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A B S T R A C T

Breast cancer is one of the most common cancers in women all around the world and is a dominant 
cause of deaths occurring all around the globe. The available potent drugs for breast cancer show adverse 
effects and resistance and are found to be ineffective in patients. The high cost of currently available cancer 
therapy and certain limitations of current treatment make it necessary to search for novel, cost-effective 
and efficient methods of cancer treatment. Phytochemicals are directly involved in treatment or precursors 
to synthesize useful drugs. Therefore, in the current investigation, 500 terpenoid phytoconstituents and five 
proteins associated with breast cancer including EGFR, ERα , HER2, NF-κ B and Topo IIa were selected from 
various databases. Selected compounds were screened for their molecular properties based on Lipinski’s 
rule of five resulting in 235 compounds exclusion. Drug-likeness and PAINS alert properties were predicted 
using pkCSM and SwissADME web servers which led to the omission of 43 compounds. The remaining 222 
compounds were screened to predict their ADMET properties and based on these results, 117 compounds 
were selected to predict the anti-breast cancer potential. Finally, 73 compounds, which showed anti-breast 
cancer activity prediction, were virtually screened and the top four best-scoring compounds were selected 
as lead-like molecules and docked with the five respective breast cancer targets. The results showed that the 
top four lead-like molecules exhibited greater binding affinity and lesser toxicity than the standard drugs 
namely 4–Hydroxytamoxifen, Daunorubicin, Erlotinib and Lapatinib.

Keywords: ADMET; Breast cancer; Chemotherapeutic agents; In silico analysis; Molecular docking; 
Terpenoids

INTRODUCTION

Cancer is one of themost hazardous, highly complex diseases
resulting in abnormal proliferation, invasion and metastasis
activation and uncontrollable replication. Breast cancer is
the primary cause of cancer death among women and
the second most frequent cancer overall after lung cancer.
International Agency for Research on Cancer (IARC) of
World Health Organization (WHO) reported 19.29 million
new cases of cancer across all ages and genders in 2020.
In India, 1,78,361 new breast cancer cases and 90,408
deaths were reported in GLOBOCAN, 2020. In 2022,
around 19.3 million cancer incidence cases and 10 million
cancer mortality cases were reported globally. An estimated
number of 3,00,590 incident cases and 43,700 deaths globally

is reported in Cancer Statistics, 2023. There are some
clinical trials in place for specific types of breast cancer
prevention.1–4

Breast cancer can occur due to hereditary or non-genetic
factors. The genes for breast cancer-1 (BRCA1) and breast
cancer-2 (BRCA2) are important in the growth of breast can-
cer.The genes for checkpoint kinase 2 (CHEK2) and tumour
protein p53 (TP53) are also linked to the emergence of
breast cancer. Various signalling pathways are dysregulated
in cancer cells, according to the literature. Breast cancer cells
with reduced levels of a non-receptor tyrosine kinase such as
breast tumor kinase (BRK) experienced reduced activation
of EGFR (epidermal growth factor receptor) controlled
signaling proteins.5
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Among all cancer types, breast cancer continues to rank
as one of the most dangerous diseases, accounting for a large
number of cancer-related deaths amongwomen globally and
also the risks are rising in men affected by breast cancer.
Additionally, the number of Breast cancer diagnoses is rising
annually. Breast cancer was treated for a very long time with
hormone therapy, surgery, chemotherapy and radiotherapy.
The multidrug resistance and severe adverse effects of
current therapeutic methods, however, are making them
increasingly ineffective. In order to reduce the aggressiveness
of breast cancer and to prevent cancer cell multiplication,
invasion and metastasis, it is urgently necessary to create
more effective and safe treatments.6–9

