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What knowledge can be obtained from the record of a continuous measurement
about the quantum state of the measured system at the beginning of the
measurement? The task of quantum state retrodiction, the inverse of the
more common state prediction, is rigorously addressed in quantum
measurement theory through retrodictive positive operator-valued measures
(POVMs). This introduction to this general framework presents its practical
formulation for retrodicting Gaussian quantum states using continuous-time
homodyne measurements and applies it to optomechanical systems. We
identify and characterize achievable retrodictive POVMs in common
optomechanical operating modes with resonant or off-resonant driving fields
and specific choices of local oscillator frequencies in homodyne detection. In
particular, we demonstrate the possibility of a near-ideal measurement of the
quadrature of the mechanical oscillator, giving direct access to the position or
momentum distribution of the oscillator at a given time. This forms the basis for
complete quantum state tomography, albeit in a destructive manner.
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1 Introduction

Continuous measurements (Barchielli and Gregoratti, 2009; Wiseman and Milburn,
2010; Jacobs, 2014) are a powerful tool for the preparation and control of quantum states in
open systems and, as such, are of great importance for studies of fundamental physics and
applications in quantum technology. Using a continuous measurement record, it is possible
to track the quantum trajectory of a system in its Hilbert space in real time, as demonstrated
in circuit QED systems (Weber et al., 2016; Hacohen-Gourgy and Martin, 2020), atomic
ensembles (Geremia et al., 2003; Kong et al., 2020), and in optomechanics (Hofer and
Hammerer, 2017) with micromechanical oscillators (Iwasawa et al., 2013; Wieczorek et al.,
2015; Rossi et al., 2018; Thomas et al., 2020; Meng et al., 2022) and levitated nanoparticles
(Setter et al., 2018; Liao et al., 2019; Magrini et al., 2021). Determining the conditional
quantum state formally requires solving the stochastic Schrödinger or master equation
(Barchielli and Gregoratti, 2009; Wiseman and Milburn, 2010; Jacobs, 2014), which is
generally a daunting task. In the important case of linear quantum systems, which includes
most applications in optomechanics and atomic ensembles, the integration of the
Schrödinger equation simplifies the matter greatly and is actually equivalent to classical
Kalman filtering (Zhang and Dong, 2022). For this reason, these well-established and
powerful tools of classical estimation and control theory are finding increasing application
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in quantum science (Ma et al., 2022) and are becoming a well-
accepted technique for preparing quantum states.

Like any measurement in quantum mechanics, continuous
measurements not only determine the post-measurement state of
the system but also provide information about its initial prior state.
The dual use of continuous measurements for predictive preparation
and retrospective analysis of quantum states—as in Figure 1—as well as
their combination in what is referred to as quantum state smoothing
have received considerable attention in the theoretical literature; see
Chantasri et al. (2021) for a review. Retrospective state analysis and
smoothing have been experimentally investigated in cavity and circuit
QED (Rybarczyk et al., 2015; Tan et al., 2015; Foroozani et al., 2016;
Tan et al., 2016; Tan et al., 2017), atomic ensembles (Bao et al., 2020a;
Bao et al., 2020b), and optomechanics (Rossi et al., 2018; Kohler et al.,
2020; Thomas et al., 2020). However, compared with quantum state
preparation by filtering, the applications of these concepts for state
readout appear to be less known, although they represent powerful
tools for quantum state verification and tomography.

Here, we aim to give a self-contained and accessible introduction
to the theory of quantum state retrodiction based on continuous
measurements and its formulation for linear quantum systems. The
main equations of this theory have been derived before in the context
of quantum state smoothing in (Zhang andMølmer, 2017; Huang and
Sarovar, 2018; Warszawski et al., 2020). We focus our presentation on
the aspect of state retrodiction and aim to provide operational recipes
for this. The general formalism is applied to optomechanical systems,
for which we identify and characterize the retrodictive measurements
achievable in terms of their positive operator-valued measures
(POVMs). In particular, we consider the common regimes for
driving the optomechanical cavity on resonance or on its red or
blue mechanical sidebands and discuss the role of the local oscillator
frequency in homodyne detection. In each case, we determine the
realized POVM and compare it to what is achieved in state filtering in
the same configuration. A main finding is that red-detuned driving in
the resolved-sideband limit allows for an almost perfect quadrature
measurement, which is back-action free but completely destructive.
Our treatment accounts for imperfections due to thermal noise and

detection inefficiencies, and it studies the requirements of quantum
cooperativity for performing an efficient state readout. In particular,
we determine the concrete filter functions necessary for the post-
processing of the photocurrent in order to realize certain POVMs.

The remainder of the article is organized as follows: in Section 2, we
recapitulate the description of conditional state preparation through
continuousmeasurement based on stochastic master equations and the
equivalent Kalman filter, emphasizing the operational interpretation of
the central formulas. In close analogy, we introduce in Section 3 the
formalism of retrodictive POVMs and their application to linear
quantum systems, where the POVM consists of Gaussian effect
operators conveniently characterized by their first and second
moments. In Section 4, we illustrate the application of this
formalism to the simple case of a decaying cavity. Finally, Section 5
provides a rather detailed modeling of an optomechanical system and
derives the retrodictive POVMs in various parameter regimes.

2Conditional state preparation through
continuous measurements

2.1 Conditional master equation

To set the scene and introduce some notation, we start with an
overview of the concept of conditional (stochastic) master equations,
referring to Wiseman and Milburn (2010) and Jacobs (2014) for
detailed derivations. These describe the evolution of continuously
monitored quantum systems and are used to prepare conditional (or
filtered) quantum states.

We consider an open quantum system governed by Hamiltonian
Ĥ and coupled to a Markovian bath via jump operator L̂. This gives
rise to a quantum master equation (Wiseman and Milburn, 2010;
Jacobs, 2014) for the system’s density operator ρ(t):

dρ t( ) � −i Ĥ, ρ t( )[ ]dt +D[L̂]ρ t( )dt, (1)

with the usual Lindblad superoperator
D[L̂]ρ � L̂ρL̂

† − (L̂†L̂ρ + ρL̂
†
L̂)/2. We set Z = 1. The

generalization to multiple jump operators is straightforward. We
will designate all operators (except density operators) by caret
superscripts. The increment dρ(t)≔ρ(t + dt) − ρ(t) propagates the
state, by an infinitesimal amount, forward in time. Integrating this
equation of motion yields a trace-preserving completely positive
mapN t0 ,twhich takes an initial state ρ(t0) to a corresponding state at
a later time, ρ(t) � N t0 ,t[ρ(t0)] (Nielsen and Chuang, 2010).

