a  low  number  density.  Because  of  the  high  number  density,  the
available  prior  information  on  the  SXI  photon  count  images  is
more  sufficient.  However,  the  information  around  the  edges  of

the SXI photon count images with all number densities has largely
been lost because of the geometry of the lobster-eye system and
the photon count distribution. Restoring this edge information in
the SXI photon count image is a key task in this work. 

2.3  Image Analysis
The distribution of pixel values is a basic method used to describe
an  image.  By  comparing  the  distribution  of  pixels  between
images,  we  can  measure  their  degree  of  similarity  and  judge
whether a simple mapping relationship exists. Figure 4 shows the
histograms  of  photon  numbers  (and  the  integrated  emissivity
distribution) for the three scenarios presented in Table 2.

Scenario  1: Comparing  MHD  X-ray  images  from  the  same  solar
wind conditions and location, the SXI photon count image without
a sky background, and the SXI photon count image after adding a
constant sky background pixel value distribution.
Scenario  2: Analyzing  the  distribution  of  pixel  values  of  SXI
photon  count  images  after  adding  a  constant  sky  background
under  the  same  solar  wind  conditions.  The  position  coordinates
and  aim  points  of  the  SXI  in  the  GSM  coordinate  system  are
shown in the table.
Scenario 3: Comparing the SXI photon count images after adding
a  constant  sky  background  with  different  solar  wind  number
densities at the same location.

Figure 4a illustrates the corresponding results for Scenario 1. Our
purpose was to explore whether a simple linear mapping relation-
ship  (similar  pixel  distribution)  would  exist  between  the  MHD  X-
ray  images  and  SXI  photon  count  images.  However,  the  results
showed  that  the  pixel  distributions  of  the  three  histograms  in
Figure  4a presented  different  shapes.  This  result  means  that  a
complex  underlying  mapping  relationship  exists  between  them,
rather than a simple linear expression relationship. The aforemen-
tioned  results  show  that  we  cannot  use  simple  mathematical
models,  such  as  Gaussian  distribution  fitting,  to  represent  the
mapping relationship between MHD X-ray images and SXI photon
count  images.  This  also  prompted  the  use  of  the  deep  neural
network technology presented in Section 3.3 to establish a poten-
tially  complex  mapping  relationship  between  the  two  image
patches.

Figures  4(b1)–(b3) show  the  pixel  distributions  corresponding  to
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Figure 2.   (a) Lobster-eye imaging principle; (b) X-ray intensity image simulation process.
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yyy = HHHxxx + eee

Scenario 2.  Their  distributions are  remarkably  similar,  which indi-

cates  that  the  degradation  matrix H in  the  degradation  model

( ) with the same instrument parameters of SXI does not

change  with  the  observation  position.  This  also  means  that  it  is

not necessary to retrain the deep neural network model because

of  the  change  in  the  observation  position,  which  is  crucial  for
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Vx = 600 km/s

Bz = 0 nT
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Figure 3.   (a1)–(a4) The MHD X-ray image inside the FOV with the solar wind number density 5, 10, 15, and 20 cm−3; (b1)–(b4) the SXI photon

count image corresponding to (a1)–(a4) without the sky background; (c1)–(c4) the SXI photon count image corresponding to (a1)–(a4) after

adding the constant sky background, which was obtained by inputting (a1)–(a4) with the constant sky background into the SXI imaging

simulation technology (Guo YH et al., 2022). The SXI simulation integration time is 300 s, and other solar wind conditions are  and

. The size of the images is 55 × 33. The range of the FOV angle is −13.5° to 13.5° and −8° to 8°, so the resolution is 0.5°. The intensity of the

sky background on panels (c1)–(c4) is approximately  sigma.
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increasing the recovery speed. Figures 4(c1)–(c4) present the pixel
distributions  corresponding  to  Scenario  3.  The  pixel  distribution
of  the  four  images  has  an  obvious  linear  mapping  relationship,
which also proves that the degradation matrix is unchanged from
the side.  With the gradual  increase in solar  wind number density
(from left  to right),  the distribution of  pixels  remains unchanged,
but  the  number  of  SXI  counts  (or  photons)  per  pixel  increases.
This  is  because  the  SWCX  process  is  enhanced  as  the  solar  wind
number density increases, so the number of photons that can be

received by the SXI detection panel gradually increases.
 

3.  Methodology
Here,  we  introduce  each  step  of  the  proposed  photon  count

image restoration method and discuss its implementation.
 

3.1  Creating a Clean–Noise Patch Pair Dataset
A patch is a small piece of an image. To divide a patch is to divide

 

(a)

0 10 20 30 40 50 60
Integral value/Photon number

0

50

100

150

200

250

300

Fr
eq

ue
nc

y

MHD
SXI
SXI+bgd

(b1)

0 20 40 60
Photon number

0

50

100

150

200

250

Fr
eq

ue
nc

y

0 20 40 60
Photon number

0

50

100

150

200

250
Fr

eq
ue

nc
y

(b2)

0 20 40 60
Photon number

0

50

100

150

200

250

Fr
eq

ue
nc

y

(b3)

(c1)

0 20 40 60
Photon number

0

50

100

150

200

250

Fr
eq

ue
nc

y

0

50

100

150

200

250

Fr
eq

ue
nc

y

(c2)

0 20 40 60 80
Photon number

(c3)

0 50 100
Photon number

0

20

40

60

80

100

120

140

160

180

200

Fr
eq

ue
nc

y

(c4)

0 50 100
Photon number

0

20

40

60

80

100

120

140

Fr
eq

ue
nc

y

 

5 cm−3 Vx = 600 km/s Bx By Bz

Figure 4.   (a) Histogram of the pixel distribution of Scenario 1; (b1)–(b3) histogram of the pixel distribution of Scenario 2; (c1)–(c4) histogram of

the pixel distribution of Scenario 3, with the corresponding solar wind number density, from left to right, of 5, 10, 15, and 20 cm−3. The solar wind

number density of (a) and (b1)–(b3) is , and other solar wind conditions for all images are ; , , and  are equal to 0 nT.
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the original complete image into small images that are still part of
the  original  image  while  the  pixel  value  remains  unchanged.
Many methods can be used to divide patches, such as the random
block,  mirror  block,  and  sequential  block  methods.  We  used  the
overlapping  block  method  (Ronneberger  et  al.,  2015),  which
divides the complete image into patches with overlapping parts.
This method reduces the computation of the patch estimator and
highlights the edge details of the image. Figure 5 shows the over-
lapping  block  process  and  parameters.  In  this  work,  the  patch
pairs  were  obtained  by  overlapping  block  technology  based  on
the MHD X-ray images and SXI photon count images after adding
a  constant  sky  background  corresponding  to  all  the  solar  wind
conditions shown in Table 1. A clean–noise patch pair dataset was
thus established for training and experimental verification.

The initial size of the MHD X-ray images obtained in Section 2.2 is
271 × 161,  whereas the size of  the SXI  photon count image after
adding  the  constant  sky  background  is  55  ×  33  (Guo  YH  et  al.,

θFOV

ϕFOV

ϕFOV

ϕFOV

2022).  This  difference  is  due  to  the  structure  of  the  SXI  probe.