Cancer cells possess the ability to self-renew and can
develop all types of cells. Hemostasis, embryogenesis,
and proper development are all largely regulated by sev-
eral signaling cascades. Various studies demonstrated that
inhibitors (natural or synthetic) reduced drug resistance in
cancer cells in vitro by inducing apoptosis and inhibiting cell
cycle migration and proliferation. The studies revealed that
the various phytochemicals especially, terpenoids play an
important role in preventing activity against the proliferation
of breast cancer cells and suppressing of in vitro proliferation
process.10–14

Terpenoids are one of the largest classes of secondary
metabolites obtained from natural resources and are
structurally composed of isoprenoid units. Terpenoids
are classified into six classes, including monoterpenes,
sesquiterpenes, diterpenes, triterpenes, tetraterpenes,
and polyterpenes, based on their structural characteristics.
Among the numerous biological applications, terpenoids are
extremely applied in antitumour activities including anti-
angiogenic, apoptotic and anti-metastatic anti-proliferative
activities.15,16Terpenoids are primarily employed as
novel anti-cancer agents in various pharmaceutical
industries.For instance, the natural anti-cancer compound
namely, elemene suppresses brain tumors, lung cancer,
liver cancer, nasopharyngeal carcinoma and other
cancers. Terpenoids found to have an inhibitory effect
on cell proliferation and tumor growth in a variety
of human cancers, according to in vitro and in vivo
investigations. Some terpenoids induce their anticancer
effect by triggering different stages of cancer growth, such
as reducing the early stage of carcinogenesis by inducing
cell cycle arrest, preventing cancer cell differentiation and
activating apoptosis, to produce an anticancer effect. Recent
research has focused on understanding the ”terpenoid-
induced autophagy” phenomenon in cancer cells in
both in vitro and in vivo settings.17,18 The need for
steroidal terpenoids for treating breast cancer is that the
steroidal terpenoids can exhibit potential anticancer activity
by triggering the various stages of cancer progression
and development. It has the ability to suppress cancer
development at the early stage through cell arresting and

induces apoptosis. For example, steroidal terpenoids like
Salvinorin A, cannabinoids, ginkgolide, bilobalide, menthol
and etc had been reported for exhibiting excellent anticancer
activity. Since breast cancer is hormone-related cancer, the
present study aims to identify lead-like molecules belonging
to di- and tri-terpenoids that collectively come under
steroidal terpenoids using a ligand-based drug discovery
approach.

MATERIALS AND METHODS

Ligand preparation

The list of 500 steroidal terpenoids were collected from
the Terokit database (http://terokit.qmclab.com/index.htm
l).19 Structures of these compounds as 3D sdf (.sdf) were
downloaded from PubChem (https://pubchem.ncbi.nlm.ni
h.gov/).These structures were exported to ChemDraw Ultra
12.0 (www.cambridgesoft.com) for energy minimization
and geometry correction. The outputs of the structures were
saved in mol file (.mol) and pdb (.pdb) formats which were
used for further in silico studies.

Protein preparation

Crystal three-dimensional structures of Epidermal Growth
Factor Receptor tyrosine kinase domain (PDB ID: 1M17),
Human Estrogen Receptor Alpha (PDB ID: 3ERT), Human
HER2 kinase domain (PDB ID: 3PP0), Human IkB kinase
beta (PDB ID: 4KIK) and Human Topo IIa ATPase/AMP-
PNP (PDB ID: 1ZXM) were downloaded from RCSB
Protein Data Bank (http://rscb.org) in the pdb format.
The stereochemical properties of each target protein were
assessed based on the information obtained from PDB X-
Ray structure Validation Report for each PDB structure.
The resolution and R-values showed the goodness of the
protein model being used. The X-ray crystal structure with
resolution values of 2.0Å or less and R-values of 0.2 or
less is considered acceptable. Moreover, the structures of
the proteins were evaluated based on the Ramachandran
plot usingMolprobity (http://molprobity.biochem.duke.edu
/).20 Proteins were energy minimized, water molecules were
removed and hydrogen and charges were added. Finally, 3D
structures of the target proteins were saved and used for
virtual screening and docking studies.

