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Objective: A prognostic model utilizing CT radiomics, radiological, and clinical
features was developed and validated in this study to predict an objective
response to initial transcatheter arterial chemoembolization with drug-eluting
beads (DEB-TACE) for hepatocellular carcinoma (HCC).

Methods: Between January 2017 and December 2022, the baseline clinical
characteristics and preoperative and postoperative follow-up imaging data of
108 HCC patients who underwent the first time treatment of DEB-TACE were
analyzed retrospectively. The training group (n= 86) and the validation group (n=
22) were randomly assigned in an 8:2 ratio. By logistic regression in machine
learning, radiomics, and clinical-radiological models were constructed
separately. Finally, the integrated model construction involved the integration
of both radiomics and clinical-radiological signatures. The study compared the
integrated model with radiomics and clinical-radiological models using
calibration curves, receiver operating characteristic (ROC) curves, and decision
curve analysis (DCA).

Results: The objective response rate observed in a group of 108 HCC patients
who received initial DEB-TACE treatment was found to be 51.9%. Among the
three models, the integrated model exhibited superior predictive accuracy in
both the training and validation groups. The training group resulted in an area
under the curve (AUC) of 0.860, along with sensitivity and specificity values of
0.650 and 0.913, respectively. Based on the findings from the validation group,
the AUC was estimated to be 0.927. Additionally, it was found that values of
sensitivity and specificity were 0.875 and 0.833, respectively. In the validation
group, the AUC of the integrated model showed a significant improvement when
contrasted to the clinical-radiological model (p = 0.042). Nevertheless, no
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significant distinction was observed in the AUC when comparing the integrated
model with the radiomicsmodel (p=0.734). TheDCA suggested that the integrated
model demonstrates advantageous clinical utility.

Conclusion: The integrated model, which combines the CT radiomics signature
and the clinical-radiological signature, exhibited higher predictive efficacy than
either the radiomics or clinical-radiological models alone. This suggests that during
the prediction of the objective responsiveness of HCC patients to the first DEB-
TACE treatment, the integrated model yields superior outcomes.

KEYWORDS

hepatocellular carcinoma, drug-eluting beads transcatheter arterial chemoembolization,
initial response, objective response, computed tomography, radiomics, nomogram,
prediction

1 Introduction

Primary liver cancer is globally recognized as it holds the
third position in terms of frequency as a leading cause of cancer-
related mortality and is acknowledged as the sixth most common
cancer overall, with hepatocellular carcinoma (HCC) accounting
for about 75%–85% of them (Sung et al., 2021). Transarterial
chemoembolization (TACE) is endorsed as the standard
treatment for intermediate-stage HCC by the European
Society for Medical Oncology (ESMO), the American
Association for the Study of Liver Diseases (AASLD), the
Barcelona Clinic Liver Cancer (BCLC), and various other
guidelines (Heimbach et al., 2018; Vogel et al., 2021; Reig
et al., 2022). Additionally, TACE can be utilized for patients
with early and advanced HCC (Han and Kim, 2015). Depending
on the embolic agent, TACE can be classified into the following
(Kotsifa et al., 2022): (i) conventional TACE (cTACE), which
uses lipiodol and gelatin sponge particles or polyvinyl alcohol
particles; and (ii) drug-eluting beads transcatheter arterial
chemoembolization (DEB-TACE), which uses drug-eluting
microspheres. DEB-TACE is widespread in its clinical
applications because it offers a higher level of safety and
standardization of procedure compared to cTACE.

Because of the high heterogeneity of the patient population,
the efficacy and safety of TACE treatment for patients
experiencing intermediate-stage HCC may vary (Kudo et al.,
2020). Therefore, studying the subgroups of intermediate-stage
HCC patients is a challenging and popular research topic.
Although the 2022 BCLC guidelines further subdivide BCLC
stage B (Reig et al., 2022), the boundaries between the three
subgroups are blurred, and the scope of application of TACE is
vague. Thus, it is important to have an objective way of predicting
response to TACE treatments in patients with HCC before
treatment begins.

In recent years, using radiomics for the prediction of
effectiveness and prognosis of TACE for HCC has garnered
increasing interest (Kim et al., 2018; Kong et al., 2021; Zhao
et al., 2021; Wang et al., 2022; Sun et al., 2023). Radiomics is a
non-invasive imaging method that can assess tumor size, shape,
texture, and other characteristics, providing quantitative, high-
dimensional, and mineable features for further analysis
(Varghese et al., 2019; Chen et al., 2021). In addition,

radiomic features, as a combination of multiple features, are
considered a more powerful prognostic biomarker, providing
additional information for clinical data and reported to be an
important predictive factor for clinical outcomes (Coroller et al.,
2015; Huang et al., 2016). Additionally, machine learning
methods can accurately handle complex relationships between
a large number of variables, which is difficult to achieve with
traditional statistical models (Choy et al., 2018). However, there
is a paucity of studies on the radiomics of DEB-TACE for HCC.
Therefore, our main aim is to create and validate predictive
models, specifically a radiomics model, clinical-radiological
model, and integrated model. These models depended on
clinical, radiological, and CT radiomics characteristics. The
purpose of these models was to mediate the preoperative
identification of patients with HCC who would derive the
greatest advantage from initial DEB-TACE and to anticipate
patients prognoses.

2 Material and methods

2.1 Research ethics and study participants

The requirement for informed consent was waived due to the
retrospective nature of the investigation. Shenzhen People’s
Hospital’s Institutional Review Board approved the study (IRB
No. LL-KY-2022137-01, Shenzhen, China) and registered it with
the Chinese Clinical Trial Register (ChiCTR2200060448, China).
Helsinki Declaration principles were followed in the conduct of the
investigation.

