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Introduction: Multiple sclerosis (MS) is a chronic neurological disorder

characterized by the progressive loss of myelin and axonal structures in the

central nervous system. Accurate detection and monitoring of MS-related

changes in brain structures are crucial for disease management and treatment

evaluation. We propose a deep learning algorithm for creating Voxel-Guided

Morphometry (VGM) maps from longitudinal MRI brain volumes for analyzing

MS disease activity. Our approach focuses on developing a generalizable model

that can e�ectively be applied to unseen datasets.

Methods: Longitudinal MS patient high-resolution 3D T1-weighted follow-up

imaging from three di�erent MRI systems were analyzed. We employed a 3D

residual U-Net architecture with attention mechanisms. The U-Net serves as

the backbone, enabling spatial feature extraction from MRI volumes. Attention

mechanisms are integrated to enhance the model’s ability to capture relevant

information and highlight salient regions. Furthermore, we incorporate image

normalization by histogrammatching and resampling techniques to improve the

networks’ ability to generalize to unseen datasets from di�erent MRI systems

across imaging centers. This ensures robust performance across diverse data

sources.

Results: Numerous experiments were conducted using a dataset of 71

longitudinal MRI brain volumes of MS patients. Our approach demonstrated

a significant improvement of 4.3% in mean absolute error (MAE) against the

state-of-the-art (SOTA) method. Furthermore, the algorithm’s generalizability

was evaluated on two unseen datasets (n = 116) with an average improvement

of 4.2% in MAE over the SOTA approach.

Discussion: Results confirm that the proposed approach is fast and robust and

has the potential for broader clinical applicability.
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1 Introduction

Multiple sclerosis (MS) is a chronic neurological disorder
characterized by progressive loss of myelin and axonal structures
in the central nervous system (Dal-Bianco et al., 2017). Serial
MRI examinations of MS patients represent an important part of
the diagnostic and monitoring workout of MS patients, including
therapeutic decisions (Filippi et al., 2016; Dal-Bianco et al., 2017;
Kaunzner and Gauthier, 2017). While the appearances of new
and contrast-enhanced MS lesions are mostly related to clinical
relapses, smoldering chronic active lesions, which are often not
detectable in routine MRI scans, represent chronic inflammation
and tissue destruction and may correlate with slow and chronic
disease progression (Frischer et al., 2015). Accurate detection and
monitoring ofMS-related changes in brain structures are important
background information for clinical management (Frischer et al.,
2015). Evaluating subtle alterations across multiple examinations
has become feasible to characterize disease evolution over time
(Frischer et al., 2015). This includes fine analysis of white matter
lesions, enlargement of the cerebrospinal fluid (CSF) compartment,
and grey matter atrophy (Lewis and Fox, 2004).

Traditionally, the assessment of MS disease activity has
primarily relied on the detection of new lesions (Filippi et al.,
2016). Recently there has been an increasing interest in the
detection of lesion activity including even subtle changes like
smoldering lesions. There is a growing need for automatedmethods
capable of generating complete maps quantifying structural brain
tissue changes. Such methods are Voxel-Guided Morphometry
(VGM) (Schormann and Kraemer, 2003) and deep VGM (Schnurr
et al., 2020), where a neural network approximates a high
dimensional deformation field for detecting changes in MS lesions
in longitudinal MRI scans. The deep VGM approach by Schnurr
et al. (2020) is fast, however, we intended to improve its robustness
making it more applicable to a clinical setting. It is vital to develop a
robust deep-VGM approach that is independent of the MRI system
used. We aimed to develop a model that can effectively generalize
to unseen datasets, allowing for fast, robust, and reliablemonitoring
of subtle MS disease activity.

In summary, this paper investigates a generalizable deep
learning approach for Voxel-Guided Morphometry (VGM) map
generation, such that it provides a generalizable tool for fast,
accurate and automated analysis of subtle MS disease activity.

2 Materials and methods

2.1 Patient data

In this retrospective study, we analyzed two datasets of patients
with multiple sclerosis (MS) from two different centers, following
the 2010 diagnostic criteria by Polman et al. (2011). These datasets
are referred to as Dataset A and Dataset B. Dataset A, which
comprises 71 patients, is the same dataset utilized in the state-
of-the-art method proposed by Schnurr et al. (2020). Dataset
B consists of 97 patients. Every patient underwent two MRI
examinations: one at baseline and a follow-up scan after a 12-
month period. Patient demographics of these datasets are given in
Table 1.