Therefore, before obtaining a patch pair,  it  is  necessary to down-

sample  (five-pixel  sampling  interval)  the  MHD  X-ray  images  to

reduce their  size  from 271 × 161 to  the same size  as  the photon

count image. Next, we defined the parameters of the overlapping

block. The patches are 8 × 8, and the moving steps in the  and

 directions are 5. However, it cannot be completely divided in

the  direction,  and  the  image  remains  after  moving  to  the

10th  block  (46–53).  So  as  not  to  miss  all  the  information  in  the

image, we added an 11th block (48–55) in the  direction. Thus,

66  patch  pairs  could  be  obtained  for  one  MHD  X-ray  image  and

one SXI photon count image after adding the constant sky back-

ground. 

3.2  Patch Clustering
We  have  many  patch  pairs  from  the  MHD  X-ray  images  and  SXI
photon count images after  adding the constant  sky background.

 

Table 2.   Solar wind conditions, SXI position, and aim points corresponding to the three different scenarios.

Scenario Number density (cm−3) Velocity (km·s−1) RE

SXI position
( ) RE

SXI aim point
( ) Add sky background

1 5 600 (–3.5173, 2.6647, 19.5233) (10.8593, 0.0157, 0)

Figure 4a MHD (no)

Figure 4a SXI (no)

Figure 4a SXI + bgd (yes)

2 5 600

(–3.5173, 2.6647, 19.5233) (10.8593, 0.0157, 0) Figure 4(b1) (yes)

(−3.6941, 5.1986, 18.9843) (10.9377, 0.0148, 0) Figure 4(b2) (yes)

(–3.7799, 7.5792, 17.9918) (10.9047, 0.0122, 0) Figure 4(b3) (yes)

3

5

600 (–3.5173, 2.6647, 19.5233) (10.8593, 0.0157, 0)

Figure 4(c1) (yes)

10 Figure 4(c2) (yes)

15 Figure 4(c3) (yes)

20 Figure 4(c4) (yes)
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Figure 5.   Obtaining a patch pair by the overlapping block technology. The size of the red squares is 8 × 8, and the movement step size is 5. The

red squares in the figure are shown for purposes of illustration and do not match those used in the simulations.
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Our purpose is to estimate the clean patch from the noise patch,
which is the work of the patch estimator described in Section 3.3.
To  further  reduce  the  working  difficulty  of  the  patch  estimator
and  the  training  convergence  speed,  we  cluster  the  patch  pairs
based  on  the  noise  patch  before  training  the  patch  estimator.
Patch pairs from different clusters are used to train the patch esti-
mators. In the subsequent restoration process, the corresponding
patch estimator is  selected to estimate the clean patch based on
the cluster  of  noise  patches,  which improves  the accuracy of  the
patch estimator (Salimans et al., 2016).

For  the  clustering  of  patch  pairs,  any  clustering  (hard  clustering)
algorithm  can  be  used,  such  as k-means,  because  the  proposed
recovery  algorithm  does  not  rely  critically  on  clustering.  We  use
the CEM algorithm (Celeux and Govaert, 1992), which fits K multi-
variate  Gaussian  distributions  into  the  data  and  considers  the
samples assigned to each distribution as a cluster. Thus, the patch
pairs  used  to  train  the  same  patch  estimator  follow  the  same
multivariate Gaussian distribution.

xxx ∈ Rp

The  expectation–maximization  (EM)  algorithm  (Dempster  et  al.,
1977)  iteratively calculates the maximum likelihood or  maximum
a posteriori estimates and has been widely used for image classifi-
cation  (Bruzzone  and  Prieto,  2001; Kersten  et  al.,  2005).  For  the
Gaussian mixture  model,  the  EM  first  expresses  the  global  distri-
bution  of  a  complex  mixture  with  finite  parameter  distribution
combinations  and  iteratively  maximizes  the  expected  value  to
gradually approximate  the  parameter  set  of  the  maximum  likeli-
hood  function  of  each  density  distribution  (Tadjudin and  Land-
grebe,  1996).  We  presume  that  the p-dimensional  vector  data x
( ) are a mixture of K-component Gaussian distributions (K is
set to 10 in this work). The density function is then defined as

f (x; θ) = K

∑
k=1

αkfk (x ∣θk ), (4)

α1,⋯, αK

θ = (θ1,⋯, θK)
fk (x ∣θk ) k = 1,⋯, K

θ = (α1,⋯, αK, θ1,⋯, θK)
θ = (α1,⋯, αK, μ1,⋯, μK,∑1,⋯∑K) μ1,⋯, μK

∑1,⋯∑K

{x1,⋯, xn}
θ

where  are  the  prior  probabilities  of  each  component  in
the  mixed  Gaussian  model,  and  are  the  unknown
parameters  for  Gaussian  density  functions , ,
where K is the number of classes. The entire set of parameters for
the  Gaussian  mixture  model  is ,  which  can
be rewritten as , and  and

 are  the  mean  and  covariance  matrices,  respectively,  of

each cluster sample. Hence, samples can be classified by estimating
the  parameters  of  the  Gaussian  mixture  model.  For  unclassified
datasets  (534,864 noise  patches),  the  maximum  likeli-
hood estimation of  can be determined as

θML = arg max
θ

n

∏
i=1

f (xi ∣θ ), (5)

xi θ θ

αk θk 1 ⩽ k ⩽ K

αk θk Pk 1 ⩽ k ⩽ K

which is an incomplete data problem lacking observational infor-
mation (McLachlan and Peel, 2000), for which it is difficult to solve
directly  for ; f(x| )  is  the  conditional  probability  of x if  has  a
definite  distribution.  The  EM  is  a  general  algorithm  to  compute
maximum  likelihood  estimates  of , ( )  under  the
mixture approach.  The  CEM  is  also  a  general  algorithm  for  esti-
mating ,  and finding clusters ( ) under the classifi-
cation  approach.  The  EM  algorithm  has  an  expectation  step  (E-
step) and a maximization step (M-step), whereas the CEM incorpo-
rates a classification step (C-step) between the E-step and M-step

αk μk
∑k 1 ⩽ k ⩽ K P0

by  using  the  maximum  a  posteriori  principle.  We  define  the
number  of  clusters K and  initialize  the  parameters , ,

( )  for each cluster.  Starting from an initial partition ,

the lth iteration of the CEM (l > 0) is defined as follows:

i = 1,⋯n k = 1,⋯K
γlk (xi) xi Pk

E-Step. Compute for  and  the current (l iteration)
posterior probability  that  belongs to ,

γlk (xi) = αl
kf (xi »»»»»»»»»»μlk,

l

∑
k

)
K

∑
k=1

αl
kf (xi »»»»»»»»»»μlk,

l

∑
k

) . (6)

xi
γlk (xi) 1 ⩽ k ⩽ K

Plk

C-Step. Assign  each  to  the  cluster  that  provides  the  maximum
posterior  probability , .  (If  the  maximum  posterior

probability  is  not  unique,  choose  the  cluster  with  the  smallest
index.) Let  denote the resulting partition.

