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From brain to spinal cord: 
neuromodulation by direct 
current stimulation and its 
promising effects as a treatment 
option for restless legs syndrome
Christina A. H. Dirks  and Cornelius G. Bachmann *
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Neuromodulation is a fast-growing field of mostly non-invasive therapies, which 
includes spinal cord stimulation (SCS), transcranial direct current stimulation 
(tDCS), vagal nerve stimulation (VNS), peripheral nerve stimulation, transcranial 
magnetic stimulation (TMS) and transcutaneous spinal direct current stimulation 
(tsDCS). This narrative review offers an overview of the therapy options, 
especially of tDCS and tsDCS for chronic pain and spinal cord injury. Finally, 
we  discuss the potential of tsDCS in Restless Legs Syndrome as a promising 
non-invasive, alternative therapy to medication therapy.
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Introduction

Neuromodulation by transcranial direct current stimulation (tDCS) as a non-invasive 
method for modulation of excitability of the human cortex (1) first came to attention of 
physicians and researchers in the early 1960s as a therapy option for chronic, therapy-resistant 
pain (2). During this time, first animal studies in rats and cats were carried out (3, 4). Shortly 
thereafter, attempts to reduce pain using electronic deep brain stimulation in humans began 
(5). Shaely et  al. (6) were the first who presented a case report of a patient in whom 
improvements of intractable pain were achieved through spinal cord stimulation (SCS) using 
electrical impulses. These were the beginnings of a new direction in medical pain treatment: 
away from invasive therapy methods to relieve pain such as cutting nerves, towards reversible, 
modulatory treatment options (7). However, for tDCS it was not until the turn of the 
millennium to become firmly established after the plasticity-generating effects of this method 
in the human brain could be  demonstrated using transcranial magnetic stimulation 
(TMS) (1, 8).

Currently, neuromodulation is a fast-growing field of mostly non-invasive therapies, which 
includes, in addition to SCS and tDCS, vagus nerve stimulation (VNS), peripheral nerve 
stimulation, transcranial magnetic stimulation (TMS) and transcutaneous spinal direct 
current stimulation (tsDCS) (9). The latter is a non-invasive method – like tDCS—using 
constant currents through electrodes which are directly applied to the skin via a dermal patch 
instead of applying a pulse stimulation through epidural electrodes as is it the case in SCS (10). 
Therefore, tsDCS became a non-invasive and inexpensive alternative to SCS to modulate spinal 
cord functions (11–13).
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Both, tDCS and tsDCS are methods using low-level electrical 
currents (< 1–2 mA) via anodal or cathodal stimulation to trigger a 
polarization effect (14–16). Thus, the neuromodulating potential of 
these methods lies in the change of neuronal excitability (17) instead 
of magnetic fields as in TMS. In sum, tDCS – like TMS – now has a 
wide range of clinical indications.

Transcranial anodal stimulation leads to a short-term increase of 
cortical excitability by increasing the discharge rate of active neurons 
through hyperpolarizing dendrites and depolarizing the cell body. On 
the other hand, cathodal stimulation leads to an inhibition of the 
neuronal functions (1, 18–20). Interestingly, with tcDCS it is exactly 
the other way around. Moreover, tDCS induced long-term effects may 
be  due to a subthreshold change in the neural resting membrane 
potential by up-or downregulation of membrane receptors that lead 
to changes in cortical synapse strength (3, 20–25). Liebetanz et al. (26) 
provided evidence that modification of N-methyl-D-aspartate 
(NMDA) receptors is critical for tDCS induced long-term potentiation 
and long-term depression. Monte-Silva et al. (27) analyzed the effects 
of transcranial anodal DCS on neuronal plasticity of the human motor 
cortex by repeated stimulation. The results showed that repeated 
stimulation three and 20 min after the first stimulation phase had the 
strongest effect on cortical excitability, which lasted up to 24 h. Thus, 
repeated tDCS can induce long-term potentiation in the motor cortex 
(27). Early on, Paulus et al. (25) postulated that tDCS exerts its effects 
not only locally, but also to cortical network level (28, 29). In line with 
this, currently, mounting evidence challenges the traditional view of 
increasing excitability by anodal and decreasing excitability by 
cathodal stimulation. In a study of the connectivity of motor-networks 
in the motor-cortex (M1 areal) and the cerebellum Calzonari et al. 
(18) provided a more complex picture at network level. With the 
growing understanding of how tDCS works, possible applications are 
also increasing. Clinical application of repeated tDCS currently reveals 
promising therapeutic approaches in many different medical areas, 
e.g., chronic pain, spinal cord injuries and restless legs syndrome 
(30, 31).