The criteria for inclusion were as follows: (i) patients with
definitive clinical or histological diagnosis of HCC in accordance
with the 2022 guidelines established by the Chinese Society of
Clinical Oncology (CSCO) for the identification and
management of primary liver cancer (Zhou et al., 2023); (ii)
patients aged 18–85 years; (iii) patients with BCLC stage B
without surgical indications or those with BCLC stage A
unable to undergo/refused curative therapies (surgical
resection, liver transplantation, or radiofrequency ablation);
(iv) those with Child–Pugh liver function score of A5-B7; (v)
patients with a score of 0 on the Eastern Cooperative Oncology
Group (ECOG); and (vi) those that underwent DEB-TACE as
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primary treatment or without cTACE/ablation within 6 months
before initial DEB-TACE. The criteria for exclusion were as
follows: (i) patients with HCC having spontaneous rupture
and hemorrhage; (ii) those for whom current treatment was
integrated with any other systemic or local treatment for
HCC; (iii) those with lack of baseline clinical data or liver CT
scan and enhancement imaging data; (iv) those with infiltrative/
diffuse HCC (Reig et al., 2022); (v) those that had lesions without
arterial phase enhancement, where the largest lesions were
smaller than 1 cm; (vi) those with uncontrolled organ
dysfunction or metabolic disease; (vii) those with incomplete
data over the follow-up period; and (viii) patients that had images
of poor quality due to scanning artifacts. Follow-up imaging data
at 4–6 weeks after the initial DEB-TACE procedure was used as
the study endpoint. Retrospective collection of clinical and
imaging data was conducted on HCC patients who received
admission to our interventional department for their initial
treatment with DEB-TACE between the period of January
2017 and December 2022. Ultimately, in the study, a total of
108 patients were included and were randomly allocated to either
the training group (n = 86) or the validation group (n = 22) at an
8:2 ratio. Figure 1 depicts a flowchart illustrating the inclusion
and exclusion criteria.

2.2 DEB-TACE procedure

TACE procedures were conducted by two physicians with
over 10 years of independent experience and special training in
interventional radiology. Under local anesthesia, the Seldinger
technique was used for femoral artery cannulation. Angiography
of the abdominal aorta was performed first, followed by
angiography of the celiac artery, superior mesenteric artery,
and common hepatic artery to observe whether the tumor
had any vascular variants or parasitic blood supply and
whether the main trunk of the portal vein and its branches
were patent. Using an angiogram, superselective cannulation of
the tumor’s supplying artery was carried out, allowing the
identification of target vessels. Appropriate particle size
(70–150 μm/100–300 μm/300–500 μm) of CalliSpheres® beads
(Hengrui Medical, Suzhou, China) or DC® beads
(Biocompatibles UK Ltd., Farnham, United Kingdom) and
dose of embolization (1-2 vial) were selected depending on
tumor size, liver function score, and degree of vascular
enhancement (Shao et al., 2021). Following the
manufacturer’s guidelines (Lencioni et al., 2012), the
microspheres were loaded with chemotherapeutic drugs
(pirarubicin, 50–75 mg per 2 mL/vial beads). Subsequently,
they were mixed with a non-ionic contrast agent, iophorol-
350 (Hengrui Medical, Suzhou, China), in a volume of
10–15 mL. The mixture was then slowly injected under
fluoroscopy at a rate of 1 mL/min (Lencioni et al., 2012). A
final postoperative angiogram was performed to determine the
embolization endpoint, which was assessed based on the
subjective angiographic chemoembolization endpoint (SACE).
Ideal endpoints for embolization include the absence of tumor
blush, the reduction of antegrade arterial flow, and the

appearance of “dead branches” of the main tumor vessel
(i.e., SACE stage III). Postoperative symptomatic treatment
such as hepatoprotective agents, analgesia, and antiemetics
were routinely administered.

2.3 CT scanning

In all patients in the study, dynamic liver CT was performed
before and 4–6 weeks after DEB-TACE, including plain, arterial,
portal vein, and delayed-phase imaging. The CT and enhanced CT
scanning of the liver was performed using the SOMATOM
Definition AS 16-row spiral CT (SIEMENS Healthineers,
Erlangen, Germany), Philips Brilliance 16-row spiral CT
(manufactured by Philips Healthcare, Cleveland, OH,
United States), or Philips Brilliance iCT 256-slice spiral CT
(manufactured by Philips Healthcare, Cleveland, OH,
United States) devices. This study employed the subsequent
scanning parameters: Pitch value ranged from 1.3 to 1.5, slice
thickness was set at 5 mm, tube voltage was set at 120 kV,
automatic tube current modulation was used, and reconstruction
interval was set at 1.5 mm.

2.4 Clinical data, radiological features, and
DSA image feature definitions

Baseline demographic, laboratory, imaging, and intraoperative
DSA imaging feature data were retrospectively collected. These
included age, gender, etiology, BCLC stage, Child–Pugh grade,
albumin-bilirubin (ALBI) grade, serum albumin, serum total
bilirubin, platelet count, alpha-fetoprotein, PT extension time
score, lobar involvement, microsphere size, presence of vascular
lakes, presence of capsule, vascularization patterns, SACE grade,
maximum tumor diameter, number of tumors, and six-and-twelve
score. Patient imaging data was collected 4–6 weeks following
initial treatment.

The examination of the tumor’s response to treatment in
relation to the target lesions was carried out utilizing the
mRECIST criteria (Lencioni and Llovet, 2010). The assessment
categorized the response into one of four classifications: complete
response (CR), partial response (PR), stable disease (SD), or
progressive disease (PD). Objective response (OR) includes CR
and PR. The objective response rate (ORR) was calculated as CR
rate + PR rate.