Molecular properties and toxicity predictions

The phytochemicals were screened for their molecular
properties and drug-likeness using the SwissADME web
server (http://www.swissadme.ch/). Toxicity was predicted
by using the pkCSM web server (http://biosig.unimelb.edu
.au/pkcsm/prediction) and ProTox II web server (https://t
ox-new.charite.de/protox_II/). Cytotoxicity activity against
breast cancer was predicted by using the CLC-prediction
web server (http://www.way2drug.com/Cell-line/index.php
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Virtual screening

Virtual screening was performed using iGEMDOCK soft-
ware version 2.1 (http://gemdock.life.nctu.edu.tw/dock/i
gemdock.php) with the following parameters: standard
flexible docking option with the population size of 200, 70
generations and 2 solutions.21 The binding site of the target
was 8Å. The empirical screening function of iGEMDOCK
was estimated as: Fitness = vdw + Hbond + Elec.

Molecular docking and visualization

Molecular docking was performed using AutoDock 4.0 (
http://autodock.scripps.edu/) with the Lamarckian genetic
algorithm. The docking parameters selected were 200
docking runs and a population size of 200. The binding
energy of the protein coordinate was evaluated by a three-
dimensional grid box of 40x40x40 (Number of grid points
in xyz) created with a spacing of 0.375Å.22 Biovia Discovery
Studio version 21.1.0 (https://www.3dsbiovia.com/) was
used to visualize the docking results.

Validation

The docking energies of the phytochemicals were compared
with the commercially available FDA-approved antitu-
mour drugs namely 4-Hydroxytamoxifen, Daunorubicin,
Erlotinib and Lapatinib for the validation of results. The
docking energy for a given protein-ligand pair comprised
of the intermolecular interaction energies including internal
steric energy, hydrogen bond interaction energy, Van
der Waals force and columbic electrostatic energy of the
phytochemical. The lowest binding energy of the protein-
ligand complex has been considered to be the best.

RESULTS AND DISCUSSION

In drug discovery, many potential drugs have failed in clini-
cal studies or late drug discovery processes due to poor drug-
like properties and adverse effects. An important phase in
the process of discovering new drugs is the early prediction
of various properties of molecules. To make better decisions
before initiating experimentation on lead compounds,
numerous computational tools are being applied throughout
the research areas from the academy and the pharmaceutical
industry. Drug discovery and development are expensive
and time-consuming processes. All the developedmolecules
in the current inquiry were put through in silico analysis to
check for toxicity risks and drug-relevant features, which are
crucial components in determining the drug-like properties
of the lead molecules.23 In the present work, a total of
500 compounds belonging to steroidal terpenoids based on
molecular weight (<500 Da), were selected from the TeroKit
database (Table containing compound names along with

their CID numbers are given in the supplementary file S1).
Based on the Lipinski’s rule of five, molecular properties 

and drug-likeness of the 500 terpenoid phytochemicals and 
the standards were evaluated. To function and operate 
effectively in the biological system, a potential drug 
substance must be easily absorbed and distributed. These 
molecular and drug-likeness parameters are employed to 
determine the drug-like nature and medicinal chemistry 
friendliness of one or multiple small molecules to support 
drug discovery. According to this tool, if the TPSA is          
≤ 140Å2, the molecule will appear to be polar, be well 
absorbed by the GI tract when given orally, and be more 
likely to cross the BBB and enter the CNS. If the molecule 
has a high logP (lipophilicity) value (>0), it is more likely to 
be oxidized by the cytochrome CYP450 and to be heavily 
attached to plasma proteins.24,25 Water solubility is one of 
the most important key factors which alter the 
pharmacokinetic profile of a molecule. If a molecule is 
poorly soluble, then it may lead to potential problems for 
dosage formulation and a small amount of the administered 
molecule is excreted by the kidney. Total Polar Surface Area 
(TPSA), is a crucial parameter used to determine how 
permeable a membrane is by comparing the surfaces of 
polar atoms in molecules. Molecules with a molecular mass 
of less than 500 g/mol fall into the TPSA range of 0-140 Å2. 
It is reported that the compound possesses better 
absorption and increased sensitivity to cross BBB (Blood 
Brain Barrier) if the TPSA value is within these previously 
indicated ranges.26,27 The 235 compounds showed 
violations to these parameters and were omitted for further 
screening. Based on the filter process, 265 compounds were 
selected for drug-likeness screening and pains (Pan Assay 
Interference Structures) alert determination using 
SwissADME webserver. Around 43 compounds showed 
violations towards drug-likeness and Pains alert, and they 
were omitted for further screening and the compounds 
with no violations are considered to be suitable for oral 
administration.