tDCS and tsDCS as a 
neuroplasticity-inducing stimulation 
method in the treatment of chronic 
pain and spinal cord injury

Chronic pain

In the field of chronic pain, the need for new, effective treatment 
options is particularly high, since many pain patients have exhausted 
the standard treatment methods without having achieved a significant 
improvement in their symptoms. It is postulated that the analgesic 
effect is achieved through the property of tDCS to influence neuronal 
activity by polarizing the resting membrane (9, 32). Clinical 
applications of tDCS were investigated in randomized controlled 
studies, such as the treatment of migraine patients. The results 
revealed that in chronic pain, both, repetitive TMS and tDCS, can 
achieve similar, albeit transient, improvements after about two weeks 
of stimulation that were about 30% to 60% improvement on a visual 
analog scale (33). Nitsche and Paulus (32) were among the first to 
study the use of tDCS in chronic pain patients more than 20 years ago. 
They could show that tDCS is able to induce sustained cortical 

excitability elevations. Moreover, they provide evidence for the 
feasibility of inducing long-lasting motor cortical excitability, which 
increased approximately 150% above baseline for up to 90 min after 
the end of stimulation. The results were comparable with the effects of 
TMS in this field (32). Another study by Fregni et al. (34) investigated 
the effects of anodal tDCS on subjective perception of pain in chronic 
pain patients. For this purpose, primary motor cortex (M1) was 
stimulated with 2 mA for 20 min on five consecutive days. Pain 
sensation was measured with a visual analogue scale. Significant 
differences from the initial measurement were found after the third 
day of tDCS. A gradual reduction in subjective pain perception was 
also evident on the fourth and fifth day, with the greatest effect on the 
fifth day. Interestingly, pain reduction was still clearly visible in 
follow-up studies after 14 days (34).

The potential option of chronic pain treatment by direct current 
stimulation, which was applied transcutaneously to spinal regions, was 
also examined in this context. Cogiamanian et al. (35) for example 
could provide evidence, that the spinal flexor reflex in healthy subjects 
is reduced by 40% immediately after a 15-min tsDCS stimulation 
interval and by 47% after a 30-min tsDCS stimulation interval. They 
concluded that tsDCS has the potential to induce even long-lasting 
changes in the central pain pathways in human beings. Other studies 
by Meyer-Frießem et al. (36) and Perrotta et al. (37) in healthy subjects 
provided further evidence that pain sensitivity can be suppressed up 
to 60 min by anodal tsDCS and suggested that tsDCS may provide an 
effective, non-invasive tool in pain management.

Spinal cord injury

There are only a few studies investigating the effectiveness of tDCS 
in spinal cord injury. In this field, TMS appears to be superior to DCS 
when applied transcranially (9). However, there is increasing evidence 
that the therapeutic efficacy of DCS becomes more promising when 
the method is applied transcutaneously in the affected region of the 
spinal cord. Anodal transcutaneous spinal direct current stimulation 
(tsDCS) normalizes reflex hyperexcitability in patients with lesions in 
the upper motor neurons by decreasing spinal reflex excitability and 
influencing the ascending and descending spinal pathways (34). 
Moreover, there is mounting evidence that it can also induce 
prolonged neuroplasticity changes in the investigated function 
(38–41).