TABLE 1 Patient demographics of Dataset A and B.

Property Dataset A Dataset B

Gender (female:male) 64:13 70:27

Mean age (years) 37.67± 12.5 54.5± 14.6

PPMS 1 15

SPMS 4 19

RRMS 62 63

Mean disease duration (years) 5.71± 8.44 10± 14.32

Median EDSS (range) 2.0 (0–6.5) 3.5 (0–7.5)

Treatment (DMTs) 49/67 81/97

In the original study that compiled Dataset A, four patients were excluded, thus no patient

demographics for these four patients were recorded. However, in this work, the imaging data

of these patients were used. PPMS, primary progressiveMS; SPMS, secondary progressiveMS;

RRMS, relapsing-remitting MS; EDSS, Expanded Disability Status Scale; DMTs, individually

selected immune therapies.

For further validation, we procured an external public dataset
comprising 19 patients from Carass et al. (2017). We call this
Dataset C in our study. All patients were imaged with a high-
resolution T1-weighted Magnetization Prepared Rapid Gradient
Echo Image (MPRAGE) sequence. Please see the acquisition details
in Table 2.

2.2 Ground truth VGM generation

Voxel-Guided Morphometry (VGM) is a technique used
for aligning 3D MRI images and generating maps that
reveal global and regional changes in the brain between two
sets of 3D MRI data collected at different time points. It
utilizes T1-weighted MRI data. To initiate the process, high-
quality brain masks are required, which can be generated
using the FreeSurfer software package [refer to Segonne
et al. (2004) for details]. The VGM process unfolds in four
sequential steps:

1. Coarse linear alignment: In this initial step, VGM
determines an affine transformation that maximizes the
overlap between the brain masks of the two time points.
This coarse linear alignment helps bring the images into
initial alignment.

2. Inhomogeneity correction: To eliminate low-frequency bias in
the images, a correction is applied by comparing the coarsely
aligned images, as described in Lewis and Fox (2004).

3. Fine linear alignment: After inhomogeneity correction, a
cross-correlation-based technique is employed to achieve
finer alignment between the images. This step further
refines the alignment achieved in the previous coarse
alignment step.

4. The final step involves the application of a high-dimensional
multiresolution full multigrid method. This step is crucial
for capturing nonlinear deformations in the brain structures,
allowing for comprehensive exploitation of information and
effective image processing, as explained in Schormann and
Kraemer (2003).
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TABLE 2 Image acquisition characteristics for each dataset.

Property Dataset A Dataset B Dataset C

Scanner Magnetom Skyra, Siemens Magnetom Allegra, Siemens Unknown scanner, Philips

Field strength (T) 3.0 3.0 3.0

Sequence T1-w MPRAGE T1-w MPRAGE T1-w MPRAGE

TR (ms) 1,900 2,080 10.3

TE (ms) 2.49 3.93 6

TI (ms) 900 1,100 835

Flip angle 9◦ 15◦ 8◦

Spatial resolution (mm3) 0.94× 0.94× 2.00 1× 0.98× 0.98 0.82× 0.82× 1.17

Volume size (voxels) 256× 256× 70 160× 240× 256 256× 256× 120

MPRAGE, magnetization prepared rapid gradient echo.

It’s worth noting that typical computation times for these four
steps on a CPU are ∼4 min for steps (i) to (iii) and 7 min for
step (iv).

In the ensuing stage, the VGM process orchestrates a guided
movement for each voxel based on its grey value, aligning it
from the source to the target image. The ultimate objective
is to extract volume alterations for each voxel from the high-
dimensional deformation field. The outcome is a map that
assigns a quantified value to each voxel, indicating whether the
corresponding brain region has undergone an increase or decrease
in volume.

To illustrate the application of VGM, we provide an example
case comprising a baseline image, a follow-up image, and the
resulting VGM map in Figure 1. Initially designed for stroke data
analysis (Schormann and Kraemer, 2003; Kraemer et al., 2004),
recent research has demonstrated its efficacy in the context of
multiple sclerosis (MS) (Kraemer et al., 2008; Fox et al., 2016;
Weber et al., 2021, 2022). However, it is important to note that the
clinical utilization of VGM is currently impeded by the relatively
long computation time of∼11 min per case.