Further information about the state can be gained by monitoring
the bath to which the system is coupled (Barchielli and Gregoratti,
2009; Wiseman and Milburn, 2010; Jacobs, 2014). In that case,
conditioning the state on the knowledge gained from these indirect
measurements is known as filtering (Bouten et al., 2007). We only
consider the case of homodyne (and later heterodyne) measurements,
as we are ultimately interested in linear dynamics. Other
measurement schemes, such as photon counting, would take the
conditional dynamics out of this regime. A continuous homodyne
detection of the outgoing mode, as sketched in Figure 1, yields a
stochastic photocurrent I(t). This can be normalized,Y(t)≔I(t)/α, with
some α ∈ R so that, for vacuum input, its increment δY(t) = Y(t +
δt) − Y(t) has the variance of white noise δY(t)2 � δI(t)2/α2 ≡ δt,

FIGURE 1
Schematic of a continuously monitored quantum system: the
output of field a quantum system is combined with a strong local
oscillator (LO) to perform homodyne detection from time t0 to t1,
producing measurement record Y. Starting from a known initial
state ρ(t0), this record can be used by integrating a stochastic master,
Eq. 3, to predict the system state ρY(t1) conditioned on the record Y.
Alternatively, the measurement record can be used to retrodict an
effect operator ÊY(t0), cf. Eq. 36, that characterizes an effective POVM
measurement on the initial state ρ(t0).
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where the bar denotes an ensemble average (Authors Anonymous,
2023a). The measured signal can be decomposed into a deterministic
and stochastic part as

(I) dY t( ) � 〈Ĉ + Ĉ
†〉ρ t( )dt + dW t( ). (2)

Here, Ĉ � �
η

√
e−iϕL̂ denotes the measurement operator, which

includes imperfect detection efficiency η ∈ [0, 1] and the local
oscillator phase ϕ. Angled brackets denote an expectation value,
〈Ĉ〉ρ ≔ Tr{Ĉρ}, and dW is a stochastic Wiener increment satisfies
the Itô relation (dW)2 = dt. Eq. 2 is a stochastic Itô equation
(Mikosch, 1998; Gardiner, 2009) denoted by the (I) in front.
Depending on the measurement results, the system satisfies the
conditional master equation

(I) dρ t( ) � −i Ĥ, ρ t( )[ ]dt +D[L̂]ρ t( )dt
+H[Ĉ]ρ t( )dW t( ), (3)

with superoperator H[Ĉ]ρ ≔ (Ĉ − 〈Ĉ〉ρ)ρ + ρ(Ĉ† − 〈Ĉ†〉ρ).
Assume the system has evolved from t0 to t1 and produced some
measurement record Y � {Y(s), t0 ≤ s< t1}, as depicted in Figure 1.
By integrating the master equation from t0 to t1, we obtain a
conditional (or filtered) state ρY(t1) � N t0 ,t1 |Y[ρ(t0)] dependent
on the initial state ρ(t0) and conditioned on the record Y.

The conditional master equation Eq. (3) can be generalized toNL

Markovian baths and NC monitored channels,

(I) dρ t( ) � −i Ĥ, ρ t( )[ ]dt +∑NL

j�1
D[L̂j]ρ t( )dt

+∑NC

k�1
H[Ĉk]ρ t( )dWk t( ).

(4)

If each of the NL decay channels is monitored, one has NC = NL and
Ĉk � ��

ηk
√

e−iϕk L̂k in simple generalization of what has been
introduced above for the case of a single channel. However, in
general, the measurement operators Ĉk do not necessarily
correspond one-to-one to the jump operators L̂j as before, and
we will see an example in Section 5 where, effectively, NC > NL.
Nevertheless, since any information recorded by the observer must
have previously leaked from the system, it holds that∑jL̂

†

j L̂j − ∑kĈ
†

kĈk ≥ 0. The dWj are mutually independent Wiener
increments satisfying the Itô relation

dWj t( )dWk t( ) � δjkdt, (5)

and each dWj is related to a corresponding homodyne measurement
increment dYj as

(I) dYj t( ) � 〈Ĉj + Ĉ
†

j〉ρ t( )dt + dWj t( ). (6)

For details and derivations of this general formalism for describing
quantum dynamics conditioned on continuous homodyne detection,
we refer oncemore toWiseman andMilburn (2010) and Jacobs (2014).

2.2 Linear dynamics

2.2.1 Linear systems
We now apply these concepts to linear systems with Gaussian

states governed by the general master equation Eq. (4). We consider
a bosonic quantum system with M modes and 2M associated

canonical operators r̂j which we collect into a vector
r̂ � (r̂j)j�1,...,2M. The r̂j satisfies canonical commutation relations

iσjk ≔ r̂j, r̂k[ ], (7)

giving rise to a skew-symmetric matrix σ ∈ R2M×2M. For example,
the usual choice for an oscillator with M modes would be
r̂ � (x̂T, p̂T)T � (x̂1, . . . , x̂M, p̂1, . . . , p̂M)T, which entails

σ � 0M 1M
−1M 0M

( ). (8)

In a linear system, the Hamiltonian is, at most, quadratic in the
canonical operators while the jump and measurement operators are,
at most, linear. Ĥ can be expressed as

Ĥ � 1
2
r̂THr̂, (9)

with a symmetric matrix H ∈ R2M×2M. Without loss of generality,
we assume that Ĥ does not contain terms linear in r̂ (Authors
Anonymous, 2023e). We write the NC linear measurement
operators as

Ĉ � A + iB( )̂r, (10)
with A, B ∈ RNC×2M, and NL jump operators as

L̂ � Λr̂, (11)
Λ†Λ ≕ Δ + iΩ, (12)

with complex Λ ∈ CNL×2M and Δ,Ω ∈ R2M×2M symmetric and
skew-symmetric respectively.

