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Objective: The current research aimed to analyze the alterations within the 
motor cortex and pyramidal pathways and their association with the degree of 
damage within the peripheral nerve fibers in patients with chronic inflammatory 
demyelinating polyradiculoneuropathy (CIDP). To achieve that goal, 
we investigated the microstructural changes within the pyramidal white matter 
tracts using diffusion tensor imaging (DTI) parameters, evaluated metabolic 
alterations in both precentral gyri using magnetic resonance spectroscopy 
(MRS) ratios, and correlated them with the neurographic findings in patients 
with CIDP.

Methods: The spectroscopic ratios of NAA/Cr, Cho/Cr, and mI/Cr from both 
precentral gyri and the values of fractional anisotropy (FA), axial diffusivity (AD), 
and mean diffusivity (MD) from both of the corticospinal tracts were correlated 
with the results of neurological and neurographic findings. The comparison 
of DTI parameters between the patients and controls was performed using 
Student’s t-test or the Mann–Whitney U test. Due to the lack of normal 
distribution of most variables, Spearman’s Rho rank coefficient was used to test 
all correlations. All analyses were performed at a significant level of alpha  =  0.05 
using STATISTICA 13.3.

Results: Compared to the control group (CG), the patient group showed 
significantly lower ratios of NAA/Cr (1.66  ±  0.11 vs. 1.61  ±  0.15; p  =  0.022), higher 
ratios of ml/Cr in the right precentral gyrus (0.57  ±  0.15 vs. 0.61  ±  0.08; p  =  0.005), 
and higher levels of Cho/Cr within the left precentral gyrus (0.83  ±  0.09 vs. 
0.88  ±  0.14, p  =  0.012). The DTI parameters of MD from the right CST and AD 
from the right and left CSTs showed a strong positive correlation (0.52–0.53) 
with the sural sensory nerve action potential (SNAP) latency of the right sural 
nerve. There were no other significant correlations between other DTI and MRS 
parameters and neurographic results.

Significance: In our study, significant metabolic alterations were found in 
the precentral gyri in patients with CIDP without clinical symptoms of central 
nervous system involvement. The revealed changes reflected neuronal loss 
or dysfunction, myelin degradation, and increased gliosis. Our results suggest 
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coexisting CNS damage in these patients and may provide a new insight into the 
still unknown pathomechanism of CIDP.
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chronic inflammatory demyelinating polyradiculoneuropathy, diffusion tensor 
imaging, magnetic resonance spectroscopy, precentral gyrus, sural sensory nerve 
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1 Introduction

Typical chronic inflammatory demyelinating 
polyradiculoneuropathy (CIDP) is a rare, heterogeneous but treatable 
autoimmune-mediated peripheral neuropathy characterized by 
demyelination. In this disease, nerve roots and peripheral nerves are 
damaged. Recent studies have demonstrated that the autonomic 
involvement in classic CIDP is mild, cholinergic, and mainly 
sudomotor as a result of lesions occurring at the distal postganglionic 
axon (1–3). Chronic inflammatory demyelinating 
polyradiculoneuropathy can occur independently or simultaneously 
with a variety of diseases, such as monoclonal gammopathy of 
undetermined significance (MGUS), diabetes, connective tissue 
disease, and HIV (4–6).

Typical CIDP is more prevalent in men and can occur at any age, 
with the highest prevalence reported in the middle ages (30–60 years 
of age) (7, 8). The history of the disease is consistently progressive for 
more than 8 weeks but can be  relapsing–remitting (9, 10). The 
diagnosis is based on clinical suspicion, clinical findings, and the 
confirmation of demyelinating changes on electrodiagnostic studies 
(EDX) and nerve pathology (2). Physical examination reveals 
progressive symmetrical proximal and distal muscle weakness, 
sensory loss, and decreased or absent deep tendon reflexes. The cranial 
nerves are less frequently affected (11).

