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Introduction: The early detection of Huntington’s disease (HD) can substantially
improve patient quality of life. Current HD diagnosis methods include complex
biomarkers such as clinical and imaging factors; however, these methods have
high time and resource demands.

Methods: Quantitative biomedical signaling has the potential for exposing
abnormalities in HD patients. In this project, we attempted to explore
biomedical signaling for HD diagnosis in high detail. We used a dataset
collected at a clinic with 27 HD-positive patients, 36 controls, and 6
unknowns with EEG, ECG, and fNIRS. We first preprocessed the data and then
presented a comprehensive feature extraction procedure for statistical, Hijorth,
slope, wavelet, and power spectral features. We then applied several shallow
machine learning techniques to classify HD-positives from controls.

Results: We found the highest accuracy was achieved by the extremely
randomized trees algorithm, with an ROC AUC of 0.963 and accuracy of 91.353%.

Discussion: The results provide improved performance over competing
methodologies and also show promise for biomedical signals for early
prognosis of HD.
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1 Introduction

Huntington’s disease (HD) is a neurodegenerative disorder characterized by motor,
cognitive, and/or behavioral disturbances, which manifest at a mean onset of 30–50 years of
age (Ajitkumar and De Jesus, 2022). HD is autosomal dominant, with the cause being
cytosine–adenine–guanine (CAG) repeats in the Huntingtin (HTT) gene. The CAG repeats
cause the mutational expansion of polyglutamine in the HTT proteins, resulting in protein
folding restriction (Ajitkumar and De Jesus, 2022). With almost 30,000 patients in the
United States, CAG encoded polyglutamine expansion causes progressive
neurodegeneration (McColgan and Tabrizi, 2018). HD currently has no cure.

The early detection of HD can greatly improve projections for quality of life through
clinical intervention at the earliest stages of neurodegeneration (Oguz, 2011). As
demonstrated in the Predict-HD study (Paulsen et al., 2008), current accurate early
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diagnosis techniques rely on a combination of behavioral, clinical,
imaging, genetic, and familial factors. When evaluation includes all
factors, however, HD diagnosis demands costly scans and extensive
doctor time. HD’s generic symptoms are also mimicked by several
other diseases (Schneider and Bird, 2016), making the disease more
elusive in under-resourced clinics with limited factors available
for analysis.

It is therefore useful to seek cheaper and more univariate
diagnosis methods. In this paper, we investigate physiological
signals, which record large amounts of micro-level information
about a patient and can be administered at very low cost with
modest amounts of equipment.

We propose a feature extraction-based method for physiological
signals which can be used for HD diagnosis. Our method extracts
both time- and frequency-domain features from
electroencephalography (EEG), electrocardiography (ECG), and
functional near-infrared spectroscopy (fNIRS) patient data, which
can then be classified into HD-positive and -negative sets via
machine learning algorithms. We demonstrate that our
procedure is cheaper than other early-diagnosis techniques and
achieves superior accuracy over state-of-the-art computational
HD diagnosis methods.

2 Research background

In order to construct a complete research background, we
referred to recently published reviews of computational methods
in neurodegeneration by Tăuţan et al. (2021), Bhachawat et al.
(2023) and Ganesh et al. (2023).

2.1 Physiological signals in other
neurodegenerative disorders

Physiological signals have been used extensively in more
commonly researched neural diseases, where they have been
immensely successful as an inexpensive, straightforward, and
accurate diagnosis technique. Based on this success, it is
reasonable to expect a similar level of results when these signals
are applied to HD.

This has been the use of EEG in Alzheimer’s diagnosis. Kulkarni
and Bairagi (2014) proposed a support-vector machine and linear
discriminant analysis method for Alzheimer’s disease clinical
diagnosis via the classification of patient EEG power spectra.
McBride et al. (2015) used novel Sugihara causality analysis to
capture anomalies in EEG activities caused by cognitive deficits
in Alzheimer’s, achieving accuracies ranging from 96% to 98%,
depending on the eye position. Colloby et al. (2016) combined raw
resting EEG data with MRI index ratings and used classifiers to
predict dementia with Lewy bodies and Alzheimer’s disease,
achieving a high of 77% accuracy on 71 patients. Jeong et al.
(2016) used EEG wavelet features such as relative energy and
coherence to differentiate Parkinson’s-related dementia from
Alzheimer’s disease, achieving 73% accuracy via linear
discriminant analysis. Dauwan et al. (2016) used a random forest
classifier on a multimodal dataset including clinical,
neuropsychological, neuroimaging, and cerebrospinal fluid data,

