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Average life expectancy has been steadily increasing in developed countries
worldwide. These demographic changes are associated with an ever-growing
social and economic strain to healthcare systems as well as society. The aging
process typically manifests as a decline in physiological and cognitive functions,
accompanied by a rise in chronic diseases. Consequently, strategies that both
mitigate age-related diseases and promote healthy aging are urgently needed.
Telomere attrition, characterized by the shortening of telomeres with each cell
division, paradoxically serves as both a protectivemechanism and a contributor to
tissue degeneration and age-related ailments. Based on the essential role of
telomere biology in aging, research efforts aim to develop approaches designed
to counteract telomere attrition, aiming to delay or reduce age-related diseases.
In this review, telomere biology and its role in aging and age-related diseases is
summarized along with recent approaches to interfere with telomere shortening
aiming at well- and healthy-aging as well as longevity. As aging research enters a
new era, this review emphasizes telomere-targeting therapeutics, including
telomerase activators and tankyrase inhibitors, while also exploring the effects
of antioxidative and anti-inflammatory agents, along with indirectly related
approaches like statins.
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1 Introduction

In the past century, the average life expectancy has roughly doubled basically in all
developed countries worldwide. Demographic data estimate that by the year 2050, the
global population of individuals aged 60 and above is expected to reach 2.1 billion,
effectively doubling the figure reported in 2020. Additionally, the number of adults over
80 years old will triple and reach 426 million (United Nations Department of Economic and
Social Affairs, 2022). This demographic shift is clearly associated with an escalating social
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and economic burden, challenging not only for our healthcare
system but also the social security systems, workforce dynamics,
housing infrastructure, and intergenerational relationships
(Partridge et al., 2018). Primarily, the aging process involves a
functional decline, which in turn leads to a steady increase in
chronic diseases, including cancer, neurodegenerative diseases,
diabetes melitus, and cardiovascular diseases (Hou et al., 2019;
Bellary et al., 2021; Liberale et al., 2022). These age-associated
diseases predictively double in incidence every 5 years after the
age of sixty. Furthermore, the WHO designates advanced age as an
independent risk factor for major life-threatening disorders. For
instance, when considering coronary heart disease, advanced age is
rated as an equally significant risk factor as smoking (Melzer
et al., 2020).

Therefore, it seems to be of utmost importance to develop
strategies and interventions that interfere with the aging process,
prevent or at least mitigate age-associated diseases, and support
healthy aging patterns, not only to elongate the lifespan but also to
increase the healthspan - the phase of life spent in health, active, and
in absent of chronic diseases (Seals et al., 2016). Over the past
decades, the healthspan has not increased at the same pace as the
lifespan and lags far behind; this observed disparity raises significant
concerns. The quality of life and wellbeing during aging is to
prioritize; otherwise, the challenges posed by an excessively
growing aging population will become unmanageable (Gonzalez-
Freire et al., 2020). Not surprisingly, the potential to positively
intervene and modulate the aging process has been a longstanding
area of interest. Specifically, the defined hallmarks of aging are
frequently targeted in intervention strategies aiming to mitigate or
decelerate the mechanisms of the aging process (Shetty et al., 2018;
Campisi et al., 2019). The hallmarks of aging comprise twelve
identified variables as crucial contributors to the aging process
(López-Otín et al., 2013; López-Otín et al., 2023). These
hallmarks encompass genomic instability, the shortening of
telomeres, deregulated nutrient sensing, mitochondrial
dysfunction, changes in epigenetic regulation, loss of proteostasis,
cellular senescence, stem cell exhaustion, and altered intercellular
communication (Campisi et al., 2019). Telomere attrition belongs to
the cardinal hallmarks of aging and has garnered significant
attention in gerontological research over the past years.
Telomeres, the protective ends of chromosomes, progressively
diminish with each cell division. Once a critical length is
reached, cells may undergo senescence or apoptosis, serving as a
safeguard against genetic irregularities (Blackburn et al., 2006).
While this mechanism has actually protective origins, in the
context of aging, it counterintuitively accelerates tissue
degradation and ushers in age-related disorders. The central role
of telomere biology in aging has led research into therapies designed
to counteract telomere attrition, aiming to delay or mitigate age-
linked diseases (Aubert and Lansdorp, 2008; Shay andWright, 2019;
Alder and Armanios, 2022). Targeting telomere dynamics presents a
promising avenue in gerontology, well-aging, and the development
of therapies for age-associated ailments, underlining the importance
of understanding telomere dynamics (Blackburn et al., 2015a).
Despite telomeres’ established role in aging, the field of telomere
biology faces a significant challenge: the lack of effective, clinically
proven therapies that directly target telomeres. This gap underscores
the complexity of translating fundamental telomere research into

therapeutic applications and the challenges in addressing the
multifaceted nature of telomere dynamics and their systemic
impact on aging and age-related diseases. Therefore, continued
exploration and innovative strategies in telomere research are
essential to develop tangible, effective treatments for age-related
pathologies.

