
RESEARCH ARTICLE

Measurement uncertainty interval in case of a known 

relationship between precision and mean [version 1; peer 

review: 2 approved, 1 approved with reservations]

Steffen Uhlig1, Bertrand Colson 1, Petra Gowik2

1QuoData GmbH, Dresden, Saxony, 01309, Germany 
2Federal Office of Consumer Protection and Food Safety, Berlin, 10117, Germany 

First published: 17 Aug 2023, 12:996  
https://doi.org/10.12688/f1000research.139111.1
Latest published: 17 Aug 2023, 12:996  
https://doi.org/10.12688/f1000research.139111.1

v1

 
Abstract 
Background: Measurement uncertainty is typically expressed in terms 
of a symmetric interval y±U, where y denotes the measurement result 
and U the expanded uncertainty. However, in the case of 
heteroscedasticity, symmetric uncertainty intervals can be misleading. 
In this paper, a different approach for the calculation of uncertainty 
intervals is introduced. 
Methods: This approach is applicable when a validation study has 
been conducted with samples with known concentrations. In a first 
step, test results are obtained at the different known concentration 
levels. Then, on the basis of precision estimates, a prediction range is 
calculated. The measurement uncertainty for a given test result can 
then be obtained by projecting the intersection of the test result with 
the limits of the prediction range back onto the axis of the known 
values, now interpreted as representing the measurand. 
Results: It will be shown how, under certain circumstances, 
asymmetric uncertainty intervals arise quite naturally and lead to 
more reliable uncertainty intervals. 
Conclusions:  This article establishes a conceptual framework in 
which measurement uncertainty can be derived from precision 
whenever the relationship between the latter and concentration has 
been characterized. This approach is applicable for different types of 
distributions. Closed expressions for the limits of the uncertainty 
interval are provided for the simple case of normally distributed test 
results and constant relative standard deviation.
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Introduction
In this paper, a “top-down” approach for the calculation of measurement uncertainty is presented, in the sense that the
estimate of measurement uncertainty is supported by precision data from a validation study.

Measurement uncertainty is defined in JCGM 100 as a parameter that “characterizes the dispersion of the values that
could reasonably be attributed to themeasurand”.1 This parameter is often expressed as a standard deviationwhich is then
used to obtain a symmetric uncertainty interval around the measurement result. In the following, the approach yielding
symmetric uncertainty intervals will be referred to as the y�U approach.

As will be discussed below, in the case of heteroscedasticity, the y�U approach can yield misleading uncertainty
intervals. For this reason, a different approach for determining measurement uncertainty is presented. This approach is
suitable when precision data from a validation study conducted with test samples with known concentrations are
available. While the focus in this paper is in-house validation, the approach presented here can also be applied for data
from an interlaboratory validation study. It will be shown how, under certain circumstances, asymmetric uncertainty
intervals arise quite naturally. For this reason, the approach presented here will be referred to in the following as the
asymmetric measurement uncertainty approach (short form: asymmetric approach).

The asymmetric approach is perfectly consistent with the JCGM definition given above. Indeed, in the asymmetric
approach, the focus is explicitly on the “dispersion of values which could reasonably be attributed to the measurand.”
Furthermore, it draws the same distinction between measurand (Y) and measurement (Ym) as JCGM 106.2 Even though
the approach presented here is not Bayesian, there are important connections with JCGM106, such as the definition of the
best estimate of the measurand as E Y jYmð Þ.

First, an experimental design for an in-house validation study and a statistical model are presented, allowing the
calculation of in-house reproducibility precision as a function of concentration. Then it is shown how y�U uncertainty
intervals are calculated from such precision data. The inconsistencies of the y�U approach are then discussed, and the
asymmetric approach is presented. Throughout, the various concepts are illustrated with examples.

Methods
Experimental design and statistical model for an in-house validation study with samples with known
concentrations
It is assumed that an in-house validation study has been conducted with samples with known concentrations. In the
simplest case, the samples with known concentrations are obtained by diluting certified reference material. For each
concentration level, several measurement results are obtained under in-house reproducibility conditions. This is best
achieved via a factorial design, such as described in ISO/TS 23471.3

The following table (Table 1) provides an example of a factorial design with 7 factors and 8 factor level combinations.