with an emphasis on quantitative EEG data. Out of 198 patients,
the classifier achieved 87% accuracy for Alzheimer’s classification.
Cassani et al. (2017) proposed a quantitative EEG-based method for
Alzheimer’s diagnosis that uses automated artefact removal
algorithms for more realistic clinical use while being configured
to function with low-density, seven-channel biowearables.
Trambaiolli et al. (2017) tested feature selection algorithms on
quantitative EEG data from a set of 22 Alzheimer’s-positive
patients and 12 age-matched controls, finding 91% accuracy via
classification of the features with a support-vector machine.
Durongbhan et al. (2019) achieved 99% accuracy on
differentiating Alzheimer’s-positive patients from controls by
using k-nearest neighbor classification algorithms on quantitative
EEG patient data.

However, EMG and functional MRI (fMRI) signal types have
also been used for various neurodegenerative diseases. Kugler et al.
(2013) used surface electromyography (EMG) to represent dynamic
movements typically affected by Parkinson’s disease. The data were
analyzed using a support-vector machine and correctly classified 9 of
10 patients. Zhang et al. (2013) analyzed needle EMG data for
amyotrophic lateral sclerosis diagnosis and classified 21 patients via
a linear discriminant analysis algorithm, achieving 90%–100%
specificity. Ramzan et al. (2019) achieved >90% accuracy in all
stages of Alzheimer’s disease using ResNet architecture deep neural
networks to classify patients based on fMRI features.

2.2 Previous computational work in
HD diagnosis

In order to make HD diagnosis simpler, more reliable, and less
expensive, various studies have focused on a variety of
computational diagnosis techniques for HD.

The majority of these efforts have focused on neuroimaging,
which, while demonstrating high accuracy, still suffer from high cost
and equipment demand and a relatively high level of invasiveness.
Rizk-Jackson et al. (2011) used the MRI scans of 39 HD patients and
25 control patients to extract region and voxel-based features to train
an LDA and obtained 76% accuracy. Mason et al. (2018) trained a
support vector machine (SVM) through resting-state and structural
fMRI on 19 HD-positive patients and 21 controls by extracting
structural and connectivity values and achieved 60% accuracy in
direct classification. Eirola et al. (2018) used an extreme learning
machine with 1,000 neuron hidden layers to predict HD onset a
decade in advance of MRI scans, achieving 80%–90% accuracy.
Cheng et al. (2020) used machine learning on a set of 157 HD-
positive patients and 157 controls on genetic data, identifying four
correlated genes that could be used as markers. Mohan et al. (2022)
used 44 motor, cognitive, and functional assessments for each of
3,158 participants aggregated over four observational studies and
drew conclusions about how HD progressed into nine disease states
of severity.

There has also been limited computational effort regarding
physiological signal analysis for HD diagnosis. To the best of our
knowledge and from the above review papers, the following are the
only computational diagnosis studies for HD that use physiological
signals. de Tommaso et al. (2003) selected 13 controls, 7 potential
HD patients, and 13 confirmed HD patients and recorded EEG
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samples. They used the FFT for feature extraction and an artificial,
deep neural network for prediction, classifying 12/13 controls and
11/13 HD patients correctly. Nikas and Low (2011) used clustering
techniques on nuclear magnetic resonance (NMR) spectroscopy and
demonstrated 100% classification accuracy on a small set of mice
data. Novotný et al. (2015) trained a syllable onset detector to detect
repetitions of the “pa-ta-ka” syllable using the Hilbert’s transform to
achieve 80% accuracy. The measurement of neurovascular activity
via blood flow changes using fMRI also shows potential for detecting
the earliest progressions of HD. Odish et al. (2018) collected 3-
minute EEG data samples from 26 HD-gene carriers and
25 controls, and tested only SVMs to classify patients with 83%
accuracy based on the single feature of power spectral density.
Ponomareva et al. (2023) used computational analysis to reveal
notable differences in both EEG power and fMRI functional
connectivity between preclinical HD patients and healthy
controls, indicating such anomalies could be detected even before
symptomaticity.

Within this literature, there is no comprehensive work that
focuses on using physiological signals solely as a diagnosis
technique for HD. First, the above studies lack depth in terms
of feature extraction, and they focus on diagnosis via a single,
surface-level feature or the raw data itself. Second, the above papers
all use a single signal at a time with a single machine learning
algorithm, without comparison or aggregation. In this paper, we
will aim to extract and use a variety of features from several signal
types in tandem and test the performance of multiple machine
learning algorithms.

2.3 Choosing signal types

After reviewing the available biological and technical literature,
we selected the following physiological signals for analysis here.

