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Computational toxicology models have been successfully implemented to
prioritize and screen chemicals. There are numerous in silico (quantitative)
structure–activity relationship ([Q]SAR) models for the prediction of a range of
human-relevant toxicological endpoints, but for a given endpoint and chemical,
not all predictions are identical due to differences in their training sets, algorithms,
and methodology. This poses an issue for high-throughput screening of a large
chemical inventory as it necessitates several models to cover diverse chemistries
but will then generate data conflicts. To address this challenge, we developed a
consensus modeling strategy to combine predictions obtained from different
existing in silico (Q)SARmodels into a single predictive value while also expanding
chemical space coverage. This study developed consensus models for nine
toxicological endpoints relating to estrogen receptor (ER) and androgen
receptor (AR) interactions (i.e., binding, agonism, and antagonism) and
genotoxicity (i.e., bacterial mutation, in vitro chromosomal aberration, and in
vivo micronucleus). Consensus models were created by combining different
(Q)SAR models using various weighting schemes. As a multi-objective
optimization problem, there is no single best consensus model, and therefore,
Pareto fronts were determined for each endpoint to identify the consensus
models that optimize the multiple-criterion decisions simultaneously.
Accordingly, this work presents sets of solutions for each endpoint that
contain the optimal combination, regardless of the trade-off, with the results
demonstrating that the consensus models improved both the predictive power
and chemical space coverage. These solutions were further analyzed to find
trends between the best consensus models and their components. Here, we
demonstrate the development of a flexible and adaptable approach for in silico
consensus modeling and its application across nine toxicological endpoints
related to ER activity, AR activity, and genotoxicity. These consensus models
are developed to be integrated into a larger multi-tier NAM-based framework to
prioritize chemicals for further investigation and support the transition to a non-
animal approach to risk assessment in Canada.
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1 Introduction

In the evolving landscape of regulatory toxicology, significant
effort is being taken to move away from toxicity testing using
animals and toward the use of alternative methods, now
commonly referred to as new approach methodologies (NAMs)
(Andersen et al., 2010; Krewski et al., 2010; Richard et al., 2016).
NAMs often refer to novel, non-animal, or alternative test methods,
technologies, and/or innovative approaches developed to support
chemical risk assessments (Harrill et al., 2019). Integrating NAMs
into chemical assessment activities, especially in a multi-tiered
framework, allows resources to be focused on high-priority
substances and helps inform risk-based decisions that may
otherwise be challenging due to a lack of data across a diverse
chemical space. One notable example of ongoing efforts to advance
the use of NAMs in regulatory toxicology is the development of
integrated approaches to testing and assessment (IATA) under the
Organization for Economic Co-operation and Development
(OECD) through the Working Party on Hazard Assessment
(OECD, 2020). Illustrative IATA case studies are submitted by
member countries detailing the use of NAMs, including in silico
models, to characterize chemical hazards. Another example of
international science and regulatory communities supporting the
progressive shift to the implementation of NAMs is Accelerating the
Pace of Chemical Risk Assessment (APCRA) (Kavlock et al., 2018),
which brings together governmental entities from around the world,
including Health Canada (HC), the United States Environmental
Protection Agency (USEPA), and the European Chemicals Agency
(ECHA), to engage in the development of new hazards, exposure,
and risk assessment methods aimed for use in regulatory chemical
evaluation. As part of the APCRA, case studies are built using
quantitative metrics derived from NAMs to inform prioritization
and screening-level assessments, to continue to advance methods
toward international acceptance for use in hazard identification and
prediction, and to demonstrate the overall protection of human
health and the environment from chemical exposures. A key
component of novel testing and assessment strategies is the use
of in silico tools such as machine learning (ML) or (quantitative)
structure–activity relationships ([Q]SAR) models to support risk
assessment activities. As the demand for non-animal test methods
increases and new chemistries emerge, there exists a growing need to
improve upon currently available (Q)SAR models and develop new
in silico toxicity models to enhance the ability to predict across a
broader chemical space and for additional effects of regulatory
interest (Mansouri et al., 2016; National Institute of Technology
and Evaluation, 2016; Madden et al., 2020; Collins and Barton-
Maclaren, 2022).

Developing (Q)SAR models is not a new or unique endeavor,
and it is common to have multiple available models for a single
toxicological endpoint. For example, an activity of interest for
endocrine disruption is estrogen receptor (ER) binding. ER
binding has many commercial and public models available such
as those developed by VEGA (Benfenati et al., 2013), ADMET
(Simulations-Plus, 2023), ACD (Advanced Chemistry
Development, 2019), CASE Ultra (CU) (Chakravarti and
Saiakhov, 2022), the USEPA (Mansouri et al., 2016), and HC
(Collins and Barton-Maclaren, 2022). With the wide availability
of in silico models for each toxicological endpoint, the difficulty lies

in determining the optimal model, or combination thereof, to apply
in screening and weight-of-evidence assessment frameworks. Each
model comprises specific attributes, including biases and errors,
which can stem from the data used to train the model or its training
processes, such as the type of models and descriptors applied. For
example, using the substance 4,4′-dibromobenzophenone (CAS RN
3988-03-2) and evaluating ER-binding activity from six independent
models, it was found that three models predicted the substance to be
binding and three models predicted non-binding activity. This is not
an uncommon result as when looking at the Collaborative Estrogen
Receptor Activity Prediction Project (CERAPP) (Mansouri et al.,
2016) evaluation dataset, only 88 of the 5,401 substances had
complete concordance in predictions, and 161 had equal splits.
Additionally, each model contains unique applicability domains
(ADs), where it can predict the substance activity with
confidence as only the substances within the AD are considered
like the substances used to train the model. When working on a large
chemical inventory across a diverse chemical space, such as the
Canadian Domestic Substances List (DSL), multiple models are
required for a given endpoint due to differences in ADs.
However, the use of multiple models often results in discordant
prediction results for a given chemical, and these data conflicts can
cause confusion about which prediction should be selected for use in
the decision-making context. This situation often makes model
selection, transparency, and reproducibility difficult, especially if
the predictions are integrated into automated screening approaches
to be applied to thousands of chemicals in a high-throughput
manner. Resolving model selection challenges and generating
high-throughput predictions are important areas of research in
Canada as the Government of Canada is required to generate a
list of ministerial priority substances for assessment work as a part of
the recent amendments to the Canadian Environmental Protection
Act (CEPA) (Government of Canada, 2023).