Like tDCS, tsDCS works by altering the membrane potential of 
neurons by direct current, but the technique does not trigger neuron 
action potentials, as TMS does. However, according to Hebbian’s law 
of neuroplasticity: “neurons that fire together wire together,” neuron 
action potentials are needed for spinal circuits to reform (42, 43). For 
that purpose, many studies in this area have combined the use of 
tsDCS with motor tasks. For example, different studies revealed the 
enhanced positive therapeutic effects of tsDCS in patients after spinal 
cord injury and considerable walking impairment on walking 
rehabilitation, dynamic balance control and locomotor-training if 
applied in combination (44, 45).

In a study with healthy subjects Albuquerque et al. (46) combined 
tsDCS with a 20 min treadmill exercise immediately, 30 min and 
60 min after stimulation. They provided evidence that anodal tsDCS 
led to a significant decrease in Hoffmann reflex (Hmax/Mmax-ratio) 
and nociceptive flexion reflex immediately and 30 min after anodal 
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current stimulation. Furthermore, the nociceptive flexion reflex was 
significantly increased after cathodal stimulation, whereas cathodal 
stimulation had no effect on Hmax/Mmax-ratio in this study (47).

Even if the database in this field is still in need for more studies, it 
can be summed up that tsDCS seems to result in reliable improvements 
of pathophysiological impairments of spinal cord function, 
particularly when applied in combination with relevant motor tasks. 
Thus, tsDCS may have the potential for neuromodulation in spinal 
cord-injured subjects (38).

The potential of tsDCS as a new non-drug 
therapy in restless-legs-syndrome: current 
state of research

Restless Legs Syndrome (RLS) is a movement disorder and one of 
the most common neurological diseases in western populations with 
a prevalence of 5%–10% (46, 48). It is characterized by an imperative 
urge to move the legs combined with somatosensory abnormal 
sensations or pain and can also affect—more rarely—the arms, 
bladder, genital and rectal regions. The symptoms, which occur in the 
circadian rhythm with a focus on evening and night hours, intensify 
in phases of rest and relaxation. On the other hand, with movement 
they improve or suspend. The pathophysiology of RLS is likely 
heterogeneous and not fully understood (46, 49). Studies using 
transcranial magnetic stimulation (TMS) to investigate motor cortex 
excitability in RLS-patients provide abnormal fluctuations in this area 
and a reduced intracortical inhibition (50–55). Moreover, several 
pathophysiological mechanisms may be  involved, including low 
ferritin, glutamate, adenosine, creatinine, high level of urea in the 
blood and a lack of vitamin B12 and B6 (46, 56).

Currently, the most important therapeutic intervention is still 
pharmacotherapy with drugs mostly based on dopamine and its 
agonists (57). Therefore, most disease models trying to clarify the 
pathophysiological mechanisms of RLS focus on changes in dopamine 
neurotransmission and connectivity pathways in the brain (58–62). 
The use of these drugs is currently viewed critically, since in many 
cases long-term use leads to an augmentation of the symptoms under 
dopamine-based drugs, and the development of effective non-drug 
therapy methods is therefore urgently needed.

Several studies have shown evidence that the spinal cord may 
be substantially involved in RLS pathophysiology (46, 63). A current 
focus of RLS research is therefore the possibility to change neuronal 
excitability in the spinal cord networks with tsDCS to relieve 
RLS-symptoms. This is even more important given the particularly 
severe side effects of dopamine-based drugs.

A study by Heide et al. (64) showed evidence that tsDCS may offer 
a non-invasive, painless alternative to drug treatment for RLS. In this 
study, promising effects of tsDCS on clinical symptoms and 
corresponding on spinal excitability in RLS patients were 
demonstrated for the first time. tsDCS was applied anodal and 
cathodal with 2,5 mA (and sham condition) once for 15 min at two 
different sessions with a resting interval of one week to avoid 
after-effects.

After-effects were first described for tDCS by Monte-Silva et al. 
(27). The authors were able to show that periodical anodal tDCS 
induce long-lasting, late longterm potentiation like (l-LTP) excitability 
enhancements of the primary motor cortex dependent on the duration 

of the interval between tDCS applications, because tDCS induces 
long-term effects via the manipulation of NMDA receptors and this 
effect remains present for a certain time period after stimulation 
(after-effect). Monte-Silva et al. provided evidence that if the second 
stimulation was performed during the after-effects of the first one, the 
combined after-effects were present for more than 24 h after tDCS, 
with an initially reduced, but then relevantly prolonged excitability 
enhancement. Furthermore, they showed that excitability 
enhancement could be blocked by an NMDA receptor antagonist.