More generally, the number of factor level combinations is denoted n. With m (known) concentration levels and
p replicates per concentration level, a total of m �p �n measurements are performed.

Table 1. Factorial design with 7 factors, each with two levels.

Factor level
combination j

Block
(e.g. week)

Factors

1 2 3 4 5 6 7

1 1 1 1 1 2 2 2 1

2 2 1 1 2 2 1 1 2

3 3 1 2 1 1 2 1 2

4 4 1 2 2 1 1 2 1

5 5 2 1 1 1 1 2 2

6 6 2 1 2 1 2 1 1

7 7 2 2 1 2 1 1 1

8 8 2 2 2 2 2 2 2
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The statistical model (mixed linear model) is as follows:

Yijk ¼ αþβxijþA jð ÞþB jð ÞxijþAjþBjxijþaijkþbijkxij (1)

where

Yijk denotes the measurement result at concentration level i¼ 1,…,m for factor level combination j¼ 1,…,n and
replicate k¼ 1,…,p

xij denotes the known concentration,

α and β�1ð Þ denote the absolute and the relative components of method bias. The αþβ � x curve represents the expected
measured concentration at known concentration x and will be referred to in the following as the mean curve.

A jð Þ and B jð Þ denote the absolute and the relative components of the effect of factor level combination j (each of these
terms results from summing effects of the individual factors).

Aj and Bj denote the absolute and the relative components of block effect j

aijk and bijk denote the absolute and the relative components of the repeatability error for measurement result Yijk .

In the following, two in-house validation data sets will be considered: Thiamphenicol inmilk (Example 1) andClopidol in
egg (Example 2).

The following table (Table 2) provide test results for Example 1 (m¼ 4 known concentration levels, p¼ 1 replicate).

The test results for Example 1 are displayed in Figure 1.

The following table (Table 3) provides test results for Example 2 (m¼ 6 known concentration levels, p¼ 1 replicate).

The test results for Example 2 are displayed in Figure 2.

For each example, reproducibility standard deviation values are calculated bymeans of Equation 1.With the exception of
the two fixed effects α and β, the terms on the right side of Equation 1 are modelled as random variables. The
corresponding variance components are denoted as follows:

A jð Þ¼A1 s1 jð Þð Þþ⋯þAq sq jð Þ� �

B jð Þ¼B1 s1 jð Þð Þþ⋯þBq sq jð Þ� �

Table 2. Example 1 – design and test results from an in-house validation study for Thiamphenicol in milk.

Block
j

Batch of
milk

Storage Technician Mixer CL01 (25)
[μg/kg]

CL02 (50)
[μg/kg]

CL03 (75)
[μg/kg]

CL04 (100)
[μg/kg]

01 Milk A Storage A Technician 1 Mixer A 23.9 51.9 74.9 100.9

02 Milk A Storage A Technician 2 Mixer B 24.3 50.5 74.2 99.3

03 Milk A Storage B Technician 1 Mixer B 24.8 49.9 73.6 97.6

04 Milk A Storage B Technician 2 Mixer A 29.2 55.3 79.4 102.7

05 Milk B Storage B Technician 2 Mixer B 28.4 53.4 78.3 103.1

06 Milk B Storage B Technician 1 Mixer A 26.5 51.3 77.9 101.8

07 Milk B Storage A Technician 2 Mixer A 25.0 52.9 77.2 102.1

08 Milk B Storage A Technician 1 Mixer B 25.5 51.7 74.3 98.4
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where

A1 sð Þ,…,Aq sð Þ are random variables with zero mean and variances σ2A,1,…,σ2A,q, respectively

B1 sð Þ,…,Bq sð Þ are random variables with zero mean and variances σ2B,1,…,σ2B,q, respectively and where

s1 jð Þ,…,sq jð Þ� �
denotes the vector of factor levels for the q factors and for factor level combination j

Moreover,

A1,…,An are random variables with zero mean and variance σ2A

B1,…,Bn are random variables with zero mean and variance σ2B.

a111,…,amnp are random variables with zero mean and variance σ2a

b111,…,bmnp are random variables with zero mean and variance σ2b

The estimation of variance components in mixed linear models is described, for example, in Searle et al.,4 McCulloch
et al.5 and Clarke.6 Estimates for Example 1 are provided Table 4.