One way to address the challenge of model selection and
improve the predictive capabilities of the in silico models is to
use consensus models, also known as ensemble models. A
consensus model, as the name implies, combines the results of
multiple models to provide a single outcome, thereby improving the
performance. There are two primary advantages when using
consensus models: smoothing out individual model errors and
extending the AD. Consensus models have demonstrated utility
for predictive toxicology and have been previously applied in efforts
such as for CERAPP (Mansouri et al., 2016), Collaborative
Modelling Project for Androgen Receptor Activity (CoMPARA)
(Mansouri et al., 2020), Collaborative Acute Toxicity Modeling Suite
(CATMoS) (Mansouri et al., 2021), and work at HC (Kulkarni and
Barton-Maclaren, 2014) and others (Votano et al., 2004; Fang et al.,
2015; Pradeep et al., 2016; Chauhan and Kumar, 2018; Zakharov
et al., 2019; Ciallella et al., 2021; Schieferdecker et al., 2022). To
create a consensus model, the predictions obtained from multiple in
silico models (referred to as “component models”) are combined
into a single prediction, which can be done through different
combinatorial methods, such as a simple majority voting or an
average of the results (Hewitt et al., 2007; Grisoni et al., 2019). More
complex combinatorial methods can also be used, such as weighting
the results using the model’s metrics or combinations of those
metrics (Abdelaziz et al., 2016; Mansouri et al., 2016; Mansouri
et al., 2020; Mansouri et al., 2021), or methodologies based on
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further combination practices (Pradeep et al., 2016; Zakharov et al.,
2019; Valsecchi et al., 2020). The variety of different combinatorial
methods (e.g., CERAPP weighting by the average of balanced
accuracy on two sets, CoMPARA weighting by a score based on
the goodness of fit, predictivity and robustness, or the approach
applied by Pradeep et al. (2021) where a naive Bayes algorithm was
used to train new ensemble models) shows that there is no defined
procedure for combining models; therefore, it is practical to explore
multiple combinatorial methodologies to search for the ideal
method for a given application. This is typically not as simple as
combining every available component model as previous works have
demonstrated that this may not necessarily benefit the results
(Kulkarni and Barton-Maclaren, 2014; Abdelaziz et al., 2016;
Pradeep et al., 2021). It is possible that some models may
provide “white noise” for the consensus model, and therefore, the
results may be better if somemodels do not contribute. This creates a
numerical problem as each method of combining results should be
tested on all possible combinations of models for each
toxicological endpoint.

This work aims to demonstrate a flexible and adaptable
methodology for combining multiple in silico (Q)SAR models to
yield a single optimal prediction for a toxicological endpoint using
the Pareto front approach (Borghi et al., 2023; Casanova et al., 2023).
It is important to note that the predictive power and chemical space
coverage are distinct concepts that cannot be easily merged into a
single metric. Often, when developing a consensus approach, a
trade-off occurs when combining results (Shukla et al., 2012; De
Buck et al., 2021). For example, predictive performance can be
improved at the expense of chemical space coverage and vice versa.
The Pareto front approach is an adaptable approach that allows one
to identify the best performing consensus models across various
metrics, regardless of trade-offs. In using this approach, we found
the consensus models that optimize both a metric of predictivity and
chemical space coverage. In this work, we demonstrate the
development of a flexible and adaptable approach for in silico
consensus modeling and its application across nine toxicological
endpoints related to ER activity, AR activity, and genotoxicity. This
is a NAM-basedmodeling approach that can be applied to large and/
or diverse chemical inventories for high-throughput screening and
prioritization.

2 Methods

2.1 Toxicological endpoints

The current study focuses on two broad toxicological categories:
endocrine disruption and genotoxicity. The models examined for
endocrine disruption activity cover three endpoints each for both ER
and AR: binding, agonism, and antagonism. Genotoxicity also has
three endpoints: bacterial mutation, in vitro chromosomal
aberration, and in vivo micronucleus. These nine endpoints were
chosen as they are well-defined toxicological endpoints with large
high-quality datasets available. The datasets used to train the ER,
AR, and genotoxicity models were obtained from the CERAPP
(Mansouri et al., 2016), CoMPARA (Mansouri et al., 2020), and
Leadscope databases (Leadscope, 2019), respectively. The datasets
selected for this work were chosen due to their high-quality nature

and the number of substances. If a dataset contains more substances,
it is likely to cover a wider range of chemical space, leading to more
robust models. It is important to note that some of the component
models used in this work were trained on these datasets; however, it
is considered that these datasets, due to their size and high-quality,
represent the best choice for this work. Indeed, this is a difficult
situation to avoid as model developers select chemicals from a
variety of toxicological databases for training their respective
endpoint specific models (Supplementary Table S1). The training
sets tend to be a mix of publicly available data and proprietary data.
As a result, not all the training set chemicals are accessible, especially
in the commercial models. Across the different model training sets
for a given endpoint, there is a high likelihood of the overlapping of
chemicals. It is important to note that any new publicly available
source of toxicological data is quickly used by model developers to
retrain their existing models, unless the data are generated privately
(Kulkarni and Barton-Maclaren, 2014). For the current study, such a
truly external data source to validate our approach was not available;
however, the consensus models are not fit to the data, but the data
were used to validate the results. The methodology presented here
can be easily transferred to other datasets if different data become
available. Specific information related to the number of the
component models and training datasets is given in Table 1.
Further information about the datasets is given in Section 1,
Supplementary Tables S1, S2.