2.2.2 Gaussian states
A Gaussian state ρ (Wang et al., 2007; Olivares, 2012;

Weedbrook et al., 2012; Adesso et al., 2014; Genoni et al., 2016)
is, by definition, any state with a Gaussian phase-space distribution.
Gaussian states are fully determined by their first- and second-order
cumulants (Ivan et al., 2012): a vector of means

rρ ≔ 〈r̂〉ρ: � Tr r̂ρ{ } ∈ R2M (13)
and a symmetric covariance matrix

Vρ
jk ≔ 〈 r̂j − rρj , r̂k − rρk{ }〉ρ ∈ R2M×2M. (14)

All higher-order cumulants are identically zero, so knowing rρ and
Vρ determines the full Wigner function of ρ and thus also ρ itself.
Note that the normalization of Vρ chosen in Eq. 14 means that
diagonal elements correspond to twice the variance, such as Vρ

jj �
2(〈r̂2j〉 − 〈r̂j〉2).

The assumption of a Gaussian initial state ρ(t0) is both
convenient and reasonable. Since Gaussian operators have the
tremendously useful property of remaining Gaussian under linear
dynamics, they are easy to work with. Additionally, consideration of
only Gaussian states is justified since Gaussian measurements
(Jacobs and Steck, 2006; Van Handel, 2009) and Gaussian baths
(Zurek et al., 1993) tend to “Gaussify” the state of the system.
Mathematically, this means that, if we start with an arbitrary initial
state ρ(t0), higher-order cumulants of order ≥ 3 are damped by the
dynamics. Depending on how slowly this damping happens, if our
linear system is initially prepared in a non-Gaussian state, these
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higher orders may need to be taken into account—which we do in
Supplementary Appendix SC5. For now, we focus only on the case of
Gaussian initial states.

It is known (Barnett and Radmore, 1997; Zhang and Mølmer,
2017) that a master equation for ρ can be directly translated into
differential equations for the means and covariance matrix, as
detailed in Supplementary Appendix SC. One finds for a
Gaussian state

(I) drρ t( ) � Qrρ t( )dt + Vρ t( )AT − σBT( )dW t( ), (15)
with the drift matrix

Q ≔ σ H +Ω( ), (16)
comprising unitary and dissipative terms. If we reintroduce the
homodyne signal actually measured,

(I) dY t( ) � 2Arρ t( )dt + dW t( ), (17)
we can write

(I) drρ t( ) � Mρ t( )rρ t( )dt + Vρ t( )AT − σBT( )dY t( ), (18)

with the conditional drift matrix

Mρ t( ) ≔ Q + 2σBTA − 2Vρ t( )ATA. (19)

In Eq. 18, the measurement current dY(t) enters the evolution of the
conditional means only through multiplication with the
measurement matrices A and B. Hence, reducing the detection
efficiency corresponding to A, B → 0 causes the stochastic
increment to disappear as it should. Note that the covariance
matrix Vρ(t) twice enters Eq. 18, once through the drift matrix
Mρ(t) and once directly coupled to dY(t). The latter term has the
effect that a large variance, which corresponds to great uncertainty
about the state, boosts the effect that each bit of gathered
information has on the evolution of the conditional means.

The covariance matrix satisfies the deterministic equation

dVρ t( )
dt

� Mρ t( )Vρ t( ) + Vρ t( )MT
ρ t( )

+D + 2Vρ t( )ATAVρ t( ),
(20)

with diffusion matrix

D ≔ 2σ Δ − BTB( )σT. (21)
The evolution ofVρ(t) is independent of the means rρ(t) or any other
cumulants, which is a peculiarity of Gaussian dynamics. However,
while it is independent of the measurement record and not a
stochastic equation, it does depend on the measurement device
through matrices A, B. This is reasonable, since the information that
is gained from observations of the system conditions the state, thus
reducing its uncertainty.

In the following, we assume stable dynamics, which makes the
covariance matrix collapse to some steady state matrix Vρ(t) → V∞

ρ

asymptotically for t → ∞ from any initial Vρ(t0). We find V∞
ρ by

solving the Riccati equation _Vρ � 0 which implies

M∞
ρ V∞

ρ + V∞
ρ M∞

ρ( )T � −D − 2V∞
ρ ATAV∞

ρ , (22)

where M∞
ρ is just Mρ(t) with Vρ(t) ↦ V∞

ρ . The right-hand side is
negative definite and the covariance matrix is positive definite for
proper quantum states, so M∞

ρ only has eigenvalues with negative

real part. Now if the experiment has been running sufficiently long,
we can simply plug V∞

ρ andM∞
ρ into Eq. 18 to find the evolution of

the means:

(I) rρ t( ) � e t−t0( )M∞
ρ rρ t0( )

+∫t

t0
e t−τ( )M∞

ρ V∞
ρ AT − σBT( )dY τ( ). (23)

Because M∞
ρ is stable (all eigenvalues have non-positive real parts),

we see that the initial condition rρ(t0) is damped exponentially, as is
the integrand in the second line.

Here, we see that the means (and thus the whole state) do not
depend on the entire continuous measurement record Y as such, but
only on the Itô-integral in the second line of Eq. 23, which is a simple
vector of 2M real numbers for a system composed ofM subsystems.
Thus, the integral kernel eM

∞
ρ (t−τ)(V∞

ρ AT − σBT) actually picks out a
set of 2M temporal modes of the monitored fields. Each of these (not
necessarily orthogonal) modes of the light fields provides an
estimate for one of the 2M phase space variables of the system.
We will elaborate on this aspect further in Section 2 C 2. For the
particular case of a freely decaying monitored cavity, this fact was
already pointed out by Wiseman (1996); in Section 4, we will treat
this cavity as an illustrative example of the formalism developed
here, reproducing the results of Wiseman (1996).

2.3 Interpretation and discussion

2.3.1 Conditional quantum states
We now want to remind the reader of how the conditional

Gaussian quantum state should be interpreted and what its
preparation via continuous measurements means from an
operational perspective.

The means rρ(t) and covariance matrix Vρ(t) determined from
Eqs 18 and (20) fully determine the density matrix for the
conditional state. It is instructive to note that the Gaussian
density matrix is always of the form (Giedke, 2001; Fiurášek and
Mišta, 2007)

ρ t( )∝ D̂ rρ t( )( )exp −r̂TΓρ t( )r̂[ ]D̂†
rρ t( )( ). (24)

Here, D̂(q) � exp(−iqσ r̂) is a displacement operator in phase space
and the matrix Γρ(t) is a simple functional of the covariance matrix
(Authors Anonymous, 2023b). The shape of the Gaussian wave
packet in phase space is determined by the middle term on the right-
hand side, which evolves deterministically and is independent of the
measurement results. The wave packet’s position in phase space is
set by the displacement operators and depends on the photocurrent
via Eq. 23.