Theories about the pathogenesis of RLS 
from brain to spinal cord and how to link 
them

Heide et  al. (64) provided first evidence that anodal tsDCS 
resulted in a significant reduction in the H2/H1-ratio of the 
Hoffmann-(H)-reflex, indicating a decreased excitability of the spinal 
cord (65–67). Typically, RLS patients show increased H2/H1-ratios 
during their symptomatic phase in the evening which is assumed to 
be  caused by a compromised supraspinal inhibitory pathway 
projecting onto spinal motoneurons or on altered excitability in local 
spinal circuits (62) (see Figure 1). Cathodal and sham stimulation had 
no effects on H2/H1-ratios. Regarding RLS severity, measured with a 
visual analog scale, both anodal and cathodal tsDCS resulted in 
significant improvements in RLS severity, with anodal stimulation 
having stronger effects. Interestingly, only in the anodal stimulation 
condition, the decrease in RLS symptom severity was associated with 
a measurable reduction in the H2/H1 ratio.

The results of the study by Heide et al. (64) are consistent with the 
current theory of the mechanisms of neuroplasticity induced by 
tsDCS: In animal studies, Ahmed (68) were able to show that cathodal 
tsDCS leads to an increase in glutamate release and, at the same time, 
to a blocking of the GABA receptors which results in the stimulating 
effect of cathodal tsDCS. Like mentioned above, RLS patients show 
increased H1/H2-ratios in the symptomatic phase, which—according 
to this theory – could be reduced by anodal stimulation leading to a 
suppression of ascending spinal pathways tracts (35, 69–73).

However, as the scope of the study by Heide et al. (64) was not to 
explore long-term effects of stimulation, objective results were only 
recorded for short-term effects of tsDCS on RLS-symptoms. Patients 
reported that the positive or after-effects of tsDCS lasted for a few 
more hours after stimulation, but this information was not 
quantitatively gathered using a validated scale (64). These results have 
been replicated by other independent research studies (73, 74).

Figure 1 gives a schematic overview of the possible mechanism 
that trigger RLS on spinal cord level. But what causes the dysfunction 
of dopaminergic projections in the descending tract described in 
Figure 1? To answer this question, the path leads up from the spinal 
cord to the brain. A well-known symptom of RLS are low brain iron 
levels even when RLS-patients have normal serum ferritin and no 
indication of peripheral iron deficiency. Rizzo et al. (75) were the first 
to reveal iron deficiency in vivo by using MRI techniques. Brain 
structures which show iron deficiency were above all the substantia 
nigra, and to a lesser degree in the putamen, caudate and the thalamus. 
Allen et al. (76) explained the low iron level in these brain structures 
by a lack of iron crossing the blood–brain barrier resulting in a deficit 
of iron in critical neuronal cells of the mentioned brain structures. The 
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authors concluded thus—providing that oxygen-transport depends on 
iron—a decreased level of iron in the brain should signal hypoxia. 
Benediktsdottir et  al. (77) provided evidence that as a direct 
consequence of the activation of hypoxic pathways would be  an 
increase of dopaminergic activity like it is the case in RLS patients. As 
Vlasie et  al. (78) mentioned, the key to understand the fact why 
treating RLS patients with levodopa is still one of the most effective 
treatment strategies, is the circadian rhythm of both: dopaminergic 
activity and RLS symptoms with an increase in the morning and 
decreasing in the evening and night. Permanently increased dopamine 
levels in the morning and daytime result in downregulation at both 
the dopamine receptor and intracellular level and therefore the post-
synaptic response in RLS patients is although adequate for daytime 
but exaggerated for nighttime, resulting in an evening and nighttime 
dopaminergic deficit (78) (see Figure 1).