2.2 In silico models

Consensus models require individual in silico models as their
components. In total, 53 models were identified to cover the nine
toxicological endpoints (Table 1); the number of models per
endpoint ranged from 4 to 10 depending on the endpoint
examined. These models came from various public and
commercial sources such as HC-developed random forest
models (Collins and Barton-Maclaren, 2022), the USEPA
CERAPP (Mansouri et al., 2016) and CoMPARA (Mansouri
et al., 2020) models, Advanced Chemistry Development
(ACD) Percepta (Advanced Chemistry Development, 2019),
VEGA (Satyanarayan et al., 2016), CU (Saiakhov et al., 2013),
ADMET Predictor (Simulations-Plus, 2023), and Oasis TIMES
(Todorov et al., 2011). The individual (Q)SAR models were
chosen based on their availability and expert judgment,
concerning their applicability to each endpoint. This judgment
focused on selecting both free and commercially available models
at our disposal and encompassing a mix of statistical, expert rule-
based, and metabolism-based models. Consideration was given to
prioritizing the predictive performance across diverse datasets
and assessing the applicability domain. Interpretability was
sought in the chosen models to gain a nuanced understanding
of structure–activity relationships. The evaluation criteria
included considerations of robustness, computational
efficiency, and validation techniques, with a commitment to
adhering to OECD QSAR validation principles for enhanced
reliability. The quality and quantity of training data were
scrutinized looking at the QSAR Model Reporting Formats
(QMRFs) to ensure the representation of the relevant chemical
space. Additionally, factors such as the ease of use,
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documentation, and support were considered. Balancing these
criteria and aligning with OECD QSAR validation principles
ensured the selection of robust and compliant (Q)SAR models
tailored to specific needs and constraints.

The performance of each non-consensus model, hereafter
referred to as the component models, is described in the Results
section, along with that of the consensus models. The performance
of the component models ranged in predictive power and coverage
due to inherent differences in training sets and methodologies.
Details about in silico models, including which ones were used
for each endpoint and links to their QMRFs, are given in
Supplementary Tables S1–S3.

2.3 Performance metrics

There are multiple metrics which can be used to describe in silico
models; however, they can broadly be classified as quantifying either
the coverage or predictive power of the model. Coverage is a term
used to describe the number of substances within the AD of a given
model. Coverage is expressed as a percentage and is calculated by
taking the number of substances within the AD and dividing by the
total number of tested substances. The AD describes the structural
space around the chemical substances used to train an in silico
model. Substances that are structurally similar to the substances
used to train the model are likely within the AD. In contrast,
substances that are structurally dissimilar to the training
substances are interpreted as those outside the AD. For example,
if only small organic molecules were used to train a model, using that
model to make predictions on a metal alloy would be expected to
result in an out-of-domain prediction. When a prediction is made
on substances outside of an AD, the confidence in that prediction is
reduced, and the result is most often discarded.

Second, the metric of predictive performance quantitatively
describes how well a model can make a correct prediction. There
is no single metric that can be used to establish the predictive
performance; sensitivity (Sn), specificity (Sp), and balanced accuracy
(BA) are typically used, as described in Eqs 1–3, respectively, and
include the following terms or variables: true positive (TP), false
negative (FN), true negative (TN), and false positive (FP). These are

standard terms when the model predicts binary results (binary
classification), with the resultant terms derived from the
combination of observed and predicted values. An example of a
confusionmatrix illustrating the relationships between observed and
predicted results and the binary classification model outcome terms
is shown in Table 2. While sensitivity and specificity explicitly refer
to how many positive or negative values, respectively, are correctly
predicted, the BA is a more holistic term averaging the sensitivity
and specificity. In addition to being holistic, the BA is also a term
suited to dealing with imbalanced datasets, which is often the case
for toxicological endpoints. Imbalanced datasets are ones where a
class (e.g., positive or negative results) significantly outweighs the
other class in a training set. As certain conventional metrics, such as
accuracy, cannot appropriately handle imbalanced datasets, it is
essential to apply metrics that can accommodate this to ensure a
relevant comparison of the predictive performance:

Sn � TP

TP + FN
, (1)

Sp � TN

TN + FP
, (2)

BA � 1
2

Sensitivity + Specificity( ). (3)

The predictive terms can also be more complex, as shown with
the modified score1, predictivity, and modified predictivity (ModP),
described in Eqs 4–6, respectively. The modified score1 is based on
the score1 term from the CERAPP work (Mansouri et al., 2016) and
was modified here to be used on a single dataset. Predictivity is a
term from the CoMPARA work (Mansouri et al., 2020) aimed at
having a high BA and similar specificity and sensitivity. Here, we

TABLE 1 Information about consensus model development, including the number of component models, the dataset used to train the consensus models,
and the number of substances in those datasets.

Endpoint Component models Training dataset Number of substances

ER binding 6 CERAPP 5,401

ER agonism 5 6,318

ER antagonism 5 6,538

AR binding 5 CoMPARA 3,738

AR agonism 4 4,660

AR antagonism 4 3,882

Bacterial mutation 10 Leadscope 5,661

In vitro chromosomal aberration 8 1,203

In vivo micronucleus 6 927

TABLE 2 Confusionmatrix showing the relationships between the observed
and predicted results and outcomes of the binary classification model as
TN, FP, FN, and TP.

Predicted

Inactive Active

Observed Inactive TN FP

Active FN TP
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adjusted this term, now called modified predictivity (ModP), where
there is still interest in maintaining high BA; however, instead of
using the absolute difference between sensitivity and specificity, only
sensitivity is considered in the equation for ModP. This was done to
favor the capture of active chemicals with a possible increase in false
positives as the trade-off. This additional weighting on sensitivity
was desired, given the method developed aimed at addressing an
important need for high-throughput screening and prioritization of
chemicals for further attention, while wanting to minimize the
possibility of false negatives and accept the concomitant increase
in false positives. Although any value can be chosen for the
weighting of BA and sensitivity, we chose 0.7 and 0.3,
respectively, to maintain the same weighting used in the
predictivity from the CoMPARA work (Mansouri et al., 2020).

Modified score1 � BA*Coverage, (4)
Predictivity � 0.7*BA + 0.3* 1 − Sn − Sp

∣∣∣∣
∣∣∣∣( ), (5)

Modified Predictivity � 0.7*BA + 0.3*Sn. (6)

2.4 Consensus model combinatorial
methodology

Consensus models are based on combining multiple component
models to yield a single prediction. This is typically done by
collecting the predictions from each model and then using a
mathematical formula to combine the results into a single
outcome. For each possible combination of component models
for the nine endpoints studied, six combinatorial methods were
considered, namely, majority, four statistically weighted methods,
and a k-nearest neighbor approach (kNN). In other words, for each
unique combination of models (e.g., models A + B + C), the six
above-mentioned methods for combining these models were used.
The most straightforward combination is a majority prediction,
where the mode is considered the overall prediction. For the four
statistically weighted models, the individual component models
were weighted on (a) BA, (b) modified score1, (c) predictivity,
and (d) modified predictivity. The last combinatorial method
used in this work was a kNN approach, which uses chemical
space information to weight the component models. For each
chemical, the average distance to the k-nearest neighbors is
calculated, and more weight is given to predictions with a shorter
average distance. Further details about the kNN process can be
found in Supplementary Materials (Section 2).