k = 1,⋯K
αl+1
k μl+1

k ∑l+1
k Plk

M-Step. For , compute the maximum likelihood estimates
( , , and ) by using subsamples ,

Nk = ∑
xi∈Plk

γlk (xi), (7)

αl+1
k =

Nk

Nxi∈Plk

, (8)

μlk =
1
Nk

∑
xi∈Plk

[γlk (xi) ⋅ xi], (9)

l+1

∑
k

= 1
Nk

∑
xi∈Plk

[γlk (xi) ⋅ (xi − μlk)], (10)

Nxi∈Plk
xi ∈ Plkwhere  is  the  number  of .  Updated  estimates  of

unknown  parameters  are  obtained  according  to  Equations
(7)–(10) and used to calculate the corresponding log-likelihood,

L =
n

∏
i=1

K

∑
k=1

[αl
k ⋅ f (xi »»»»»»»»»»μlk,

l

∑
k

)]. (11)

ε

With each iteration,  the set  of  estimated parameters  provides  an
increased  log-likelihood  until  a  local  maximum  is  reached.
Convergence is reached when the relative increase in the log-like-
lihood is less than a specified threshold , namely,ÂÂÂÂÂLk+1 − LkÂÂÂÂÂ ⩽ ε, (12)

ε

ε

where  (set as 10−4) is an arbitrarily small positive threshold. If the
relative  increase  of  the  log-likelihood  function  is  greater  than ,
then the E-step, C-step, and M-step are repeated until the specified
condition is reached. In this section, we introduce the mathemati-
cal principles and derivation of the CEM algorithm. The CEM algo-
rithm  is  used  in  this  work  to  classify  large-scale  noise  image
patches,  and the classified noise image patches are used to train
the estimator described in Section 3.3. 

3.3  Patch Estimator
Pixel estimation is crucial in traditional filtering restoration meth-
ods  because  it  estimates  the  center  pixel  by  using  the  weighted
average of adjacent pixels (Lebrun, 2012; Yan RM et al., 2014). The
I-NLM  and  block  matching  3-D  (BM3D)  algorithms  (Dabov  et  al.,
2007) replace central pixel estimation with patch estimation in the
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image.  However,  they  rely  on  prior  knowledge  of  the  degraded
image itself, which limits recovery performance. With the idea of E-
NLM, restoration algorithms began to rely on prior knowledge of
the  external  datasets  for  the  restoration  estimation  of  degraded
image  patches  (Levin  and  Nadler,  2011).  A  variety  of  image
restoration algorithms based on E-NLM have achieved remarkable
results in various image restoration tasks.

Generative adversarial networks have brought rapid development
to  various  fields  of  degraded  image  restoration.  They  find  the
mapping relationship between a degraded image and the original
image by training a deep neural network. The original GANs used
random noise images to generate images similar  to  a  real  image
distribution  (Goodfellow  et  al.,  2014; Radford  et  al.,  2016).
However, the input of the image restoration task was not random
noise  but  the  observed  degraded  image,  so  it  was  necessary  to
provide  the  degraded  image  and  the  corresponding  original
image to the network to enable it  to  learn the one-to-one corre-
spondence  between  them.  The  emergence  of  conditional  GANs
solves the aforementioned problems (Mirza and Osindero,  2014).
Isola  et  al.  (2017)  developed  the  pix2pix  project,  which  uses  the
conditional  generation  countermeasure  network  technology  to
realize  the  generation  task  from  one  type  of  image  to  another.
This project has brought new inspiration to image restoration.

We  constructed  a  patch  estimator  to  estimate  patches  from
degraded image patches based on the pix2pix project. The patch
estimator includes a generator G and discriminator D. The genera-
tor  restores  clean  patches  corresponding  to  noise  patches  and
includes  encoding  and  decoding  procedures.  Encoding  is  based
on downsampling and provides feature mapping to the symmetric
layer  of  the  decoding  process,  which  adopts  upsampling  and
nonlinear  spatial  transmission.  We  use  the  encoder–decoder
model for the generator, which has a U-Net structure of 8- and 7-
layer  decoders  with  a  deconvolution  layer.  The  discriminator
distinguishes  between  true  and  false  images  and  applies  a
sigmoid function to the last  layer in feature mapping so that the
probability  score  can be changed to  [0,  1]  because the results  of
the  clean  and  generated  patches  are  similar  in  texture  and  each

pixel  is  closely  related  to  its  surrounding  pixels.  We  use  the
Markov  discriminator  PatchGAN  (Pathak  et  al.,  2016),  which
models  the  image  into  a  Markov  random  field;  a  pixel  with  a
distance greater than one patch is independent, and those with a
distance within one patch are related. The PatchGAN discriminator
does not impose a size restriction on the patch and maintains the
high  resolution  and  texture  structure  of  the  patch,  and  it  can
effectively  reduce  the  number  of  parameters  and  calculations.
Figure 6 shows the structure of the patch estimator.

The training data for the patch estimator have paired patches (x, y;
noise–clean patch pairs), where x (noise patch) is the input of the
generator G,  and y (clean patch) is the target image patch. When
training  the  generator,  we  randomly  input  a  mix  of x and z
(random noise patch) so that it can obtain a more diverse output
and improve its generalization ability. Without adding z, the patch
estimator  can  still  learn  the  mapping  from x to y,  but  this  will
produce a deterministic output, resulting in the inability to match
any distribution other than the pulse function. The output of the
generator  is G(x),  which  is  combined  with x as  the  input  to  the
discriminator to obtain the prediction probability D(G(x), x), which
is the probability that the input is a pair of real images. The closer
the  probability  is  to  1,  the  more  certain  the  discriminator  is  that
the input is a real pair of images. In addition, y and x are combined
as  positive  samples  to  serve  as  the  input  of  the  discriminator D.
The positive  samples  give the discriminator  a  judgment criterion
and guide it to make a judgment. Hence, the training goal of the
discriminator  is  to  output  a  small  probability  value  (close  to  0)
when the input is not a pair of real images (x and G(x)) and a large
probability  value  (close  to  1)  when  the  input  is  a  pair  of  real
images (x and y). The training goal of the generator is to generate
G(x) and x as inputs to the discriminator and maximize its output
probability,  that  is,  to  deceive  the  discriminator.  The  purpose  of
the discriminator is to distinguish between x and G(x), which give
lower probability values, and x and y, which give higher probability
values.  The  generator  and  discriminator  are  trained  iteratively
with  each  other  in  the  game.  When  an  equilibrium  point  is
reached, then the network has reached convergence and the iter-
ative training can be stopped.  This is  the Nash equilibrium (Nash
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Figure 6.   Structure of the patch estimator.
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et al., 1950). Figure 7 shows the entire process of patch input and
output  to  the  estimator  network.  At  the  same  time,  the  detailed
structure of  the estimator  network (PyTorch framework)  is  given,
which  provides  ideas  and  a  basis  for  reproducing  the  estimator
network.