Based on the filter process, a total of 222 compounds 
were screened for their pharmacokinetic parameters such as 
absorption, distribution, metabolism and elimination using 
pkCSM online web server. The Caco-2 cell line is made up of 
human epithelial colorectal adenocarcinoma cells. The 
Caco-2 monolayer of cells is widely used as an in vitro tool 
for the human intestinal mucosa to evaluate the absorption 
of orally administered medications.27 If a molecule has a 
predictive value greater than 0.9, it is thought to have a 
high Caco-2 permeability. The intestine is the most 
essential primary site for the absorption of a drug from an 
orally administered solution. If the absorption of a 
molecule is less than 30%, then it is considered to be 
poorly absorbed.

The volume of distribution (VDss) is the theoretical 
volume over which a total dose of a drug must be distributed 
uniformly to achieve the same concentration as blood 
plasma. It can be easily affected by renal failure and

Journal of Pharmaceutical Research Vol. 22, No. 2, April-June 2023:57



In Silico analysis and docking studies of terpenoids against breast cancer Raju et al.

dehydration. If VD is higher, then the drug distributed to
tissue is higher than plasma.28 VDss is considered low if the
value is below 0.71 L/kg (log VDss < -0.15) and high if above
2.81 L/kg (log VDss > 0.45).

Blood Brain Barrier (BBB) guards brain from the
exogenous substances. The ability of a drug to enter the
brain is an essential parameter in reducing the side effects
and toxicities or improving the efficacy of drugs whose
pharmacological activity is within the brain.The logarithmic
ratio of brain to plasma drug concentrations, or log BB, is
used to quantify blood-brain barrier permeability in living
animal models. Molecules having a log BB value of greater
than 0.3 are thought to easily penetrate the blood-brain
barrier, while those with a log BB value of less than -1 are
thought to be poorly dispersed to the brain.The blood-brain
permeability-surface area product (logPS) is a more precise
measurement and is derived via in situ brain perfusions in
which the substance is administered directly into the carotid
artery. There are no systemic distribution effects that could
affect brain penetration. It is considered that substances
with a logPS larger than -2 can enter the central nervous
system (CNS), but substances with a logPS lower than -3
are considered to be unable to penetrate to CNS (He et al.,
2018).29

Cytochrome P450 is an essential enzyme used for
detoxification of the body which is mainly found in
the liver. It metabolizes and facilitates the excretion of
xenobiotics. The cytochrome P450s can both activate and
deactivate many drugs. Drug metabolism may be impacted
by inhibitors or substrates of this enzyme, which is not
recommended. Therefore, it is essential to evaluate the
capacity of the drug to inhibit the different isoforms of this
enzyme as well as its potential to act as a substrate.