Before applying the combinatorial methodology, we first used
each individual model to make predictions on their respective
datasets. From these results, we calculated various statistical
values, including sensitivity, BA, and coverage on the training
datasets. These statistics were then used to determine the weight
for the four statistical weighting methods: BA, modified score1,
predictivity, and modified predictivity (Eqs 3–6). Additionally, for
each substance, we computed the mean distance to its 12 nearest
neighbors, which is used in the kNN combinatorial method. These
approaches, combined with a simple majority voting, yield a total of
six combinatorial methods.

The initial step in our process involved determining whether or
not a substance fell within the AD of the consensus model. To

establish AD inclusion, we applied a “majority weighting” approach,
requiring substances to fall within the AD of the majority of its
component models, as determined by their respective weights. For
instance, we consider a consensus model created using BAweighting
of four component models with BAs of 0.8, 0.75, 0.65, and 0.6
(summed weight of 2.8). In this case, a substance needed to fall
within the AD of enough models to achieve a total summed weight
of at least 1.4. For example, if a substance was within the AD of the
second and fourth models, but not of the other two models, it would
have a summed weight of 1.35 (0.75 and 0.6, respectively) and be
considered outside the AD of the consensus model. In contrast, if a
substance was within the AD of the first and third models, but not
the other twomodels, it would have a summed weight of 1.4 (0.8 and
0.6, respectively), and it would be within the AD of the consensus
model. This majority weight requirement for AD inclusion was
applied consistently across all consensus models.

After confirming substance inclusionwithin theAD, the next step is
to determine the prediction result, which is also determined using
majority weighting. For predictions, a consensus is reached when most
of themodels, as determined by their respective weights, predict either a
positive (or active for a toxicological endpoint) or negative (inactive)
outcome. An example is using the same componentmodel BA values as
above (i.e., 0.8, 0.75, 0.65, and 0.6) where all four models returned
predictions for a given substance. The consensus prediction is derived
by comparing the combined BA values for positive (active) versus
negative (inactive) predictions. For instance, in the context of predicting
ER activity, if two models that predict a substance to bind to ERs have
BA values of 0.8 and 0.65, respectively (sum of 1.45), and the models
predicting non-binding have BA values of 0.75 and 0.6, respectively
(sum of 1.35), the consensus model prediction will be “ER binding”
(as 1.45 > 1.35).

In this study, we provided metrics for each individual
component model. When combining all the models, we applied
the six aforementioned combinatorial methods. Additionally, we
conducted tests for every possible combination of these models. In
other words, if a specific endpoint had four models (A, B, C, and D),
combinations like A and B, A and C, A, B, and C, and so forth were
systematically tested, ensuring a comprehensive examination of
model combinations. This presented a numerical challenge, as
shown in Eq. 7, where the number of consensus models (NModels)
depends on both the number of combinatorial methods (r) and
component models (n). The number of combinatorial methods was
fixed for this work at 6, and the number of component models
varied, depending on the endpoint from 4 to 10. Consequently, each
endpoint required an evaluation of between 70 and 6,088 consensus
models, composed of three subtypes: 1) the individual component
models, which are the single models used to create the consensus
models; 2) full-consensus models, which are the combination of all
available component models; and 3) all other consensus models,
comprising combinations of two or more models up to one less than
the total number of available models.

NModels � r* 2n − 1( ) − r − 1( )*n. (7)

The consensus model code and sample inputs, as well as
instructions for running the codes, are available on GitHub
under the Massachusetts Institute of Technology License (https://
github.com/SeanPCollins/ConsensusModels).
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2.5 Evaluation of consensus model
performance

As predictive power and coverage are distinct metrics and are
not easily combined, this is a multi-objective optimization problem,
which uses different terms and methodologies. One such term is the
Pareto front, which represents the set of non-dominated solutions,
where improving one objective comes at the cost of performance in
another (Ngatchou et al., 2005). In simpler terms, the Pareto front
consists of consensus models that offer the best performance across
various metrics, regardless of trade-offs. By presenting Pareto fronts,
the choice for a trade-off is left to the end user. In this work, when
looking at the Pareto fronts, the metrics considered were the
coverage and ModP. The ModP was chosen to represent the
predictive power as it not only considered a holistic term like the
balanced accuracy but also placed a focus on maximizing the
number of positives correctly predicted. Here, a best solution is
determined by calculating the distance to the ideal solution, namely,
100% coverage and a ModP of 1. The Pareto front is determined by
iterating over the consensus models and comparing the ModP and
coverage of a given model against all other models. If no other model
outperforms all metrics of interest, the model is considered a Pareto
front model. The single best Pareto front model is referred to here as
the optimal consensus model.

2.6 Bootstrapping analysis of Pareto
front trends

To assess the statistical significance of the observed trends in
our results, bootstrapping techniques were used (Efron and
Tibshirani, 1994). Bootstrapping is a computational method
that involves iterative resampling of our data. It starts with
recording the initial results and then proceeds through multiple
rounds of shuffling and resampling. After each shuffling, new
results are recorded, creating a distribution of simulated
outcomes. The core idea behind bootstrapping is that if the
observed results are unrelated to the testing method or
influenced by random variations, they should be replicable
through a random chance. In this study, bootstrapping was
applied to analyze two key aspects: the inclusion of models
within the Pareto front and the average number of
component models within Pareto consensus models. The
component models of all Pareto models and the average
number of component models in the Pareto models were
tracked. When shuffling, a consistent number of Pareto front
models were maintained while randomly assigning Pareto front
classifications to the consensus models. By creating a
randomized distribution of component model frequencies and
the average number of models within the Pareto front,
comparisons could be made to determine how often similar
or more extreme results occurred. The less often it occurred, the
more statistically relevant the result. Here, Pareto front
composition trends that were observed less than 5% of the
time in the bootstrapping analysis were considered to be
statistically significant. Additional information on the
bootstrapping analysis is available in Supplementary
Materials (Section 3).