2 Telomere biology: the basics
and beyond

A comprehensive understanding of the underlying mechanisms
of aging and their impact on long-term health provides valuable
insights into resilience mechanisms, their influence on stress
responses, and the ensuing effects on health (Ferrucci et al.,
2020). The defined hallmarks of aging are a fundamental part of
current research in aging; each one fulfills three premises: an age-
associated manifestation, an experimentally amplification
accelerates the aging process, and interventions targeting these
hallmarks offer potential to decelerate, maintain, or even reverse
aging (López-Otín et al., 2023). Although the individual hallmarks
are intricately interwoven, specific ones are selectively targeted to
develop intervention strategies and therapeutic approaches.

2.1 Telomere shortening: at the nexus of
cellular aging

In 2013, telomere attrition was described as a primary hallmark
of aging (López-Otín et al., 2013), and its research has increasingly
garnered attention in recent years. However, the notion of telomeres
emerged already in the 1930s when Creighton and McClintock
studied Zea mays and hypothesized the presence of a distinctive
structure at chromosome ends, critical for preventing chromosome
end fusion (Creighton and McClintock, 1931). Since then, extensive
research in this field has been has continually revealed new insights,
recognizing its role in the aging process and various diseases
(Cawthon et al., 2003; Rizvi et al., 2014; Wang et al., 2018; Yuan
et al., 2018).

Telomeres are described as consecutive repeats of the six-
nucleotide sequence (TTAGGG) in the form of a cap structure
(Blackburn and Gall, 1978), serving to protect chromosome ends
from initiating a DNA damage response. Due to the inherent
constraints of DNA polymerases in replication, telomeric DNA
cannot be completely replicated. This leads to the gradual
shortening of telomeres with each cycle of cell division (Allsopp
et al., 1992; Rhodes et al., 2002). When telomeres shorten to a critical
point, they cause genomic instability, which hinders further
replication, leading to senescence and eventually cell death
(Blackburn, 2001). At note, DNA polymerase requires a transient
primer to commence the unidirectional synthesis from the 5′to the
3′end, but it cannot fully replicate the 3′ ends of the chromosome,
which is described as the “end-replication problem” (Levy et al.,
1992). Certain mechanisms are required to bypass this end-
replication problem, which leads to a milestone in telomere
research: the identification of telomerase in 1985 by Greider and
Blackburn. Telomerase, a ribonucleoprotein enzyme, elongates
chromosomes by adding DNA sequence repeats to their terminal
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regions, thus facilitating the extension of telomere length (Greider
and Blackburn, 1985). Lee et al. showed that in successive
generations of mice, late-generation specimens exhibited
impaired spermatogenesis and reduced proliferative capacity in
bone marrow and spleen. These deficits were associated with
significant telomere attrition and chromosomal aberrations,
highlighting the critical role of telomerase and telomeres in
preserving genomic integrity in high-renewal organ systems (Lee
et al., 1998). However, the expression of telomerase is
predominantly restricted to stem cells and certain progenitor
cells; most somatic cells do not express or only have very low
levels of telomerase activity (Martínez and Blasco, 2015). This
results in progressive telomere shortening over time, acting as a
“biological clock” that caps the number of possible cell divisions
(Harley et al., 1990). Although the lack of telomerase in somatic cells
is a limiting factor for proliferation, studies emphasize that it is also
preventing the uncontrolled growth of the cell, potentially leading to
cancer (Akincilar et al., 2016). About 85% of cancer types have been
found to reactivate telomerase, allowing cancer cells to maintain
their telomeres and thus enabling them to proliferate indefinitely
(Shay and Wright, 2005).

In the orchestration of telomere dynamics, the shelterin complex
stands out as a crucial player. It is composed of several proteins and
binds specifically to telomeric DNA, ensuring telomeres are not
erroneously identified as DNA breaks, thereby preventing an
inappropriate DNA damage response (de Lange, 2018). Any
dysfunction in shelterin components can lead to telomere
uncapping, exposing telomeres to degradation, recombination,
and chromosomal end-to-end fusions, inducing genomic
instability potentially resulting in cellular senescence (Sfeir and
de Lange, 2012). TRF1 and TRF2, both essential components of
the shelterin complex, help to maintain telomere integrity.
Particularly, TRF2 is essential for inhibiting the ATM kinase
signaling pathway, a primary responder to DNA double-strand
breaks (Karlseder et al., 1999). Further, POT1, another crucial
component, attaches to the single-stranded overhang of the
telomere, preventing the ATR kinase-mediated DNA damage
response. The interplay between telomerase activity, telomere
length, and shelterin function is essential for the cellular stability.
Imbalances can result in conditions ranging from premature aging
to the onset of cancer (Pinzaru et al., 2016). Conversely, this
understanding offers also therapeutic targets. For instance, it has
been shown that the genetic removal of TRF1 hinders tumor
progression in aggressive lung cancer and glioblastoma mice
models, which occurred through direct telomere damage,
irrespective of telomere length (Bejarano et al., 2017; Bejarano
et al., 2019).