• EEG: From a technical standpoint, EEG is cheaper than other
signal types and computational techniques and also requires
minimal equipment (Vespa et al., 1999). EEG sessions also do
not encroach into the brain or expose the patient to high
magnetic fields or radiation, which makes them non-invasive
(Rossini et al., 2020). Additionally, EEG recordings have
extremely high temporal resolution and density of
information (up to 256 leads or more), which is useful for
identifying more subtle anomalies such as those found in a
presymptomatic patient (Nguyen et al., 2010). Biologically,
EEG is relevant to HD neurodegeneration because it records
the electrical activity present in HD-inhibited intracellular
signaling, which has been shown by Delussi et al. (2020) via
discrepancies in power spectral density between
presymptomatic/ symptomatic HD patients and controls.

• ECG: High-resolution ECG scans are considered the gold
standard for understanding the electrical activity of the heart;
they also require extremely little equipment that is even
affordable for home use. Additionally, Stephen et al. (2018)
demonstrated that the effects of HD extend past the central
nervous system, as shown from screening the
electrocardiographic abnormalities of 590 early
symptomatic HD patients. Altered cardiac rhythms detected

via electrocardiography (ECG) were also found in an HD
BACHD mouse model by Zhu et al. (2019), who found that
HD patients were at a higher risk for arrhythmia. Therefore,
ECG is of prime interest.

• fNIRS: While exploration of fNIRS contextual to HD is
limited, this study will act as a pilot for the use of fNIRS in
computational HD diagnosis. We employ fNIRS because it
provides similar resolution and informational value to fMR
while being over 10 times cheaper (fNIRS Lab, C. H., 2018).
Additionally, fNIRS is logical for HD diagnosis due to the
disease’s tendency to affect the cerebral blood flow (Chen et al.,
2012)—which fNIRS primarily measures.

3 Materials and methods

3.1 Dataset description

The data for this study came from a HD and controls dataset
published by researchers at Lancaster University (Bjerkan et al.,
2021). The dataset provides recorded EEG, ECG, and fNIRS data for
69 Slovenian participants who were recruited from the Neurological
Clinic in Ljubljana, Slovenia. Of these patients, 27 were diagnosed as
having pre-symptomatic or symptomatic HD, 36 were control
patients, and 6 were unclassified due to health limitations
(Table 1). The researchers did not provide specific demographic
information due to confidentiality; however, the subjects between
the HD-positive and control sets were age-matched to ensure
consistency.

The data acquisition protocol was conducted as follows. The
subjects were seated in a chair with their eyes open and shown/
played no visual or audio stimuli. Over the course of a 30 min
window, EEG, ECG, and fNIRS were simultaneously recorded. The
EEG signal was acquired via a 16-electrode system at a 1-kHz
sampling rate through a Brain Products V-Amp system. The
ECG was recorded via electrodes placed on each shoulder and on
the lower rib at a 1.2 kHz sampling rate. The fNIRS signal was
collected at a 31.25 Hz sampling rate over an NIRx NIRScout LED
systemwith 11 optodes. In post-processing, the 30 min samples were
all cut down to 20 min.

The EEG and fNIRS sensors were placed according to the
standard 10–20 system. Each of the 16 electrodes used for
EEG—locations C3, C4, Cz, F3, F4, Fp1, Fp2, O1, O2, P3, P4,
P7, P8, Pz, T7, and T8 on the 10–20 system—was mapped to its
own channel: 16 in total. The three ECG signal sensors were
aggregated to a single channel. For fNIRS, each of the
11 optodes—locations N1, N2, N3, N4, N5, N6, N7, N8, N9,
N10, and N11—rendered both deoxygenated and oxygenated
blood flow data, giving two channels per optode for a total of
22 fNIRS channels.

3.2 Data pre-processing

To be used for classification, the EEG, ECG, and fNIRS signal
data had to be preprocessed to prepare them for feature extraction.
Figure 1 displays the preprocessing steps taken immediately after
signal acquisition: artifact removal via bandpass filtering and
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segmentation into epochs. All preprocessing was performed via the
MNE library (Gramfort et al., 2013).

The data were first converted to an MNE object in accordance
with the 10–20 standard system for electrode placement to allow
us to utilize MNE preprocessing functions. Next, the EEG, ECG,
and fNIRS data were filtered via finite impulse response (FIR)
bandpass in order to standardize the frequency spectrum across a

signal and remove the noise from high and low frequencies. The
EEG signal was bandpassed on a domain of [0.5 Hz, 45 Hz] to
isolate the delta, theta, and alpha frequency bands, in which
abnormalities can be indicative of HD (Ponomareva et al., 2014).
The ECG data were filtered on a domain of [0.05 Hz, 100 Hz],
where the low pass is the lowest frequency recorded by the
machine, and the high pass was to eliminate high-frequency

TABLE 1 Dataset signal collection information. Several other signal types were available with the dataset but were omitted due to a lack of relevance to HD.
The six “Unknown” patients could not be classified due to health issues.