A further consequence of the reduced brain iron levels is a lack of 
myelin sheaths in the brain as the synthesis also dependent on iron. 
Conner et al. (79) revealed significant decreases in white matter in the 
corpus collosum, anterior cingulate and precentral gyrus. In line with 
this results are the latest findings of a DTI-study by Park and colleague 
(61) which provide evidence of a decreased segregation in the global 
brain network of the RLS patients even in correlation with RLS 
severity. Furthermore, they found changes in  local structural 
connectivity in regions involved in sensorimotor function, including 
the middle frontal gyrus, superior frontal gyrus, orbital frontal gyrus, 
postcentral gyrus, supplementary motor area, and thalamic 
substructures (pulvinar and anterior thalamic nucleus). The results 
provide further evidence that an altered sensorimotor network may 
play a pivotal role in the pathophysiology of RLS (61).

The current findings of brain abnormalities in RLS patients should 
not obscure the fact that there are a lot of pathophysiological theories 
that deal with the causes at the spinal cord level, which is also part of 
the CNS, and that the call for more neuroimaging approaches dealing 
with the structure and the function of the spinal cord in RLS is getting 
louder (62).

To our knowledge, there are currently two studies that attempt to 
close this gap. The results of those studies by Wang et al. (74) and Zeng 
et al. (80) not only provided a significant decrease in RLS symptoms 
by anodal tsDCS treatment, which lasted up to two weeks. Moreover, 
their studies provided first evidence by fMRI that repetitive anodal 
tsDCS even may have a modulating effect in the functional 
connectivity and gray matter volume in brain regions like visual (V1 
area) and motor area networks (supplementary motor area, SMA) 
which correlated with the decrease in RLS symptoms assessed by the 
International RLS Rating Scale (74, 80). While the involvement of 
SMA was consistent with the hypotheses, the significant activation of 
the V1 area, which is important for visual information processing, 
might be more unexpected. The authors mentioned that in a previous 
study, which investigated the effects of acupuncture, activation of the 
occipital cortex indicated an antinociceptive effect by activating the 
descending inhibitory pathway (80) and that the activation of V1 area 
might serve as a biomarker of treatment response in the future (81) 
(for an overview of the studies see Table 1).

These studies together with the studies by Heide et al. (64) and by 
Monte-Silva et al. (27) on long-term potentiation of the motor cortex 
by repetitive tDCS and by Fregni et al. (34), mentioned above, which 
demonstrated long-lasting positive effects of tDCS in the treatment of 
patients with chronic pain, show that repetitive direct current 
stimulation may have the potential to induce positive long-lasting 
therapeutic effects in various diseases (27, 34). However, in order to 
establish tsDCS as a treatment method for RLS, more studies are 
needed to provide sufficient evidence for long-term effects.

TMS and spinal cord stimulation as a 
treatment alternative for RLS

In a review about TMS as a treatment option for various sleep 
disorders, Nardone et  al. (82) present four studies that prove the 
effectiveness of repetitive TMS (rTMS) in RLS patients (55, 82–85). 

FIGURE 1

Schematic overview of the proposed effect of anodal tsDCS on RLS in the spinal network.
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The authors summarized that both, high-frequency (HF) and 
low-frequency (LF) rTMS, applied over the primary motor cortex or 
the supplementary motor cortex, seem to have transient beneficial 
effects in patients with RLS. Liu et al. (85) provided evidence for the 
efficacy of rTMS by additional functional magnetic resonance imaging 
(fMRI): besides the improvement of the IRLSSG scale score after 
bilateral stimulation of motor area 1 (M1), patients also showed an 
increase in functional activity, measured as the amplitude of 
low-frequency fluctuations (ALFF), in the sensory-motor regions and 
in the occipital lobes. Lanza and colleagues (86) concluded that 
excitatory stimulation of M1 might inhibit the thalamic inputs. In a 
study, Lanza et al. (55) provided evidence that the indexes of rTMS on 
S1-M1 of excitation and inhibition indicate a pattern of cortical 
neurotransmitter imbalance mainly involving gamma-aminobutyric 
acid (GABA)ergic and glutamatergic circuitries, as well as dopamine 
levels in the dorsal striatum, which fits well with the current theory of 
the pathogenesis of RLS.