2.2 Telomeres: telling tales of human aging
and disease

Exploring the intricate nexus between telomeres and human
aging, a broad body of both in vitro and in vivo studies,
complemented by contemporary human research, has revealed
pivotal correlations. These studies demonstrate how changes in
telomere length may not only mirror the aging process but also
potentially influence the onset and progression of age-related

diseases (Zheng et al., 2022). In a Southern Italian cohort of
516 individuals aged 65–106, a notable trend in leukocyte
telomere length was observed, with a decline post-70 years and a
subsequent increase after 92 years, paralleling demographic survival
curves. This trend suggests widespread telomere attrition linked to
increased mortality risk and organismal decline, while those in
better physical condition exhibited reduced attrition, contributing
to delayed senescence (Crocco et al., 2021). Concurrently, a study by
Crocco et al. highlighted a minimal genetic impact on leukocyte
telomere length in the elderly, challenging the concept of strong
genetic control over telomere length in older age groups and
underscoring the significant role of chromosomal structure
integrity genes, like TERF1 and TNKS2, in longevity (Crocco
et al., 2021). Additionally, a meta-analysis of 48,000 individuals
identified genetic loci, including TERC and TERT, associated with
mean leukocyte telomere length. These loci are implicated in
telomere biology and various cancers and age-related diseases,
such as idiopathic pulmonary fibrosis. An analysis of these
genetic variants revealed that alleles linked to shorter leukocyte
telomere length significantly increased coronary artery disease risk,
suggesting a causal relationship between telomere-length variation
and certain age-related diseases (Codd et al., 2013) Overall, these
findings underscore the complex yet critical role of telomeres in the
biological mechanisms of aging and disease susceptibility.

2.3 Telomere dysfunction in cellular aging:
the interaction with inflammation and
oxidative stress

In primary human cells, each cell division leads to a reduction
of 50–100 bases from the telomeres across all chromosomes. This
depletion rate is notably exceeding what the end-replication
mechanism would predict, which points to additional factors
influencing telomere attrition in human cells (Harley et al.,
1990; Blackburn et al., 2015b). Factors including oxidative stress
and inflammation are associated with expedited telomere attrition,
consequently reducing the replicative lifespan of cells (Kawanishi
and Oikawa, 2004; Zhang et al., 2016a). While chronic
inflammation is one of the twelve hallmarks of aging identified
by López-Otín et al. (2023) oxidative stress, per se, is not explicitly
listed as a separate hallmark. However, “mitochondrial
dysfunction” - which is closely linked to the production of
reactive oxygen species (ROS) and oxidative stress (Zhang et al.,
2016b; Kausar et al., 2018) - is recognized as one of the twelve key
contributors. Undoubtedly, oxidative stress is deeply interwoven
with several of the postulated hallmarks and, therefore, worth a
closer look.

2.3.1 Oxidative stress and telomers
The “Free Radical Theory of Aging,” introduced in the 1950s by

Denham Harman, suggests that the aging process in organisms is
due to the cumulative cellular damage caused by free radicals over
time. Free radicals, especially reactive oxygen species (ROS), can
inflict damage to various cellular macromolecules, with DNA being
a prime target (Harman, 1956). This influential approach laid the
foundation for subsequent research on aging. Over time, it has been
refined and adapted according to emerging insights.
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Oxidative stress, emerging from an imbalance between the
production of ROS and the cell’s antioxidative defense
mechanisms, is significantly detrimental to telomeric regions.
Telomeres, with their guanine-rich sequences, are particularly
prone to oxidative modifications due to the raised susceptibility
of guanine to oxidative damage (Singh et al., 2019). One notable
outcome of this vulnerability is the formation of 8-oxo-guanine (8-
oxoG) lesions, which is a prevalent DNA damage type caused by
ROS. A study by Fouquerel et al. demonstrated that 8-oxoG in the
telomeric region has a dual role, either hindering telomerase-
mediated elongation when incorporated as 8-oxodGTP or
promoting telomerase activity by destabilizing G-quadruplex
structures when preexisting in telomere DNA. This dual impact
of 8-oxoG on telomere function is a key factor in determining
whether a cell will experience telomere-related dysfunction or
maintain its genomic stability (Fouquerel et al., 2016).