The involvement of the central nervous system (CNS) in patients 
with CIDP has been reported rarely in the literature. During the past 
few decades, case reports and small case series have both reported 
peripheral nervous system (PNS) involvement in multiple sclerosis 
(MS) and also described CIDP with demyelinating lesions in 
CNS. For example, in their study on the comparison of CIDP 
patients with CNS lesions and MS patients with peripheral nervous 
system involvement, Komori et al. found that 7 of 17 CIDP patients 
showed CNS involvement (optic neuritis, cerebellar ataxia, and 
spinal symptoms) and only 2 of 59 MS patients exhibited PNS 
lesions (12–14). Combined central and peripheral demyelination 
(CCPD) is a rare condition characterized by heterogeneous features 
and shows the onset of frequent post-infections, inadequate response 
to treatments, and generally has a poor outcome. Hypotheses 
regarding autoimmune mechanisms have been put forward in the 
pathogenesis of this condition. It is still unclear whether the overlap 
between central and peripheral demyelination is coincidental or 
caused by a common epitope in the central and peripheral nervous 
systems (15–17).

Some authors also pointed out the presence of an association 
between CIDP and amyotrophic lateral sclerosis (ALS), which both 
show peripheral nerve demyelination and pyramidal signs with 
progressive bulbar involvement (18–21).

Novel advanced MR techniques not only enable imaging of the 
brain structure but also allow for the analysis of brain metabolic and 
microstructural changes. MR spectroscopy (MRS) provides 
non-invasive information on the biochemical composition of 
selected body tissues in vivo. The most commonly used MRS 
technique in clinical practice is hydrogen nuclei spectroscopy 
(H1MRS), which allows the analysis of the profile of brain 
metabolites, mainly N-acetyl aspartate (NAA), creatine (Cr), choline 
(Cho), and myoinositol (mI) (22, 23). In particular, the NAA peak 
is a putative marker of neuronal and axonal integrities, and the 
choline peak appears to reflect the cell-membrane metabolism. On 
this basis, a decreased NAA peak is interpreted to represent 
neuronal/axonal dysfunction or loss, and an elevated choline peak 
represents increased cell-membrane turnover, as observed in 
demyelination, remyelination, inflammation, or gliosis. Myoinositol 
is a part of phospholipids and is only found in astrocytes; thus, it is 
assumed to be a marker of gliosis (24, 25). Diffusion tensor imaging 
(DTI) is another advanced MR technique that is used for a detailed 
evaluation of white matter integrity. It is based on the assessment of 
the value and direction of water molecule diffusion and the amount 
of anisotropy within the study structures. There are several 
mathematical parameters derived from DTI, such as fractional 
anisotropy (FA), providing information on the direction of water 
diffusion, mean diffusivity (MD), and axial diffusivity (AD). 
Fractional anisotropy is the most commonly used DTI metric that 
seems to reflect the degree of white matter tract packing, myelination, 
and fiber integrity. On the other hand, MD is an inverse measure of 
the membrane density and is sensitive to cellularity, edema, and 
necrosis, while AD is predominantly modified by acute axonal 
damage (26). DTI is the only method that gives an in vivo insight 
into the microstructure of white matter fibers. The reconstruction of 
nerve pathways is primarily employed in neurosurgery for surgery 
planning, where it shows anomalies of the fiber pathways caused by 
a tumor, with an assessment of the degree of infiltration of white 
matter tracts or their displacement by pathological brain lesions 
(27–29). This method has been widely used to assess the integrity of 
white matter tracts or the rate of early white matter damage in many 
systemic and brain diseases, such as systemic lupus erythematosus 
(SLE), MS, Parkinson’s disease (PD), mild cognitive impairment, and 
Alzheimer’s disease (30–34). What is even more important is that 
alterations in the parameters of FA or MD could be  found even 
within the normal-appearing white matter.