EEG ECG fNIRS

Diagnosis Count
(#)

Electrodes
(#)

Frequency
(Hz)

Optodes
(#)

Frequency
(Hz)

Optodes
(#)

Frequency
(Hz)

SHD 15 16 1000 11 1200 11 31.25

PHD 12 16 1000 11 1200 11 31.25

Control 36 16 1000 11 1200 11 31.25

Unknown 6 16 1000 11 1200 11 31.25

FIGURE 1
Biological signal data applications flowchart. Data collection began outside the scope of the study. Signals were then processed, partitioned, trained,
and tested. All signals were processed separately but underwent the same feature extraction procedure and were concatenated into a 1D array for
each epoch.
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noise (Kher, 2019). The fNIRS signal was filtered on a domain of
[0.2 Hz, 1.5 Hz] to remove artifacts caused by blood pressure
fluctuations (Klein and Kranczioch, 2019).

The filtered signals for EEG, ECG, and fNIRS were then segmented
into 5s epochs with 1s overlap (4s of unique data each) with the goal of
increasing training samples and readability (due to high Hz recording).
Each patient finally had 1,200s of data for each of EEG, ECG, and
fNIRS, and thus the segmentation created 300 epochs per signal per
patient. Finally, each data array was normalized by subtracting themean
of the channel for the signal and then packaged in a .npy file.

3.3 Feature extraction procedure

The time and frequency domain features shown in Table 2 were
extracted from the processed signals. Figure 2 shows the overall

feature extraction procedure, where the extracted time domain and
frequency domain features were subsequently concatenated into a
single feature array. In terms of specific parameters, a single value for
each of the features is calculated for all of the epoch intervals for each
patient. The specific bands used for power spectral density and the
wavelet functions chosen will be articulated later. Apart from this,
there were no particular parameters used other than the formulas
themselves.

3.3.1 Time domain features
In signal processing, time domain features can be calculated

directly from the raw, time-series data. For the purposes of this
study, we chose time domain features to calculate from the list of
signal features outlined in Rabha (2016). These include statistical
features calculated via mathematical functions of the time series
data, Hijorth parameters which measure the signal’s behavior in

TABLE 2 List of all extracted features. Features were extracted from the time domain signal, the wavelet transformed frequency domain signal, and the
Welch-transformed frequency domain signal. In the ECG power spectrum analysis: LF, low frequency; LMF, lower-middle frequency; MF,middle frequency;
HF, high frequency; VHF, very-high frequency.

Hijorth Statistical Slope Wavelet PSD (EEG) PSD (ECG) PSD (fNIRS)

Activity Kurtosis Slope mean Approx. mean δ (0.5–3.5 Hz) LF (0.05–6 Hz) Resp. (0.2–0.6 Hz)

Mobility Second difference of mean Slope variance Approx. SD θ (3.5–7.5 Hz) LMF (6–11 Hz) Cardiac (0.6–1.5 Hz)

Complexity Second difference of max Higuchi fractal dimension Approx. energy α (7.5–13 Hz) MF (11–16 Hz)

Skewness Approx. entropy β (13–30 Hz) HF (16–20 Hz)

Coefficient of variation Detailed mean γ (30–45 Hz) VHF (20–100 Hz)

First difference of mean Detailed SD

First difference of max Detailed energy

Detailed entropy

FIGURE 2
Full feature extraction procedure flowchart. The formulas used are detailed elsewhere. Features were extracted for each patient on a per-epoch
basis, and for each epoch, a concatenated feature array with the features from all channels and signal types was created.
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relation to variance and power, and slope features which, of
course, relate to the slope of the signal graph over
various intervals.

3.3.1.1 Statistical values
We began by calculating the common statistical values of

kurtosis, coefficient of variation, skewness, 1st difference of mean,
2nd difference of mean, 1st difference of max, and 2nd difference of
max. A value for each was calculated per channel, per signal, per
epoch, and per patient via the following standard formulas applied
to the numerical signal data files.

• Kurtosis, calculated via kurt � μ4
σ4.

• Coefficient of variation, calculated via CV � σ
μ.

• Skewness, calculated via skew � 1
N∑N

i�1[(XI− �X)
σ ]3.

• 1st and 2nd difference of mean/max, calculated via
MD = ME − MC.