2.3 Image preprocessing

Initially, we perform histogram matching normalization using
the Nyul normalization technique (Nyúl and Udupa, 1999).
Specifically, we train the Nyul normalizer using Dataset A.
Subsequently, we apply the trained normalizer to Datasets A,
B, and C ensuring that the data distributions become identical.
Following this step, we resample Dataset B and C to match the
voxel spacing of Dataset A, which is 0.94 × 0.94 × 2.00 mm.
Figure 2 illustrates the data distribution both before and after the
application of histogram matching and resampling techniques.
The visual comparison demonstrates a greater degree of similarity
between the data distributions following the implementation of
these techniques. Moreover, the calculated Wasserstein distances
between the datasets A and B prior to and post-normalization
are 62.77 and 25.48, respectively. Similarly, the distances between
datasets A and C pre- and post-normalization are 100.19 and 31.39,
respectively.

For the purpose of network training, we apply multiple
preprocessing steps to the MRI volumes. These steps include bias
correction, skull-stripping, and rigid registration (brain images of
the two time points). Additionally, we adjust the image intensities
to be confined within the interval of [0, 100] and then rescale them
to the range of [−1, 1]. As for the VGM maps (labels), they are
truncated to fit within the range of [−1, 1], while any values falling
within the range of [−0.01, 0.01] are set to 0.

2.4 Attention mechanisms

In this work, we incorporate three attention modules into the
U-Net architecture for improved VGM map prediction. These are
described briefly in the following.

2.4.1 Attention block from Attention U-Net
In their work, Oktay et al. (2018) introduced attention gates

within the U-Net architecture. These attention gates serve as
a mechanism to guide the network’s decision-making process
by selectively choosing relevant features while disregarding
irrelevant ones. The authors achieved this by leveraging higher-
level features as a guide to suppress trivial and noisy responses
present in the lower-level skip connections. By incorporating
attention gates, the network gains the ability to focus its
attention on more informative features, thus enhancing its
discriminative power and improving the overall performance of the
U-Net model.

2.4.2 Squeeze and excitation block
The SE block was introduced by Hu et al. (2018). This block

is designed to enhance the representational power of convolutional
neural networks (CNNs) by adaptively recalibrating feature maps.
It consists of two main operations: squeezing and exciting. In
the squeezing step, global spatial information is extracted by
applying global average pooling to the input feature maps. This
operation reduces the spatial dimensions of the feature maps.
In the exciting step, the squeezed information is used to learn
channel-wise dependencies and recalibrate the feature maps. This
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FIGURE 1

Three examples of VGM (ground truth) from a patient scan. (Left) Baseline image; (middle) follow-up image; (right) corresponding VGM map. The

top slice depicts a lesion decreasing in volume (dark region). The middle slice VGM shows that one new lesion appeared in the follow-up visit (small

bright-red region). The third slice shows a lesion with a very small change between the baseline and the follow-up visits. Arrows indicate the location

of lesions in each case.

recalibration process enables the network to emphasize more
informative channels and suppress less relevant ones, thereby
improving the discriminative power of the network.

2.4.3 Convolutional block attention module
The CBAM was first developed by Woo et al. (2018). It

consists of two attention sub-modules: the channel attention
module (CAM) and the spatial attention module (SAM). The
CAM captures interdependencies between channels by adaptively
recalibrating feature maps based on channel-wise information
(similar to the SE block). It employs a combination of global
average pooling and fully connected layers to compute channel
attention weights. The SAM, on the other hand, captures
spatial dependencies by adaptively highlighting informative spatial
locations within feature maps. It utilizes the max-pooling and
average-pooling operations followed by convolutional layers to

generate spatial attention weights. By integrating both channel and
spatial attention, the CBAM module enhances the discriminative
power of CNNs and allows them to focus on salient features during
image classification or object detection tasks.

2.5 Network architecture

We implemented three 3DU-Nets utilizing the aforementioned
attention mechanisms to compute VGM maps from input
volumes (Ronneberger et al., 2015; Raj et al., 2022). These
U-Nets are equipped with residual and skip connections to
facilitate the seamless flow of information and gradients. The
encoder/decoder structure consists of five levels, with the first
two levels comprising two convolution layers each, and the
subsequent three levels consisting of three convolution layers
each. The number of filters starts at 8 at the initial level and
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FIGURE 2

Histogram of image intensities of the original data distribution (A) and after Nyul normalization (B). The y-axis scale is in logarithms (x-axis; AU,

arbitrary units).

progressively increases to 128 at the bottom level. The VGM
prediction map is generated through a final convolution layer
of size 1 × 1 × 1, while all other convolutions employ 3 × 3
× 3 kernels. The inputs to the network consist of baseline and
follow-up volumes.