The in-house precision parameters for Example 1 for four different concentrations are provided in Table 5. At a given
known concentration x, the in-house reproducibility standard deviation is calculated as follows:

σ2Ri xð Þ¼ σ2A,1þ…þσ2A,qþ x2 σ2B,1þ…þσ2B,q

� �
þσ2Aþ x2σ2Bþσ2aþ x2σ2b: (2)

The following two tables (Table 6 & Table 7) provide variance and precision estimates for Example 2.

Calculation of the y�U measurement uncertainty
The estimate of reproducibility at concentration x (see Equation 2) can be used to derive an estimate of the standard
measurement uncertainty for the measurand Y as a function of x:

u xð Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
σ2Ri xð Þ

q

Figure 1. Example 1 - test results.
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Figure 2. Example 2 - test results.

Table 4. Example 1 – variance estimates.

Variance component Constant (A) Proportional (B)

Repeatability 0.90760 0.00000

Block 0.88789 0.00000

Factor: Batch 0.00000 0.00004

Factor: Storage 1.06201 0.00000

Factor: Technician 1.52630 0.00000

Factor: Mixer 0.00000 0.00029

Table 5. Example 1 – In-house precision estimates.

Concentration
[μg/kg]

In-house
repeatability
[%]

Block
[%]

Factors
[%]

In-house
reproducibility
[%]

In-house
reproducibility
[μg/kg]

25 3.8 3.8 6.7 8.6 2.14

50 1.9 1.9 3.7 4.6 2.28

75 1.3 1.3 2.8 3.3 2.50

100 1.0 0.9 2.4 2.8 2.77

Table 6. Example 2 – variance estimates.

Variance component Constant (A) Proportional (B)

Repeatability 0.00000 0.01096

Block 0.00142 0.00524

Factor: Breeding 0.00118 0.00048

Factor: Operator 0.00749 0.00447

Factor: HPLC 0.00000 0.00000

Factor: Extract storage 0.00258 0.00000
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The expanded measurement uncertainty is then obtained as follows:

U xð Þ¼ k �u xð Þ

where k denotes the coverage factor.

It should be noted that it may be necessary to include the uncertainty of bias correction and the uncertainty of the (certified
reference) values for the known concentrations used in the validation study, as appropriate. (see step 3 of Asymmetric
measurement uncertainty approach).

Based on the precision values from the previous section, and using k¼ 2 (for the sake of simplicity), one obtains the
following expanded uncertainty values (Table 8 & Table 9):

The inconsistency of the y � U approach in the case of heteroscedasticity
Typically, the expanded measurement uncertainty is used to construct a measurement uncertainty interval of the form
y�U. Such symmetric measurement uncertainty intervals are not always appropriate. This will be demonstrated on the
basis of a theoretical example.

Table 7. Example 2 – In-house precision estimates.

Concentration
[μg/kg]

In-house
repeatability
[%]

Block
[%]

Factors
[%]

In-house
reproducibility
[%]

In-house
reproducibility
[μg/kg]

0.2 10.5 20.2 53.5 58.1 0.12

0.5 10.5 10.4 22.3 26.8 0.13

1 10.5 8.2 12.7 18.4 0.18

2 10.5 7.5 8.8 15.6 0.31

4 10.5 7.3 7.5 14.8 0.59

6 10.5 7.3 7.3 14.7 0.88

Table 8. Example 1 – Expanded uncertainty.

Concentration
[μg/kg]

Expanded measurement
uncertainty [%]

Expanded measurement
uncertainty [μg/kg]

25 17.1 4.28

50 9.1 4.56

75 6.7 5.00

100 5.5 5.54

Table 9. Example 2 – Expanded uncertainty.