The proportionality constant Drug clearance is essentially
a combination of hepatic (liver metabolism and biliary
clearance) and renal clearance, calculated using CLtot. It is
necessary to calculate the dose rates to reach steady state con-
centrations because it is closely related to bioavailability.29
The predicted total clearance of the phytochemicals is given
in log (ml/min/kg). The renal uptake transporter known
as renal Organic Cation Transporter 2 (OCT2) is essential
in the renal clearance of medications and endogenous
chemicals. OCT2 substrates and concurrently given OCT2
inhibitors may interact negatively. Analyzing a molecule’s
ability forOCT2 transport can reveal important details about
its clearance as well as any potential contraindications.

An important phase in the process of developing a
medicine is predicting the toxicity of chemicals. In addition
to being faster than employing animals to determine harmful
or dangerous levels, computational toxicity predictions
can also help to reduce the total number of animal
experiments. Drug-induced liver damage is a major cause
of medication withdrawal and a significant safety concern
for pharmaceutical research. The Ames toxicity parameter

is widely used for screening the mutagenic potential of
new chemicals and drugs. Ames Salmonella/microsome
mutagenicity assay (Salmonella test; Ames test) is a short-
term bacterial reverse mutation assay used to detect the
new drugs that can cause genetic damage resulting in gene
mutation. These mutations act as hot spots for mutagens to
cause DNA damage via different mechanisms.30

The main factor causing acquired long QT syndrome
and deadly ventricular arrhythmia is the inhibition of the
potassium channels expressed by the hERG (human ether-
go-go gene).31 Many medicinal compounds have been
removed from the pharmaceuticalmarket as a result of hERG
channel inhibition. In the present study, the compounds
that were found to be hERG inhibitors are omitted and
only the compounds that were not found to be hERG
inhibitors were selected for further studies. A substance
was deemed to be hepatotoxic if it caused at least one
pathological or physiological liver event that is strongly
linked to the disruption of the liver’s normal function. In the
present study, the 105 compounds that were considered to
be hepatotoxic were omitted for further screening.

The toxicity profiles of different compounds can be com-
pared using the fatal dosage values, a typical factor of acute
toxicity. The LD50 is the concentration of a drug that, when
administered to a set of test animals or microorganisms,
causes a 50% inhibition or survival rate. In the present
study, around 105 compounds that showed greater toxicity
were omitted and only the remaining 117 compounds
were subjected to predict their anti-breast cancer activity
using the CLC-Pred online web server. After the screening
of anti-breast cancer activity, finally, 73 compounds were
selected for virtual screening against various cancer targets
using iGEMDOCK software. In the present study, the five
different anti-breast cancer targets were identified from
the literature namely, Epidermal Growth Factor Receptor
tyrosine kinase domain (1M17), Human Estrogen Receptor
Alpha (3ERT),HumanHER2kinase domain (3PP0),Human
IkB kinase beta (4KIK) and Human Topo IIa ATPase/AMP-
PNP (1ZXM), which were validated by a Ramachandran
plot that showed more than 95% favourable region which
is valid for drug screening. The experimental data and
validation details of the protein are given in Table 1 and
the protein structures and Ramachandran plot of selected
5 breast cancer targets are given in Figure 1. Further to
confirm the results obtained from virtual screening, the top
4 compounds and standards were docked with five different
anti-breast cancer targets using AutoDock 4.2 Software.

Based on the binding score and mode of
interaction, top four molecules from each target
were identified as lead-like molecules against breast
cancer including 2, 3-Dihydrowithaferin A (298),
(3Ar,3bS,5aS,6R,8aS,8bS,10R,10aS)-10-hydroxy-6-
[(1S)-1-[(2R)-5-(hydroxymethyl)-4-methyl-6-oxo-
2,3-dihydropyran-2-yl]ethyl]-3a,5a-dimethyl-3-oxo-
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Table 1: Selected Breast Cancer Targets and their Experimental
Data
PDB
ID

Resolution
(Å)

Refinement R-
value

Favoured
Regions
(%)

Ramachandran
outliers
(%)