Baseline CT radiological features were defined as follows. (i)
Six-and-twelve score, with the tumor burden value represented as
the “maximum diameter of the largest lesion (cm) + the number
of lesions” (Wang et al., 2019), categorized into three classes:
≤6, >6 but ≤12, and >12. (ii) Lobar involvement was described
using the Couinaud classification of liver anatomy. A tumor
confined to segments S5-8 (right lobe), segments S2 and S3
(left lobe), or segments S1 and S4 (caudate and quadrate
lobes) was defined as a unilobar tumor; all other tumors were
defined as bilobar tumors (Vesselle et al., 2016). (iii)
Vascularization patterns were classified into four types based
on dynamic enhanced CT before treatment (Kawamura et al.,
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2010). There are four types of enhancement patterns observed in
this study. Type 1 exhibits a homogeneous pattern of
enhancement without any elevation in arterial blood flow.
Type 2 also shows a homogeneous pattern of enhancement
but with an elevation in arterial blood flow. Type 3 displays a
heterogeneous pattern of enhancement with the presence of
septations. Lastly, type 4 exhibits a heterogeneous pattern of
enhancement characterized by irregular ring-like structures. The
present study grouped these types into two categories: types 1 +
2 and 3 + 4 (Hu et al., 2020).

Laboratory test results were defined as follows:
(i) ALBI (Zheng et al., 2017) was determined as
log10 bilirubin (μmol/L) × 0.66 + albumin (g/L) × − 0.085, scored
as “1” for values of ≤ −2.60, “2” for > −2.60 and ≤ −1.39, and
“3” for > −1.39. (ii) Prothrombin (PT) extension time score (Durand
and Valla, 2008) was calculated as measured PT − control PT, and it
was scored as “1” for 1–3 s, “2” for 4–6 s, and “3” for >6 s.

The following was the definition of perioperative angiography.
(i) The endpoint of embolization was classified into four grades
based on the SACE (Lewandowski et al., 2007): In SACE I, there is a
presence of normal arterial blood flow and a decrease in tumor
blush. In SACE II, there is a decrease in both arterial blood flow and
tumor blush. The patient’s condition is characterized by SACE III,
which is associated with diminished arterial blood flow and the
absence of a tumor blush. The SACE IV classification indicates the

absence of arterial blood flow or tumor blush. (ii) Vascular lakes
(Kong et al., 2020) were defined as localized accumulations of
contrast agents in the tumor during embolization persisting to
the venous phase without dissipation, similar to extravasation but
different from tumor blush.

The initial response to tumor therapy and the radiological
characteristics mentioned above were assessed by two diagnostic
radiologists who were blinded to the clinical information. All
instances of disagreement were effectively resolved through the
process of reaching a consensus. The reliability of the data was
assessed using Cohen’s Kappa test.

2.5 Image segmentation

The manual segmentation of the arterial phase in the liver
involved the segmentation of each layer of the target lesions was
conducted using the ITK-SNAP software (version 3.8.0, http://www.
itksnap.org) (Park et al., 2017). All liver tumor images were
segmented by a radiologist with over 5 years of professional
experience in liver CT diagnosis, who performed the task
independently and without access to any clinical information
about the patient. In cases where the tumor margins were
blurred, the outline of the tumor was determined in our
hospital’s routine clinical records and picture archiving and

FIGURE 1
Flowchart of inclusion and exclusion criteria.
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communication systems (PACS) by observing the arterial, portal,
and delayed phase images. The verification of the volume of interest
(VOIs) was subsequently conducted by an additional radiologist
possessing a decade of diagnostic expertise in liver CT imaging. In
order to measure the reproducibility of radiomics characteristics, the
application of intra-observer reproducibility analysis was utilized. A
radiologist randomly performed image segmentation of 50 cases at
two-time points at 1-month intervals, generating 2 VOIs for each
included patient. Intraclass correlation coefficients (ICCs) were used
to assess the agreement between extracted features. Radiomics
features with ICCs of ≥0.75 were considered to have good
reproducibility and stability. The radiomics features extracted in
this study had good reproducibility and stability, with an intra-
observer ICC between 0.93 and 0.99 based on two measurements.

2.6 Feature extraction, feature selection, and
radiomics model construction

Using Pyradiomic’s in-house feature analysis program
(http://pyradiomics.readthedocs.io), all radiomics features were
extracted. First, the Z-score method was employed to standardize
all features, involving the calculation of the mean and variance
for each feature column. Subsequently, each feature column was
transformed into a standard normal distribution by subtracting
the mean and dividing by the variance. Next, the statistical tests
employed for the purpose of identifying features exhibiting
significant differences were the t-test and the Mann-Whitney
U-test (p < 0.05), and we retained 355 features with p-values less
than 0.05. Then, Spearman’s rank correlation coefficient was
employed to ascertain the correlation between the features for
redundancy elimination. When the correlation coefficient
between any two features was ≥0.9, only one of the two
features was retained. We adopt a greedy recursive deletion
approach to filter features, wherein we remove the features
with the highest redundancy in the current set at each

iteration, resulting in the retention of 56 final features. Finally,
the most robust and non-redundant features were filtered by the
least absolute shrinkage and selection operator (LASSO)
regression with 10-fold cross-validation. All feature screening
processes are performed in the training group. The retained
features were then utilized in machine learning for risk
modeling by LR in scikit-learn machine learning library. To
prevent overfitting, a 5-fold cross-validation was employed to
select the optimal parameters of the model, and to obtain final
radiomics signatures. Figure 2 shows a flowchart of the radiomics
analysis in the present study, including lesion segmentation,
feature extraction, feature selection, and model construction.

2.7 Clinical-radiological and integrated
model construction

The clinical and radiological features were assessed using
statistical tests such as the t-test, Mann-Whitney U-test, Chi-
square test, or Fisher’s exact test. The features that had a
significance level of <0.05 were encompassed in the logistic
regression model for the purpose of constructing the
clinical-radiological model in the field of machine learning,
similar to the aforementioned approach. Ultimately, the
integration of radiomics and clinical-radiological signatures was
employed to establish an integrated model.

2.8 Model performance, validation, and
comparison

The evaluation of model discrimination was conducted
through the utilization of ROC analysis. The calculation of
the area under the curve (AUC) of the ROC was performed,
and Delong’s test was employed to compare the AUC values
between the models. The evaluation of the prediction model’s

FIGURE 2
Flowchart of radiomics model construction. MSE, means square error; ROC, receiver operating characteristic; DCA, decision curve analysis.
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TABLE 1 The baseline characteristics of the patients in the training and validation groups.