Concentration
[μg/kg]

Expanded measurement
uncertainty [%]

Expanded measurement
uncertainty [μg/kg]

0.2 116.3% 0.23

0.5 53.6% 0.27

1 36.8% 0.37

2 31.2% 0.62

4 29.6% 1.19

5.5 29.4 % 1.62

6 29.3% 1.76
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In this example, it is assumed that the relativemeasurement uncertainty is already known and is constant at 35% across the
applicable range of concentrations as specified in the scope of the analytical method. If the measurement result is y¼ 10
(in this theoretical example, the unit plays no role and is therefore suppressed), then, applying the y�U approach with
k¼ 2 (for the sake of simplicity) and with the standard uncertainty obtained from the known 35% relative standard
deviation (RSD) value, a measurement uncertainty interval of [3, 17] is obtained. According to the JCGM definition of
measurement uncertainty discussed in the introduction, this means that the value y¼ 3 could reasonably be attributed to
the measurand. However, if the measurement result had been y¼ 3 (instead of y¼ 10), applying the same 35 % relative
measurement uncertainty would result in an uncertainty interval of [0.9, 5.1]. Since the original value of y¼ 10 does not
lie within this second interval, it can be seen that the y�U approach is inconsistent in such a situation.

The two uncertainty intervals just discussed are summarized in the following table (Table 10).

The inconsistency of the y�U approach discussed above is illustrated in the following figure (Figure 3). Due to the
constant RSDof 35%, thewidth of the uncertainty interval (in the diagram: the height of the uncertainty interval) depends
on the measurement result. Considered on its own, each uncertainty interval characterizes the dispersion of values that
could be reasonably be attributed to themeasurand on the basis of themeasurement result. However, considered together,
the different uncertainty intervals display inconsistencies. In particular, the value 10 does not lie within the uncertainty
interval for the measurement result 3, even though the latter lies within the uncertainty interval constructed around the
former.

The inconsistency of the y�U approach will now be shown on the basis of the uncertainty intervals for Example 2
provided in Table 9. At a Clopidol concentration of 4 μg/kg Clopidol, the y�U approach yields the uncertainty interval y
� 1.19 μg/kg. In routine testing, if the measurement result is y¼ 4 is obtained, it will be concluded that values above
5.19 μg/kg cannot reasonably be attributed to the measurand. However, from the same Table 9, we know that the lower
limit of the uncertainty interval for a sample with 5.5 μg/kg Clopidol concentration is 3.88 μg/kg (or 3.98 μg/kg if bias is
considered). In other words, we know that a measurand value of 5.5 μg/kg is perfectly compatible with a measurement

Table 10. Two y�Umeasurement uncertainty intervals in the case of a constant 35 % relativemeasurement
uncertainty across theapplicable rangeof concentrations. (In this theoretical example, theunit playsno role and
is therefore suppressed.)

Lower limit Measurement result Upper limit

0.9 3 5.1

3 10 17

Figure 3. Uncertainty intervals (vertical axis) following the y�U approach for a constant RSD of 35%, for two
measurement results (horizontal axis). (In this theoretical example, the unit plays no role and is therefore
suppressed).
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result of 4 μg/kg. It follows that the value 5.5 μg/kg should lie within the measurement uncertainty interval for a
measurement result of 4 μg/kg. This is not the case for the uncertainty interval obtained via the y�U approach. This is
illustrated in the following figure (Figure 4).

As has just been seen, in the presence of heteroscedasticity, the y�U approach leads to inconsistencies. For this reason,
a different approach for the determination ofmeasurement uncertainty in the case to heteroscedastic data is required. Such
an approach will now be presented.

Asymmetric measurement uncertainty approach
Description of the approach
Step 1: prediction range

For each known concentration, the distribution of test results can be characterized in terms of a prediction interval. This
interval reflects the degree to which the test results agree with one another, at the given concentration level and under the
specified conditions (e.g. repeatability or in-house reproducibility). For a chosen prediction probability level
(e.g. ppred ¼ 95%), a subsequent test result will lie inside the prediction interval with probability ppred .

If measurements are performed at different known concentrations, then it is possible to construct a prediction range,
rather than individual prediction intervals. This step involves applying one statistical model to all the data, as described
the previous section. The construction of a prediction range is described in the following figure (Figure 5).

For further information regarding the computation of a prediction range, the reader is referred to the discussion of variance
functions in ISO 5725-27 and to the in-house validation approach described in Gowik et al.8 and Jülicher et al.9 [1].