1M17 2.6 X-PLOR
98.1

0.251 89.2 7

3ERT 1.9 X-PLOR
3.854

0.229 96.5 4

3PPO 2.25 REFMAC
5.5.0109

0.185 95.6 2

4KIK 2.83 BUSTER
2.11.5

0.186 97.3 3

1ZXM 1.87 CNS 1.1 0.22 96.6 5

Fig. 1: Protein structures and Ramachandran plot of selected
Breast Cancer targets used for the present study

1,2,3b,4,5,6,7,8,8a,8b,9,10-dodecahydroindeno[6,7-
e]indene-10a-carbaldehyde (229), Jaborosalactone
B (81), Jaborosalactone O (156), 8alpha,9alpha-
Epoxy-4,4,14alpha-trimethyl-3,7,11,15,20-pentaoxo-
5alpha-pregnane (7), Antiarotoxinin A (485),
(1S,2S,4S,6S,7S,8R,9S,12S,13R)-6-[(2R,3R,4R)-3,4-
Dimethyl-5-oxooxolan-2-yl]-6-hydroxy-7,9,13-trimethyl-
5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icosa-14,17-
dien-16-one (167), Bendigole D (60), Jaborosalactone
B (81), Certonardosterol G (372), (23R,24S)-
Chiograsterol A (349), Jaborosalactone A (305),
Withacoagulin (76), (1S,2R,6S,7R,9R,11S,12S,15R,16S)-
15-[(1S)-1-[(2R)-4,5-Dimethyl-6-oxo-2,3-
dihydropyran-2-yl]ethyl]-6-hydroxy-2,16-dimethyl-

8-oxapentacyclo[9.7.0.02,7.07,9.012,16]octadecan-
3-one (297), (22R)-1-Oxo-12beta,21,22,27-
tetrahydroxyergosta-2,5,24-triene-26-oic acid delta-
lactone (82), [(3R,8R,9S,10S,13R,14R)-10,13-
Dimethyl-17-oxo-1,2,3,4,7,8,9,11,12,14,15,16-
dodecahydrocyclopenta[a]phenanthren-3-yl] hydrogen
sulphate (262), Androsterone sulphate (261),
7alpha,12alpha-Dihydroxy-3-oxochola-1,4-dien-24-oic
acid (73) and Murideoxycholic acid (48). The binding
energy in terms of kcal/mol, types of interactions such as
hydrogen bond and hydrophobic along with distance is
presented. The ligand in protein pocket and 2D interactions
are shown in Figures 2, 3, 4, 5 and 6.

Fig. 2: Ligand in protein pocket and 2D interactions of top four
Terpenoid Phytochemicals with EGFR (1M17)

Fig. 3: Ligand in protein pocket and 2D interactions of top four
Terpenoid Phytochemicals with ERα (3ERT)

Compounds 298, 229, 81 and 156 showed good
interaction profiles and were identified as lead-like
molecules against the EGFR target (1M17). In compound
298, conventional hydrogen bond and carbon-hydrogen
bond interactions were observed with LYS721, GLU738,
GLY772, CYS773 and ASP776 residues. The complex
showed hydrophobic interactions like alkyl interactions
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Fig. 4: Ligand in protein pocket and 2D interactions of top four
Terpenoid Phytochemicals with HER2 (3PPO)

Fig. 5: Ligand in protein pocket and 2D interactions of top four
Terpenoid Phytochemicals with NF-κB (4KIK)

Fig. 6: Ligand in protein pocket and 2D interactions of top four
Terpenoid Phytochemicals with Topo IIa (1ZXM)

with LEU694, VAL702, ALA719, MET769 and LEU820
interacting amino acid residues with the binding energy of
-11.28 kcal/mol. Compound 229 with a binding energy
of -10.64 kcal/mol showed hydrogen bond interactions
with LYS721, THR766, GLY772, CYS773 and ASP776
residues and showed hydrophobic interactions with
LEU694, VAL702, ALA719 and LEU820 interacting amino
acid residues. Compound 81 was stabilized with the
hydrogen and hydrophobic interactions with THR766,
CYS773, ASP776, LEU694, VAL702, ALA719 and LEU820
interacting amino acid residues with the binding energy of
-10.6 kcal/mol. Compound 156 with the binding energy
of -10.08 kcal/mol showed hydrogen bond interactions
with GLU738, THR766, THR830 and ASP831 interacting
residues and hydrophobic interactions with LEU694,
VAL702, LYS721, MET742, LEU764, LEU768 and CYS773
interacting residues.