2.3.2 Chronic inflammation and telomers
Over the past decade, the complex interplay between telomere

dynamics and chronic inflammation has gained further attention.
Evidence suggests that telomere length is closely tied to chronic
inflammatory states. Specifically, elevated levels of pro-
inflammatory cytokines, such as IL-6 and TNF-α, seem to trigger
accelerated telomere shortening (Blackburn et al., 2015a; Deo
et al., 2020).

One proposed mechanism suggests that chronic inflammation
directly affects telomerase activity. Elevated cytokine levels might
suppress telomerase activity, thereby limiting the enzyme’s ability to
counteract telomere shortening and leading to cellular senescence
(Liu et al., 2023). This senescence can further enhance inflammation
by releasing senescence-associated secretory phenotype (SASP)
factors, which induces a feedback loop between inflammation
and telomere attrition (Herranz and Gil, 2018). Jurk et al.
demonstrated in mice that chronic inflammation, induced by the
knockout of the nfkb1 subunit of the NF-κB transcription factor,
exacerbates telomere dysfunction and cell senescence through a
feedback loop involving NF-κB, COX-2, and ROS, thereby leading to
premature aging and reduced tissue regeneration in liver and gut
(Jurk et al., 2014). These findings underline the importance of
managing chronic inflammation to preserve telomere integrity,
potentially delaying the onset of age-related diseases.

2.3.3 Interconnected dynamics of cellular aging:
the telomere-mitochondrial axis

Telomere shortening can disrupt normal cellular function and is
implicated in the increased production of ROS, which further
contribute to mitochondrial dysfunction and cell aging (Sahin
and DePinho, 2010). On the other hand, mitochondria are the
primary producers as well as targets of ROS. An excessive
accumulation of ROS can lead to damaged mitochondrial DNA
(mtDNA), which in turn may induce further mitochondrial
dysfunction. This dysfunction can exacerbate ROS production,
creating a detrimental feedback loop that significantly contributes
to cell aging and age-related pathologies (Akbari et al., 2019).

One proposed mechanism involves the tumor suppressor
protein p53. Dysfunctional telomeres can trigger the activation of
p53, which in turn may inhibit the transcription of the peroxisome
proliferator-activated receptor gamma coactivator 1-alpha (PGC-

1α), which is the primary regulator of mitochondrial biogenesis and
function. Reduced PGC-1α levels can lead to mitochondrial
dysfunction and increased ROS production (Sahin and
DePinho, 2012).

Cells with critically short telomeres can undergo senescence,
which is often accompanied by a pro-inflammatory senescence-
associated secretory phenotype (SASP). SASP can exacerbate
mitochondrial dysfunction and further increase oxidative stress
(Wiley et al., 2016; Mohamad Kamal et al., 2020). In short, the
telomere-mitochondrial axis captures the dynamic crosstalk
between telomeres and mitochondria, both vital to cellular aging.
This axis underscores the intertwined effects when either
component declines and can be seen a feedback loop between
telomere dysfunction and mitochondrial dysfunction.

3 Telomere-based interventions:
current market landscape for longevity

Telomere dysfunction intensifies the molecular hallmarks of
aging, potentially amplifying age-related diseases like
neurodegeneration and cancer; conversely, the profound
understanding of its underlying mechanisms offers avenues for
mitigating aging and its associated disorders (Chakravarti et al.,
2021). The maintenance of telomere length, either through genetic
interventions or modulating telomerase activity, has been shown to
delay cellular aging and extend the healthspan in various model
organisms (Bernardes de Jesus and Blasco, 2013). Experimental
elongation of telomeres through genetic manipulation or
pharmacological means has already shown potential in delaying
cellular and tissue aging, suggesting an avenue for therapeutic
interventions by targeting the aging process itself (Webb and
Zakian, 2016). In the following section, we will elucidate and
critically discuss the approaches previously explored to
beneficially modulate telomere biology.

3.1 Telomere-targeting therapeutics

The telomere complex, crucial for cellular senescence and
genomic stability, has become a promising target in age-related
research. Recent advances have elucidated potential therapeutic
strategies for telomere modulation to address age-related
conditions and diseases (Gao and Pickett, 2022; Sagris et al., 2022).

3.1.1 Telomerase activators
Telomerase activation has gained prominence as a potential

therapeutic approach for extending telomere length and
subsequently, cellular healthspan. As Telomerase catalyzes the
addition of TTAGGG nucleotide repeats to chromosome ends, it
counteracts telomere attrition resulting of cellular divisions (Greider
and Blackburn, 1985; Tsoukalas et al., 2019).