Step 2: measurement uncertainty interval

Once a prediction range has been calculated, the measurement uncertainty interval for a given test results (obtained e.g. in
routine testing) can be determined. Step 2 no longer involves the data from the validation study. Rather, for Step 2, it is
assumed that a prediction range has previously been calculated and is thus available.

Figure 4. Uncertainty intervals (vertical axis) following the y�U approach on the basis of the data from
Example 2 (Clopidol in egg) for twomeasurement results (horizontal axis). For ameasurement result of 4 μg/kg
(say in routine testing), values above 5.19 do not lie within the uncertainty interval. However, according to the
evaluation of the data from the in-house validation study, measurement results ≤ 4 μg/kg were consistent with a
measurand value of 5.5 μg/kg.

1This in-house validation approach is referenced in CD 65710 and CIR 808.11
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Accordingly, the meaning of the axes is now different. The vertical axis now represents the measurement result obtained,
say, in routine testing and denoted ym, while the horizontal axis now represents the measurand (which is to be
characterized via the measurement) denoted y (This notation is chosen so as to be consistent with JCGM 106, though,
strictly speaking, ym is one realization of a random variable Ym and y is one realization of a random variable Y . However, a
distinction between random variables and their realizations is not required in this paper.).

The starting point for Step 2 is a test result, displayed on the ym-axis. The intersection of the ym-value with the upper
prediction curve is projected onto the y-axis to obtain the lower measurement uncertainty limit. Indeed, for measurand
values below this y-value, measurement results can be expected to be less than the ym-value. Secondly, the intersection of
the ym-value with the lower prediction curve is projected onto the y-axis to obtain the upper measurement uncertainty
limit. Indeed, for a measurand values above this y-value, measurement results can be expected to be greater than the
ym-value. The resulting y-axis interval (grey horizontal band hugging the y-axis) thus corresponds to the values which
could “reasonably be attributed to the measurand.”

This procedure is illustrated in Figure 6.

Step 3: best estimate for the measurand

The “best estimate of the measurand” is the projection onto the y-axis of the intersection of the measurement result
(ym-value) with themean curve αþβ � y (see previous section with themeasurand y replacing the known concentration x).
If the bias is negligible (i.e. α is close to zero and β is close to 1), then this y-value will be close to the ym-value. However,
if a bias is present, then the two values will differ, and taking the y-axis projection corresponds to a bias or recovery
correction. For this reason, the y-axis projection is denoted ycorr . If such a bias or recovery correction is performed, it is
recommended to include the “uncertainty of the bias correction” (see Ref. 1) as an additional variance component in the
calculation of the prediction intervals at each known concentration x during the validation study. The uncertainty of bias
correction, in turn, may consist of various sources of uncertainty such as the statistical uncertainty of the parameters α and
β and the uncertainty of reference values used as known concentrations.

Finally, it should be noted that the symmetry of the measurement uncertainty interval is determined in relation to ycorr .

Calculation of the measurement uncertainty intervals
In this section, it is shown how to calculate the lower and upper limits of asymmetric measurement uncertainty intervals.

It is assumed that there is no bias and that, for each concentration level in the recovery experiment, the measurement
results follow a normal distribution.

Figure 5. Construction of a prediction range. For each known concentration, the diamonds represent the
measurement results and the solid vertical line represents the prediction interval. The prediction range is repre-
sented by the dashed lines.
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Let yL denote the lower limit of the expanded uncertainty interval and yU the corresponding upper limit. Furthermore, let
f U yð Þ denote the upper limit of the prediction interval at measurand value y, and let f L yð Þ denote the lower limit of the
prediction interval at y. For a given measurement result ym, the two limits yL and yU can then be computed iteratively,
using the implicit relationships

f U yLð Þ¼ ym (3)

f L yUð Þ¼ ym (4)

In the case of a constant relative standard deviation σrel across all concentration levels, and in the absence of bias, explicit
expressions for yL and yU can be provided. Indeed, in such a situation, a given measurement result ym obtained to
characterize the (unknown) measurand ywill lie with 95% probability [2] in the interval y�2 � y �σrel,yþ2 � y �σrel½ �, i.e.

y�2 � y �σrel ≤ ym ≤ yþ2 � y �σrel (5)

The above inequality can be rewritten as

y � 1�2 �σrelð Þ≤ ym ≤ y � 1þ2 �σrelð Þ
⟺

1�2 �σrel
ym

≤
1
y
≤
1þ2 �σrel

ym

⟺
ym

1þ2 �σrel ≤ y≤
ym

1�2 �σrel

(6)

Thus, the measurand y will lie in the interval ym
1þ2�σrel ,

ym
1�2�σrel

h i
with 95% probability.