There is an increasing number of studies that analyze the 
coexistence of CNS impairment in CIDP. The authors of this study 
have previously investigated this problem and studied multimodal 
visual (VEP), auditory brainstem (BAEP), and somatosensory (SEP) 
evoked potentials (EP) in patients with a diagnosis of CIDP and 
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correlated their results with the electrophysiological parameters of the 
peripheral sensory nerves. In the previous study, the authors indicated 
the possibility of central sensory involvement in patients with CIDP, 
particularly on the basis of prolonged BAEP latencies accompanied by 
confirmed root damage, and found the degree of central involvement 
to correlate with the grade of peripheral nerve involvement (35).

The current research aimed to analyze alterations within the motor 
cortex and pyramidal pathways and their association with the degree of 
damage within peripheral nerve fibers in patients with CIDP. To achieve 
that goal, we investigated the microstructural changes within pyramidal 
white matter tracts using DTI parameters, evaluated the metabolic 
alterations in both of the precentral gyri using MRS ratios, and correlated 
them with the neurographic findings in patients with CIDP. To our 
knowledge, there are no reports in the literature on MRS and DTI 
cerebral abnormalities in this polyneuropathy.

2 Materials

The study included 30 patients (mean age: 57.13 years, range: 
23–80 years, 9 women, 21 men) who fulfilled the typical CIDP criteria 
according to the European Academy of Neurology/Peripheral Nerve 
Society guidelines on the diagnosis and treatment of chronic 
inflammatory demyelinating polyradiculoneuropathy from 2021 (8) and 
17 age-matched normal control subjects (mean age: 51.9 years, range: 
32–79 years, 14 women, 3 men). The Inflammatory Neuropathy Cause 
and Treatment (INCAT) scale was used to assess the current neurological 
status, finding a mean upper limb score of 1.40 ± 0.81, a mean lower limb 
score of 1.53 ± 0.86, and a total mean INCAT of 2.43 ± 1.70. The mean 
body weight was 82.40 ± 15.83 kg. The co-morbidities showed type 2 
diabetes in seven patients and hypertension in eight patients. None of the 
patients had autoimmune diseases. The laboratory tests revealed the 
mean level of the following biomarkers: creatine kinase (CK), 
407.03 ± 188.56 IU/L; IgG, 10.58 ± 2.62 g/L; IgA, 2.61 ± 0.82 g/L; and IgM, 
1.85 ± 0.78 g/L. The general examination of the cerebrospinal fluid (CSF) 
showed a mean protein level of 66.57 ± 23.22 mg/dL, and a mean 
pleocytosis amounting to 2.33 ± 1.73 cells/ul. In the patient group, the 
mean duration of the disease was 4.35 ± 3.20 years. Patients with CIDP 
were treated with intravenous immunoglobulin, and the duration of 
treatment was 7.43 ± 11.16 years.

All subjects underwent detailed neurological, biochemical, and 
electrophysiological examinations (neurography) as well as brain 
imaging using standard morphological MR sequences followed by MR 
spectroscopy (MRS) and diffusion tensor imaging (DTI). Subjects 
with cerebral pathology visible on MRI were excluded from the study.

The exclusion criteria were as follows: patients with known 
psychiatric or neurological illness other than CIDP, those with any 
cerebral pathology visible on the structural brain MRI, those who are 
pregnant, and those who show contraindications for MRI or EMG 
studies. The inclusion criteria for the healthy control group (CG) 
included no history of neurological illness or other medical conditions 
and normal structural brain MRI.

2.1 Ethical standards

The study was conducted in accordance with the guidelines 
of the university ethics committee for conducting research 

involving humans. Each patient provided signed consent to 
participate in the examination. The authors had a positive opinion 
of the Bioethics Committee of the Medical University of Wrocław 
No. KB—719/2021 on conducting the study. The study was 
conducted in accordance with the Declaration of Helsinki, 
with 2013amendments.