LG
Ladv Lpix

The purpose of the patch estimator is to learn the mapping from a
noise patch to a clean patch and train the generator and discrimi-
nator  by  using the loss  function ,  which consists  of  adversarial
loss  and pixel loss ,

Ladv = −Ex∼Pdata(x),z∼Pdata(z) [logD (x, G (x, z))] , (13)

Lpix = −Ex∼Pdata(x),y∼Pdata(y),z∼Pdata(z) [∥y − G (x, z) ∥1] , (14)

LG = Ladv + λ ⋅ Lpix, (15)

x∼Pdata (x)
y∼Pdata (y)

z∼Pdata (z)
λ

Ladv

Lpix

LG

where E is  the  expectation;  is  the  distribution  of  the
noise  patch  dataset;  is  the  distribution  of  the  clean
patch  dataset;  is  the  distribution  of  random  noise,
which  is  Gaussian;  and  is  a  regularization  parameter  used  to
balance  the  loss  function,  which  we  set  to  10.  The  purpose  of
adversarial  loss  is  to  deceive  the  discriminator  as  much  as
possible  by  the  output G(x)  of  the  generator,  whereas  pixel  loss

 constrains the L1 distance between the generated image G(x)
and y (clean patch)  to make them as similar  as  possible.  The loss
function  of the generator is  the objective function of its  train-
ing.  The  loss  function  of  the  discriminator  is  defined  by  the
confrontation between the generator and discriminator,

LD = Ex∼Pdata(x),y∼Pdata(y) [logD (x, y)]+
Ex∼Pdata(x),z∼Pdata(z) [log (1 − D (x, G (x, z)))] , (16)

where x and y are input to the discriminator as positive samples,

and X, G(x), z,  and G(z)  are  input  as  negative  samples.  Positive

samples  provide  criteria  for  the  discriminator,  and  negative

samples  provide  much  discriminant  experience  for  discriminator

training.  Thus,  the final  objective function of  the patch estimator

is

Ĝ = arg min
G

max
D

(LG + LD) . (17)

LG
LD

The purpose of the objective function is to minimize  and maxi-

mize . In this way, the generator can obtain an estimated patch

similar to clean patches by inputting noise patches. The estimated

patch can obtain a higher output value under the identification of

the discriminator. Thus, the patch estimator can learn the potential

mapping  relationship  between  noise  patches  and  clean  patches

and  achieve  the  purpose  of  estimating  clean  patches  by  noise

patches. 

3.4  Practical Implementation Process
We discussed the acquisition of noise–clean patch pairs in Section

3.1. These pairs must be obtained from the corresponding MHD X-

ray  images  and  SXI  photon  count  images  after  adding  the

constant  sky  background.  X-ray  emissions  under  all  solar  wind

conditions  corresponding  to Table  1 are  used  to  obtain  MHD  X-

ray  images  and  SXI  photon  count  images  after  adding  the

constant  sky  background,  as  described  in  Section  2.2.  In  Section

4.3, we discuss coordinate information on the observation points.

Thus,  we  can  obtain  large-scale  noise–clean  patch  pair  datasets

for subsequent  clustering,  patch  estimator  training,  and  experi-

mental testing.

The number of clusters and the initial mixed distribution parame-
ters corresponding to each cluster in the CEM algorithm should be
set in advance. The number of clusters K is 10, and the initial distri-
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Figure 7.   Training a patch estimator to map the noise patch to a clean patch. ReLU (Rectified Linear Unit) is a nonlinear activation function in

neural networks. And BN (Batch normalization) is a data processing method for optimizing neural networks.

Earth and Planetary Physics       doi: 10.26464/epp2023064 143

 

 
Wang RC and Li DL et al.: Using restored 2-D X-ray images to reconstruct the 3-D magnetopause

 



ε 10−4

bution  parameters  of  each  cluster  are  estimated  by  randomly
extracting  10  noise  patches  from  the  dataset  of  noise  patches
awaiting classification. The fixed threshold  is set to . We set
the maximum number of iterations to 1000 to prevent an infinite
cycle caused by the failure to converge.

Noise–clean patch pairs were divided into 10 clusters by the CEM
algorithm;  hence,  we  needed  to  train  10  patch  estimators.  We
used 10 noise–clean patch pair clusters obtained by CEM to train
10  patch  estimators,  and  the  relevant  parameters  used  in  the
training  process  of  the  10-patch  estimator  remained  consistent.
The training epochs were set to 2000, and the batch size was 16.
The initial learning rate of a gradient descent-based optimization
method (Adam) was set to 0.0002, and the Adam movement was
set  to  0.5  (Kingma  and  Ba,  2017).  The  learning  rate  remained
unchanged in the first 1000 epochs and decreased linearly to 0 in
the  last  1000  epochs.  The  loss  coefficient  of  L1  of  the  generator
was  set  to  10.  We  used  the  PyTorch  deep  learning  framework
(Paszke  et  al.,  2019)  to  build  the  patch  estimator  on  a  64-bit
Windows  10  operating  system.  A  GPU  was  used  in  the  training
process,  the  graphics  card  model  was  RTX  3090,  the  video
memory  size  was  24  GB,  and  the  virtual  environment  was
Anaconda, PyTorch 1.8.1, and CUDA 11.0.

In the final estimation of the noise patches of the test set,  an SXI

count map  was  partitioned  after  adding  the  constant  sky  back-

ground according to the overlapping block technology described

in  Section  3.1.  The  patch  estimator  of  the  corresponding  cluster

was then matched according to the CEM algorithm, and the noise

patches  were  estimated,  one  by  one,  to  obtain  the  restored

patches, which composed a completely restored image following

the  original  position.  Because  we  used  overlapping  blocks,  the

patches had overlapping areas. The recovery value of overlapping

areas  was  estimated  by  utilizing  the  average  value.  We  used  an

adaptive  smoothing  filter  (Ferrara,  1980)  to  smooth  the  restored

image and obtain the final restored result. 

4.  Experimental Results
In  this  section,  we  evaluate  the  performance  of  the  proposed

image restoration method on the SXI count map dataset. We also
show  the  reconstruction  effect  of  the  reconstructed  images
applied  to  two  common  magnetopause  X-ray emissivity  recon-
struction  techniques,  the  tangent  fitting  approach  (TFA)  and  the
CTA. 

4.1  Preparation of the Experimental Data
The 12 solar wind conditions in Table 1 are divided into two parts,
8 as a training set and 4 as a test set. Twelve X-ray emission values
corresponding to solar wind conditions were used to make MHD
X-ray  images  and  SXI  photon  count  images  after  adding  a
constant  sky  background  at  different  observation  positions.
Different observation positions on the two orbits are used in this
work, as shown in Figure 8.