3.3.1.2 Hijorth parameters
We then calculated the Hijorth parameters of activity,

mobility, and complexity because of its success in mental task
discrimination in Vourkas et al. (2000). Activity represents the
variance or power of the signal over a certain epoch/segment in
time domain and is indicative of the power spectrum surface over
the frequency domain. Activity can be calculated for a signal
sample using the Eq. 1, where y(t) represents the signal function
in an epoch.

activity � var(y(t)). (1)
Mobility indicates the mean frequency over an epoch in the time
domain, also represented as the proportion of the standard deviation
(SD) over the power spectrum, calculated by manipulating the
output from Hijorth’s activity with Eq. 2:

mobility �

������������
var dy(t)

dt( )
Activity(y(t))

√√
. (2)

Lastly, complexity estimates the bandwidth of the signal over an
epoch—essentially, the average power of the second derivative of the
signal, calculated by applying functions to Hijorth’s mobility as in
Eq. 3:

complexity � Mobility dy(t)
dt( )

Mobility(y(t))). (3)

3.3.1.3 Slope features
Finally, we calculated features regarding signal slope. Two

simple features were first calculated: slope mean and variance.

• Slope mean, calculated via SM � ∑N

i�1
dy(t)
dt

N .
• Slope variance, calculated via SV � σ2

Sxx
.

In addition, the Higuchi fractal dimension (HFD) was calculated
due to the information it provides about brain response,
demonstrated in Gladun (2020). HFD is calculated via the
conceptual method outlined by Higuchi (1988). We specifically
used the functions to calculate HFD created by INuritdino (2020).

3.3.2 Frequency domain features
To extract frequency domain features, two transforms were used to

extract separate features to convert the time series to the frequency
domain: the discrete wavelet transform and the Welch transform.

3.3.2.1 Wavelet features
Wavelet features were calculated using the PyWavelets

library (Lee et al., 2019). In order to ensure consistency within
the dataset and thus enable optimal training, we chose a wavelet
function on a per-signal basis and kept the wavelet function the
same across epochs and patients. The wavelet function used was
chosen by observing samples of the normalized signals, shown in
Figure 5. For the preprocessed EEG and fNIRS data, a Coiflet
(coif1) discrete wavelet transform was performed on each sample.
For ECG, the Daubechies (db4) discrete wavelet transform was
utilized. The coefficients that resulted from these transforms were
stored in a .txt file. The approximate mean, detailed mean,
standard deviation, energy, and entropy were then calculated
from these coefficients for each sample. Energy is the summation
of the squared signal, calculated by Eq. 4, where C is a coefficient:

energys � ∑k
i�0

C2
s . (4)

Entropy is the measure of regularity/fluctuation in a time segment,
shown in Eq. 5:

entropys � logC2
s ·∑k

i�0
C2

s . (5)

3.3.2.2 Power spectral density
Power spectral density (PSD) indicates the power levels over

the frequency domain in each component of a signal segment,
informing the model of the range of power. This makes it an
effective predictor of abnormalities (Boonyakitanont
et al., 2020).

Due to the success of EEG PSD for HD diagnosis in Odish et al.
(2018), similar PSD bounds for EEG were used in this work. The
bounds for ECG PSD bands were chosen based on the peak powers
of typical ECG signals, as calculated in McNames et al. (2002): low
[0.05 Hz, 6 Hz], low-medium [6 Hz, 11 Hz], medium [11 Hz,
16 Hz], high [16 Hz, 20 Hz], and very high [20 Hz, 100 Hz]. The
bounds for fNIRS were chosen based on respiration and heartbeat
frequencies from Rahman et al. (2019): respiration [0.2, 0.6 Hz] and
cardiac [0.6 Hz, 1.5 Hz].

Welch’s method of calculating PSD is an alternative
approximation to the fast Fourier transform (FFT), represented
through the equation in Smith (2011). Welch’s method slices the
original signal and averages their spectral periodograms, producing
a cleaner output than from FFT. In our case, PSD was calculated via
built-in MNE functions as shown below in Eq. 6.

PSD
Welch
x ωk( )Δ�

1
K

∑K−1
m�0

Pxm,M(ωk). (6)

The final concatenated data array was calculated from 300 time-
epochs per channel per signal (EEG, ECG, or fNIRS) per patient.
The final concatenated data array included statistical, Hijorth, slope,
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wavelet, and PSD features for each channel per signal per epoch per
patient, amounting to 948 feature values for each of 300 epochs for
each of 69 patients (20,700 epochs total).