3 Methods

3.1 Electroneurography studies

All patients underwent a subjective and objective neurological 
examination and serum and CSF analysis. Electrophysiological tests 
were performed on a Viking Quest version 10.0 device. Standard 
motor conduction studies were performed in the median, ulnar nerves 
on the left side and the peroneal, tibial nerves on both sides. The 
antidromic sensory conduction studies were performed in the left 
median and ulnar nerves and both sural nerves. In each patient, a 
particular nerve was examined under the same conditions and at the 
same distance from the stimulating cathode to the active receiving 
electrode and at a standardized stimulation site with distal onset 
latency, amplitude, and conduction velocity assessment. The duration 
of the electrical stimulation was 0.2 ms for motor fibers and 0.1 ms for 
sensory fibers. The room temperature was between 21 and 23°C, the 
hand temperature was not less than 32°C, and the leg temperature was 
not less than 30°C.

3.2 MR studies

All MR studies were performed on a 1.5-T MR scanner (Signa 
HDx, GE Healthcare, Waukesha, WI, US) using a 16-channel HNS 
(head–neckspine) coil. The structural MR examination included axial 
T2-weighted, FLAIR and DWI images as well as coronal and sagittal 
T2-weighted images followed by 3D T1-weighted structural images 
acquired using the SPGR 3D BRAVO sequence with the following 
parameters: TE/TR 5/11 ms, flip angle 13, acquisition matrix 256 × 
256 mm2, and FoV 256 × 256 mm.

3.3 Magnetic resonance spectroscopy

H1MRS was performed with a single voxel (SV) technique using 
a point-resolved spectroscopy sequence (PRESS) with the following 
parameters: TE = 35 ms, TR = 1,500 ms, 128 acquisitions, and NEX 
8. In each subject, two 8-cm3 (2 × 2 × 2 cm) voxels of interest (VOIs) 
were prescribed in the right and left precentral gyri anterior to the 
central sulcus, localized on axial T2-weighted and FLAIR images 
(Figure 1). The acquisition time for one voxel was 3 min 43 s, and 
the total time of MRS data acquisition was 7 min 26 s. The MRS data 
were postprocessed using algorithms provided by a manufacturer 
(GE workstation, ADW 4.6). Each spectrum was automatically 
fitted to four peaks corresponding to the levels of NAA (2.02 ppm), 
total creatine (3.03 ppm), choline-containing compounds 
(3.23 ppm), and mI (3.56 ppm). The ratios of NAA, choline, and mI 
to creatine (NAA/Cr, Cho/Cr, mI/Cr, respectively) were calculated 
and analyzed.
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3.4 Diffusion tensor imaging

The DTI protocol consisted of a single-shot spin-echo echoplanar 
imaging sequence with the following parameters: TR/TE 16000/95 ms, 
FoV 220 × 220 mm2, acquisition matrix 90 × 90 mm2, reconstruction 
matrix 90 × 90 mm, and 60 slices with 2.5 mm thickness without gap. 
Images were performed in the axial plane with diffusion gradients 
applied in 12 non-collinear directions with a b-value of 1,000 s/mm2 
and one non-diffusion weighted image (36).

The DTI datasets were analyzed using the diffusion MR toolbox 
“Explore DTI” and consisted of the following steps: (i) correction for 
subject motion and eddy current-induced distortions (37); (ii) tensor 
estimation using the REKINDLE approach for outlier detection (38) 
with iteratively reweighted linear least squares estimation after 
identification and removal of data outliers (39); and (iii) automated 
atlas-based analysis within JHU diffusion templates using Diffusion 
MRI and JHU atlases, registered using affine and elastic registration 
based on “elastix” (40–49).

All DTI data were visually checked in terms of the quality of 
tensor estimation and the quality of registration. After following all 
preprocessing steps, the mean values of FA, MD, and AD were 
calculated based on the JHU atlas separately for the right and left 
corticospinal tracts at a distance between the precentral cortex and the 
cerebral peduncle (Figure 2).