RE

RE RE

The  black  dotted  line  indicates  the  simulated  orbit  that  SMILE  is
expected to use after  launch,  and it  approximates a large ellipse.
The points of the SXI on SMILE are constantly changing based on
the  simulation  of  actual  satellite  missions.  The  SMILE  satellite
plans to operate in the orbit shown in Figure 8a, with a sampling
interval of 3 min and a total of 1041 sampling points. Because the
imaging results of the SXI reflect a more complex situation when
the  satellite  is  close  to  the  interior  of  the  Earth’s  magnetopause,
these  results  not  meaningful  for  the  reconstruction  of  the  3-D
Earth magnetopause profile.  Therefore, only 757 sampling points
larger  than 10  along the Z-axis  in  the GSM coordinate  system
are reserved, corresponding to the green points in Figure 8a. The
orbit  in 8a corresponds  to  one  orbital  period  in  the  candidate
orbit.  The  other  orbit  (Figure  8b)  is  semicircular,  with  a  radius  of
80 ,  with  (9.8,  0,  0)  as  the  center  of  the  circle  and  the  fixed
points of SXI. Its polar coordinate equation is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = 9.8
y = r2 ⋅ cos (β)
z = r2 ⋅ sin (β)
r2 = 80, β ∈ (π

2
,

3π
2
) . (18)

The  semicircular  orbit  corresponds  to  the  red  dotted  line  in
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Figure 8.   (a) Expected partial SMILE orbit; (b) a circular orbit used in the CTA reconstruction. The coordinate system is GSM. The cyan scatter is

calculated using the magnetopause model of Shue et al. (1997).
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Figure  8b.  The  sampling  interval  is  0.7059°,  and  there  are  256
sampling points. The images obtained from the observed position
reserved  for  the  SMILE  orbit  (green  dot)  are  used  in  the  SXI
photon  count  image  restoration  experiment  and  TFA  analysis
experiment  described  in  Sections  4.2  and  4.3.  The  images  of  the
observed  position  corresponding  to  the  semicircular  orbit  (red
dotted line in Figure 8b) are used to support the CTA reconstruction
experiment presented in Section 4.4.

We used the simulated X-ray emissions to obtain 2-D MHD X-ray
images corresponding to 1013 observation positions, whereas we
used the SXI analog imaging technique mentioned in Section 2.2
to  obtain  the  corresponding  soft  X-ray  photon  count  map  (with
added  sky  background).  These  images  can  be  used  to  make

534,864 noiseless patch pairs. The pairs are divided into 10 clusters
by the CEM algorithm to train 10 patch estimators. Ten patch esti-
mators  participated  in  the  estimation  of  4052  SXI  photon  count
images after adding the constant sky background in the test set. 

4.2  SXI Photon Count Image Restoration
Here,  we  apply  the  proposed  method  to  the  restoration  task  of
the  test  set  image.  In  addition  to  our  proposed  method,  the
restoration  results  of  some  classical  image  restoration  methods
are  presented,  including  BM3D  (Dabov  et  al.,  2007),  weighted
nuclear  norm  minimization  (WNNM; Gu  SH  et  al.,  2014),  I-NLM
(Buades et al.,  2005),  and K-singular value decomposition (K-SVD;
Aharon et al.,  2006). Figure 9 shows the restoration results of the
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SXI photon  count  images  after  adding  the  constant  sky  back-

ground,  with  the  observation  position  of  (–3.5173,  2.6647,

19.5233)  and the SXI aim point of (10.8593, 0.0157, 0) .

The evaluation indexes used in this paper include the peak signal-

to-noise ratio (PSNR) and structural similarity (SSIM). The PSNR is a

common  objective  image  evaluation  index  used  to  measure  the

quality of restored images,

QPSNR (X, R) = 10 ⋅ log10
PL2∥X − R∥ , (19)

where X is the image to be compared, R is the reference image, L
is the maximum value of the reference image, and P is the number

of pixels. In general, a PSNR value higher than 40 dB is considered
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Figure 9.   (a1)–(a4) MHD X-ray images after adding the constant sky background; (b1)–(b4) SXI photon count images after adding the constant

sky background; (c1)–(c4) restoration result obtained by BM3D; (d1)–(d4) restoration result obtained by WNNM; (e1)–(e4) restoration result

obtained by I-NLM; (f1)–(f4) restoration result obtained by K-SVD; (g1)–(g4) restoration result before smoothing, as obtained by the proposed

restoration algorithm; (h1)–(h4) restoration result after smoothing, as obtained by the proposed restoration algorithm. Columns from left to right

correspond to solar wind number densities , , , and , respectively. Other solar wind conditions are

 and .
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an  excellent  restoration  effect,  30  to  40  dB  represents  a  good

restoration  effect,  20  to  30  dB  represents  a  qualified  restoration

effect, and a restoration effect below 20 dB is considered unquali-

fied.  The  SSIM  measures  the  structural  similarity  of  two  images,

usually of the same size, or is used to detect the degree of image

distortion:

QSSIM(f1, f2) = (2μf1 μf2 + C1)(2σf1f2 + C2)(μ2
f1
+ μ2

f2
+ C1)(σ2

f1
+ σ2

f2
+ C2) , (20)

μf1 σ2
f1 f1

μf2 σ2
f2 f2 f1

f2 σf1f2

f1 f2 C1 = (K1L)2 C2 = (K2L)2
K1 = 0.01, K2 = 0.03

L

where  and  are  the  mean  and  variance,  respectively,  of ;

 and  are the mean and variance, respectively, of ;  is the

image  to  be  compared  and  is  the  reference  image;  is  the

covariance  between  and ;  and  and  are

constants used to maintain stability. Generally, 

(as in this work), and  is the maximum value in the data. The SSIM

generally ranges between 0 and 1, and the closer to 1, the greater

the similarity. However, if two structures are completely unrelated

(negative correlation), the SSIM can be less than 0.

When  calculating  the  PSNR  and  SSIM,  considering  that  the  pixel

value  ranges  of  different  restoration  results  are  inconsistent,  we

uniformly  map  MHD  X-ray  images  and  each  restoration  result  to

the range of 0–255, and then calculate the PSNR and SSIM. Hence,

L is 255. Figure 10 shows the distribution of evaluation indicators

of the restoration results for the various restoration methods. One

box  plot  represents  the  distribution  of  evaluation  indicators  for

757 restored images.

Two conclusions can be drawn from Figure 10. First, the restoration
effect  of  the  six  restoration  results  corresponding  to  the  solar
wind  density  from  high  to  low  gradually  becomes  worse.  This  is
because  the  lower  the  solar  wind  number  density,  the  fewer

SWCX  processes  occur  in  the  Earth’s  magnetopause.  This  makes
for fewer photons detected by the SXI, so fewer features that can
be extracted for the recovery network, resulting in a poor recovery
effect.  Second,  the  restoration  results  of  the  proposed  method
after smoothing are significantly better than those of other typical
image restoration methods. The PSNR of the smoothed restoration
results  of  the  proposed  method  is  approximately  30  dB,  and  the
SSIM  is  approximately  0.8;  these  values  are  significantly  higher
than with the other methods. Hence, the proposed image restora-
tion  method  is  superior  to  other  methods  in  restoring  the  SXI
photon counting images. In addition, K-SVD performs best among
the traditional methods, and the other three methods have similar
effects.  It  is  worth  mentioning  that  from  the  restoration  results
shown in Figure 9, we can see that the proposed method is superior
to  other  traditional  methods  in  image  edge  restoration,  which  is
crucial  for  the  subsequent  reconstruction  of  the  Earth’s magne-
topause. 