3.4 Model selection

Classical machine learning algorithms were used to bin each of
the 20,700 concatenated feature epochs as HD-positive or HD-
negative. We began by reviewing all classification models offered by
the Scikit-learn library (Pedregosa et al., 2011). We utilized common
shallow machine learning models that typically perform well on
signal features (Shoeibi et al., 2021), as well as discriminant models
due to their success in Alzheimer’s EEG analysis.

• Random forest is an ensemble method that uses many
randomized decision trees, each of which are trained/fitted on
sub-samples of the dataset and subsets of the features at each split
point, with their results averaged. This robust approach of
different features at each tree split point has been shown to
improve accuracy, reduce variability, and reduce overfitting. The
specific classification parameters used were Gini impurity loss,
“sqrt” max features, no limit on max depth, and an estimator
count of either 100 or 1000.

• Extremely randomized trees (ERTs) are an ensemble method
in and of themselves; they are similar to random forest in that
ERTs take subsets of the features to train each sub-tree but are
unlike it in that ERTs train each sub-tree on the entire dataset
instead of a sub-sample. ERTs can also select either a random
or the best split for the optimal split, unlike the greedy
algorithm of random forest. Apart from the estimator
count being set to either 100 or 1,000, all other parameters
were kept as the Scikit-learn default.

• Logistical regression is effectively a linear regressor that
models the data using a sigmoid function instead of a linear
function. The algorithm itself remains similar to a linear
regressor until the decision threshold, whereas, in binomial
logistical regression, the probabilistic result is reduced to a
binary output. Apart from using L2 penalty with intercept
fitting, all other parameters kept the default.

• Support vector machines (SVMs) use hyper planes to effectively
partition data into classes and are thus better suited for
classification rather than regression. Based on the number of
features, the algorithm found, in an N-dimensional plane, an
equation of N-1 dimensions that partitions the data into various
classes—in this case two classes (0 or 1)—by minimizing the
distance between the equation graph and the individual data
points (functional margin). Preliminary tests showed that a
parameter configuration with polynomial kernel, scale gamma,
and mid-tolerance led to optimal results, and were thus used.

• Linear discriminant analysis (LDA) uses a similar method to
SVM, attempting to draw planes to divide sets of classes in the
hyperplane of features, but using different criteria. LDA
attempts to maximize the mean distance between the
points and the hyperplane and minimize the variance
between each class. Apart from using the singular value
decomposition algorithm for the solution, all other
parameters were kept as default.

• Quadratic discriminant analysis (QDA) uses the same criteria
as LDA but with a degree-2 discriminant plane rather than
linear. All parameters were kept as default.

3.5 Testing procedure

The patients classified as unknown were considered control
patients to avoid interfering with training. The classification was
performed with each of the above machine learning algorithms on
the concatenated feature array, which includes all the time-domain
and frequency-domain features for all three signals. The metrics of
accuracy, precision, recall, f1 score, and receiver operator
characteristic area under the curve (ROC AUC) are recorded
over three separate runs and then averaged to ensure
accurate results.

For the validation technique, the models were evaluated with
10-fold cross validation (10:1 partitioning ratio). The folds were
stratified, meaning that the distribution of controls to HD
patients was kept the same as the ratio in the original dataset,
leading to more legitimate training. Data were split on folds in
accordance with a group array that specified which epochs
belonged to which patient, preventing different epochs of the
same patient from being placed in both the training and testing
sets—which would cause overfitting. Instead, the entirety of any
given patient’s epochs would be placed in either the training or
the testing set.

4 Results

4.1 Model results

Themodels outlined were first run with default hyperparameters
that tested a variety of metrics on a personal computer with an Intel
Core i7-3930k CPU and NVIDIA GeForce RTX-2060 GPU. The
concatenated feature vectors were created along with the label and
group arrays and were fed into cross-validation. The results of the
models are shown in Table 3. As can be seen, the ERT performed
best, with random forest close behind on all metrics except recall and
f1 score, where the random forest respectively outperformed and
tied with the ERT. Plots were created for the ERT and random forest
models (estimators = 1000) from the AUC of the receiver operating
characteristic, as well as the AUC from the precision and recall for
the precision–recall curve (Figure 3).

4.2 Validation

4.2.1 Statistical analysis
To further analyze the results, statistical analysis between

the independent variables (the features extracted from
the signal data) and the dependent variable (binary HD
positivity) was conducted using Statsmodels (Seabold and
Perktold, 2010).

Between the entire feature array and the ground truth results, the
R2 coefficient of determination—representing the proportion of
variation of the dependent variable (diagnosis result) explainable
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by the independent variable (extracted features)—was calculated to
be 0.89 or 89%.