3.5 Data analysis

Spectroscopic ratios of NAA/Cr, Cho/Cr, and mI/Cr from both 
precentral gyri as well as the values of FA, AD, and MD from both 
corticospinal tracts were correlated with the results of neurological 
and neurographic findings. The analysis was performed separately for 
the values from the right and left sides.

The comparison of DTI parameters between the patient group and 
the CG was performed using Student’s t-test (when the subgroups had 
a normal distribution) or the Mann–Whitney U test (when there was 

FIGURE 1

Location of an MRS voxel within the right prefrontal gyrus on a T2-weighted axial image (A) and an MRS spectrum with values of NAA/Cr, Cho/Cr, and 
mI/Cr ratios (B).

FIGURE 2

Volume of interests of both of the corticospinal tracts (in red and yellow) at a distance between the precentral gyri and the cerebral peduncles overlaid 
on a 2D coronal structural T1-weighted image (A) and a 3D brain visualization (B).
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no normal distribution). Student’s t-test was used when comparing the 
statistical differences of patients and the control group in 
terms of MRS.

Due to the lack of normal distribution of most variables, 
Spearman’s Rho rank coefficient was used to test all correlations. All 
analyses were performed at a significance level of alpha = 0.05 using 
STATISTICA 13.3.

4 Results

MRS was performed in 30 patients, and the results are shown in 
Table 1. Compared to the CG, the patient group showed significantly 
lower ratios of NAA/Cr and higher ratios of ml/Cr in the right 
precentral gyrus as well as higher levels of Cho/Cr within the left 
precentral gyrus.

DTI studies were performed in 20 patients in the patients group 
and in 17 subjects from the CG. The results are presented in Table 2. 
There were no significant differences in DTI measurements within 
both CSTs between the groups.

The DTI parameters of MD from the right CST and AD from the 
right and left CSTs showed a strong positive correlation (0.52–0.53) 
with the SNAP latency of the right sural nerve (Figure 3). There were 
no other significant correlations found between other MRS or DTI 
parameters and neurographic results. There were no significant 
correlations between MRS or DTI parameters and disease duration, 
the severity of the disease, the duration of IgIV treatment, or several 
biochemical parameters, such as creatine kinase, IgG, IgA, IgM in 
blood tests, the protein level, and the mean CSF pleocytosis. There 
were no significant correlations between the DTI and MRS results.

5 Discussion

In our study on patients with CIDP, we found significantly 
lower values of NAA/Cr ratio and higher Cho/Cr and mI/Cr 
ratios in both precentral gyri, which may indicate a decrease in 
the number of normal neuronal cells or axons, myelin 
degradation, and an increase in astroglial proliferation and gliosis 
in these brain regions. The precentral gyri are the locations of the 
primary motor cortex (Brodmann’s field 4) that is responsible for 
the control of voluntary motor movements. The precentral gyrus 
is also the origin of several motor pathways, such as the 
corticospinal, corticobulbar, and cortico-rubrospinal tracts. The 
fibers then intermix with fibers from the lateral corticospinal 
tract and travel down the spinal cord in the lateral funiculus. The 
axons from the rubrospinal tract then synapse on alpha and 
gamma motor neurons of the muscles associated with the 
movements of the extremities (50). Though CIDP is a disorder of 
the peripheral nervous system resulting from the deterioration of 
the myelin sheath, sporadic case reports of combined central and 
peripheral demyelination (CCPD) have been reported. CCPD is 
a large term that was proposed to describe a situation associated 
with demyelinating lesions in both the central and peripheral 
systems (CNS and PNS) (51, 52). The results of our study prove 
that, in typical CIDP, there is also brain involvement, and 
metabolic changes may be detected even in the normal-appearing 
precentral gyri. To our knowledge, this is the first study to show 
biochemical abnormalities in these locations in CIDP. Typically, 
the pathology within both precentral gyri has been associated 
with ALS, and in this disease, MRS studies were also carried out. 
Their results show similar changes such as reduced NAA/Cr in 

TABLE 1 Results of MRS from the right and left precentral gyri in patients with CIDP and healthy controls (CG).