3.1.1.1 TA-65
A prominent agent of telomerase activators is TA-65, a

compound derived from the Chinese herb Astragalus
membranaceus. Studies suggest that TA-65 might activate
telomerase, potentially leading to telomere extension (Salvador
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et al., 2016; Kokubun et al., 2019; Tiendrébéogo et al., 2023). In a
randomized, double-blinded, placebo-controlled trial, involving
117 cytomegalovirus-positive adults, supplementation with a low
dose (250 U) of the telomerase activator TA-65 led to a significant
increase in telomere length over 1 year, while the placebo group
experienced a significant reduction in telomere length. A higher dose
(1000 U) of TA-65 showed a non-significant trend toward telomere
lengthening (Salvador et al., 2016). In another double-blinded,
randomized trial with elderly myocardial infarction patients, TA-
65 was assessed for its potential in modulating immune cell aging.
While TA-65 administration did not affect the proportions of
terminally differentiated CD8+ T-lymphocytes, it led to
significant elevations in major lymphocyte subsets and a notable
62% reduction in high-sensitivity C-reactive protein (hsCRP) levels
after 12 months compared to placebo. Additionally, fewer adverse
events were observed in the TA-65 group (Bawamia et al., 2023).

3.1.1.2 Cycloastragenol (CAG)
Another postulated telomerase activator is Cycloastragenol

(CAG), which is also a compound derived from the Astragalus
membranaceus plant. Idrees et al. examined the role of CAG in
activating telomerase and its impact on the Klb (β-Klotho) gene in
mouse ovaries, a key factor in female fertility and aging. Molecular
simulations confirmed CAG’s binding to the hTERT model, and its
subsequent application rejuvenated telomerase activity, restoring
ovarian health in age-induced and Doxorubicin-induced damage
models. These findings highlight CAG’s potential in addressing
female infertility via TERT-dependent β-Klotho regulation (Idrees
et al., 2023).

However, while preliminary findings seem promising,
comprehensive clinical trials are essential to ascertain the efficacy
and safety in promoting telomere elongation and the associated
health benefits.

While these approaches hold promise, they are associated with
potential risks. For instance, activating telomerase has been
associated with an elevated risk of cancer, given that it may
permit cells to proliferate unchecked. As cancer involves the
unregulated growth of cells, and telomere shortening serves as a
natural limit to cell division, artificially extending telomeres could
inadvertently increase the risk of cancer (kumar and Sethi, 2023; Luo
et al., 2019). The key lies in striking a balance between improving
cellular health by lengthening telomeres and avoiding the promotion
of tumorigenesis. Prior to the adoption of these treatments,
comprehensive clinical trials and rigorous safety assessments
are needed.

3.1.2 Telomerase gene therapy
Telomerase gene therapy is an emerging approach that seeks to

address cellular aging by directly modulating telomerase activity in
cells. In an in vivo study conducted in mice, telomerase gene therapy
using an adeno-associated virus to express TERT led to significant
health improvements and reduced aging markers without elevating
cancer incidence. Remarkably, the treatment extended the median
lifespan by 24% in 1-year-old mice and 13% in 2-year-old subjects,
underscoring the potential of TERT-focused interventions in aging
mitigation (Bernardes de Jesus et al., 2012). Another study in a
mouse model investigated the therapeutic potential of telomerase
gene therapy using adeno-associated virus 9 (AAV) gene vectors to

treat aplastic anemia, which is associated with telomere shortening.
AAV9-Tert effectively targeted the bone marrow, lengthened
telomeres, and mitigated the symptoms of the disease (Bär et al.,
2016). An in vivo study investigated the influence of telomere length
on health in mice derived from embryonic stem cells with hyper-
long telomeres. The mice with hyper-long telomeres exhibited
reduced DNA damage with aging, improved metabolic markers
such as lower LDL levels, improved glucose and insulin tolerance,
decreased cancer incidence, and increased longevity (Muñoz-
Lorente et al., 2019). Certainly, direct telomerase gene therapy
has not been tested in humans due to safety and ethical
concerns, unknown long-term effects, and the technically
challenging delivering mechanism. Nevertheless, abandoning the
telomerase gene therapy approach may be premature given its
potential to revolutionize aging and disease treatment. The
challenges in human translation certainly necessitate refined
methodologies and advanced clinical trials to bridge the gap,
ensuring the approach’s safety and efficacy for human therapeutics.