Therefore, predicting a conditional quantum state based on a
continuous measurement during time interval [t0, t] starting from a
known Gaussian initial state simply means calculating the means
according to Eq. 23. Knowing those numbers, the prediction is that
a hypothetical projective measurement of canonical operators at time t
will give results with these same averages, and second moments
according to the covariance matrix Vρ(t) which depends only on the
initial condition. Statistics of any other measurement can be
determined from Eq. 24. For stable dynamics, dependencies on
initial conditions will disappear in the long run, and the covariance
matrix will become time-independent. Thewave packet will then have a
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fixed shape and undergo stochastic motion in phase space with
positions known from the photocurrent.

The quality of the conditional preparation can be judged from
the purity P(ρ) � Tr{ρ2}≤ 1 of the conditional state. It tells us how
close it is to a pure state and thus quantifies the amount of classical
uncertainty in ρ. For a Gaussian state with M modes, it is given by
(Paris et al., 2003)

P ρ( ) � 1/ �������
det Vρ( )√

. (25)

Unobserved dissipation tends to reduce the purity, while monitoring
the dynamics and conditioning the state increases the purity. Ideally,
perfect detection allows preparation of pure states, which are the only
states with P(ρ) � 1. The bound P ≤ 1 implies det(Vρ) ≥ 1, which is
also imposed by Heisenberg’s uncertainty relation. We briefly recall
prototypical pure Gaussian states of a singlemode. Coherent states |α〉
have equal variances Vxx = Vpp = 1 and vanishing covariance. The
vacuum |0〉 is a special coherent state with vanishingmeans. Squeezed
states (Barnett and Radmore, 1997) have the variance in one
quadrature reduced below shot noise—below 1 (the variance of
vacuum). The conjugate quadrature is then necessarily anti-
squeezed to satisfy Heisenberg’s uncertainty relation. An important
class of non-pure Gaussian states is thermal states. These have
vanishing covariance and equal variance Vxx � Vpp � 2�n + 1,
where �n≥ 0 is the mean number of excitations. Importantly, P �
1/(2�n + 1) decreases as �n grows.

2.3.2 Mode functions
We mentioned at the end of Section 2 B 2 that the kernels in the

forward and backward integrals of the means in Eq. 23 and Eq. 46
each select sets of temporal modes. Recall that the means rρ(t) �
(rj(t))j�1,...,2M in Eq. 23 depend on the measurement currents
Y(τ) � (Yk(τ))k�1,...,NC

only through integration with respect to
the functions

fρ
jk t, τ( ) ≔ e t−τ( )M∞

ρ V∞
ρ AT − σBT( )[ ]

jk
. (26)

Each (unnormalized) temporal mode function fρ
jk(t, τ) is integrated

with a corresponding signal Yk(τ),

Xj t( ) ≔ ∫t

t0

fρ
jk t, τ( )dYk τ( ), (27)

to enter the evolution of rj(t). The interpretation of this is as follows:
the time integral of extracts from the continuous quadrature-
measurement current Yk(τ) a single number Xj(t), which can be
considered the result of the measurement of the quadrature of
temporal modes with envelope functions fρ

jk(t, τ).

3 State verification using
retrodictive POVMs

3.1 Retrodictive POVMs

In the previous section, we have seen how to use continuous
monitoring to prepare conditional states (filtering). We will now
show how to interpret the measurement record instead as an
instantaneous POVM (Nielsen and Chuang, 2010; Wiseman and

Milburn, 2010; Jacobs, 2014). To fully appreciate this result, let us
first remind the reader about POVMs and general measurements in
quantum mechanics.

3.1.1 Positive operator-valued measures
A general measurement of a given quantum state ρ is always

composed of i) possible measurement outcomes x ∈ X , ii)
probabilities for those outcomes to occur P(x|ρ), and iii) the
effect that obtaining some outcome x has on the system—the
post-measurement state ρx ∝ M̂xρM̂

†

x where M̂x incorporates the
measurement back action on the state. The probability for a
particular x to be measured is given by

P x|ρ( ) � Tr M̂xρM̂
†

x{ } � Tr M̂
†

xM̂xρ{ } � Tr Êxρ{ } (28)

with the positive effect operator Êx ≔ M̂
†

xM̂x. Because ∑xP(x|ρ) = 1
must hold for any ρ, the operators Êx must resolve the identity∑xÊx � 1̂. Without reference to the M̂x, any collection of positive
self-adjoint operators {Êx, x ∈ X } which resolve the identity is
called a POVM.

3.1.2 Continuous monitoring as POVM
measurement

To see how to reinterpret the measurement record, we again
consider the simple system governed by the master Equation 3 and
an evolution from t0 to t1 that produced some record
Y � {Y(s), t0 ≤ s< t1}. Note that Eq. 3 is nonlinear in ρ in order
to yield a trace-preserving map N t0 ,t1|Y. If, instead, we consider the
linear equation (Wiseman, 1996)

(I) d~ρ t( ) � −i Ĥ, ~ρ t( )[ ]dt +D[L̂]~ρ t( )dt
+ Ĉ~ρ t( ) + ~ρ t( )Ĉ†( )dY t( ), (29)

we find that it generates equivalent but non-trace-
preserving dynamics,

~ρY t1( ) � ~N t0 ,t1 |Y ρ t0( )[ ], (30)

denoted by a tilde. The trace of the conditional state now carries
additional information: the probability for Y to have occurred given
an initial ρ(t0),

P Y|ρ t0( )( ) � Tr ~ρY t1( ){ }. (31)

If we plug Eq. 30 into this expression and include an identity
operator 1̂, we can write

P Y|ρ t0( )( ) � Tr 1̂ ~N t0 ,t1 |Y ρ t0( )[ ]{ }, (32)
� Tr ~N †

t0 ,t1 |Y 1̂[ ]ρ t0( ){ }, (33)

where ~N †

t0 ,t1 |Y is the Hilbert–Schmidt adjoint channel of ~N t0 ,t1|Y that
acts on 1̂. We now define

ÊY t0( ) ≔ ~N †

t0 ,t1 |Y 1̂[ ], (34)

which will play a crucial role throughout this article. With this
definition, Eq. 33 can be rewritten as

P Y|ρ t0( )( ) � Tr ÊY t0( )ρ t0( ){ }. (35)
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A comparison of Eq. 35 with Eq. 28 shows that {ÊY(t0),Y ∈ Y}
indeed constitutes a POVM on the initial state ρ(t0). Here, the
“outcomes” x ≡ Y ∈ Y comprise all possible records one could
observe, and ∑Y∈YP(Y|ρ(t0)) � 1 because the sum corresponds
to averaging over (i. e., ignoring) the observations, which yields
the unconditional trace-preserving evolution (1). As in filtering, we
will later show that the effect operators actually only depend on
certain weighted integrals of the measurement record Y and not on
the whole continuous record as such.