Training Cohort(n = 86) Test cohort (n = 22)

Characteristics Without OR OR p-value Without OR OR p-value

Age (years) 58.28 ± 12.84 58.40 ± 15.32 0.969 66.67 ± 7.42 55.88 ± 14.45 0.100

Serum albumin (g/L) 38.57 ± 6.14 38.81 ± 5.20 0.851 33.03 ± 5.83 39.37 ± 3.93 0.008

Serum total bilirubin (μmol/L) 20.33 ± 18.56 17.45 ± 8.92 0.373 21.93 ± 8.44 16.06 ± 6.59 0.099

PLT (×109 g/L) 200.88 ± 124.29 156.25 ± 82.50 0.057 247.17 ± 141.07 164.50 ± 57.88 0.060

Maximum tumour diameter (cm) 6.82 ± 5.04 5.72 ± 3.95 0.266 10.42 ± 5.59 4.04 ± 2.79 0.002

Tumor number 3.00 ± 2.67 2.35 ± 2.80 0.274 3.67 ± 4.08 1.88 ± 1.26 0.121

Gender 0.567 0.876

Female 4(8.70) 6(15.00) 2(33.33) 3(18.75)

Male 42(91.30) 34(85.00) 4(66.67) 13(81.25)

Etiology 0.099 0.805

Others 13(28.26) 4(10.00) 1(16.67) 2(12.50)

HBV 31(67.39) 33(82.50) 5(83.33) 13(81.25)

HCV 2(4.35) 3(7.50) 0(0.00) 1(6.25)

BCLC stage 0.748 0.324

A 8(17.39) 9(22.50) 0(0.00) 5(31.25)

B 38(82.61) 31(77.50) 6(100.00) 11(68.75)

Child-Pugh grade 1.000 1.000

A 41(89.13) 36(90.00) 5(83.33) 14(87.50)

B 5(10.87) 4(10.00) 1(16.67) 2(12.50)

ALBI grade 0.038 0.238

1 13(28.26) 21(52.50) 1(16.67) 9(56.25)

2&3 33(71.74) 19(47.50) 5(83.33) 7(43.75)

AFP (IU/mL) 0.978 0.601

≤400 31(67.39) 28(70.00) 5(83.33) 16(100.00)

>400 15(32.61) 12(30.00) 1(16.67) 0(0.00)

PT extension time score 0.315 1.000

1 39(84.78) 36(90.00) 6(100.00) 15(93.75)

2 7(15.22) 3(7.50) 0(0.00) 1(6.25)

3 0(0.00) 1(2.50) 0(0.00) 0(0.00)

Lobar involvement 0.075 0.102

Unilobar 20(43.48) 26(65.00) 2(33.33) 13(81.25)

Bilobar 26(56.52) 14(35.00) 4(66.67) 3(18.75)

Microsphere size (μm) 0.686 0.560

70–150 6(13.04) 3(7.50) 0(0.00) 2(12.50)

100–300 35(76.09) 33(82.50) 4(66.67) 11(68.75)

300–500 5(10.87) 4(10.00) 2(33.33) 3(18.75)

Vascular lake 0.089 1.000

(Continued on following page)

Frontiers in Pharmacology frontiersin.org06

Zhang et al. 10.3389/fphar.2024.1315732

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1315732


calibration was conducted by employing the Hosmer-
Lemeshow test and presenting the results through calibration
curves. A p > 0.05 indicates a favorable level of concordance
between the anticipated values and the observed values of the
model. The assessment of the model’s clinical utility was
conducted by DCA.

2.9 Logistic regression

Logistic regression is a statistical model commonly used to
test hypotheses about the relationships between a dichotomous
response and one or more categorical or continuous
explanatory variables. The fitted line plot in logistic
regression has a sigmoid or S-shaped curve, which is more
appropriate for representing the data compared to the linear
regression line. Logistic regression uses the logit function,
which is the natural logarithm, to model the relationship
between variables (Demirsoy and Karaibrahimoglu, 2023).
For more information on logistic regression, refer to the
study by Peng et al. (2002).

2.10 Statistics

The statistical methods employed for analyzing the
disparities in the clinical and radiological characteristics of

participants were the t-test, or the Mann-Whitney U test, and
the Chi-square test, or Fisher’s exact test. Quantitative variables
are expressed as‾x ± s; categorical variables are expressed using
frequencies (percentages). IBM SPSS Statistics (Version 21.0) was
used to analyze clinical and radiological features statistically.
Python (version 3.7.16) was used for statistical analysis of
radiomic features, ICCs, Z-score normalization, t-test or
Mann–Whitney U-test, Spearman rank correlation test, LASSO
regression, and machine learning. Statistical significance was
determined for variations with a p-value less than 0.05.
Subjective radiological features were tested for consistency
using Cohen’s Kappa test. The Cohen’s Kappa values were
classified as follows: poor, <0.20; general, 0.21–0.40; moderate,
0.41–0.60; good, 0.61–0.80; very good, >0.81.

3 Results

3.1 Basic characteristics

Table 1 displays the baseline characteristics of the patients in
both the training and validation groups.

The response to initial DEB-TACE treatment in 108 HCC
patients was analyzed based on the mRECIST criteria. Fifty-six
patients (51.9%) in the original group who achieved initial OR
(Figures 3, 4) and 52 (48.1%) who did not achieve OR were
randomized into a training group (n = 86) and a validation group

TABLE 1 (Continued) The baseline characteristics of the patients in the training and validation groups.