4.3  Tangent Fitting Approach (TFA) Analysis
From  2-D  X-ray images,  we  cannot  directly  obtain  the  magne-
topause position  information  and  the  response  of  the  magne-
topause  to  the  change  in  the  solar  wind,  so  it  is  necessary  to
obtain  more  information  from  the  observation  image.  Several
methods have been developed to reconstruct a 3-D magnetopause
from  such  2-D  X-ray  images  (Wang  C  and  Sun  TR,  2022).  Among
them, Sun  TR  et  al.  (2020) proposed  the  TFA,  which  reconstructs
the  3-D  magnetopause  from  a  single  X-ray  image  by  finding  the
best  match  of  the  tangential  directions.  The  maximum  X-ray
intensity corresponds  to  the  tangential  direction  of  the  magne-
topause (Collier and Connor, 2018). Therefore, the position of the
maximum  X-ray  intensity  in  2-D  X-ray  images  is  the  input  of  the
TFA  method  and  is  the  key  to  influencing  its  output  results.  We
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Figure 10.   (a) PSNR statistics calculated for six different restoration results with MHD X-ray images; (b) statistical data of the SSIM between MHD

X-ray images and the six restoration results. The red, cyan, green, and blue boxes correspond to solar wind densities of , ,

, and , respectively. Other solar wind conditions are  and . The X-axis labels of BM3D, WNNM, I-NLM,

and K-SVD are four different existing recovery methods. Our_1 represents the statistical result before smoothing, as obtained by the proposed

restoration algorithm, and Our_2 represents the statistical result after smoothing. The box plot is a standard way of describing the distribution of

data by five numbers: minimum, first quantile, median, third quantile, and maximum. The symbol “x” after the dotted line indicates an outlier.
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take  the  position  information  of  the  maximum  X-ray  intensity  as

an  index  to  evaluate  the  restoration  effect. Figure  11 shows  its

position  in  MHD  X-ray  images,  SXI  photon  count  images  after

adding  a  constant  sky  background,  and  restored  images

smoothed by this method under four solar wind densities.

NSXI

NSXI IMHD

NOur IMHD

NSXI

Figure  11 shows  the  positions  of  the  maximum  X-ray  intensities

for  different  images.  The  position  of  is  scattered,  and  a  big

gap exists  between the position of  and .  The position of

 is very close to the position of ,  which indicates that the

restoration result  can provide a more accurate input ( )  to the

TFA method. The root mean square error (RMSE) is often used to

evaluate  the  accuracy  of  curve  fitting.  We  use  it  to  measure  the

distance between the position of the maximum X-ray intensity of

different images. The RMSE error is defined as

RMSE =

√
∑N

i=1(yi − ŷi)2
N

. (21)

yi ŷi

IMHD

NSXI NOur

Each  row  has  a  position  with  the  largest  X-ray  intensity,  so  the

value  of N is  55.  Variables  and ,  respectively,  represent  the

abscissa corresponding to the position of the largest X-ray intensity

in the ith row of the two images. The RMSE represents the deviation

of  data  from  the  true  value. Figure  12 shows  the  RMSE  between

the  locations  of  maximum  X-ray  intensity  in  three  images  ( ,

, and ).

IMHD NSXI NOurFigure 12 compares , ,  and  of the MHD X-ray images

after  adding  a  constant  sky  background,  the  SXI  photon  count

images  after  adding  a  constant  sky  background,  and  the  image

restored  by  the  proposed  method,  from  which  two  conclusions

can be drawn. First, the image recovered by the proposed method
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Figure 11.   The observation position of (a)–(d) is (–3.8638, 11.6590, 14.7665) , and the SXI aim point is (10.6226, 0.0139, 0) . The black crosses

represent the position of maximum value of the MHD X-ray image intensity ( ). The cyan plus signs represent the position of the maximum

photon count of the SXI photon count images after adding a constant sky background ( ). The blue circles mark the position of the maximum X-

ray intensity of the restored images after smoothing processes ( ). The background colors in the figure correspond to MHD X-ray images (with

added sky background) with different solar wind number densities. The solar wind number densities of (a) to (d) are , ,

, and , respectively. Other solar wind conditions are  and .
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NOur IMHD

NSXI IMHD

can provide the TFA method with approximately the same position

information  on  the  maximum  X-ray  intensity  as  the  MHD  X-ray

images, as input. The RMSE between  and  is smaller than

that  between  and ,  and the former  is  very  close to  zero.

This result indicates that the position of the maximum X-ray inten-

sity  of  the  restored  image  is  very  close  to  that  of  the  MHD  X-ray

images, and its position information can be used directly to recon-

struct the 3-D magnetopause at the appropriate observation posi-

tion. At the same time, not all MHD X-ray images of the observed

locations  contain  the entire  magnetopause profile  structure,  and

the TFA method cannot obtain the accurate output from such 2-D

X-ray  images  that  do  not  contain  the  complete  magnetospheric

structure.  Second,  the  RMSE  fluctuated  significantly  and  showed

an increasing trend as  the Z-coordinate of  the observed position

decreased. This is caused by the observed locations of the low Z-

axis  coordinates  being  very  close  to  the  magnetopause

(Jorgensen  et  al.,  2022; Samsonov  et  al.,  2022),  which  results  in

very little information about the locations of  the maximum X-ray

intensity  of  the  magnetosheath  profile  observed  by  the  SXI.

Hence,  the  observation  area  between  the  two  green  lines  is  not

suitable  for  the  TFA  method,  and  the  observation  positions  with

the  lower Z-axis  coordinates  can  be  ignored.  In  summary,

compared with the SXI photon count images, the images recovered

by  the  proposed  method  can  provide  more  accurate  inputs  for

the TFA method, resulting in more accurate reconstruction results. 

4.4  Computed Tomography Approach (CTA)

Reconstruction
The CTA is a traditional computed tomography method applied to
magnetospheric X-ray image reconstruction (Sun TR et  al.,  2020).
It  relies  on a set  of  2-D X-ray images and reconstructs  the 3-D X-
ray emissivity from which the 3-D magnetopause surface can then
be  derived.  The  CTA  does  not  depend  on  the  functional  form  of
the  magnetopause,  bow  shock,  or  X-ray  emissivity.  However,  it
requires a group of images for the same magnetopause profile, so
it is not applicable to events with rapid changes in the solar wind
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Figure 12.   Solar wind number densities of (a)–(d) are , , , and , respectively. The X-axis of the broken-

line graph is the Z-coordinate of the corresponding observation position of 757 images in the GSM coordinate system. The Y-axis is the RMSE. The

blue lines are the RMSE between  and . The red lines are the RMSE between  and . The observation area between the two green

lines indicates that the SXI is too close to the interior of the magnetopause and that the imaging results of these observation locations cannot be

used by the TFA method.
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(Jorgensen et al., 2022). Wang RC et al. (2023) proposed the use of
artificial  intelligence  to  complete  the  image  of  the  observation
angle that the orbit failed to cover, and to retrieve the 3-D magne-
topause  configuration  to  make  up  for  its  unsuitability  for  events
with rapid changes in the solar wind. Therefore, the CTA method
has become an essential member of the toolbox for the inversion
of  the  3-D  magnetospheric  top  with  2-D  X-ray  images  (Wang  C
and Sun TR, 2022).