3.1.3 Tankyrase inhibitors
Tankyrase inhibitors are molecules designed to inhibit the

function of tankyrases (Tankyrase 1 and Tankyrase 2), which are
enzymes in the poly (ADP-ribose) polymerase (PARP) family
(Smith et al., 1998; Smith and de Lange, 2000). A fundamental
work in this field was conducted by Huang et al. showing that
tankyrases regulate the stability of axin, which is a key component of
the β-catenin destruction complex. By using a small-molecule
inhibitor of tankyrase, XAV939, they showed stabilization of axin
and downregulation of Wnt signaling (Huang et al., 2009). The Wnt
pathway is indirectly connected to telomere biology through its
regulation of adult stem cell function. Essential for stem cell self-
renewal and maintenance, Wnt signaling indirectly contributes to
telomere length preservation during stem cell divisions.
Consequently, any dysregulation in Wnt signaling can affect
these regenerative processes, potentially destabilizing telomeres
and thereby impacting aging and the onset of age-related diseases
(Brack et al., 2007; Liu et al., 2007; Kahn, 2014). By regulating the
Wnt pathway, tankyrase inhibitors have garnered interest as
potential therapeutic agents, particularly in cancer research, given
the crucial role of dysregulated Wnt signaling in tumor progression
and metastasis (Waaler et al., 2012; Huang et al., 2020; Neiheisel
et al., 2022). Even though tankyrases play a significant role in cellular
aging due to their influence on telomere maintenance, focused
research in this area remains sparse and should be pursued in
future research.

3.2 Antioxidants and anti-
inflammatory agents

Oxidative stress and chronic inflammation are significant
contributors to cellular aging; there is growing evidence linking
both to accelerated telomere attrition (López-Otín et al., 2013;
Armstrong and Boonekamp, 2023; López-Otín et al., 2023).
Consequently, there has been a rising interest in therapies that
combat oxidative stress and inflammation to indirectly preserve
telomere length, making antioxidants and anti-inflammatory
compounds key players in this research field. Antioxidants, such
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as vitamin C, vitamin E, and polyphenols, neutralize free radicals,
potentially mitigating DNA and telomere damage (Crous-Bou et al.,
2019). Simultaneously, anti-inflammatory agents, including omega-
3 fatty acids and curcumin, could reduce inflammation-mediated
telomeric attrition (Siopis and Porter, 2022). An overview of the
relevant antioxidants and anti-inflammatory agents influencing
telomere maintenance is given in Figure 1.

3.2.1 Antioxidants
Antioxidants neutralize free radicals, which can inflict damage

on cellular structures (Halliwell, 1996), including DNA and
telomeres. This protective effect can be essential in countering
telomere shortening, and thereby possibly delaying cellular aging
(Fenech et al., 2023).

3.2.1.1 Vitamin C
Vitamin C, a potent water-soluble antioxidant, scavenges free

radicals in the aqueous cellular environment, preventing damage to
critical biomolecules. Notably, it can also augment the enzymatic
action of telomerase, potentially supporting telomere elongation
(Furumoto et al., 1998). Recent studies underscore its capability to
enhance telomerase activity, elucidating its integral role in telomere
preservation. Among 586 women, the dietary intake of
multivitamins and telomere length was observed. Multivitamin
users tended to have longer telomeres. Moreover, the
micronutrient analysis revealed that especially the vitamins C and

E were positively associated with telomere length (Xu et al., 2009). In
a recent cross-sectional analysis using the NHANES database with
7.094 participants, a positive correlation between dietary vitamin C
intake and telomere length was observed. Specifically, greater
vitamin C intake was associated with longer telomeres (Cai et al.,
2023). These findings add to the body of evidence that certain
vitamins, especially vitamin C, may play a protective role in telomere
maintenance, possibly through its antioxidant properties, reducing
oxidative stress.

3.2.1.2 Vitamin E
Vitamin E is a lipid-soluble antioxidant, primarily located in cell

membranes, with its primary role to protect polyunsaturated fatty
acids (PUFAs) from lipid peroxidation, which is a significant source
of DNA damage, including telomeres (Corina et al., 2019). In the
CORDIOPREV study, involving 1.002 cardiovascular disease
patients, dietary intake of vitamin E was found to significantly
influence leukocyte telomere length, a biomarker for cellular
aging. Patients with inadequate vitamin E intake exhibited
shorter telomere length compared to those with sufficient intake
(Corina et al., 2019). Another study conducted by Shen et al.
examined the connection between DNA telomere length and
breast cancer risk, and how antioxidant intake might influence
this correlation. Shorter telomeres were associated with a higher
breast cancer risk among premenopausal women. While women
with the shortest telomeres and low dietary intake of antioxidants,

FIGURE 1
The role of antioxidants and anti-inflammatory agents in terlomere maintenance.
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including beta-carotene, vitamin C, and E, showed a moderate
increase in breast cancer risk, underlining the importance of an
accurate dietary intake of antioxidants (Shen et al., 2009).