Compounds 7, 485, 167 and 60 showed better binding
affinity and were identified as lead-like molecules against
the ERα target (3ERT). In compound 7, hydrogen bond
interactions like conventional hydrogen bond and carbon
hydrogen bond interactions were observed with ARG 394
and PHE 404 with the binding energy of -10.92 kcal/mol.
Compound 485 with a binding energy of -10.67 kcal/mol
showed hydrogen bond interactions with GLU353, ARG394
and HIS524 residues and showed alkyl and π-alkyl inter-
actions with LEU346, LEU349, ALA350, LEU387, LEU391,
PHE404 and MET421 interacting amino acid residues. In
compound 167, conventional hydrogen bond interaction
was observed with CYS530 and hydrophobic interactions
withMET343, LEU346,ALA350, TRP383, LEU384, LEU525
and LYS529 interacting amino acid residues with the binding
energy of -9.26 kcal/mol. Compound 60 showed hydrogen
bond interactions with ARG394, GLU419 and HIS524
interacting residues and hydrophobic interactions with
LEU346, LEU349, ALA350, LEU384, LEU387, PHE404,
ILE424 andLEU525 interacting amino acid residueswith the
binding energy of -9.07 kcal/mol.

Compounds 81, 372, 349 and 305 showed greater
binding affinity and were identified as lead-like molecules
against the HER2 target (3PPO). In compound 81 ,
hydrophobic interactions like alkyl and π-alkyl interactions
were observed with VAL734, ALA751, LYS753, MET774,
LEU785, LEU852 and PHE864 with the binding energy
of -10.5 kcal/mol. Compound 372 showed hydrogen bond
interactions with CYS805 and THR862 residues and showed
hydrophobic interactions with VAL734, ALA751, LYS753,
LEU785, LEU796 and LEU852 interacting amino acid
residues with the binding energy of -9.89 kcal/mol. In
compound 349, conventional hydrogen bond interaction
was observed with GLU770 and THR798; hydrophobic
interactions with VAL734, ALA751, LYS753, MET774,
LEU785, LEU796, LEU852 and PHE864 interacting amino
acid residues with the binding energy of -9.83 kcal/mol.
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Compound 305 showed hydrogen bond interactions like
conventional hydrogen bond and carbon-hydrogen bond
interactions with GLY729, LYS753 and GLU770 interacting
residues and hydrophobic interactions like alkyl and π-
alkyl interactions with VAL734, ALA751,MET774, LEU796,
CYS805, LEU852 and PHE864 interacting amino acid
residues with the binding energy of -9.69 kcal/mol.

For the NF-κB target (4KIK), compounds 305, 76,
297 and 82 showed good interaction profiles and binding
affinity. In compound 305 , hydrogen bond interactions
with GLY102 and ASP103; hydrophobic interactions with
LEU21, VAL29, ALA42, VAL74, TYR98, CYS99, VAL152
and ILE165 with the binding energy of -11.72 kcal/mol
were observed. Compound 76 showed hydrogen bond
interactions with CYS99, GLY102 and ASP103 residues
and showed hydrophobic interactions with LEU21, VAL29,
ALA42, LYS44, VAL74, TYR98, VAL142 and ILE165
interacting amino acid residues with the binding energy of
-11.36 kcal/mol. In compound 297, carbon-hydrogen bond
interaction was observed with TYR98 and alkyl interactions
with LEU21, VAL29, LYS44 and VAL152 interacting amino
acid residues with the binding energy of -9.93 kcal/mol.
Compound 82 showed hydrogen bond interactions like
conventional hydrogen bond and carbon-hydrogen bond
interactions with ASP103 and GLY102 interacting residues
and hydrophobic interactions like alkyl and π-alkyl inter-
actions with LEU21, VAL29, TYR98, VAL152 and ILE165
interacting amino acid residues with the binding energy of
-9.78 kcal/mol.