3.2 Backward effect equation

Just as the conditional quantum state, the effect operators ÊY(t)
themselves can be considered dynamic quantities that obey a certain
(stochastic) equation of motion. In open but unobserved systems,
Barnett et al. (2000), Barnett et al. (2001), and Pegg et al. (2002)
derived a deterministic differential equation describing the
propagation backward in time of effect operators to yield effective
POVMs at past times. Tsang (2009a), Tsang (2009b), Tsang, (2010),
Gammelmark et al. (2013), and Zhang and Mølmer (2017)
incorporated continuous observations into Bayesian updates of
past measurement results, which (arguably, see Guevara and
Wiseman (2015)) extends classical smoothing to the quantum
domain and results in a stochastic differential equation for ÊY(t).

For a given system dynamics, the effect operators are
backpropagated by a channel adjoint to that of the state. More
specifically, for continuously monitored systems governed by
conditional master Equation 29, the adjoint conditional effect
equation, which takes some effect operator Ê(t) from the future
to the past reads (Tsang, 2009a; Tsang, 2009b; Gammelmark
et al., 2013)

(BI) − dÊ t( ) ≔ Ê t − dt( ) − Ê t( )
� i Ĥ, Ê t( )[ ]dt +D†[L̂]Ê t( )dt

+ Ĉ
†
Ê t( ) + Ê t( )Ĉ( )dY t( ),

(36)

with adjoint Lindblad superoperator
D†[L̂]Ê ≔ L̂

†
ÊL̂ − 1

2L̂
†
L̂Ê − 1

2 ÊL̂
†
L̂. The (BI) indicates that the

equation should be treated as a backward Itô equation. In
Supplementary Appendix SA, we give a detailed derivation of
this equation and comment further on its interpretation as a
differential equation for propagation backward in time. Note that
we defined the increment dÊwith an explicit minus sign. This differs
from the convention of Gammelmark et al. (2013) and Zhang and
Mølmer (2017) but follows the convention of Tsang (Tsang, 2009a;
Tsang, 2009b).

Comparing the effect Equation 36 to the forward master
Equation 29, we observe the following differences. The sign of
the Hamiltonian changes, which we expect from the usual time-
reversal in closed systems. The Lindblad superoperatorD is replaced
by its adjoint D†, which is no longer trace-preserving but vanishes
when applied to the identity. The measurement operator Ĉ is
replaced by its adjoint.

Solving Eq. 36 for Ê(t) for t ≤ t1 requires a certain final condition
Ê(t1). We have motivated the definition (34) of the effect operator
by means of the final condition Ê(t1) � 1̂. This can be interpreted as
describing a situation where, at time t1, a certain {Êx, x ∈ X} is

performed on the system, but the outcome x is not registered. If the
outcome x is registered and we want to describe a dynamics post-
selected on it, we need to replace the identity in Eq. 33 by Êx(t1) to
obtain an effective Êx,Y(t0). This general observation-assisted back-
propagation is what we refer to as retrodiction. It is remarkable that a
non-trivial POVM can also be retrodicted starting from the trivial
effect operator Ê(t1) � 1̂ using nothing but knowledge of the
system’s dynamics and continuous observations. In fact, in many
relevant cases the final condition on Êwill be damped out in the long
run, just as initial conditions for the forward propagated density
matrix become irrelevant for stable dynamics. This point will be
addressed more rigorously further below.

The unnormalized effect equation generalizing Eq. 36 to
multiple observed and unobserved channels reads

(BI) − dÊ t( ) � i Ĥ, Ê t( )[ ]dt +∑NL

j�1
D† L̂j[ ]Ê t( )dt

+∑NC

k�1
Ĉ

†

kÊ t( ) + Ê t( )Ĉk( )dYk t( ).
(37)

Since we only consider conditional dynamics from now on, we will
drop the subscript Y and remember that both ρ and Ê depend on
respective parts of the monitoring record.

3.3 Linear dynamics and Gaussian POVMs

As in Section 2 B, we focus our approach on linear systems. Like
density operators, we can represent effect operators in terms of
phase space distributions, which allow us to translate the effect
equation into differential equations for the cumulants. We must be
more careful with the definition of statistical quantities, as Ê does
not have unit trace (or may not be trace class at all). For example, the
means and covariance matrix are given by

rEj ≔〈r̂j〉E ≔
Tr r̂jÊ{ }
Tr Ê{ } , (38)

VE
jk � 〈 r̂j − rEj , r̂k − rEk{ }〉E, (39)

where the expectation value 〈·〉E is explicitly normalized and is
defined as long as Tr{Ê} exists.

Gaussian effect operators and their time dynamics have been
treated recently by Zhang and Mølmer (2017), Huang and Sarovar
(2018), and Warszawski et al. (2020). Since we aim to keep our
treatment self-contained, we reproduce a number of the results (in
particular on the Gaussian equations of motion of the effect
operator) presented there. Our derivation and presentation
complements these previous ones with further details and
background. In particular, it was not apparent to us if the
restriction to Gaussian effect operators is justified as it is for
quantum states (cf. the discussion in Section 2 B 2). In
Supplementary Appendix SC7, we consider the evolution of
general effect operators and show that it is very similar to that of
general quantum states. Hence, a notion of backward stability
analogous to that of quantum states can be applied.