Training Cohort(n = 86) Test cohort (n = 22)

Characteristics Without OR OR p-value Without OR OR p-value

Yes 5(10.87) 11(27.50) 1(16.67) 2(12.50)

No 41(89.13) 29(72.50) 5(83.33) 14(87.50)

Capsule 0.031 0.752

Yes 23(50.00) 30(75.00) 3(50.00) 11(68.75)

No 23(50.00) 10(25.00) 3(50.00) 5(31.25)

Vascularization patterns 0.171 0.222

type 1&2 9(19.57) 14(35.00) 0(0.00) 6(37.50)

type 3&4 37(80.43) 26(65.00) 6(100.00) 10(62.50)

SACE grade 0.375 0.071

1 2(4.35) 0(0.00) 1(16.67) 1(6.25)

2 5(10.87) 5(12.50) 2(33.33) 0(0.00)

3 38(82.61) 32(80.00) 3(50.00) 14(87.50)

4 1(2.17) 3(7.50) 0(0.00) 1(6.25)

6 and 12 score 0.272 0.017

>12 16(34.78) 8(20.00) 3(50.00) 1(6.25)

>6 but ≤12 17(36.96) 16(40.00) 3(50.00) 6(37.50)

≤6 13(28.26) 16(40.00) 0(0.00) 9(56.25)

OR, objective response; PLT, blood platelet; BCLC, Barcelona Clinic Liver Cancer; ALBI, albumin-bilirubin; AFP, α-fetoprotein; SACE, Subjective Angiographic Chemoembolization Endpoint.

Frontiers in Pharmacology frontiersin.org07

Zhang et al. 10.3389/fphar.2024.1315732

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1315732


(n = 22) in an 8:2 ratio. In the training group, only the differences
in the capsule and ALBI grade were significant (p < 0.05) and
included in constructing the clinical-radiological model. The
differences in serum albumin, maximum tumor diameter, and
six-and-twelve scores in the validation group were statistically
significant. Cohen’s Kappa test indicated good reliability of lobar
involvement, vascular lakes, capsule, vascularization patterns,
SACE, and initial treatment response, with Kappa values of
0.94, 0.87, 0.84, 0.91, 0.83, and 0.87, respectively. None of the
108 patients died within 1 month of treatment, and 81 of them
(75%) presented with post-embolization syndrome to varying
degrees. In accordance with the recently suggested adverse event
categorization provided by the Standards of Practice Committee
of the Society of Interventional Radiology (Khalilzadeh et al.,
2017), the incidence of grade 1–2 post-embolization syndrome
was 80.2% (65/81), and that of grade 3–4 post-embolization
syndrome was 19.8% (16/81).

3.2 Construction of the radiomics model

A total of 1834 radiomics features were extracted, comprising
360 first-order features, 14 shape-based features, and 1460 textural
features. The textural features were categorized into five primary
groups, namely, the gray-level size zone matrix (GLSZM), gray-level
co-occurrence matrix (GLCM), gray-level run length matrix
(GLRLM), neighborhood gray-tone difference matrix (NGTDM),
and gray-level dependence matrix (GLDM). Following a series of
screening procedures, a set of 13 features exhibiting non-zero
coefficient values were ultimately retained. The LR model was
employed in the LASSO technique to generate radiomics scores.
These scores were derived from the coefficient values of the chosen
features within the training group. Figure 5 presents the feature
coefficients, the mean standard error (MSE) derived from the 10-
fold cross-validation, and the coefficient values associated with the
ultimately chosen non-zero features. The additional characteristics

FIGURE 4
CT arterial phase images of a 66-year-old male patient before DEB-TACE and at 6 weeks postoperative re-examination. (A) Preoperative enhanced
CT demonstrating massive HCC in the right lobe of liver. (B) Postoperative enhanced CT signifying nodular enhancement of the surviving tumor
surrounding the wall of the original lesion area, with efficacy assessed as PR.

FIGURE 3
CT arterial phase images of a 75-year-old female patient before DEB-TACE and at 6 weeks postoperative re-examination. (A) Preoperative
enhanced CT representing HCC in the S5 segment of the liver. (B) Postoperative enhanced CT demonstrating no enhancement of surviving tumor in the
area of the original lesion, with efficacy assessed as CR.
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that underwent screening were employed in the development of a
radiomics model, which was founded on the LR model. To prevent
overfitting, a 5-fold cross-validation was employed to select the
optimal parameters of the model, and to obtain final radiomics
signatures. The radiomics model demonstrated that in the training
group, the AUC was 0.848 (95% confidence interval (CI):
0.768–0.927). The investigation yielded sensitivity and specificity
values of 0.800 and 0.783, respectively. Furthermore, the
investigation determined the positive predictive value (PPV) to
be 0.762 and the negative predictive value (NPV) to be 0.818.
The AUC in the validation group was found to be 0.917, with a
95% confidence interval ranging from 0.800 to 1.000. The estimated
values for sensitivity and specificity are 0.750 and 1.000, respectively.
Furthermore, the PPV was determined to be 1.000, while the NPV
was calculated to be 0.600. The findings are displayed in Table 2;
Figure 6. Among the 13 features retained, the feature lbp_3D_k_
firstorder_10Percentile contributed the most to predict the
responsiveness of HCC patients to initial DEB-TACE treatment.
Following is the calculation of the Rad score: Rad_score =

0.565103194542222 + (0.025064 × exponential_glcm_Inverse
Variance) + (0.069557 × exponential_gldm_DependenceEntropy) −
(0.041746 × exponential_glrlm_LowGrayLevelRunEmphasis) +
(0.133036 × lbp_3D_k_firstorder_10Percentile) − (0.024827 ×
lbp_3D_m2_glcm_Correlation) − (0.010773 × log_sigma_3_0_
mm_3D_firstorder_Kurtosis) − (0.111148 × original_firstorder_
Maximum) + (0.079339 × original_shape_Elongation) − (0.000535 ×
original_shape_Sphericity) − (0.031579 × wavelet_LHL_firstorder_
Mean) − (0.055422 × wavelet_LLH_firstorder_Kurtosis)+ (0.092430
× wavelet_LLL_firstorder_Range) − (0.054587 × wavelet_LLL_
glszm_SizeZoneNonUniformity).