3.2.1.3 Polyphenols
Polyphenols, widely present in sources such as fruits, vegetables,

or tea, exert antioxidant effects by neutralizing oxidizing species.
Resveratrol, a polyphenol found highly concentrated in berries,
nuts, grapes, and red vine, exerts antioxidant and anti-inflammatory
effects (Rotondo et al., 1998; Queiroz et al., 2009; Meng et al., 2021).
The anti-inflammatory effect is potentially facilitated through the
action of cyclooxygenase, AP1, and NF-κB, although the precise
mechanisms remain to be elucidated (Ros and Carrascosa, 2020).
The antioxidant effects occur via activating the SIRT1 pathway
(Pignet et al., 2021), also a recognized positive regulator of
telomere length (Amano et al., 2019; Opstad et al., 2021); it
supports cellular defense mechanisms against oxidative and
metabolic stress and enhances DNA repair (Palacios et al., 2010;
Amano et al., 2019).

Resveratrol has been shown its protective effects on endothelial
cells and promoting mitochondrial biogenesis by activating the
SIRT1 pathway (Csiszar et al., 2009). An in vivo study explored
the potential anti-aging effects of a nutraceutical combination of
resveratrol and copper in mice. The prolonged administration of
resveratrol and copper for 12 months significantly mitigated
numerous biological indicators of aging in brain cells, including
telomere attrition, amyloid deposition, and DNA damage.
Moreover, blood glucose, cholesterol, and C-reactive protein
levels were reduced after treatment. These findings suggest that
cell-free chromatin particles might contribute to aging processes,
and resveratrol and copper could offer therapeutic benefits for
promoting healthy aging (Pal et al., 2022).

In human, resveratrol supplementation over 30 days led to
metabolic shifts resembling caloric restriction; resveratrol
decreased resting metabolic rates, reduced blood glucose,
triglycerides, liver enzymes, and inflammation markers, and
improved muscle cellular energy mechanisms and insulin
sensitivity (Timmers et al., 2011). In a double-blind, placebo-
controlled trial with 40 post-infarction patients, resveratrol
supplementation significantly enhanced left ventricular diastolic
function and endothelial function while reducing LDL-cholesterol
levels. Furthermore, resveratrol effectively protected against adverse
shifts in red blood cell deformability and platelet aggregation
(Magyar et al., 2012).

Given the existing evidence, there is increasing interest in
resveratrol as a potential therapeutic agent for promoting
telomere maintenance and healthy aging.

3.2.2 Anti-inflammatory agents
Prolonged inflammatory responses can increase oxidative stress

and DNA damage, potentially accelerating telomere attrition.
Several studies have been investigated anti-inflammatory agents
and its influence on telomere biology, being discussed in the
following section.

3.2.2.1 Omega-3 fatty acids
Omega-3 fatty acids, particularly eicosapentaenoic acid (EPA)

and docosahexaenoic acid (DHA), are essential polyunsaturated

fatty acids (PUFAs) recognized for their anti-inflammatory
properties. Emerging research indicates a potential role for these
fatty acids in telomere biology (Chang et al., 2020; Ogłuszka et al.,
2022). A prospective cohort study by Farzaneh-Far et al., examining
608 patients with stable coronary artery disease found that
individuals with higher blood levels of EPA and DHA had
reduced rates of telomere shortening over a 5-year period,
suggesting a protective effect of omega-3 fatty acids on telomeres.
The proposed mechanisms underlying these observations include
the ability of omega-3s to reduce oxidative stress and systemic
inflammation. Moreover, omega-3 fatty acids might modulate the
activity of telomerase, and thereby extending telomeric DNA
(Farzaneh-Far et al., 2010). O’Callaghan et al. (2014) investigated
the potential of omega-3 fatty acid supplementation to attenuate
telomere shortening in elderly individuals with mild cognitive
impairment. The findings suggest that omega-3s might play a
role in telomere maintenance, which could have implications for
aging and neurodegenerative diseases. While the study emphasizes
the connection between telomere length, cognitive decline, and
omega-3 supplementation, it adds to the growing body of
evidence on the potential benefits of omega-3s in cellular aging
(Barden et al., 2016; Liu et al., 2021). Also, dietary patterns such as a
mediterranean diet, known to be rich in omega-3 fatty acids, is
associated with longer telomeres, and thereby can be linked to
healthier aging (Canudas et al., 2020).