For the topoisomerase (TOPO IIa-1ZXM) target, com-
pounds 262, 261, 73 and 48 were identified as lead-like
molecules. In compound 262, hydrogen bond interactions
with GLY164, TYR165, GLY166, GLN376 and LYS378;
hydrophobic interactions with PHE142 and ALA167 with
the binding energy of -13.07 kcal/mol. Compound 261
showed hydrogen bond interactions with GLU87, GLY161,
ARG162, ASN163, TYR165 and GLY166 residues and
showed hydrophobic interactions with ALA167 interacting
amino acid residue with the binding energy of -11.69
kcal/mol. In compound 73, carbon hydrogen bond interac-
tion was observed with ASN91, ARG162, TYR165, GLY166,
GLN376 and LYS378 and hydrophobic interaction with
ALA167 interacting amino acid residue with the binding
energy of -11.08 kcal/mol. Compound 48 showed hydrogen
bond interactions with TYR165, GLY166, GLN376 and
LYS378 interacting residues and hydrophobic interaction
with ALA167 interacting amino acid residue with the
binding energy of -10.84 kcal/mol.

Among 500 terpenoid phytochemicals, the top 4 com-
pounds of each target were identified as lead-like molecules
based on significant molecular, pharmacokinetic and toxi-
city properties. Lead-like molecules showed better binding
affinity to respective five protein targets and also showed less
toxicity than standard drugs. Based on the docking results,
EGFR target (1M17) was found to have better binding

affinity against the compound 298, ERα target (3ERT)
showed better binding energy against compound 7, HER2
target showed better binding energy against compound
81, NF-κB target (4KIK) showed better binding energy
against compound 305 and topoisomerase (TOPO IIa-
1ZXM) showed better binding energy against compound
262. Among these five different breast cancer targets,
Human Topo IIa ATPase/AMP-PNP (1ZXM) target was
found to be best anti-breast cancer target, followed by
topoisomerase, the Human HER2 kinase (3PP0) target was
also found to be an active target. In conclusion, we propose
these identified lead compounds can be extensively used as
potential chemotherapeutic agents in the treatment of breast
cancer.

CONCLUSION

Breast cancer is the most common type of cancer in women
worldwide.Therefore, there is an urgent need for developing
more potent, secure and selective inhibitors of breast cancer
receptors. Since breast cancer is hormone-related cancer, the
present study aims to identify lead-like molecules belonging
to di- and tri-terpenoids by ligand-based drug discovery
approach. The phyto-ligands were obtained from Terokit
database and based on the physicochemical properties,
solubility, lipophilicity, pharmacokinetic profile and toxicity,
the compounds were filtered off and the compounds which
shows anti-breast cancer potential was selected.Thefinalized
compounds were virtually screened to identify hit molecules
using iGEMDOCK against five different breast cancer
targets such as EGFR, ERα , HER2, NF-κB and TOPO IIa.
Based on the score, the top ten hit molecules from each
target were selected and docked by using AutoDock 4.2 to
identify lead-like molecules. Based on the binding score and
mode of interaction, the top four molecules from each target
were identified as lead-like molecules against breast cancer.
These top fourmolecules showed greater binding affinity and
lower toxicity than the standards. Therefore, these potent
chemotherapeutic agents can be employed for the effective
treatment of breast cancer. Further in vivo and in vitro
studies are required to confirm the potential of these lead-
like compounds.
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