3.3 Clinical-radiological and integrated
model construction

Clinical-radiological models were constructed for clinical or
radiological features with p < 0.05 in the training
group. Following analysis of variance, only the baseline

FIGURE 5
Screening of radiomics features based on the LASSO algorithm and histogram of radiomics scores based on selected features. (A) 10-fold cross-
validation coefficient. (B) Mean square error of 10-fold cross-validation. (C) Histogram of radiomics scores based on selected features. LASSO, least
absolute shrinkage and selection operator.
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capsule and ALBI grade met the conditions and were used for the
construction of the clinical-radiological signature. We
constructed the model LR in machine learning, similar to the
aforementioned approach. In the training group, the clinical-
radiological model demonstrated an AUC of 0.694, accompanied
by a 95% CI: 0.586–0.801. The model demonstrated a sensitivity
value of 0.400 and a specificity value of 1.000. Furthermore, the
PPV and NPV were calculated to be 0.762 and 0.631,
correspondingly. The AUC in the validation group was
determined to be 0.708, accompanied by a 95% CI:
0.479–0.938. The diagnostic test exhibited a sensitivity of
0.312 and a specificity of 1.000. Furthermore, the PPV and
NPV were determined to be 1.000 and 0.353,
correspondingly, as presented in Table 2; Figure 6.

The nomogram derived from the LR algorithm by
integrating radiomics and clinical-radiological features
(Figure 9) exhibited superior performance. In the group used
for training, the AUC was found to be 0.860, 95% CI:
0.784–0.937. The sensitivity of the model was determined to
be 0.650, while the specificity was measured to be 0.913.
Furthermore, the PPV and NPV were calculated to be

0.867 and 0.750, respectively. The AUC in the validation
group was determined to be 0.927 (95% CI: 0.809–1.000). The
sensitivity and specificity values were 0.875 and 0.833,
respectively. Moreover, the PPV and NPV were calculated to
be 0.933 and 0.714, respectively. These results can be observed in
Table 2; Figure 6. The DeLong test was employed to conduct a
comparison of the AUC between the different models. In the
validation group, significant alterations in the AUC values were
observed between the clinical-radiological and the integrated
models (p = 0.042). However, no significant distinction was
detected between the clinical-radiological model and the
radiomics model (p = 0.079), and no significant variation was
noted between the radiomics and the integrated models (p =
0.734). The nomogram’s calibration curves demonstrated a
significant higher degree of agreement between the
anticipated response to the initial DEB-TACE treatment and
the actual response observed in the training and validation
groups. The p-values obtained from the Hosmer-Lemeshow
test for the clinical-radiological model, radiomics model, and
integrated model were 0.114, 0.186, and 0.128, respectively.
These results suggest that the nomogram exhibited enhanced

TABLE 2 Prediction performance of the three models in the training and validation groups.

Model Training
cohort
(n = 86)

AUC(95%CI)

Sensitivity Specificity PPV NPV Test cohort
(n = 22)

AUC(95%CI)

Sensitivity Specificity PPV NPV

Clinical-
radiological

model

0.694(0.586–0.801) 0.400 1.000 0.762 0.631 0.708(0.479–0.938) 0.312 1.000 1.000 0.353

Radiomics
model

0.848(0.768–0.927) 0.800 0.783 0.762 0.818 0.917(0.800–1.000) 0.750 1.000 1.000 0.600

Combined
model

0.860(0.784–0.937) 0.650 0.913 0.867 0.750 0.927(0.809–1.000) 0.875 0.833 0.933 0.714

AUC, area under curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value.

FIGURE 6
ROC curves for the clinical-radiological, radiomics, and integrated models in training (A) and validation groups (B). ROC, receiver operating
characteristic; AUC, the area under curve.
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concordance in the training and validation groups. Figure 7
illustrates the calibration curves for each model within the
training and validation groups. The findings from the DCA
reveal that the integrated model exhibited a positive net
benefit when considering the threshold probability range of
58%–83%. Furthermore, the integrated model demonstrated a
greater net benefit in comparison to the radiomics model within

the threshold probability range of 61%–81% (see Figure 8).
However, the radiomics model had a wider range of threshold
probabilities with good net benefit, at threshold probabilities of
20%–28% and 34%–98% (Figure 8). Figure 9 shows a nomogram
integrating the radiomics and clinical-radiographic features,
with the total score reflecting the likelihood of achieving OR
following initial DEB-TACE in HCC patients.

FIGURE 7
Calibration curves of the clinical-radiological, radiomics, and integrated models in training (A) and validation groups (B).

FIGURE 8
Decision curve analysis for the clinical-radiological, radiomics, and integrated model in the validation cohort.
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4 Discussion

The integration of targeted therapy and immunotherapy has
demonstrated significant efficacy in HCC treatment, TACE is still
endorsed as the standard treatment for intermediate-stage HCC
(Heimbach et al., 2018; Vogel et al., 2021; Reig et al., 2022). DEB-
TACE allows for higher intratumoral chemotherapeutic agent
concentrations, longer retention times, lower systemic plasma
chemotherapeutic agent levels, and reduced hepatotoxicity
compared to cTACE, which lacks standardization (Lewis et al.,
2006a; Lewis et al., 2006b; Hong et al., 2006; Poon et al., 2007;
Varela et al., 2007). Thus, an increasing share of DEB-TACE use has
been observed in clinical practice.