3 Results

Two performance metrics were considered to assess the models:
ModP (Eq. 6) and the coverage. The ModP term was developed
based on work previously done by the USEPA, where the predictivity
of a model is described. The equation was based on the BA of the
model and the absolute difference between its sensitivity and
specificity. In this approach, model performance is viewed as
optimal if the sensitivity and specificity are as close as possible
while maintaining a high BA. Given that the study aims to develop
an in silico predictive approach that maximizes the use of various
available model sources and minimizes false negative predictions to
be incorporated in high-throughput screening methods, less
emphasis was placed on the difference between the two terms.
Instead, emphasis was placed on the absolute value of the
sensitivity, as shown in Eq. 6. Applying this focus encourages a
high BA, increases sensitivity, and minimizes false negatives. For the
intended context of use, this was considered more pragmatic as the

FIGURE 1
Performancemetrics for consensus models developed for ER (A)
binding, (B) agonism, and (C) antagonism. Orange diamonds are the
component models, yellow triangles are the full-consensus models
(all models combined), gray squares are the Pareto front models,
the green star is the best performing consensus model, and blue
circles are all other consensus models.

Frontiers in Pharmacology frontiersin.org06

Collins et al. 10.3389/fphar.2024.1307905

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1307905


in silico tier serves to rapidly screen a large number of diverse
chemistries and will extend higher confidence that substances with a
potential for toxicity will be captured and progress to higher tiers of
screening, testing, and assessment, as relevant.

3.1 Estrogen receptor activity models

For ER activity, six models existed for binding and five each
for agonism and antagonism. Each activity type featured the
CERAPP consensus model, an HC RF model, and at least one CU
model. Binding activity also had the VEGA, ADMET, and ACD
models, while agonism and antagonism had two additional CU
models (Supplementary Table S4). The combination of available
models resulted in a total of 348 models for ER binding and
161 each for ER agonism and antagonism, as shown in Figure 1.
The analysis revealed a broad spectrum of performance in terms
of coverage and ModP. Notably, HC RF models performed the
best among the models examined when considering both ModP
and coverage. In contrast, consensus models created using all
component models (i.e., full-consensus models) had tightly
centered results. In general, when all available models are
combined, the performance increases compared to the
individual component models, although some increases were
moderate. Further testing with the Pareto front models, which
constitute the selection of optimal models depending on the
degree of the trade-off considered, proved to increase the
performance significantly over other consensus and
component models (Table 3).

For ER binding, the Pareto front comprised three consensus
models from a pool of 348 assessed models (Figure 1A). Notably, the
CU ER model appeared in every Pareto front consensus model, and
the component CU model was also a Pareto front solution. In this
instance, the CU model had the highest ModP (0.922) but a low
coverage at 64.4%. Conversely, the VEGA, ADMET ER, and
CERAPP ER consensus models were absent from all ER-binding
Pareto front models. The bootstrapping analysis revealed that the
chance of any of these models being absent from all Pareto front
consensus models was roughly 10% (Supplementary Table S5).
When selecting a single consensus model as the best based on
the distance to the ideal solution (hereafter referred to as the
“optimal consensus model”), the Pareto front model composed of
the majority combination of CU ER and HC RFmodels proved to be
the best choice, yielding a ModP of 0.897 and coverage of
97.1% (Table 3).

For ER agonism, among the 161 models (Figure 1B), only three
were a part of the Pareto front, and notably, none of the Pareto front
models included the CU ER agonist beta model. This finding could
potentially be attributed to the limited number of consensus models;
however, the bootstrapping analysis revealed that this result (i.e., the
CU ER agonist model not being in any Pareto front models)

TABLE 3 ER-activity optimal Pareto models.

Endpoint Combination # Models Coverage (%) ModP Component model names

ER binding Majority 2 97.1 0.897 Health Canada ER binding random forest

CASE Ultra ER

ER agonist Majority 2 98.1 0.921 CERAPP ER agonist consensus

CASE Ultra ER agonist

ER antagonist Majority 2 98.2 0.912 CERAPP ER antagonist consensus

CASE Ultra ER antagonist

FIGURE 2
Performancemetrics for consensus models developed for AR (A)
binding, (B) agonism, and (C) antagonism. Orange diamonds are the
component models, yellow triangles are the full-consensus models
(all models combined), gray squares are the Pareto front models,
the green star is the best performing consensus model, and blue
circles are all other consensus models.
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occurred only 8% of the time by random chance (Supplementary
Table S6). When assessing the distance to the ideal solution as a
singular metric, the “optimal” consensus model was the majority
combination of the CERAPP and CU ER agonist models, with a
ModP of 0.921 and coverage of 98.1% (Table 3).

ER antagonism (Figure 1C) had a total of 161 models, out of
which we identified five Pareto models. The bootstrapping analysis
revealed the most notable results for the HC RF model and CU ER
antagonist beta model, both of which were only in one of the five
Pareto front models. This was observed only approximately 12% of
the time by chance (Supplementary Table S7). The “optimal”
consensus model was the majority combination of the CERAPP
and CU ER antagonist models, with a coverage of 98.2% and ModP
of 0.912 (Table 3). The full bootstrapping results for the ER
endpoints are presented in Supplementary Tables S5–S7 and
Supplementary Figure S1.

3.2 Androgen receptor activity models

For the AR activity models, five models existed for binding and
four each for agonism and antagonism. Each AR endpoint featured a
CoMPARA consensus model and an HC RF model. Binding activity
also had the VEGA, ADMET, and Oasis TIMES models, while
agonism and antagonism had two additional CU models
(Supplementary Table S8). The combination of available models
resulted in a total of 151 models for AR binding and 70 each for AR
agonism and antagonism (Figure 2). The current analysis revealed a
broad spectrum of performance in terms of coverage and ModP. As
with the ER endpoint, the HC RF models performed the best among
the component models examined when considering both ModP and
coverage, and when all available models were combined, the
performance tended to increase compared with individual
component models.