We trained the following networks:

1. Attention U-Net: The U-Net architecture is enhanced with
attention blocks in the decoder (Oktay et al., 2018).

2. SE-Attention U-Net: The U-Net architecture incorporates SE
blocks in the encoder and attention blocks in the decoder (Hu
et al., 2018; Raj et al., 2022).

3. CBAM-Attention U-Net: The U-Net architecture integrates
CBAMblocks in the encoder and attention blocks in the decoder
(Woo et al., 2018; Raj et al., 2022).

Furthermore, we compare our trained networks’ performance
with the baseline U-Net (Ronneberger et al., 2015) model obtained
from the work of Schnurr et al. (2020).

For a visual representation of these U-Net architectures, refer
to Figure 3.

2.6 Loss function

The networks in our study are trained using a combination
of mean absolute error (MAE) and gradient loss. The MAE loss,
defined in Equation (1), calculates the average absolute difference
between the predicted output Ŷ and the ground truth Y :

LMAE

(

Y , Ŷ
)

=
1

N

N
∑

i=1

|ŷi − yi|, (1)

To further improve the training process, we incorporate the
combination of MAE and gradient loss, which is described in
Equation (2).

LGrad

(

Y , Ŷ
)

=
1

NxNyNz

∑

i,j,k

(
∣

∣yi,j,k − yi−1,j,k

∣

∣ −
∣

∣ŷi,j,k − ŷi−1,j,k

∣

∣

)2

+
1

NxNyNz

∑

i,j,k

(
∣
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∣

∣ −
∣

∣ŷi,j,k − ŷi,j−1,k

∣
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+
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∣

∣ −
∣
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∣

∣

)2

(2)

The additional gradient loss term incorporates gradient
information to guide the network’s learning:

LMAE+Grad

(

Y , Ŷ
)

= LMAE + λ · LGrad (3)

Where, ŷi and yi represent the predicted and label voxel values,
respectively. The total number of voxels in a batch is denoted by N,
where Nx, Ny, and Nz represent the number of voxels along each
dimension of the 3D MRI volume. Additionally, the parameter λ is
set to one in Equation (2) to equally weight the two loss functions.
We selected theLMAE+Grad loss function based on its demonstrated
effectiveness in predicting VGMmaps, as reported in Schnurr et al.
(2020).

2.7 Training and implementation

In our study, we employed a training approach using 3D
patches of size 128 × 128 × 32. The patches were sampled
randomly, with the constraint that their centers lie within the brain
mask, and were oriented along the transverse plane. Each training
batch consisted of 8 samples.

For optimization, we utilized the Adam optimizer with a
learning rate of 10−3. To mitigate overfitting, we applied L2
regularization with a weight of 10−10. Each network underwent
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FIGURE 3

Proposed 3D U-Net incorporating attention mechanisms in the encoder and decoder parts. The attention mechanism from Oktay et al. (2018) is part

of the decoder. The SE/CBAM blocks (Hu et al., 2018; Woo et al., 2018) are part of the encoder of the U-Net.

training for a total of 860 epochs in a 5-fold cross-validation
scheme. The 5-fold cross-validation was performed on Dataset A,
which was split into train:validation:test sets with a ratio of 54:2:15
cases.

To assess the generalizability of our trained models, we applied
them to Datasets B and C. This additional evaluation aimed to
determine how well the models could perform on an independent,
previously unseen dataset. It is also worth noting that for the
baseline state-of-the-art method, we use the settings described in
the baseline approach (Schnurr et al., 2020) to make predictions
unless specified otherwise. In one scenario, we followed the
same preprocessing steps as described in the baseline approach.
In another case, we implemented our preprocessing steps,
including intensity truncation in [0, 100], Nyul normalization, and
resampling, for inference using the baseline model.

The neural networks were trained using Tensorflow 2.3.0
(Abadi et al., 2016) and Python 3.6.13, employing an Nvidia RTX
A4000 as the GPU.