However, just like with tsDCS, there are still some pitfalls to 
consider with this treatment method (87). These range from the small 
sample sizes, the use of self-reported scales of sleep quality or RLS 
symptoms as the only outcome variable in many studies, technical 
difficulties in recording the motor responses from lower limb muscles 
in RLS patients, the reproducibility of the results and the relatively 
complicated application using the magnetic coil. At least the first two 
issues also apply to tsDCS. Although the results of TMS in RLS 
patients are undoubtedly promising, the limitations concerning TMS 
might make the use of tsDCS in everyday clinical practice a little easier.

To our knowledge, only one article about the effectiveness of 
invasive spinal cord stimulation (SCS) in RLS has been published so 
far (88). In this publication, Pagani-Estévez et al. (88) reported a series 
of 16 unrelated cases without a randomized, double blind controlled 
design, thus presenting insufficient evidence of the effectiveness of this 
treatment method. Further controlled studies about the effectiveness 
of SCS in RLS patients are urgently needed, particularly considering 

TABLE 1 Overview of the tsDCS studies in RLS and summary of the results.

Reference Title Type of trial Sample size Methods applied Results

Heide et al. (64) Effects of transcutaneous 

spinal direct current 

stimulation in idiopathic 

restless legs patients.

Double-blinded, 

placebo-controlled

20 patients with RLS 

and 14 healthy subjects

Cathodal, anodal and 

sham tsDCS for 15 min. 

With 2.5 mA.

RLS symptoms were 

assessed by a visual 

analogue scale (VAS).

Anodal stimulation: ↓ 

H2/H1-ratio.

Sham stimulation: no 

effects.

Anodal and cathodal 

stimulation: ↓ VAS-

scores. Sham stimulation: 

no effect.

Wang et al. (74) Altered grey matter volume 

and functional connectivity 

after transcutaneous spinal 

cord direct current 

stimulation in idiopathic 

restless legs syndrome.

Double-blinded, 

placebo-controlled

30 RLS patients and 20 

matched healthy 

controls

Anodal tsDCS and sham.

MRI and fMRI data with 

voxel-based morphology 

and resting-state 

functional connectivity 

analysis.

International RLS Rating 

Scale (IRLS-RS) and 

Pittsburgh Sleep Quality 

Index (PSQI).

Sham treatment group: 

no significant change in 

IRLS-RS and PSQI scores 

after tsDCS.

Anodal treatment group: 

significant ↓ in IRLS-RS 

and PSQI scores after 

tsDCS up to 2 weeks.

Anodal treatment group: 

significant ↓ of gray 

matter volume in 

different brain regions.

Change in functional 

connectivity between 

different brain region.

Zeng et al. (80) Transcutaneous spinal cord 

direct current stimulation 

modulates functional 

activity and integration in 

idiopathic restless legs 

syndrome.

Double-blinded, 

placebo-controlled

30 RLS patients and 20 

matched healthy 

controls

Anodal 2 mA tsDCS and 

sham. International RLS 

Rating Scale (IRLS-RS) 

and Pittsburgh Sleep 

Quality Index (PSQI).

Resting-state fMRI data.

tsDCS improved the sleep 

and RLS symptoms 

(PSQI, IRLS-RS).

Brain changes in the 

voxel-wise fractional 

amplitude of low-

frequency fluctuations, 

regional homogeneity 

and weighted degree 

centrality are described 

and correlated with sleep 

and RLS symptom scores.

↓ = decrease.
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that neurostimulators for a wide variety of diseases (sleep-related 
breathing disorders or chronic pain) are becoming 
increasingly important.

Conclusion

tDCS and tsDCS are established among neuromodulation 
methods. Like in TMS, the effects of tDCS and tsDCS depend on 
polarity duration and intensity of stimulation, which are important 
features of neuroplastic changes (25). Although, the results of the 
different studies presented in this review are promising, there is a lack 
of long-term, randomized-controlled trials in the current space. 
Additional research is warranted to further support the clinical use of 
these emerging treatment modalities in pain management, in 
improvement of the level of physiological functions and as a well-
tolerated alternative to drug treatment in RLS patients.
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