MRS ratios brain location CIDP group Control group p-value

Mean SD Mean SD

NAA/Cr R precentral gyrus 1.61 0.15 1.66 0.11 0.022*

Cho/Cr R precentral gyrus 0.85 0.13 0.84 0.09 0.316

mI/Cr R precentral gyrus 0.61 0.08 0.57 0.15 0.005*

NAA/Cr L precentral gyrus 1.59 0.19 1.64 0.14 0.060

Cho/Cr L precentral gyrus 0.88 0.14 0.83 0.09 0.012*

mI/Cr L precentral gyrus 0.66 0.13 0.62 0.05 0.062

NAA, N, acetylaspartate; Cr, creatine; Cho, choline; mI, myoinositol; R, right; L, left; SD, standard deviation; *, statistically significant result.

TABLE 2 DTI results from the corticospinal tracts in patients with CIDP and healthy controls (CG).

DTI parameters brain 
location

CIDP group Control group p-value

Mean value SD Mean value SD

FA Corticospinal tract R 0.294 0.049 0.318 0.110 0.726

FA Corticospinal tract L 0.313 0.062 0.318 0.094 0.867

MD Corticospinal tract R 0.001 0.0001 0.001 0.0001 0.772

MD Corticospinal tract L 0.001 0.0001 0.001 0.0001 0.788

AD Corticospinal tract R 0.001 0.0001 0.001 0.0001 0.451

AD Corticospinal tract L 0.001 0.0001 0.001 0.0001 0.812

FA, fractional anisotropy; MD, mean diffusivity; AD, axial diffusivity; R, right; L, left; SD, standard deviation.
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the precentral gyrus (53). The coincidence of sensorimotor 
demyelinating polyneuropathy with ALS is presented in the 
literature as case reports. The pathomechanism of peripheral 
nerve demyelination in ALS cannot be  explained simply as 
secondary temporal demyelination to progressive axonal 
degeneration. Case reports demonstrate neurographic lesions of 
peripheral nerve sensory fibers, the presence of anti-ganglioside 
antibodies, and alterations in sural nerve biopsy typical of CIDP 
(21, 54–56). Echaniz-Laguna et al. presented a postmortem study 
in one patient with coexisting CIDP and ALS, which showed 
changes typical of CIDP (among others, mononuclear cell 
infiltration in the lumbar roots and distal and proximal peripheral 
nerves) and lesions typical of ALS (among others, loss of axons in 
the corticospinal tracts, and loss of neurons in the anterior horn) 
(56). The co-occurrence of CIDP and ALS may lead to the 
hypothesis that precentral gyrus lesions are involved in the 
pathomechanism of CIDP, and indeed, in our study, metabolic 
alterations in this region were found in patients with CIDP 
without any coexistence of clinical symptoms typical of ALS.

In our study, we did not find any significant alterations in either 
CSTs using DTI parameters. To our knowledge, there are no other 

reports on DTI findings from the brain in patients with CIDP. On the 
other hand, there are several studies on the application of DTI in the 
assessment of peripheral nerves in conditions of entrapment 
neuropathy, tumors, and traumatic injury (57) and in the assessment 
of the rate of damage in CIDP and axonal polyneuropathies (58, 59). 
DTI and DTT of the peripheral nerves have the potential to introduce 
novel functional information beyond conventional, qualitative 
MRI. DTI of proximal nerve segments may be useful for estimating 
the proximal axonal degeneration burden in patients with peripheral 
neuropathies (57–59). Wu et al. concluded that the cross-sectional 
area (CSA) and apparent diffusion coefficient (ADC) values of the 
lumbosacral nerve roots could help identify patients with CIDP and 
further distinguish them from patients with axonal 
polyneuropathies (59).