2.8 Evaluation

2.8.1 Quantitative evaluation
To facilitate amoremeaningful comparison, we utilize the same

evaluationmetrics described by Schnurr et al. (2020). These metrics
allow us to assess the performance of our approach consistently.

The first metric we employ is the Mean Absolute Error (MAE),
which quantifies the average absolute difference between the
predicted and ground truth VGMmap within the brain mask. This
metric provides insight into the accuracy of the predicted VGM
values at the voxel level. The second metric used for evaluation
is the Structural Similarity Index (SSIM), a measure that assesses
the similarity of structures between the predicted and ground truth
VGM maps. The SSIM compares three components of images:
luminance, contrast, and structure (Wang et al., 2004). This metric
provides information about the overall structural preservation in
the predicted VGMmap compared to the ground truth. We further
utilize the Dice Score (DSC), specifically for non-change regions

within the brainmask. The DSC is calculated for voxel values falling
within the range of [−0.01, 0.01] in both the predicted and ground
truth VGM maps. This metric allows us to evaluate the similarity
and overlap between these regions, further assessing the accuracy
of the predicted VGM map. Finally, we perform a paired t-test to
find a statistically significant difference (p-value < 0.05) between
the results from the baseline and our proposed methods.

2.8.2 Qualitative evaluation
Two expert neuroimagers (A.G., P.E.) performed a joined

qualitative review by consensus. The predictions from our best-
performing network were compared to conventional VGM maps
(ground truth) and source T1-weighted data. The expert checked
five patients from each dataset by comparing the predicted VGM
and ground truth VGM in conjunction with the baseline and
follow-up visits’ MRI volumes. Based on the visual analysis, each
patient’s prediction in comparison to the ground truth VGM was
categorized into four categories: 1. Missing information, where the
prediction does not have enough details as compared to the ground
truth, 2. loss of lesion to background contrast, where the lesion
is lost to background and is not visible in prediction, 3. original
result well-presented, where the prediction is of similar quality to
the ground truth, and 4. additional lesion details offered, where the
predicted VGM gives additional lesion information that might not
be present in the ground truth.

3 Results

3.1 Quantitative results

The results for each dataset are described in Table 3. For
Dataset A, the CBAM-Attention U-Net attains the highest SSIM,
DSC, and MAE of 0.9177, 0.9814, and 0.0335, respectively. In
comparison, the baseline state-of-the-art method obtains SSIM,
DSC, and MAE of 0.9139, 0.9800, and 0.0350, respectively. For
Dataset B, the best SSIM, DSC, and MAE are 0.9416 (Attention U-
Net), 0.9882 (CBAM-Attention U-Net), and 0.0337 (SE-Attention
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TABLE 3 Results for each Dataset from networks trained on Dataset A only.

Dataset Network SSIM ↑ DSC ↑ MAE ↓

Dataset A U-Net (baseline) 0.9139± 0.0216 0.9800± 0.0033 0.0350± 0.0112

Attention U-Net 0.9172± 0.0213 0.9812± 0.0032 0.0338± 0.0107

CBAM-Attention U-Net 0.9177 ± 0.0212 0.9814 ± 0.0031 0.0335 ± 0.0105

SE-Attention U-Net 0.9172± 0.0212 0.9810± 0.0031 0.0337± 0.0106

Dataset B U-Net (baseline) 0.9207± 0.0187 0.9816± 0.0034 0.0364± 0.0064

Attention U-Net 0.9416 ± 0.0143 0.9881± 0.0023 0.0344± 0.0052

CBAM-Attention U-Net 0.9406± 0.0144 0.9882 ± 0.0023 0.0351± 0.0053

SE-Attention U-Net 0.9416 ± 0.0143 0.9880± 0.0022 0.0337 ± 0.0052

Dataset C U-Net (baseline) 0.9102 ± 0.0377 0.9287± 0.0093 0.0422 ± 0.0091

Attention U-Net 0.9097± 0.0288 0.9780± 0.0041 0.0465± 0.0087

CBAM-Attention U-Net 0.9010± 0.0287 0.9784 ± 0.0042 0.0519± 0.0112

SE-Attention U-Net 0.9091± 0.0291 0.9780± 0.0042 0.0459± 0.0086

The metrics for Dataset A are congregated from the results of 5-fold training. The metrics for Datasets B and C are calculated using an ensemble of five models that were trained on Dataset

A. The baseline state-of-the-art method is outperformed in each metric for Datasets A and B by CBAM- or SE-Attention U-Net. However, for Dataset C, the SSIM and MAE of the baseline is

higher than our approach. But as can be seen in Figure 4, the baseline method outputs VGM without any details. The MAE in this case is lower as most of the predicted values from the baseline

method are close to 0. Further, the DSC of 0.92 is comparatively lower than the average 0.98 DSC from other methods. Numbers in bold signify the best metric for each dataset for each category.