Of the 161 AR-binding models evaluated, three formed the
Pareto front (Figure 2A). Notably, the HC RF model, as a Pareto
front model, achieved the highest ModP at 0.847 but had the lowest
coverage of the Pareto models at 87.2%. The bootstrapping results
showed the most significant result was that VEGA and Oasis TIMES
were not present in any Pareto front models, an event that happened
only 8.3% and 7.8% of the time, respectively, by chance
(Supplementary Table S9). The optimal consensus model was the
majority combination of the HC RF and CoMPARA models,
achieving a coverage of 98.6% and a ModP of 0.833 (Table 4).

For the AR agonist and AR antagonist endpoints, there was a
limited pool of component models, resulting in 70 models in total
for each endpoint (Supplementary Table S8). In the AR agonism

TABLE 4 AR-activity optimal Pareto models.

Endpoint Combination # Models Coverage (%) ModP Component model names

AR binding Majority 2 98.6 0.833 CoMPARA AR binding consensus

Health Canada AR binding random forest

AR agonist Majority 2 95.5 0.955 Health Canada AR agonist random forest

CASE Ultra AR agonist MDA

AR antagonist Majority 2 96.9 0.894 Health Canada AR antagonist random forest

CASE Ultra AR antagonist HEK

FIGURE 3
Performance metrics for consensus models developed for
genotoxicity, specifically (A) bacterial mutation, (B) in vitro
chromosomal aberration, and (C) in vivo micronucleus. Orange
diamonds are the component models, yellow triangles are full-
consensus models (all models combined), gray squares are the Pareto
front models, the green star is the best performing consensus model,
and blue circles are all other consensus models.
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Pareto front, we identified three solutions (Figure 2B). The
bootstrapping analysis showed the only relevant result of the
Pareto consensus model compositions was that the CU AR
agonist human embryonic kidney (HEK) model appeared in no
consensus models, a result shared with only 5.2% of random results
(Supplementary Table S10). The “optimal” Pareto model was the
majority combination of the HC RF and CU AR agonist for MD
Anderson (MDA) cell line (CU AR agonist MDA) models, with a
coverage of 95.5% and ModP of 0.955 (Table 4).

The AR antagonism Pareto front comprised five solutions,
including the majority combination of all four models
(Figure 2C). The CU AR antagonist HEK and HC RF models
were the most common component models, appearing in four
Pareto solutions. Although this is frequent, it was not sufficient
to be considered statistically relevant as the bootstrapping results
showed those models appeared in that frequency or higher roughly
35.8% of the time (Supplementary Table S11). Similar to AR
agonism, the optimal model in terms of the distance to ideal was
the majority combination of the HC RF and CU antagonist HEK
models. The resulting consensus model had a coverage of 96.9% and
ModP of 0.894 (Table 4). The full bootstrapping results for the AR
endpoints are presented in Supplementary Tables S9–S11 and
Supplementary Figure S2.

3.3 Genotoxicity models

In addition to assessing the endocrine-disrupting activity,
consensus models were built for genotoxicity endpoints,
specifically bacterial mutation, in vitro chromosomal aberration,
and in vivomicronucleus, based on 10, 8, and 6 component models,
respectively (Supplementary Table S12). The consensus models for
genotoxicity are shown in Figure 3.

The bacterial mutation assay, commonly known as the Ames
assay, was predicted using 10 component models, the combination
of which resulted in a total of 6,088 assessed models; from these,
eight Pareto models were determined (Figure 3A). Notably, the
model applier (MA) expert model was the most common
component model, observed in seven of the eight Pareto
solutions, including on its own where coverage was 96.4% and
ModP was 0.982 (Supplementary Table S12). The bootstrapping
analysis revealed that this is a statistically relevant finding as the MA
expert model was observed at this level or higher only 3.5% of the
time by random chance (Supplementary Table S13). Additionally,
the MA Ames model was commonly found in Pareto solutions,
appearing in five of the eight Pareto models; however, this also
occurred 37.2% of the time by chance. Conversely, the ChemTunes
(CT) Ames and TIMES Ames models were not in any Pareto front
models, a significant result observed only 0.4% of the time in the
bootstrapping results. The optimal bacterial mutation consensus
model was the majority combination of the HC RF, MA Ames, MA
expert, and CU genotoxicity expert models, resulting in a coverage of
96.7% and ModP of 0.980 (Table 5). Although this combination was
the best performing model, it only represented a slight improvement
compared to the MA expert model alone. Many of the Ames Pareto
front models clustered closely based on performance metrics.

There were eight component models for the in vitro
chromosomal aberration endpoint, resulting in 1,490 total

models, including three Pareto solutions (Figure 3B). The HC RF
model was found in all three Pareto solutions, while four component
models, namely, the MA ChromAb Chinese hamster ovary (CHO)
model, CT-ChromAb, and both the CU GT2 Chrom CHO and
CHL, were found in none. These results were not statistically
relevant according to the bootstrapping analysis, appearing in
approximately 12% of the random samples (Supplementary Table
S14). The “optimal” Pareto solution was the majority combination
of the HC RF and MA ChromAb Chinese hamster lung (CHL)
models with a coverage of 96.9% and ModP of 0.605 (Table 5).

The final genotoxicity endpoint examined was the in vivo
micronucleus, which used six component models to create
348 total models for assessment, including three Pareto models
(Figure 3C). Due to the limited number of Pareto front models and
the available number of component models, no statistically
significant trends in Pareto model composition were observed.
The HC RF and MA micronucleus (MN) models were in all
three Pareto solutions, and the TIMES MN model was not a
component of any of the Pareto solutions. The exclusion of the
TIMES MN model was the most notable as it was observed in only
9.9% of the bootstrapping results (Supplementary Table S15). The
optimal consensus model was the majority combination of the HC
RF, GT3 MNTmouse, MAMN, and VEGAMNmodels, which had
a coverage of 94.1% and ModP of 0.875 (Table 5). The full
bootstrapping results for the genotoxicity endpoint are presented
in Supplementary Tables S13–S15, Supplementary Figure S3.