We  use  a  series  of  SXI  photon  count  images  after  adding  a
constant sky background and the restored image of the proposed
method,  as  obtained  from  the  semicircular  orbit  mentioned  in
Section 4.1, and we use these as the inputs of the TFA method to
reconstruct  the  X-ray  emissivity  of  the  3-D  Earth  magnetopause.
The Feldkamp–Davis–Kress algorithm (Feldkamp et al.,  1984; Pan
XC et al., 2009; Wang RC et al., 2023) is used to reconstruct the X-
ray emissivity of the 3-D Earth magnetopause. The original MHD X-
ray  emissivity  and  corresponding  reconstruction  results  are
shown  in Figure  13.  We  compare  the  MHD  X-ray  emissions,  SXI

reconstruction  results,  and  reconstruction  results  obtained  from

the  proposed  image  restoration  method  under  four  solar  wind

conditions.

As described in Section 4.2, we used the PSNR and SSIM to evaluate

the  reconstruction  results.  We  calculated  the  reconstruction

results of the SXI photon count image after adding a constant sky

background and those of the restored image in this work with the

corresponding  PSNR  and  SSIM  of  the  original  MHD  X-ray emis-

sions. The calculation results are shown in Table 3.

As shown in Table 3, the 3-D reconstruction results corresponding

to  2-D  X-ray  images  obtained  by  using  the  proposed  restoration

method are significantly better than those obtained by using the

SXI  photon  count  images  directly  after  adding  a  constant  sky

background.  This  result  shows  that  the  proposed  restoration

method can provide more accurate 2-D X-ray images as inputs for

the  CTA  method,  based  on  the  observed  data,  thus  making  the

reconstruction results more accurate.
 
 

Table 3.   The PSNR and SSIM between different reconstruction results.a

Evaluation index
PSNR (dB) SSIM PSNR (dB) SSIM PSNR (dB) SSIM PSNR (dB) SSIM

N = 5 cm−3 N = 10 cm−3 N = 15 cm−3 N = 20 cm−3

SXI 10.44 0.0968 11.4411 0.3689 11.8575 0.5681 13.6424 0.6739

Our 22.3632 0.9552 24.0414 0.9468 25.6415 0.9521 26.8953 0.9545

aN = Number density.

 
 

5.  Discussion and Summary
As discussed in Section 2.2, we used a unified sky background to

obtain  the  simulated  imaging  results  of  the  SXI  (Guo  YH  et  al.,

2022; Samsonov et  al.,  2022).  However,  in  the actual  observation

process,  the  sky  background  from  different  perspectives  will
change. In the future,  if  a soft  X-ray background obtained by the

ROSAT sky survey plan can be used to simulate SXI results under a

changed  background,  it  may  be  closer  to  the  real  imaging  data

returned by SXI during the SMILE operation. Alternatively, the soft

X-ray background can be reduced or removed as much as possible

from the final imaging result of the magnetosheath; the imaging
result  contaminated  by  Poisson  noise  can  then  be  restored  by

using the proposed method.

According to the analysis in Section 2.3, when the relevant param-

eters of the SXI are determined, the model matrix H of the obser-

vation process will not change with the change in the observation
location and target.  Therefore,  the  use  of  a  deep neural  network

to  learn  the  model  matrix  of  the  observation  process  based  on

relevant data of the SXI ground calibration process may provide a

new  perspective  on  the  processing  of  real  SXI  observation  data

acquired after the SMILE launch.

The  simulation  results  of  the  SXI  in  this  work  were  obtained  by

assuming  that  the  satellite  position  is  fixed  within  the  integral

time (300 s). In practice, when a satellite is moving at a low speed

near apogee, its motion can be ignored. In addition, as the satellite

moves  closer  to  Earth,  we  must  consider  how  its  motion  affects
the image. Therefore, it is necessary to conduct a transient simula-

tion of SXI imaging results.

The  restoration  method  used  in  this  work  involves  dividing  the
whole image into several patches by overlapping block technology
and then  restoring  these  patches.  This  method  has  three  advan-
tages.  First,  patches  of  the  image  have  strong  similarity,  and
patches  after  clustering  have  the  same  distribution  parameters,
which is conducive to training the patch estimator. Second, large-
scale  paired  clean–noise  images  are  difficult  to  obtain,  whereas
paired clean–noise patches are more likely to quantitatively meet
the  training  requirements  of  the  deep  learning  networks.  Third,
there  are  no  restrictions  on  the  absolute  position  for  patches,
which makes the final whole image restoration result more gener-
alized.  At  the  same  time,  the  idea  of  patch  estimation  is  more
consistent  with  the  processing  requirements  of  the  actual  SXI
imaging data, although this idea is not perfect. Because the whole
image  is  split,  its  overall  features  are  not  considered,  which  is
reflected  in  the  restoration  results  presented  in  Section  4.2.  The
edges  of  the  restored  images  become  distorted,  and  the  local
resolution  is  low,  which  can  be  attributed  to  patch  combination
and  splitting.  Although  we  use  a  smoothing  technology  to
process the restored image, the result is still not satisfactory. Many
problems still remain to be studied in the restoration of marginal
details.  In  addition,  the  proposed  method  preprocesses  the  SXI
observation images, with the ultimate aim of providing 2-D X-ray
images containing more information for the reconstruction of the
3-D magnetopause.

We proposed an image restoration algorithm for the SXI observa-
tion  images  that  can  recover  their  large-scale  magnetospheric
structure  information.  The  reconstructed  image  provides  more
effective information for the subsequent reconstruction of the 3-D
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magnetosheath X-ray emissivity. The image restoration algorithm

constructs a dataset of clean–noise patch pairs obtained by an SXI

simulation  technology,  which  is  the  prior  knowledge  to  be

learned  in  the  process  of  image  restoration.  The  CEM  algorithm

divides the clean–noise patch pair datasets into clusters obeying a

multivariate Gaussian distribution. The patches of each cluster are

subject to the Gaussian distribution of a set of parameters, which

are  also  used  to  train  the  patch  estimator  of  the  corresponding

cluster.  The  patch  estimator  in  this  work  is  built  based  on  the

pix2pix  framework.  The  estimator  can  learn  the  potential

mapping  relationship  between  a  noise  patch  and  clean  patch  to

achieve  the  purpose  of  noise  patch  estimation.  Experiments

showed that  the  proposed image restoration method is  superior

to other traditional image restoration methods in the effect on SXI

observation  image  restoration.  Therefore,  the  reconstructed

image  was  applied  to  the  TFA  and  CTA,  two  3-D  magnetopause

 

N = 10 cm−3
M

H
D

N = 5 cm−3
SX

I
O

ur
M

H
D

N = 15 cm−3

SX
I

O
ur

M
H

D
SX

I
O

ur
M

H
D

SX
I

−25.9

0.2

−14.2

3.8

−9.4

7.8

−5.4

11.8

−1.4

16.2

2.6

20.4

6.6
10.6
16.2
25.9

Z 
(R

E)