However, even though there is growing evidence highlighting
beneficial effects of several antioxidants and anti-inflammatory
agents, findings are not consistent. A cross-sectional study
examining 263 postmenopausal women, the relationship between
leucocyte telomere length and various dietary factors, including
vitamins and antioxidants like anthocyanidin. Although the main
analysis found no significant association between telomere length
and the dietary patterns, an exploratory observation did note a
connection between anthocyanidin intake and telomere length,
which, after further correction, emerged non-significant (Mickle
et al., 2019).

3.2.2.2 Statins
Statins are a class of drugs commonly prescribed to lower

cholesterol levels by inhibiting the enzyme HMG-CoA reductase
(Endo, 1992), thereby reducing the risk of cardiovascular diseases
(Baigent et al., 2010). The relationship between statins and telomere
length has been an area of interest, but the evidence is not entirely
conclusive. However, there is the assumption that they might
influence telomere length through anti-inflammatory and
antioxidative effects or by increasing the activity of telomerase,
the enzyme responsible for maintaining telomere length. Some
observational studies have suggested that statin users tend to
have longer telomeres compared to non-users, which could imply
a potential protective effect of statins on cellular aging (Brouilette
et al., 2003). In a cross-sectional study analyzing 3.496 adults, no
significant difference in leukocyte telomere length between statin
users and nonusers was observed. A non-statistically significant
trend indicated longer telomeres with prolonged statin use, but
potential biases could not be out (Tran et al., 2018). Further,
individuals with shorter mean leucocyte telomere lengths were
found to be at a higher risk of developing coronary heart disease
events. The risk was nearly doubled in those with shorter telomeres
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among placebo-treated patients, but this increased risk was
significantly reduced in those treated with pravastatin (Brouilette
et al., 2007). Considering these findings, statins likely influence
telomere stability indirectly through their systemic anti-
inflammatory and antioxidative effects. This mitigating effect on
inflammation and oxidative stress implies that statins could
potentially slow down telomere attrition, thus contributing to an
overarching effect of aging deceleration. However, more profound
research, especially high-quality studies are needed to draw
definitive conclusions about the influence of statins on
telomere biology.

3.2.2.3 Spermidine
Spermidine is a polyamine implicated in cellular autophagy and

anti-inflammatory pathways (Gabandé-Rodríguez et al., 2019), has
been demonstrated to influence telomere stability and elongation.
Further, spermidine is associated with its cardio-protective effects.
An in vivo study showed that spermidine intake in mice enhances
cardiac autophagy, mitophagy, and mitochondrial respiration, and
reduces cardiac hypertrophy and systemic inflammation, which are
closely linked to age-related cardiovascular disease (Eisenberg et al.,
2016). Also, a prospective cohort study emphasized the potential
cardioprotective effect, which might be mediated by its influence on
oxidative stress markers, although the exact mechanism was not
totally comprehended (Yu et al., 2022). Other studies, including
those by Eisenberg et al., provide evidence that spermidine
supplementation can extend the lifespan of different organisms;
the lifespan was significantly prolonged by counteracting oxidative
stress, possibly through the epigenetic downregulation of histone
H3 acetylation, thereby suppressing oxidative damage and necrosis.
This modulation resulted in the transcriptional activation of
autophagy-related genes, culminating in enhanced autophagy
(Eisenberg et al., 2009). Another study described that a 6-month
regimen of spermidine supplementation in aged mice significantly
mitigated various age-related physiological deteriorations, notably
improving brain glucose metabolism, reducing cardiac
inflammation, lowering liver and kidney pathological conditions,
and decreasing age-induced hair loss. Further, spermidine
supplementation was associated with reduced rates of telomere
shortening (Wirth et al., 2021). While the findings underscore
spermidine’s potential as an agent for healthy aging, the
underlying mechanisms and its effects on telomeres and
longevity require further elucidation in human studies.

4 Conclusion and future directions

Over the past decades, medicine has already undergone a
notably transformation, shifting from a “sick care” approach,
which centered mainly on the treatment of diseases after
manifestation, to a “healthcare” paradigm that proactively
identifies and mitigates specific risk factors to prevent the
manifestation of diseases. Nevertheless, considering the

demographic shift towards a progressively aging population
worldwide, an even more health-focused approach must be
pursued to not only prevent a collapse of the healthcare
system but also other socioeconomic structures. A deep
understanding of the mechanisms and pathological processes
involved in aging is crucial not only for refining therapies for age-
related diseases but also for positively influencing the aging
process, thereby extending the prospect of a longer, active
lifespan. In this context, the telomere complex seems to have a
pivotal role. Consequently, unraveling the complexities of
telomere biology could unlock potential strategies for tackling
age-associated diseases and modulating the aging process itself.
Although the described therapeutic approaches and
interventions targeting telomere dynamics show some
promise, further high-quality human studies and detailed
investigations are needed to substantiate any recommendations.
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