3.4 Summary of Pareto model
composition analysis

In addition to the composition of the Pareto front models, the
total number of models used in the Pareto front was also analyzed
(Supplementary Table S16). The major conclusion drawn from this
analysis was that the Pareto front models showed a preference for a
low number of models. For example, for the ER-binding endpoint,
the three actual Pareto front models averaged 1.66 models per
consensus model, while the average from the bootstrapping
results was 3.33 (Supplementary Figure S1). When analyzing the
bootstrapping results where the mean number of models was 1.66 or
less, this was only observed 0.32% of the time by chance, making the
low number of models used a statistically relevant result. This trend
was also observed for ER antagonist (mean 2 models)
(Supplementary Figure S1), AR binding (mean 1.66 models)
(Supplementary Figure S2), bacterial mutagenicity (mean
2.875 models) (Supplementary Figure S3), and in vitro
chromosomal aberration (mean 2 models) (Supplementary Figure
S3) models. The bootstrapping results showed that the mean
number of models was that low, or lower, only 2.37%, 1.52%,
0%, and 0.18% of the time, respectively. The only endpoint
where the average number of models was higher than its
respective bootstrapping result was AR antagonism, which had a
mean of 2.6 compared to the bootstrap result of 2.4 (Supplementary
Figure S2). Finally, the values for bootstrapping across all endpoints
yielded an average of 3.22 models or 55.7% of all available models.
The actual results had an average of 2.37 models or 40.9% of all
available models, with the bootstrapping results reaching those
levels, or lower, 19.22% and 6.43% of the times, respectively. In

Frontiers in Pharmacology frontiersin.org09

Collins et al. 10.3389/fphar.2024.1307905

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1307905


this instance, there is a difference in the bootstrapping results
between the number and percentage of models due to the
difference in the number of available models for each endpoint.
For that reason, the better comparison to make is using the
percentage of available models, meaning the 40.9% result, which
the bootstrapping analysis demonstrated only reached that
percentage composition or lower 6.43% of the time by chance.

3.5 Model coverage for the Canadian
Domestic Substances List

Maximizing the model coverage across the DSL is an important
outcome for the work presented here. Canada’s DSL contains
approximately 28,000 substances, of which approximately
16,000 substances are amenable to modeling (i.e., have a defined

TABLE 5 Genotoxicity optimal Pareto models.

Endpoint Combination # Models Coverage (%) ModP Component model names

Bacterial mutagenicity Majority 4 96.7 0.980 Health Canada AMES random forest

Model applier Ames

Model applier expert

CASE Ultra GT EXPERT

In vitro chrom. aberration Majority 2 96.9 0.605 Health Canada ChromAb random forest

Model Applier ChroModel Applier CHL

In vivo micronucleus (MN) Majority 4 94.1 0.875 Health Canada in vivo random forest

GT3 MNT MOUSE

Model Applier MN

VEGA-MN

Chrom. aberration/Chromab, chromosomal aberration; MNT, micronucleus test.

FIGURE 4
Comparison of model coverage between optimal Pareto consensus models vs. a selection of individual component models across Canada’s
Domestic Substances List (DSL).
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or representative chemical structure). The DSL coverage of the
optimal Pareto consensus models was compared with a selection
of the individual component models (Figure 4). For the ER-related
endpoints, the CERAPP model coverage was 70% across endpoints,
while the optimal Pareto consensus models improved the coverage
range from 91% to 93%. A similar improvement was achieved for the
AR-related endpoints; the CoMPARA model coverage was 70%
across models, which was improved to 79%–86% with the
application of the optimal Pareto consensus models. For
genotoxicity endpoints, the Leadscope model coverage ranged
from 77% to 92%, which was improved to 92%–98% with the
optimal Pareto consensus models.

4 Discussion

The application of consensus models for toxicity predictions can
play an important role in regulatory toxicology, offering a powerful
tool to screen and prioritize substances for further testing and
assessment. Here, it has been demonstrated that the use of
consensus models enables a high-throughput and comprehensive
evaluation of potential toxicity that can be carried out across
multiple endpoints. Improvements in predictivity and chemical
space coverage were demonstrated using training sets that
spanned a large chemical space. The use of in silico predictive
models for prioritization and assessment aligns with increasing
reliance on NAM-based, or “next-generation risk assessment”
(NGRA), approaches in toxicology (Madden et al., 2020; Cronin
et al., 2022) and leverages successful models like CERAPP for ER
activity (Mansouri et al., 2016) and CoMPARA for AR activity
(Mansouri et al., 2020). The application of the Pareto front approach
to identify optimal consensus models, as shown here, offers a robust
and rapid means to enhance predictions from in silicomodels while
maximizing chemical space coverage.

Existing datasets originally compiled by the USEPA for
CERAPP and CoMPARA (Mansouri et al., 2016; Mansouri et al.,
2020), as well as the Leadscope SAR Genetox Database (Leadscope,
2019), were leveraged to extend the utility of established (Q)SAR
models. In addition to evaluating the combination of all available
models using a variety of different combinatorial rules, every
possible combination of models was also tested. While the
genotoxicity endpoints had a relatively large number of
component models available for each endpoint (i.e., mean of
eight), there were fewer ER and AR component models available
from the same developers (i.e., a mean of five and four, respectively).
The larger number of models available for genotoxicity assessment
reflects the fact that it has a long history of being a critical
component in the regulatory assessment of chemicals and
pharmaceuticals, and in silico predictive models offer a cost-
effective, time-efficient, NAM-based option for identifying
potential genotoxic compounds early on.