X (RE)

eV
·c

m
−3

·s
−1

1.6

× 10−5

1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

−25.9

0.2

−14.2

3.8

−9.4

7.8

−5.4

11.8

−1.4

16.2

2.6

20.4

6.6
10.6
16.2
25.9

Y 
(R

E)

X (RE)

(a1)

−25.9

0.2

−14.2

3.8

−9.4

7.8

−5.4

11.8

−1.4

16.2

2.6

20.4

6.6
10.6
16.2
25.9

Z 
(R

E)

X (RE)

eV
·c

m
−3

·s
−1

× 10−5

6

5

4

3

2

1

0

−25.9

0.2

−14.2

3.8

−9.4

7.8

−5.4

11.8

−1.4

16.2

2.6

20.4

6.6
10.6
16.2
25.9

Y 
(R

E)

X (RE)

(a2)

−25.9

0.2

−14.2

3.8

−9.4

7.8

−5.4

11.8

−1.4

16.2

2.6

20.4

6.6
10.6
16.2
25.9

Z 
(R

E)

X (RE)

eV
·c

m
−3

·s
−1

1.6
× 10−5

1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

−25.9

0.2

−14.2

3.8

−9.4

7.8

−5.4

11.8

−1.4

16.2

2.6

20.4

6.6
10.6
16.2
25.9

Y 
(R

E)

X (RE)

(a3)

−25.9

0.2

−14.2

3.8

−9.4

7.8

−5.4

11.8

−1.4

16.2

2.6

20.4

6.6
10.6
16.2
25.9

Z 
(R

E)

X (RE)

eV
·c

m
−3

·s
−1

× 10−5

9
8
7
6
5
4
3
2
1
0

−25.9

0.2

−14.2

3.8

−9.4

7.8

−5.4

11.8

−1.4

16.2

2.6

20.4

6.6
10.6
16.2
25.9

Y 
(R

E)

X (RE)

(c1)

−25.9

0.2

−14.2

3.8

−9.4

7.8

−5.4

11.8

−1.4

16.2

2.6

20.4

6.6
10.6
16.2
25.9

Z 
(R

E)

X (RE)

eV
·c

m
−3

·s
−1

× 10−5

6

5

4

3

2

1

0

−25.9

0.2

−14.2

3.8

−9.4

7.8

−5.4

11.8

−1.4

16.2

2.6

20.4

6.6
10.6
16.2
25.9

Y 
(R

E)

X (RE)

(c2)

−25.9

0.2

−14.2

3.8

−9.4

7.8

−5.4

11.8

−1.4

16.2

2.6

20.4

6.6
10.6
16.2
25.9

Z 
(R

E)

X (RE)

eV
·c

m
−3

·s
−1

× 10−5

9
8
7
6
5
4
3
2
1
0

−25.9

0.2

−14.2

3.8

−9.4

7.8

−5.4

11.8

−1.4

16.2

2.6

20.4

6.6
10.6
16.2
25.9

Y 
(R

E)

X (RE)

(c3)

O
ur

−25.9

0.2

−14.2

3.8

−9.4

7.8

−5.4

11.8

−1.4

16.2

2.6

20.4

6.6
10.6
16.2
25.9

Z 
(R

E)

X (RE)

eV
·c

m
−3

·s
−1

× 10−5

5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

−25.9

0.2

−14.2

3.8

−9.4

7.8

−5.4

11.8

−1.4

16.2

2.6

20.4

6.6
10.6
16.2
25.9

Y 
(R

E)

X (RE)

(b1)

−25.9

0.2

−14.2

3.8

−9.4

7.8

−5.4

11.8

−1.4

16.2

2.6

20.4

6.6
10.6
16.2
25.9

Z 
(R

E)

X (RE)

eV
·c

m
−3

·s
−1

× 10−5

6

5

4

3

2

1

0

−25.9

0.2

−14.2

3.8

−9.4

7.8

−5.4

11.8

−1.4

16.2

2.6

20.4

6.6
10.6
16.2
25.9

Y 
(R

E)

X (RE)

(b2)

−25.9

0.2

−14.2

3.8

−9.4

7.8

−5.4

11.8

−1.4

16.2

2.6

20.4

6.6
10.6
16.2
25.9

Z 
(R

E)

X (RE)

eV
·c

m
−3

·s
−1

× 10−5

5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

−25.9

0.2

−14.2

3.8

−9.4

7.8

−5.4

11.8

−1.4

16.2

2.6

20.4

6.6
10.6
16.2
25.9

Y 
(R

E)

X (RE)

(b3)

−25.9

0.2

−14.2

3.8

−9.4

7.8

−5.4

11.8

−1.4

16.2

2.6

20.4

6.6
10.6
16.2
25.9

Z 
(R

E)
X (RE)

eV
·c

m
−3

·s
−1

1.6
× 10−4

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

−25.9

0.2

−14.2

3.8

−9.4

7.8

−5.4

11.8

−1.4

16.2

2.6

20.4

6.6
10.6
16.2
25.9

Y 
(R

E)

X (RE)

N = 20 cm−3

(d1)

−25.9

0.2

−14.2

3.8

−9.4

7.8

−5.4

11.8

−1.4

16.2

2.6

20.4

6.6
10.6
16.2
25.9

Z 
(R

E)

X (RE)

eV
·c

m
−3

·s
−1

× 10−5

6

5

4

3

2

1

0

−25.9

0.2

−14.2

3.8

−9.4

7.8

−5.4

11.8

−1.4

16.2

2.6

20.4

6.6
10.6
16.2
25.9

Y 
(R

E)

X (RE)

(d2)

−25.9

0.2

−14.2

3.8

−9.4

7.8

−5.4

11.8

−1.4

16.2

2.6

20.4

6.6
10.6
16.2
25.9

Z 
(R

E)

X (RE)

eV
·c

m
−3

·s
−1

1.6
× 10−4

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

−25.9

0.2

−14.2

3.8

−9.4

7.8

−5.4

11.8

−1.4

16.2

2.6

20.4

6.6
10.6
16.2
25.9

Y 
(R

E)

X (RE)

(d3)

X
Y

Z

 

Vx = 600 km/s Bz = 0 nT

Figure 13.   (a1)–(d1) MHD X-ray emissions under four solar wind conditions; (a2)–(d2) reconstruction results of the SXI photon count images after

adding a constant sky background; (a3)–(d3) reconstruction results of the proposed image restoration method. Other solar wind conditions are

 and .
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reconstruction algorithms, and both achieved excellent and accu-
rate  reconstruction  effects.  It  is  worth  mentioning  that  the
proposed  image  restoration  algorithm  not  only  is  applicable  to
magnetospheric observation  images  but  also  has  broad  applica-
tion prospects  in  the  fields  of  computed  tomography  and  astro-
nomical imaging. 

Data Availability Statement
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in  this  research,  and  all  image  data  used  and  obtained  in  the
experiments  presented  in  Section  4,  can  be  obtained  from  the
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