Underlined values depict significantly better metric in comparison to the corresponding baseline metric with p-value < 0.05. Up arrow signifies that higher value (number) is better, while down

arrow signifies that lower values are better or desired.

U-Net), respectively. Moreover, each network’s metric for both
Datasets A and B surpasses the corresponding metric for the
baseline method. Furthermore, each of the proposed networks
outperforms the baseline significantly in the case of Datasets A
and B (p-value < 0.05). For Dataset C, the baseline method
outperforms other networks in SSIM (0.9102) and MAE (0.0422)
metrics. However, the DSC of the baseline (0.9287) is considerably
lower than our networks’ DSCs (best:0.9784). The poor DSC of the
baseline method is due to the network outputting more values close
to 0 in larger regions. The visual results in Figure 4 for Dataset C
also confirm this, showing that although the baseline has slightly
better metrics, the outputs are not useful for a physician.

Furthermore, in Table 4, we depict results from the baseline
method after applying the preprocessing methods from our
approach (Section 2.3; i.e., truncation in [0, 100] range instead
of baseline truncation in [200, 700] range, Nyul normalization,
and resampling). In this case, the method improves on all metrics
for Dataset B as compared to the corresponding result in Table 3.
However, for Datasets A and C, SSIM and MAE numbers are lower
in comparison. Noteworthily, the DSC of Dataset C improves and
reaches 0.9778. After applying our preprocessing approach, the
baseline network is able to produce meaningful predictions for
Dataset C as depicted in Figure 5, suggesting that our preprocessing
method is important for generalizability in this case.

The prediction of each VGM map takes ∼2.75 s. With the
inclusion of preprocessing, the total time taken for VGMprediction
is about 4 minutes [same as the SOTA method (Schnurr et al.,
2020)].

3.2 Qualitative results

Table 5 shows the qualitative analysis result of five cases of each
dataset that were visually analyzed by the experts. Since it achieved

the best mean MAE score of 0.0377 across all the datasets, we
selected SE-Attention U-Net as the best network for visual analysis.
None of the predictions (0/15) showcased any missing information
details. There is also no loss of lesion to background contrast
(0/15) for any case in each dataset. Furthermore, all the analyzed
predictions (15/15) show that they present the ground truth VGM
well. Interestingly, one case in Dataset B (1/5) and three cases in
Dataset C (3/5), show additional lesion details in comparison to the
ground truth. However, for dataset A, the predicted VGMs do not
offer (0/5) any additional lesion details in comparison to the ground
truth.

Visual results are depicted in Figures 4, 5. In Figure 4, it can be
seen that for Datasets A and B, the prediction from SE-Attention
U-Net is similar to the ground truth, having dark [Dataset A (n =
1)] and bright spots [Dataset B (n = 2)] for changes in lesions in the
same regions. For Dataset C, we show an example case for which
our prediction offers better detail and more lesion information
as compared to the ground truth. However, in this case, the
baseline prediction is worse and does not show any lesion details.
Interestingly, when we swap the baseline method’s preprocessing
with our preprocessing approach, the output is more informative
and depicts VGM in higher quality (see Figure 5).

4 Discussion

We aimed to develop a generalizable approach to predict VGM
maps for the longitudinal assessment of MS patients. Our work
builds upon previous research (Schnurr et al., 2020) by addressing
the crucial issue of generalizability. Some interesting aspects emerge
from this work. The VGM maps help to detect subtle changes in
lesions between baseline and follow-up visits. Our approach did
calculate VGM maps in a short time and across three different
datasets (2/3 unseen datasets) with high accuracy.
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FIGURE 4

(Top) Dataset A, (middle) Dataset B, and (bottom) Dataset C. Qualitative results for each dataset from the baseline U-Net and our proposed approach

with SE-Attention U-Net.