In this work, six different combinatorial methodologies and the
Pareto front approach were used to evaluate consensus models and
demonstrate utility as a flexible and adaptable approach that could
be applied across nine toxicological endpoints. A previous study
reported a consensus modeling strategy using majority voting and
Bayes consensus with discrete probability on AR binding, agonism,
and antagonism, considering several publicly reported (Q)SAR

models (Valsecchi et al., 2020). This study included several
commercial models for ER and AR binding in addition to public
domain models. In another study, the authors used various
modeling approaches including classic machine learning, normal
deep learning, and multitask deep learning to construct in silico
models to predict ER assay outcomes for 18 ToxCast and
Tox21 assays, using a training set of >7,500 chemicals. The
results of this study showed that no single algorithm consistently
outperformed others across the 18 endpoints, while consensus
models formed by averaging predictions from individual models
exhibited similar or higher predictivity (Ciallella et al., 2021).
Likewise, in this study, it was found that the optimal consensus
model performed better than any individual component model
across all nine endpoints. In a related study for genotoxicity
models, the Naïve Bayes algorithm was used as the aggregating
function to combine (Q)SARmodels, such as EPA TEST and VEGA,
and the structural alerts from the QSAR Toolbox to identify the
model with the highest balanced accuracy and sensitivity (Pradeep
et al., 2021). While the Naïve Bayes aggregation focuses on
probabilistic estimates and assumes feature independence, the
unique attribute of Pareto front consensus models is their ability
to incorporate the predictions from several diverse models using a
variety of combinatorial approaches and identify a single optimal
prediction while accounting for overall performance trade-offs. The
added value of this methodology has been clearly demonstrated for
assessing large inventories of structurally and functionally diverse
chemicals, allowing for the integration of information from various
models to resolve data conflicts and provide a more reliable outcome
while also expanding the domain of applicability.

Using this approach, consensus models for ER activity, AR
activity, and genotoxicity were developed that demonstrated
improvements in both chemical space coverage and
predictivity compared to the individual component models.
The endpoints with the highest performing consensus models
were the ER endpoints. The coverage across all 3 ER endpoints
was >97% and ModP was ≥0.9. The consensus models for the AR
endpoints were also quite high performing, with coverage >95%
and ModP ranging from 0.833 to 0.955. Regarding the
genotoxicity endpoints, models for both the bacterial mutation
and in vivo micronucleus endpoints also performed very well
(coverages of 96.7% and 94.1% and ModPs of 0.980 and 0.875,
respectively); however, a notable exception was the in vitro
chromosomal aberration endpoint. For this endpoint, the
“optimal” Pareto solution had a high coverage (96.9%) but a
ModP of only 0.604. Across all Pareto solutions for in vitro
chromosomal aberration, ModP had an upper limit of 0.606. This
limitation is attributed to a strong and significant negative
correlation between sensitivity and specificity across all
models. For this endpoint, plotting its sensitivity as a function
of specificity yields a slope of approximately −1 and an R2 of
0.837, meaning that improving one parameter leads to a decrease
in the other. This challenging trade-off between sensitivity and
specificity complicates efforts to enhance ModP, which relies on
the BA, the average of both sensitivity and specificity.

A bootstrapping analysis was used to analyze trends in the
component models that were included in the Pareto front
consensus models, as well as the total number of models. For
each endpoint, an analysis was performed to see whether there
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was a statistical relevance to each model appearing in the Pareto
fronts, which would suggest that those models are more likely to
yield enhanced performance. A few trends were noted; however,
these largely failed to meet the level of statistical significance,
likely due to the low number of Pareto front consensus models
and/or component models. When looking across all endpoints, it
was possible to find trends in the number of models used to
construct each consensus model and its relationship to inclusion
in the Pareto front. The combination of all available models did
not result in the highest performance when considering
predictive power (i.e., ModP) and chemical space coverage,
consistent with previous results (Kulkarni and Barton-
Maclaren, 2014; Abdelaziz et al., 2016; Pradeep et al., 2021).
These combinations, while generally improving upon the
individual model performances, did not outperform
consensus models constructed from a more limited selection
of models, a trend that held true across all endpoints. This
implies that some models within the full consensus models could
introduce noise, lowering their overall performance. The
bootstrapping analysis revealed that across all endpoints, the
mean percentage of models that were in the Pareto front was
only 40.9%, a result that approached statistical significance as it
would be expected to happen by chance only 6.4% of the time.
Finally, it was notable that although six different combinatorial
methods were used for each possible combination of models, the
optimal consensus models for all nine endpoints were by a
majority combination. This means that each of the
component models included in the optimal consensus models
contributed a similar weight to the consensus outcome. A key
takeaway from this work is that the use of a workflow such as the
one presented in this study, where every combination of
available models is tested using multiple combinatorial
methods, is necessary if the aim is to find the best possible
consensus model for predictions. This process needs to be
performed on each available endpoint, with the results
analyzed to determine the best consensus model for a
particular use.

Finally, we demonstrated the application of this approach to
improve screening of a large chemical inventory of structurally
diverse compounds. As mentioned, consensus models are well-
suited to high-throughput screening as they provide a single
outcome per endpoint, avoiding the need to address data
conflicts while maximizing the utility for chemical screening
and prioritization. In addition, one of the advantages of
developing consensus models is that they expand the
chemical space coverage. Approximately 16,000 substances
exist on Canada’s DSL that are amenable to in silico
modeling. Across all nine endpoints, an improvement in
chemical space coverage was observed when applying the
optimal Pareto consensus models developed here compared
with a component model. The expansion of the chemical
space coverage allows for screening of more chemicals on the
DSL for potential hazard, which translates to a better ability to
identify those chemicals that show potential to impact the health
of people living in Canada.

In summary, a methodology was developed to build in silico
consensus models, allowing the combination of multiple in silico
(Q)SAR models to provide a single prediction for a given

toxicological endpoint. Using high-quality datasets for nine
toxicological endpoints and 4–10 in silico component models
per endpoint, we applied six combinatorial methods. The models
that formed the Pareto front were optimized for both coverage
and ModP. It should be noted that the Pareto front models
outperformed the full-consensus models, showing the
importance of comprehensive screening of potential
consensus models to ensure optimal solutions. Overall,
consensus models demonstrated improved performance
compared to individual component models, particularly in
terms of the coverage of chemical space and predictive power.
The application of a distinctive Pareto front-based consensus
approach resulted in robust models with improved coverage and
predictive power. These enhancements made these consensus
models ideally suited for application to large inventories of data-
poor chemicals, such as Canada’s DSL, to enhance the overall
outcome reliability of (Q)SAR models. Combining multiple
predictions broadens knowledge and reliability, mitigating
contradictory information effects, and extends the
applicability domain in the chemical space. These consensus
models are developed to be integrated into a larger multi-tier
NAM-based framework to prioritize chemicals for further
investigation and support the transition to a non-animal
approach to risk assessment in Canada.
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