On the other hand, FA alterations were found in CST in other 
clinical conditions, especially in ALS. Decreased FA in the CTS is the 
main DTI finding in ALS. One of the recent studies reported that 
significantly decreased FA and AD values in the CST were observed 
only at the level of the brainstem, which could be due to the fact that 
the tract fibers are tightly packed in this brain location and that the 
DTI values at the brainstem level could be more sensitive to structural 

A B

C D

FIGURE 3

Correlation between the results of (A) AD within the left corticospinal tract and SNAP latency within the right sural nerve, (B) AD within the right 
corticospinal tract and SNAP latency within the right sural nerve, (C) MD within the right corticospinal tract and SNAP latency within the right sural 
nerve, and (D) MD within the left corticospinal tract and SNAP latency within the right sural nerve.
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changes (60). The lack of significantly decreased FA values in CST in 
our study may be partially related to the methodology that was used 
to estimate DTI parameters within CSTs as averaged values from the 
whole bundle between the precentral cortex and the cerebral peduncle. 
In such an approach, subtle disturbance within these tracts could have 
been averaged and not detected.

In our study, we  found no correlations between MRS 
parameters and the results of neurography within the motor 
nerves. The authors hypothesize that, although patients with 
CIDP show metabolic alterations in the precentral cortex and 
demyelination in the peripheral nervous system, there are no 
linear associations between these two processes as they may occur 
independently. A positive correlation was found between the sural 
nerve SNAP latency and DTI parameters. According to the 
European Academy of Neurology/Peripheral Nerve Society 
guidelines on the diagnosis and treatment of CIDP, it is suggested 
not to perform nerve biopsy as a routine procedure (8). However, 
Kulkarni et al. showed that histopathological changes from sural 
nerve biopsy were present in 100% of the examined patients, 
whereas electrophysiological abnormalities were detected in 
90.8% (21) of them, which indicates the importance of the sural 
nerve damage in the diagnosis of the disease. Thus, the sural 
nerve may serve as a pathognomonic site of peripheral nervous 
system injury in CIDP. In this study, we  hypothesize that the 
prominent aggravation of the autoimmune process manifested in 
sural nerve dysfunction may also be manifested as an impairment 
to CSTs.

In our study, we found no significant correlations between DTI 
and MRS parameters and disease duration, severity of the disease, 
duration of IgIV treatment, or several biochemical studies such as 
creatine kinase, IgG, IgA, IgM of blood tests, the protein level, and the 
mean CSF pleocytosis. Damage to the CNS is probably subtle, and 
we  found only changes in the metabolic composition within the 
precentral gyri. The lack of correlations with the disease duration, 
disease severity, or other biochemical markers may be due to other 
mechanisms causing the CNS damage and due to the fact that this 
process may not be  directly associated with the damage to the 
peripheral nervous system and may occur independently and with 
different characteristics.

5.1 Limitations

Our study has several limitations. One of them is a relatively small 
group of patients with CIDP. Another one is the method of evaluation 
of CTS using DTI parameters as the mean values from the whole 
pyramidal tract length between the precentral gyrus and the cerebral 
peduncle, which may not be able to detect subtle microstructural 
alterations and thus could be the reason for the lack of significant 
changes between the CIDP patients and the CG.

6 Conclusion

In our study, significant metabolic alterations were found in 
the precentral gyri in patients with CIDP without clinical 
symptoms of CNS involvement. The revealed changes reflected 

neuronal loss or dysfunction, myelin degradation, and increased 
gliosis. Our results suggest coexisting CNS damage in these 
patients and may give a new insight into the still unknown 
pathomechanism of CIDP. A better understanding of the whole 
spectrum of changes in CIDP may benefit in the improvement of 
treatment strategies and therapies in the future.
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