To obtain the evolution of the means and covariance matrix
associated with Ê from the corresponding equations for rρ andVρ, let
us rewrite the effect Equation 37 as
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(BI) − dÊ t( ) � −i −Ĥ, Ê t( )[ ]dt +∑NL

j�1
D L̂j[ ]Ê t( )

+∑NL

j�1
L̂
†

j Ê t( )L̂j − L̂jÊ t( )L̂†

j( )dt
+∑NC

k�1
Ĉ

†

kÊ t( ) + Ê t( )Ĉk( )dYk t( ),

(40)

where the second line compensates for the replacement of D† by D.
We see that this equation is structurally very similar to the
unnormalized master Equation 4, so Eqs 18 and 20 for drρ and
_Vρ serve as a good starting point with the following changes: i) time-
reversal requires they be treated as backward Itô equations (cf.
Supplementary Appendix SB); ii) the sign flip of Ĥ causes H↦ − H
and replaces the measurement operators Ĉk by their adjoint entails
B↦ − B; iii) working out the change stemming from the sandwich
terms in the second line, we find in Supplementary Appendix SC7
that it contributes terms −2σΩrE and −σΩVE − (σΩVE)T to the
evolution of the means and covariance matrix, respectively.
Together with H↦ − H, this simply changes the sign of the
unconditional drift matrix Q↦ − Q. Hence, the backward Itô
equation for the means reads

(BI) − drE t( ) ≔ rE t − dt( ) − rE t( )
� ME t( )rE t( )dt + 2VE t( )AT + σBT( )dY t( ), (41)

with the conditional backward drift matrix

ME t( ) ≔ − Q − 2σBTA − 2VE t( )ATA. (42)
The deterministic backward Riccati equation for the covariance

matrix is similar to Eq. 20,

−dVE t( )
dt

≔ VE t − dt( ) − VE t( )
� ME t( )VE t( ) + VE t( )MT

E t( )
+D − 2VE t( )ATAVE t( ),

(43)

and clearly shows the importance of continuous observations for
retrodiction. Without observations (i. e., when A = B = 0), the drift
matrices would be equal up to signMρ(t) = −ME(t) = Q. At the same
time, the quadratic Riccati equations for the respective covariance
matrices would turn into linear Lyapunov equations. Assuming
stable forward dynamics with a positive steady state solution V∞

ρ > 0
of Eq. 22,

QV∞
ρ + V∞

ρ QT � −D (44)

would preclude stable backward dynamics: there cannot
simultaneously be a positive asymptotic covariance matrix
V∞

E > 0 for t → −∞ that satisfies

−QV∞
E − V∞

E QT � −D. (45)
Only the presence of a sufficiently large quadratic ATA-term in Eq.
43, corresponding to sufficiently efficient observations, allows us to
find an asymptotic solution V∞

E > 0. Analogous to Eq. 22, this
implies an asymptotic drift matrix M∞

E whose eigenvalues have
negative real parts.

Assuming stable backward dynamics that make any Gaussian
effect operator with VE(t1) collapse to V∞

E as t → −∞, we can plug
the asymptotic solutionV∞

E into the equation for the means. As with
the forward solution in Eq. 23, we find

(BI) rE t( ) � e t1−t( )M∞
E rE t1( )

+∫t1

t
e τ−t( )M∞

E V∞
E AT + σBT( )dY τ( ), (46)

where the integral is a backward Itô integral as explained in
Supplementary Appendix SB. The negative eigenvalues of M∞

E

again cause exponential damping of the final condition rE(t1) and
of the integrand, which picks out a different set of modes compared
to the forward integral in Eq. 23 (cf. Section 2 C 2).

3.4 Interpretation of retrodictive POVMs

Analogous to Eq. 24, the POVM realized at time t in retrodiction
based on continuous homodyne detection during some time interval
[t, t1] can be written as

D̂ rE t( )( )Ê0 t( )D̂†
rE t( )( ){ }. (47)

Here, Ê0(t) � exp[−r̂TΓE(t)̂r] is independent of the means, since
ΓE(t) is determined by the covariance matrix VE(t) as explained in
Eq. 24. Means rE(t) and covariance matrices VE(t) are determined by
(41) and 43. The POVM elements all correspond to displaced
versions of the operator Ê0(t). The shape of Ê0(t) determines
the resolution in phase space achieved by the POVM in
retrodiction. It is again useful to consider the purity of a
Gaussian effect operator Ê with covariance matrix VE, which is
computed as in Eq. 25. Unit purity means that the given POVM
actually corresponds to projections onto pure states, constituting a
quantum-limited measurement. Pure POVM elements with equal
variances then indicate a projection onto coherent states, which
corresponds to a heterodyne measurement of both quadratures
(Wiseman and Milburn, 2010), that is, |α〉〈α|/π{ }. Asymmetric
variances, on the other hand, indicate squeezed projectors that
correspond, in the ideal limit of infinite squeezing, to a
measurement of only one quadrature, {|x〉〈x|}, where |x〉 denotes
a quadrature eigenstate.

Reduced purity means additional uncertainty and thus lower
resolution of the measurement. We will see in the examples in
Sections 4 and 5 that the purity of retrodicted effect operators
decreases quickly when the detection efficiency is low or when there
is coupling to unobserved baths. Quite generally, for systems subject
to continuous time measurements with a measurement rate Γ
(including losses) competing with other decoherence processes
happening at rate γ, the dynamics of both conditional density
and effect matrix crucially depend on a quantum cooperativity
parameter Cq = Γ/γ. The regime Cq > 1 signifies the possibility of
producing quantum-limited POVMs in retrodiction just as it allows
pure conditional quantum states in prediction. In Section 5, we will
prove this statement in great detail for continuous measurements on
optomechanical systems.

While it is possible to perform quantum limited POVMs
corresponding to projections on pure states, this cannot be used
as a means of preparing pure quantum states. The “collapsed”
posterior state is physically not realized since retrodictive
POVMs are destructive: once all information necessary for
realizing the POVM has been gathered, the system’s state has
already evolved into something different, the best description of
which is just the conditional quantum state. It does not make sense

Frontiers in Quantum Science and Technology frontiersin.org07

Lammers and Hammerer 10.3389/frqst.2023.1294905

https://www.frontiersin.org/journals/quantum-science-and-technology
https://www.frontiersin.org
https://doi.org/10.3389/frqst.2023.1294905


to consider the posterior state after the measurement just as it is
useless to ask for the state of a photon after photo-detection.