For example, for a constant relative standard deviation of 40% (i.e. σrel ¼ 0:4) and for the measurement result ym ¼ 100,
the lower and upper uncertainty limits are computed as:

yL ¼
100
1:8

≈ 56

yU ¼ 100
0:2

¼ 500

Figure 6. Procedure for obtaining a measurement uncertainty interval from a measurement result.

2For the sake of legibility, the exact 95 % quantile has been replaced by the value 2.
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As long as the exact quantile is used and the assumptions are valid, this uncertainty interval is statistically exact in the
sense that the coverage probability is exactly 95%.

Symmetric versus asymmetric intervals
When is the proposed uncertainty interval symmetric?

If the prediction limits run parallel to the mean curve αþβ � x (see Section 0), the uncertainty interval is perfectly
symmetric. This is the case when it is the absolute rather than the relative standard deviation which is constant across
concentration levels. It should also be noted that, when the prediction limits run parallel to the mean curve αþβ � x and
when there is no bias (100 % recovery), then the prediction and measurement uncertainty intervals are identical. This is
illustrated in the following figure (Figure 7).

Figure 7. Uncertainty intervals (A) following the y�U approach and (B) following the asymmetric approach. If
there is nobias and if the prediction limits runparallel to themean curve αþβ �x, then the intervals obtained from the
two approaches are identical.
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Figure 8.Measurement uncertainty intervals constructed following the asymmetric approach, starting from
the same measurement result ym ¼ 5. The degree of asymmetry depends on the magnitude of the variance.
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The assumption that an uncertainty interval is symmetric is justified if the following two conditions are met:

Condition 1: Measurement results are distributed symmetrically around the corresponding mean value at a given known
concentration in the validation study.

Condition 2: Heteroscedasticity is negligible.

When is the proposed uncertainty interval asymmetric?

In the field of analytical chemistry, in most cases, the distribution of results obtained from measurements performed
on one and the same sample is more or less symmetric, so that symmetry condition 1 above is met. Condition 2, however,
is almost never met. In the case of weakly heterogeneous variances, uncertainty intervals may still be approximately
symmetric. Similarly, if the spread of measurement results at any given concentration level remains small (i.e. the
relative standard deviations are small), uncertainty intervals may still be approximately symmetric. However, if the
dispersions vary considerably across concentration levels and the corresponding relative standard deviations are large
(say, greater than 10%), then it is necessary to take the asymmetry of the uncertainty intervals into account. Restricting the
concentration range under consideration in order to avoid variance heterogeneity is common analytical practice. In some
cases, this expedient may allow the symmetry assumption to be applied.

The following figure (Figure 8) illustrates the relationship between magnitude of dispersion and symmetry of the
uncertainty interval.

Applying the alternative approach to the data from the factorial in-house validation studies
(Example 1 and Example 2)
The uncertainty intervals for Example 1 and Example 2 are provided in the following tables (Table 11 & Table 12).
The degree of asymmetry of a given uncertainty interval can be gauged by comparing the values of the differences ycorr �
yL and yU � ycorr (See earlier sections for the notation yL, yU and ycorr .). The two values ycorr � yL and yU � ycorr can also be
compared with the expanded uncertainty from the y�U approach. Accordingly, the U values from Table 8 and Table 9
are reproduced here for convenient reference.

Table 11. Example 1 – Lower and upper limits of the uncertainty intervals.