TABLE 4 Results from the baseline method (ensemble) after applying image preprocessing described in our study.

Dataset Network SSIM ↑ DSC ↑ MAE ↓

Dataset A U-Net (baseline) 0.9071± 0.0227 0.9809 ± 0.0034 0.0379± 0.0120

Dataset B U-Net (baseline) 0.9396 ± 0.0144 0.9879 ± 0.0023 0.0348 ± 0.0054

Dataset C U-Net (baseline) 0.9063± 0.0300 0.9778 ± 0.0042 0.0467± 0.0097

As can be seen, the MAE for Dataset B improves, however, for Datasets A and C, it gets worse. The DSC for Dataset C increases by 6% as compared to the result in Table 3. The numbers in bold

depict comparatively higher metrics to the corresponding baseline method from Table 3. Up arrow signifies that higher value (number) is better, while down arrow signifies that lower values

are better or desired.

FIGURE 5

Visual result from the baseline U-Net for Dataset C (for the same patient from Figure 4) after applying our approach’s preprocessing steps.

TABLE 5 Visual inspection result by an expert neuro-radiologist for SE-Attention U-Net predictions compared to ground truth VGM, baseline and,

follow-up MRIs.

Dataset Missing information Loss of lesion to
background contrast

Original result
well-presented

Additional lesion detail
o�ered

Dataset A 0/5 0/5 5/5 0/5

Dataset B 0/5 0/5 5/5 1/5

Dataset C 0/5 0/5 5/5 3/5

In the development process, we integrated advanced deep-
learning techniques, image preprocessing, and careful model
evaluation. Several steps were performed, that appeared useful
and were able to improve the process incrementally. We began
by describing the image preprocessing steps, which involved

histogram matching normalization and voxel spacing resampling
to ensure data consistency across different imaging centers. These
preprocessing steps are crucial for enhancing the model’s ability to
generalize to diverse datasets. Our deep learning model is based
on a 3D residual U-Net architecture, which incorporates attention
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mechanisms to highlight salient regions in the brain volumes. The
application of attention mechanisms in MS lesion change detection
is warranted as they have been shown to enhance lesion detection
algorithms in previous works (Sarica and Seker, 2022; Sarica et al.,
2023). To evaluate the effectiveness of our approach, we conducted
extensive experiments using a dataset of 71 longitudinal MRI brain
volumes of MS patients. We compared our model’s performance to
the SOTAmethod (Schnurr et al., 2020). Additionally, we evaluated
the generalizability of our model on two unseen datasets, to test its
robustness and potential for broader clinical applicability.

In our approach, we show that across all the datasets, the
method attains SSIM and DSC higher than 0.91 and 0.98,
respectively. Furthermore, the differences in the MAEs for each
dataset are not considerably high. The current state-of-the-art
(baseline) for predicting VGM maps using deep learning, as
proposed by Schnurr et al. (2020), involves the implementation
of a U-Net model without attention mechanisms. This baseline
method does not adequately address the generalizability across
different scanners and sites, a limitation our approach seeks to
overcome. Employing the trained model from Schnurr et al. (2020)
on Dataset A, we obtained an SSIM of 0.9139, a DSC of 0.9800,
and an MAE of 0.0350 (Table 3)1. In comparison, each of our
proposed networks surpassed the state-of-the-art result for Dataset
A. Similarly, we extended the baseline to Datasets B and C and
found that our approach outperforms the baseline for Dataset
B. However, for Dataset C, the baseline attained higher SSIM
and MAE scores (Table 3). In contrast, the baseline DSC in this
case is considerably lower (0.92 v/s 0.97). When visually analyzed
(Figure 4), we found that the baseline result could not replicate the
ground truth VGM and contained values very close to 0 (therefore
lower DSC), and hence it attained better MAE in comparison. In
this case (Dataset C), the numbers did not reflect the results visually
and were deemed not useful in a clinical setting. However, when
we applied our preprocessing approach (i.e., Nyul normalization +
truncation in [0, 100] range), the baseline method yielded a much
more convincing VGM map as seen in Figure 5. This suggests that
the preprocessing method is key to the generalizability of deep
VGM maps. The resulting average MAE is 0.0467 (Table 4), which
is worse than our SE-Attention U-Net. Furthermore, we found that
for Datasets B and C, the predicted VGM maps could offer extra
lesion details in comparison to the ground truth maps without the
loss of important information in 4/15 cases (Table 5). This also
suggests that the ground truth VGM maps of Dataset A are of
higher quality and training on them could help the network learn
high-quality features.