The probability-F-statistic was calculated to be 0, representing
the probability that the observed correlation between the extracted
features and HD positivity occurred by chance. Effectively, this
probability approaches 0%.

Statistical significance was also calculated on a per-feature basis,
where each feature calculated from each channel was treated as a
separate point. It was observed that 577 out of the 948 total features
had p < 0.05, with 357 of them having p-values close or equal to zero.
The complete list of feature counts across various intervals of p is
shown in Table 4.

TABLE 3 Results for binary classification with all models using default hyperparameters. Tested with k = 10 with a group array with all epochs of all patients
(n = 20,700). Metrics were calculated from sci-kit functions from saved prediction thresholds. “cross_val_predict” was used.

Model Accuracy (%) Precision (%) Recall (%) ROC AUC F1 score

ERT (e = 1000) 91.353 90.506 86.082 0.963 0.882

Random forest (e = 1000) 89.409 85.138 87.098 0.953 0.861

ERT (e = 100) 90.642 87.374 85.994 0.937 0.853

Random forest (e = 100) 89.400 86.209 86.971 0.936 0.853

SVM 62.649 55.977 2.611 0.564 0.047

Log. regression 66.124 59.456 42.599 0.615 0.467

LDA 81.027 73.889 84.431 0.875 0.765

QDA 67.971 57.286 79.620 0.747 0.658

FIGURE 3
ROC AUC and precision–recall AUC for random forest and ERT (estimators = 1000). (A) ROC curve, (B) precision–recall curve.

TABLE 4 Variety of statistical significance values for various p-value thresholds on a feature-by-feature basis (n = 948). Statistical significance was
calculated independent of any prediction model, with a p-value for each feature.

p-value range Count (#) p-value t-value Std. error

p = 0 357 0 ± 0 −0.825 ± 8.049 240.217 ± 586.147

p < 0.001 22 0.001 ± 0 −0.878 ± 3.277 252.599 ± 632.387

p < 0.01 76 0.00499 ± 0.0024 −0.130 ± 2.853 324.256 ± 690.298

p < 0.05 122 0.0277 ± 0.0117 −0.263 ± 2.224 168 ± 462

p > 0.05 371 0.421 ± 0.275 0.0669 ± 1.068 167.394 ± 465.572
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4.2.2 The “black box” problem
The nature of shallow machine learning combined with a large

number of features, as in this study, makes it difficult to directly
explain the model’s logic. Feature importance can thus be used to at
least specify which features the model utilized most for decision
making. As Gini impurity was used with random forest, feature
importance was calculated via a mean decrease in impurity. The
feature array was split up on the basis of various attributes, such as
the general group of feature, the type of signal, the specific channels,
and the bands, with feature importance calculated on each. Each
importance is shown in Figure 4.

5 Discussion

In this study, the aggregation of a number of time-domain
and frequency-domain features from EEG, ECG, and fNIRS
demonstrated promising predictive power in differentiating

both presymptomatic HD patients and symptomatic HD
patients from controls. It is safe to conclude that the random
forest and ERT tree-based algorithms perform best on large
numbers of features such as used here. The hierarchical
structure and ability to build connections between trees
seemed to allow the ERT and random forest approaches to
train with more multivariates. Nevertheless, it is interesting
that increasing the number of estimators tenfold led to only a
small improvement in the metrics, perhaps because the given
number of estimators was sufficient to build enough connections
to correlate signal abnormalities to HD positivity.

While providing a full explanation of the procedure we outline is
difficult, we do attempt to reveal some insights via statistical analysis.
The statistics show that about 11% of the variance of the HD
diagnosis result was inexplicable by variance in the independent
feature variables, indicating that there could be other signal types of
features that could lend more predictive power to the
independent variables.

FIGURE 4
Comparison of feature importance ± 1 SE based on various subsets of features. Feature importance was calculated based on the mean decrease in
impurity, and all features of a certain subset were added together for the bar graph. (A) Basis of feature, (B) basis of signal, (C) basis of EEG channel, and (D)
basis of the EEG PSD band.
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Additionally, the feature importance observations provide
insights into the values most indicative of HD. The prime
importance of the EEG signal is to be expected since the effects
of HD principally inhibit intracellular communication via
neurodegeneration, which the signal captures in differences in
electrical transfer behavior. This reduction in electrical activity
can even be observed in Figure 5. The lack of ECG significance
was somewhat disappointing but was also to be expected for two
reasons. The first was the existence of presymptomatic patients, who
had only experienced mild neural differences, let alone carryover
effects, in the rest of the body. Second, the electrical activity of the
heart varies in baseline significantly more from patient-to-patient

than the brain, and 69 patients were likely not enough to cancel
this effect.