Repeated measurement of a POVM (47) on identically prepared
systems in state ρ0 will map out the probability distribution

P r|ρ0( ) � Tr D r( )Ê0D
† r( )ρ0{ }.

This is the information on the state ρ0, which is directly accessible via
retrodictive POVMs. Other relevant aspects regarding the quantum
state may be inferred from such information, possibly collected for
different POVMs by changing the dynamics—and with it, the
equations of motion for Ê(t)—of the system.

One may, for example, be interested in reconstructing the
density matrix ρ0 itself, which corresponds to the problem of
quantum state tomography. Recapitulating the methods available
to perform this task is beyond the scope of this article, and we refer
to the literature in this field (Paris and Řeháček, 2004; Lvovsky and
Raymer, 2009). We just state two particularly simple cases where the
heterodyne POVM directly provides the Mandel Q-function of the
quantum state, Q(α) � 〈α|ρ0|α〉. If ρ0 was known to be Gaussian,
this POVM would directly give the correct means and (co)variances
with one unit of added quantum noise in each quadrature. A POVM
corresponding to an infinitely squeezed state will give direct access
to the marginal distribution in the respective quadrature 〈x|ρ0|x〉.

It is worth emphasizing that the Gaussian POVMs realized by
the linear dynamics considered here may well be applied to non-
Gaussian states. No assumption of the initial state ρ0 went into the
derivation of the equations of motions (41) and (43) for the
Gaussian operator Ê(t). Provided the measurement delivers
sufficient resolution in phase space, the tools of retrodictive
Gaussian POVMs can therefore be used for verification of non-
Gaussian states which have been created initially by some different
means (of course, those initial states cannot emerge as conditional
states from Gaussian dynamics and homodyne detections alone.)
Along these lines, the preparation and verification of Fock states in

macroscopic mechanical oscillators have been discussed by Khalili
et al. (2010)—see also Miao et al. (2010).

4 Basic examples

In this section, we consider two basic but illustrative examples of
the formalism developed so far; these will provide a firm basis for the
more serious application to optomechanical systems in Section 5.

4.1 Monitoring a decaying cavity

Let us start with the simple example of a decaying cavity
undergoing homodyne detection (Figure 2). This example was
used by Wiseman (1996) to illustrate the interpretation of
quantum trajectories in measurement theory as retrodictive
POVM elements. Using operator algebra, he showed that, with
an ideal detector and infinite observation time, one can perform
a projective measurement of the initial state of the cavity onto a
quadrature eigenstate. Using the formalism developed in the
previous sections, we will treat the same setup here for
homodyne detection with efficiency η. For ideal detection η → 1,
we recover the result of Wiseman.

4.1.1 Conditional state evolution
We consider an ideal freely damped cavity with decay rate Γ. The

output is mixed with a strong local oscillator with adjustable relative
phase ϕ to perform homodyne detection with efficiency η ∈ [0, 1].
For later reference, we first study the corresponding stochastic
master equation for the conditional state of the intra-cavity field
(Wiseman, 1996). In a frame rotating at the cavity frequency, this is

(I) dρ t( ) � ΓD[â]ρ t( )dt + ��
ηΓ

√ H[e−iϕâ]ρ t( )dW t( ), (48)
where â†, â are the cavity creation and annihilation operators
(CAOs). The canonical quadrature operators are x̂ � (â + â†)/ �

2
√

and p̂ � −i(â − â†)/ �
2

√
which we collect into a vector r̂ � [ x̂ p̂ ]T.

The Wiener increment dW(t) is then related to the detector output
dY(t) as

dY t( ) � ���
2ηΓ

√
〈x̂ϕ〉ρ t( )dt + dW t( ), (49)

with x̂ϕ ≔ cos(ϕ)x̂ + sin(ϕ)p̂. Due to the symmetry of the problem,
we choose ϕ = 0 without loss of generality, observing only the
x̂-quadrature of the cavity.

Spelling out Eqs 15 and (20) for drρ and _Vρ, we find

(I) dxρ t( ) � −Γ
2
xρdt +

���
ηΓ
2

√
Vρ

xx t( ) − 1( )dW t( ), (50a)

(I) dpρ t( ) � −Γ
2
pρdt +

���
ηΓ
2

√
Vρ

xp t( )dW t( ), (50b)

and

_V
ρ

xx � − 1 − 2η( )ΓVρ
xx + 1 − η( )Γ − ηΓ Vρ

xx( )2, (51a)
_V
ρ

xp � − 1 − η( )ΓVρ
xp − ηΓVρ

xxV
ρ
xp, (51b)

_V
ρ

pp � −ΓVρ
pp + Γ − ηΓ Vρ

xp( )2. (51c)

FIGURE 2
Schematic of a freely decaying cavity monitored from time t0 to
t1. Light leaving the cavity at rate Γ is superposed on a balanced beam-
splitter with a strong local oscillator (LO). Two photodetectors
monitor the output ports and their photocurrents are subtracted
to yield a time-continuous homodyne measurement signal Y(t).
Imperfect detection is modeled as photon loss induced by a second
beam-splitter which only transmits a fraction η of the signal light.
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The steady-state covariance matrix V∞
ρ satisfying the Riccati

equation _Vρ � 0 is given by the variances and covariance

Vρ
xx � Vρ

pp � 1, Vρ
xp � 0. (52)

Computing the purity P(ρ) � 1/
��������
det(V∞

ρ )
√

� 1 shows that the
prepared steady state is pure, which, together with equal variances,
implies that it is a coherent state. However, pluggingV∞

ρ into Eq. 50a
for the means makes dW drop out, so the asymptotic forward
evolution does not depend on the monitored output. In the long run,
both mean values decay exponentially, affirming the expected result
that, over long periods, a decaying cavity will simply collapse to the
vacuum state ρ∞ � |0〉〈0|.

This insight is important: it shows that the covariance matrix and
purity alone do not let us judge the effectiveness of a given preparation
(or retrodiction) scheme. If the unconditional dynamics produce
some mixed steady state, we can increase our knowledge by
monitoring the output. Over long periods, the conditional
dynamics will produce a state with a fixed covariance matrix and
measurement-dependent means that move around phase space, such
that the averaged conditional dynamics agree with the unconditional
dynamics. However, if the unconditional dynamics already yield a
quantum-limited state (such as the vacuum in the present example),
then there is nothing to be gained from observing the output. These
statements apply to both quantum states and effect operators.