Several investigations have concluded that overall survival (OS)
should be the gold standard for assessing the efficacy of TACE for HCC
(European Association for the Study of the Liver (EASL), 2018;
Heimbach et al., 2018; Vogel et al., 2019). However, collecting OS
data requires a huge number of samples and a long period of follow-up
and may be affected by sequential therapies, making clinical research
difficult if OS is the only study endpoint (Llovet et al., 2019; Llovet et al.,
2021). OR for local treatment can be determined at early stages and is
strongly correlated with OS (Kudo, 2018; Han et al., 2020).
Consequently, some researchers have suggested that mRECIST-
based OR could be a reliable surrogate endpoint for OS (Gillmore
et al., 2011; Memon et al., 2011; Prajapati et al., 2013; Llovet and
Lencioni, 2020). However, the ORRs reported in current studies have
been inconsistent, with variation as much as 30% (Llovet and Lencioni,
2020); this may be attributed to inconsistencies across studies in the
time points at which response was assessed, especially in clinical practice
where routinely repeated “on-demand”TACE therapy is often required.
The initial OR and the best OR are available in the analysis of clinical
studies, and it remains controversial which OR is more reasonable as a
surrogate endpoint (Wang et al., 2015). However, initial OR is
immediate, and its role in predicting prognosis and clinical decision-
making cannot be underestimated (Xia et al., 2022). In addition,
intermediate-stage HCC patients are highly heterogeneous, and the
clinical benefits of DEB-TACE treatment may vary widely among them
(Kudo et al., 2020). One study reported no variation in survival between
TACE non-responders and untreated patients, and in cases where OR
was not achieved with initial TACE, repeated TACE is not

recommended (Llovet et al., 2002). Therefore, it is important to
effectively screen patients with HCC prior to initial DEB-TACE
treatment. Patients predicted preoperatively to have a higher
probability of OR should be treated with DEB-TACE, whereas other
HCC patients should be treated systematically in accordance with the
treatment stage migration strategy.

Radiomics converts a large number of image features into high-
dimensional data that enables objective and precise analysis of the CT
value of each pixel within a lesion and detection of subtle variations in
density within a lesion to help physicians make medical decisions
(Lubner et al., 2017). Although studies have been conducted on deep
learning, radiomics, and integrated models for predicting survival and
prognosis or efficacy in intermediate or advanced HCC patients who
received TACE (Kim et al., 2018; Kong et al., 2021; Zhao et al., 2021;
Wang et al., 2022; Sun et al., 2023), few studies have explored predictive
models related to DEB-TACE. Therefore, the present investigation
focused on the initial OR of DEB-TACE for the prediction of efficacy.

The initial ORR of 51.9% in the present study was lower than 64.5%
in a previous TACE-related study by Xia et al. (Xia et al., 2022) and
similar to the 50% ORR reported in research study by Georgiades et al.
(Georgiades et al., 2012). However, both these studies involved cTACE
treatment. In the clinical-radiological model of the present study, the
capsule and ALBI grade were predictors of initial OR in DEB-TACE.
The loss of tumor capsules has been closely linked to microvascular
invasion in HCC, which could be a sign of more aggressive tumors and
poorer survival rates (Zheng et al., 2018; Kim et al., 2019; Ji et al., 2020).
It has been proposed that the existence of a capsule in HCC may be
linked to an increased incidence of necrosis (Odisio et al., 2014). In
addition, the ALBI scoring system is considered a straightforward and
unbiased model utilized to evaluate liver function in HCC patients
(Johnson et al., 2015). HCC patients who exhibit elevated ALBI grades
are more likely to experience impaired liver function, lower tumor
biological behavior grades, and a deteriorated systemic status and
prognosis. Our results are also consistent with these findings.

CT is an imaging modality that does not require invasive
procedures and has enjoyed widespread clinical use for tumor
diagnosis, treatment plan selection, and efficacy monitoring
(Chen et al., 2021). Compared to conventional CT features,
radiomics features allow for more objective and quantitative
information on intratumoral heterogeneity at a low cost (Lambin

FIGURE 9
Nomogram for predicting objective response to initial DEB-TACE in HCC individuals. DEB-TACE, drug-eluting bead transcatheter arterial
chemoembolization; HCC, hepatocellular carcinoma.
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et al., 2012). The data correlate with underlying gene expression
patterns and are strongly related to tumor invasiveness at the cellular
level (Lambin et al., 2012). Radiomics enables the prediction of
clinical endpoints, including survival and treatment response, and
can be integrated with clinical data and genetic information to
construct and validate various models through machine learning or
artificial intelligence for clinical application (Kumar et al., 2012;
Lambin et al., 2012; Aerts et al., 2014; Choi et al., 2016; Lubner et al.,
2017; Sala et al., 2017). In this investigation, we developed and
verified several models for forecasting the treatment response to
initial DEB-TACE for HCC. Specifically, we constructed a
clinical-radiological, a radiomics, and an integrated models that
incorporated both clinical, radiological, and CT radiomics features.
The 13 radiomics features that were screened to reflect the pattern or
spatial distribution of voxel intensity within the tumor can be used
as parameters to capture tumor heterogeneity. The three most
influential features that contributed to the outcome were “lbp_
3D_k_firstorder_10Percentile,” “original_firstorder_Maximum,”
and “wavelet_LLL_firstorder_Range.” The first three most
influential features are all first-order statistics, mainly describing
the distribution of voxel intensities in the lesion. The higher the
median value, the denser the distribution of voxel intensities in the
lesion, indicating a more dense lesion. The AUC values of the
integrated model in both the training and validation groups were
0.860 (95% CI: 0.784–0.937) and 0.927 (95% CI: 0.809–1.000),
respectively. A significant discrepancy was noted between the
integrated model and the clinical-radiological model (p = 0.042)
within the validation group. Nonetheless, no significant distinction
existed between the integrated model and the radiomics model (p =
0.734) within the identical group. The predictive performance of the
integrated model, which integrated clinical, radiological, and
radiomics features, was superior to that of models utilizing only
individual data types in both the training and validation groups.
Furthermore, the integrated model accurately predicted the
response to initial DEB-TACE treatment. The findings of our
study align with those reported by Zhao et al. (2021), who
showed that, in the training group, a model that integrates three-
stage enhanced MRI radiomics scores with clinical-radiological risk
factors (total bilirubin, tumor morphology, and tumor capsule)
demonstrated significantly higher AUC values than a clinical-
radiological model in predicting objective outcomes after TACE
(0.878 vs. 0.744, p = 0.003). Nevertheless, no statistically significant
variation existed in the AUC between the two models in the
validation group (p = 0.239) (Zhao et al., 2021). Moreover, the
researchers discovered that there was no statistically significant
disparity in the AUC between the integrated and the radiomics
models (p = 0.155, 1.000) in both the training and validation cohorts
of their investigation. Likewise, no substantial disparity in the AUC
was observed between the clinical-radiological and the radiomics
models (p = 0.148, 0.344) (Zhao et al., 2021), and this finding is
similar to our results. Another model integratingMRI radiomics and
clinical features had a greater ROC than an MRI radiomics-only
model for predicting local treatment outcomes in patients with liver
cancer, but the variation was not significant (0.867 vs. 0.833,
respectively, p = 0.573) (Wang et al., 2023). The findings of the
current investigation suggest that the radiomics model exhibited
superior predictive capabilities compared to the clinical-radiological
model, albeit without a statistically significant distinction between