In terms of feature type, the statistical and wavelet features were
the most significant. Since the statistical values encode the most
information about signal fluctuation and other surface-level
behavior, it seems reasonable that statistical features should be the
most important. The wavelet feature importance is more interesting
and does suggest that the degree to which a biomedical signal aligns
with a pre-chosen waveform helps expose irregular patterns. Another
interesting observation is that the P8 channel type was the most
significant while the P7 channel was one of low importance, despite
both electrodes being attached to directly opposite sides of the head;

FIGURE 5
Side-by-side comparison of single-epoch samples of EEG, ECG, and fNIRS HD-positive patients versus control patients. As shown, visual
discrepancies can be observed between the healthy patient and HD-afflicted patient: the wider amplitude in EEG and ECG, and the closer behavior of
respiration and cardiac bands in fNIRS. In (A) and (B), EEG samples for healthy andHD-positive patients are shown. In (C)—(F), the same two patients’ fNIRS
and ECG samples are shown.
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this was likely due to the asymmetry of the human brain. Each feature
importance in the EEG PSD frequency bands was mostly as expected,
except for the apparent insignificance of the theta band. Since the
theta band is sandwiched between the significant delta and alpha, its
poor significance suggests that the theta band recording could have
includedmore noise—our results here thus do not match those of the
previous literature.

As outlined previously, computational analysis of biomedical
signals for HD is extremely limited. Of these, papers that attempt
to directly and computationally diagnose HD with signals used in
this paper are limited to two: Odish et al. (2018) and de Tommaso
et al. (2003). In Table 5, a comparison with these competing
methodologies is shown. Overall, the following advancements/
contributions are made over the SOTA by this model:

1. Highest accuracy achieved at 91% and highest ROC
AUC at 0.96.

2. Largest dataset with 69 patients, including presymptomatic
HD patients.

3. Most signals, feature types, and machine learning models
benchmarked.

4. New insights into the types of features most relevant to HD
diagnosis and hypotheses as to why.

However, there are noteworthy limitations that arise out of the
increased complexity of this procedure as well as the non-
streamlined experimental design.

1. The large number of features makes it difficult to pinpoint
deeper information into the state of HD progression beyond
the diagnosis itself.

2. The long procedure calls for a system that better integrates
the process.

3. There is no guarantee that the parameters used for feature
extraction and classification are at the highest level of
optimization.

4. The use of three signals is a little more expensive, emphasizing
the need for preventative care.

In terms of future direction, a few steps can be proposed.
First, researchers could attempt to build more controlled
algorithms that capture observed trends in the signal data,
thus solving the issue of explainability. Second, in order to
further improve accuracy and build a more robust model,
researchers could make use of data fusion techniques to
diversify the pool of training data, much like Khare et al.
(2023), and even utilize random grid searching over long run
times to find optimal parameters. Third, researchers could look
into implementing an integrated deep learning model to more
consistently classify patients based on more advanced training.
This has already been demonstrated in EfficientNet’s use in
classifying PPG signals for cardiac health (El-Dahshan et al.,
2024). It would even be possible to improve the usability and
preventatives of our proposed solution via an implementation in
wearable technology.
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The original contributions presented in the study are included in
the article/Supplementary Material; further inquiries can be directed
to the corresponding author.

TABLE 5 Summary of advantages, drawbacks, and results of various studies with competing methodologies on the biomedical signal use for HD prognosis.

Study Advantages Drawbacks Resultant metrics

Our work - Employs EEG, ECG, and fNIRS - Six patients are not classified Accuracy: 91.35%

- Extracts both time and frequency domain features Precision: 90.506%

- Uses largest dataset of the three studies - Several signal types amplify “black box” Recall: 86.082%

- Tests several types of shallow ML algorithms AUC: 0.96

- Performs case analysis of signal abnormalities - Dataset is unbalanced

- Long signal samples (20 min)

de Tomasso et al. (2003) - Uses deep learning algorithms - Dataset is smaller Accuracy: 88.46%

- Recognized asymptomatic gene carriers - Higher incidence of false negatives Precision: 91.67%

- Dataset is balanced - Did not use the entire dataset Recall: 84.62%

(noisy epochs were discarded)

Odish et al. (2018) - Results correlate with clinical scores - Only tested one shallow ML model Accuracy: 83%

- Utilized continuous target thresholds - Only extracted a single feature Sensitivity: 83%

- Dataset was balanced - Lower metrics overall Specificity: 83%

- EEG recordings were short (3 min) AUC: 0.9
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