Moreover, there exist multiple automated new lesion
segmentation algorithms based on deep learning (Andresen et al.,
2022; Ashtari et al., 2022; Basaran et al., 2022; Hitziger et al., 2022;

1 In our study, discrepancies were observed in the metric values for

the baseline method when compared to those reported in Schnurr et al.

(2020). Despite employing the same trained models and adhering to the

preprocessing protocol detailed in their paper, the variation in results could

be attributed to small details in their methodology that were not described

in their paper. Additionally, the divergence in outcomes may also stem from

variances in the versions of the libraries used between the two studies.

Kamraoui et al., 2022; Sarica and Seker, 2022; Schmidt-Mengin
et al., 2022; Commowick et al., 2023). These methodologies
primarily leverage the MSSEG-2 dataset (Commowick et al.,
2021), encompassing FLAIR images from baseline and follow-up
visits for each patient, either with or without the integration of
synthetic data. Notably, these approaches focus on segmenting new
lesions during follow-up visits. In contrast, our proposed approach
distinguishes itself by its fundamental objective: quantifying
the change in lesion activity between baseline and follow-up
measurements. Unlike the aforementioned methods, which aim to
delineate new lesions, our approach offers a distinctive perspective,
providing quantitative insights into the variations in lesion size
between visits. This ability to quantitatively showcase the decrease
or increase in lesion activity enhances the depth and specificity of
our methodology in assessing lesion dynamics over time.

Nevertheless, methodologies analogous to ours have been
proposed in the literature, specifically targeting the identification
of change maps in MS patients between baseline and follow-
up examinations. Dufresne et al. (2022) presented an algorithm
that concurrently optimized image registration and local intensity
change detection within FLAIR volumes. Cheng et al. (2018)
computed lesion changes utilizing T1, T2, and FLAIR sequences.
Their approach involved estimating a dissimilarity map between
two visits and subsequently incorporating logistic regression with
neighborhood information and local texture descriptors. It is
noteworthy that a direct comparison between our approach and
these existing methodologies is challenging due to the fact that both
aforementioned approaches utilize lesion segmentation maps as
the ground truth for evaluation. In contrast, our study necessitates
expert annotation and an optimal threshold for generating lesion
maps (derived from VGM maps) to facilitate segmentation
evaluation. Such a comparative task extends beyond the scope of
the current work.

Addressing the challenge of MRI data heterogeneity across
sources is essential for the widespread adoption of deep learning-
based tools in clinical practice, and our model’s independence from
MRI sources demonstrates its potential as a versatile clinical asset.
Furthermore, the high accuracy and generalizability of our deep
learning approach hold great promise for clinical practitioners, as
it offers a valuable tool for detecting and monitoring subtle changes
in MS lesions, facilitating more informed treatment decisions. The
ability to identify even the most discreet changes in brain structures
could significantly impact the clinical management of MS patients,
potentially leading to earlier interventions and improved patient
outcomes.

Nonetheless, our approach has a few limitations. Firstly, it
needs accurately registered brain volumes for baseline and follow-
up visits. If the registration is of low quality, then the VGM maps
will be less accurate and might display less precise information.
However, we found that all the cases in our study were registered
with high quality. Another limitation could be the (partial) loss
of lesion when resampling datasets to have the same spacing
as Dataset A. Dataset A has anisotropic spacing where the slice
thickness is 2 mm. Resampling a higher-resolution MRI volume to
a 2 mm slice thickness could result in partial volume effects, i.e.,
loss of some detail. In this case, it would mean that the VGMmaps
might be less precise in detecting some subtle lesion changes.
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In future work, we will analyze if the VGM maps can be
produced from a single scan of MS patients with a comparison
scan from an age- and sex-matched group of healthy individuals for
detecting lesions. Furthermore, we would also test our algorithm
for detecting structural changes in other neurological diseases such
as stroke, neurodegenerative diseases, or brain tumors.

In conclusion, we present a generalizable approach that can
produce VGM maps in a fast and robust manner across datasets
from various sources. Our algorithm can be helpful in detecting
subtle lesion changes in brains of MS patients.
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