Measured
concentration
[μg/kg]
ym

Lower
limit
yL

Upper
limit
yU

Best estimate
ofmeasurand
ycorr

Difference
ycorr �yL

Difference
yU�ycorr

Expanded
uncertainty for
y�U
U

25 19.2 27.8 23.51 4.31 4.29 4.28

50 44.2 53.3 48.66 4.46 4.64 4.56

75 68.9 78.9 73.81 4.91 5.09 5.00

100 93.5 104.7 98.97 5.47 5.73 5.54

Table 12. Example 2 – Lower and upper limits of the uncertainty intervals.

Measured
concentration
[μg/kg]
ym

Lower
limit
yL

Upper
limit
yU

Best estimate
ofmeasurand
ycorr

Difference
ycorr �yL

Difference
yU�ycorr

Expanded
uncertainty for
y�U
U

0.2 0.00 0.39 0.14 0.14 0.25 0.23

0.5 0.21 0.75 0.44 0.23 0.31 0.27

1 0.65 1.40 0.94 0.29 0.46 0.37

2 1.45 2.76 1.93 0.48 0.83 0.62

4 3.02 5.53 3.91 0.90 1.62 1.19

6 4.57 8.31 5.90 1.34 2.41 1.76
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As can be seen, for Example 1, the values for the differences ycorr� yL and yU � ycorr lie relatively close to one another and
to the U values. By contrast, for Example 2, the difference values differ considerably from one another and from the U
values. For instance, for ym ¼ 2 μg/kg, we have

ycorr � yL ¼ 0:48μg=kg

yU � ycorr ¼ 0:83μg=kg

while

U¼ 0:62μg=kg:

Figure 9. Calculation of uncertainty limits and best measurand values for (A) Example 1 and (B) Example 2.
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The calculation of the upper and lower limits, as well as the best estimate of the measurand ycorr is illustrated in the
following figure (Figure 9).

Conclusions
As has been seen, asymmetric measurement uncertainty intervals arise naturally in the case of heteroscedasticity.
Accordingly, in such cases, the symmetric uncertainty interval y�U should be seen as a mere approximation of the
exact measurement uncertainty interval. This approximation is adequate if variability is low (say, less than 10 % RSD).
In the case of both high variability and heteroscedasticity, symmetric measurement uncertainty intervals can be
misleading. An awareness of these issues is thus particularly important in fields where these two conditions are expected,
such as chemical trace analysis.

In the examples considered in this paper, it is assumed that data follow a normal distribution. If data follow another
distribution, the uncertainty interval is different. Lognormal data are a familiar case in point. Indeed, consider the case that
for any given concentration x, the log-transformed test results can be expected to lie between ln xð Þ�2σ and ln xð Þþ2σ.
Then, in the original domain (i.e. prior to the log-transformation), the RSD will remain constant across concentration
levels and the dispersion will thus incre ase monotonically with the concentration.

In many cases a log-transformation stabilizes the variance, meaning that, in the log domain, all the data are normally
distributed with one and the same standard deviation σ, independently of the concentration. Back-transformation
(“anti-log”) then again provides asymmetric uncertainty intervals, from y=exp kσð Þ to y � exp kσð Þ. These intervals are
asymmetric, but to a lesser extent that the interval derived under the assumption that the original data follow a normal
distribution. Take the case σ¼RSD¼ 0:25 and k¼ 2. Then the asymmetric uncertainty interval based on the assumption
that the original data follow a normal distribution (see Equation 5) is y

1:5 ,2y
� �

, and the asymmetric uncertainty interval
based on the log-normal distribution is y

1:65 ,1:65y
� �

.

However, a log-transformation does not always have this variance stabilization effect, even if the data follow a lognormal
distribution. For instance, if the standard deviations in the original domain are constant across concentrations, then, in the
log domain, the σ value will depend on the concentration.

More generally, this article establishes a conceptual framework in which measurement uncertainty can be derived from
precision whenever the relationship between the latter and concentration has been characterized. Closed expressions for
the limits of the uncertainty interval were provided for the simple case of normally distributed test results and constant
relative standard deviation. In more complex cases, it may not be possible to provide closed expressions. However,
iterative calculation procedures can be applied, and further workmay be required to illustrate appropriate context-specific
approaches.

Data availability
No other data were used than those provided in Table 2 and Table 3.
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