the two (AUC: 0.917 vs. 0.708, respectively; p = 0.079); it may also
suggest a potential application of radiomics in the prediction of
treatment response to initial DEB-TACE for HCC. A study on
prognosis prediction following hepatic arterial infusion
chemotherapy (HAIC) suggests that radiomics may be more
valuable than clinical indicators for predicting prognosis after
HAIC for unresectable HCC (Zhao et al., 2022). We also found
that The AUC of the validation group in our research model is
higher than the training group. We believe that possible reasons for
this result include: high model complexity, small dataset size,
potential use of features in the training process that were not
present in the validation group, greater impact of certain features
in the validation group on model performance, and differences in
data distribution between the training and validation groups.
Although the data in the validation group may have contributed
to this result when calculated based on the converged model, we
believe that the main reason is likely the small size of the dataset in
our research. Therefore, further multicenter studies are needed in
the future to increase the sample size. Additionally, we created a
nomogram depending on the integrated model, which can be
utilized in clinical practice. By adding the scores corresponding
to clinic and radiomic signatures, the corresponding risk value of the
total score can be used as the risk prediction value for ORR in HCC
patients after initial DEB-TACE treatment. DCA curves indicated
that the integrated model demonstrated good net benefit in the
threshold probability range of 58%–83%. This indicates that within
the aforementioned threshold range, the decision curve of the
integrated model was positioned above both the “none” and “all”
lines. This suggests that if the model were employed for clinical
decision-making at this juncture, it could yield a higher net benefit in
the population compared to the “all ORR” or “none ORR” predictive
approaches. This serves as evidence that the model possesses a
greater practical clinical application value. Therefore, this means
that based on our nomogram, it can help clinical doctors to select
HCC patients who are most suitable for DEB-TACE treatment, and
promote the early implementation of alternative treatments for
patients who are not ideal candidates. This study represents the
inaugural attempt to develop a nomogram by integrating clinical,
radiological, and CT radiomics characteristics to predict the
treatment response of initial DEB-TACE for HCC; the results
demonstrate good discrimination, consistency, and clinical utility.
In addition, some scholars had used CT radiomics signatures based
on lung cancer datasets to predict head and neck squamous cell
carcinoma and renal cell carcinoma, and believe that radiomics
signatures based on CT may be able to predict overall survival rates
for different cancer sites (Le et al., 2023). In furthermore, scholars
have developed a multiscale modelling framework to explain the
microstructurally driven heterogeneity of permeability and porosity
in brain tissue, aiming to better understand the importance of drug
transport in the brain and the response of brain tissue to infusion
pressure, and to predict the flow path and concentration distribution
of drugs (Yuan et al., 2022). In the future, we can further explore the
extraction of microstructural features of liver tissue and tumors from
patients based on CT radiomics, to validate whether the radiomics
signatures of HCC can be used to predict tumors in different organs.
Alternatively, we can attempt to study the potential relationship
between drug infusion range and kinetics and these microstructural
features through multiscale model. This can guide the clinical
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selection of appropriate microsphere size, catheter type, drug
delivery rate, and pressure conditions to improve the clinical
benefits obtained by patients from DEB-TACE treatment.

The present study has the following limitations. First, the limited
sample size and potential selection bias restrict the practical
performance of the model, where the small data size may be the
fundamental reason for the model’s validation group AUC being
higher than the training group AUC. Second, this retrospective,
single-center study was not externally validated. Third, target area
segmentation was performed manually, which is time-consuming
and inevitably involves human error. Last, no application of more
sophisticated techniques such as deep learning. Therefore, an automatic
and reliable segmentation method is needed for future clinical practice,
as well as validation of the performance of the proposed prediction
model in a large, multi-center prospective study. Also further research
such as deep learning is needed in the future.

5 Conclusion

The integrated model could better predict the treatment
response of initial DEB-TACE for HCC. It may help clinicians
select patients with HCC that are ideally suited for DEB-TACE
treatment, facilitate early implementation of alternative treatments
for non-ideal patients, and support the formulation of individualized
treatment plans for patients.
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Glossary

HCC hepatocellular carcinoma

TACE transcatheter arterial chemoembolization

DEB-TACE drug-eluting beads transcatheter arterial chemoembolization

mRECIST modified Response Evaluation Criteria in Solid Tumors

LR logistic regression

ROC receiver operating characteristic

DCA decision curve analysis

AUC area under curve

PPV positive predictive value

NPV negative predictive value

ESMO European Society for Medical Oncology

AASLD American Association for the Study of Liver Diseases

BCLC Barcelona Clinic Liver Cancer

CSCO Chinese Society of Clinical Oncology

ECOG Eastern Cooperative Oncology Group

SACE Subjective Angiographic Chemoembolization Endpoint

ALBI albumin-bilirubin

CR complete response

PR partial response

SD stable disease

PD progressive disease

OR objective response

ORR objective response rate

VOI volume of interest

ICCs intraclass correlation coefficients

GLCM gray-level co-occurrence matrix

GLDM gray-level dependence matrix

GLRLM gray-level run length matrix

GLSZM gray-level size zone matrix

NGTDM neighborhood gray-tone difference matrix

LASSO least absolute shrinkage and selection operator

MSE mean square error

PLT blood platelet

AFP α-fetoprotein

CI confidence interval

OS overall survival

HAIC hepatic arterial infusion chemotherapy
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