While the observations cannot aid (long-term) state
preparation, we will now see how they let us infer information
about the initial state of the cavity.

4.1.2 Retrodiction of POVM elements
The equation adjoint to Eq. 48 for the backward-propagating

POVM element Ê reads

(BI) − dÊ t( ) � ΓD†[â]Ê t( )dt
+ ��

ηΓ
√

â†Ê t( ) + Ê t( )â( )dY t( ). (53)

Wiseman (1996) essentially constructed an operator solution of this
equation for a unit-efficiency measurement and showed that the
corresponding POVM corresponds to a projection on quadrature
eigenstates. Restricting ourselves to Gaussian POVMs (cf.
Supplementary Appendix SC 7), we instead directly write down
the (normalized) equations of motion of means and covariance
matrix, Eqs 41 and (43),

(BI) − dxE t( ) � Γ
2
xEdt +

���
ηΓ
2

√
VE

xx t( ) + 1( )dW t( ), (54a)

(BI) − dpE t( ) � Γ
2
pEdt +

���
ηΓ
2

√
VE

xp t( )dW t( ), (54b)

and

− _V
E

xx � 1 − 2η( )ΓVE
xx + 1 − η( )Γ − ηΓ VE

xx( )2, (55a)
− _V

E

xp � 1 − η( )ΓVE
xp − ηΓVE

xxV
E
xp, (55b)

− _V
E

pp � ΓVE
pp + Γ − ηΓ VE

xp( )2. (55c)

We solve _V
E
xx � 0 to find the asymptotic solution

VE
xx �

1 − η

η
, (56)

which entails constant covariance, _V
E
xp ≡ 0, independent of its

current value. Note that the asymptotic x̂-variance vanishes,
VE

xx → 0, as η → 1 which shows that the corresponding effect
operator measures x̂ with arbitrary precision. The effect operator
will be squeezed in x̂ (i. e., VE

xx < 1) for any η> 1
2. On the other hand,

VE
xx → ∞ as η → 0 emphasizes that retrodiction crucially depends

on observations. When attempting to solve _V
E
pp � 0, we find that

there is no finite asymptotic solution, VE
xp and VE

pp, which
simultaneously satisfies VE

pp ≥ 0 and det[VE] ≥ 0, which are
necessary requirements for a proper covariance matrix. Thus
VE

pp(t) grows beyond all bounds as time runs backward, which is
in line with the fact that our setup only gathers information about x̂.
Thus, retrodiction allows us to effectively perform a projective
measurement of a quadrature operator on the initial state of the
cavity. By changing the homodyne angle, analogous results can be
obtained for any quadrature x̂ϕ. This agrees with the finding
Wiseman (1996) derived using completely different methods of
exploiting operator algebra. One can check by direct computation
(paying attention to detail Authors Anonymous (2023d)) that the
effect operator constructed in Wiseman (1996) indeed satisfies the
equation of motion (53).

We can now also derive the filter functions or temporal modes
which must be extracted from the photocurrent. Plugging the
asymptotic variance VE

xx into the equation for xE, we find

(BI) − dxE t( ) � Γ
2
xEdt +

���
Γ
2η

√
dW t( ), (57)

� −Γ
2
xEdt +

���
Γ
2η

√
dY t( ). (58)

The solution to this equation is given by

(BI) xE t( ) � e−Γ t1−t( )/2xE t1( )
+

��
Γ
2η

√ ∫t1

t
e−Γ t1−τ( )/2dY τ( ), (59)

for t ≤ t1, so the final value xE(t1) is exponentially damped, and, far
into the past, the mean x̂-quadrature of the retrodicted effect
operator will depend only on the integrated measurement
current. The temporal mode to be extracted from the continuous
measurement is an exponentially decaying function in time with
width Γ/2 set by the cavity decay rate.

4.2 Beam-splitter vs squeezing interaction

We will now examine why we can prepare only a coherent state
(the vacuum) but can measure squeezed states. This is due to the
beam-splitter (BS) coupling between the cavity and the field outside,

Ĥ
BS

int � Γ âĉ†out + â†ĉout( ), (60)
where ĉ†out, ĉout are the CAOs corresponding to the outgoing mode
being measured. This interaction causes a state swap between the
intracavity and outside fields. To illustrate this further, let us replace
the BS coupling by a two-mode squeezing (TMS) interaction,

Ĥ
TMS

int � Γ â†ĉ†out + âĉout( ). (61)
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This is obviously unrealistic for our simple cavity, but we will
encounter the TMS interaction again in optomechanical systems,
so it is worthwhile understanding the effect this has on the dynamics.
Ĥ

TMS
int creates entangled pairs of photons, so detecting the outgoing

light will reveal information about the current state of the cavity but
not about what it was before the interaction. The corresponding
master equation reads

(I) dρ t( ) � ΓD[â†]ρ t( )dt + ��
ηΓ

√ H[â†]ρ t( )dW t( ). (62)
This yields equations of motion for the means and (co)variances of
the conditional state,

(I) dxρ t( ) � Γ
2
xρdt +

���
ηΓ
2

√
Vρ

xx t( ) + 1( )dW t( ), (63)

(I) dpρ t( ) � Γ
2
pρdt +

���
ηΓ
2

√
Vρ

xp t( )dW t( ), (64)
and

_V
ρ

xx � 1 − 2η( )ΓVρ
xx + 1 − η( )Γ − ηΓ Vρ

xx( )2, (65)
_V
ρ

xp � 1 − η( )ΓVρ
xp − ηΓVρ

xxV
ρ
xp, (66)

_V
ρ

pp � ΓVρ
pp + Γ − ηΓ Vρ

xp( )2, (67)

which are exactly the same as the backward Eqs 54 and 55 for the BS
interaction. So while Vρ

pp(t) will grow asymptotically beyond all
bounds, we can condition the x̂-quadrature to arbitrary precision
limited only by our detection efficiency η, meaning we can prepare
arbitrarily squeezed states. Similarly, the situation is also reversed for
the backward effect equation, yielding equations for means and
covariance matrix given by Eqs 50a and 51a. The effect operators will
thus become independent of the photocurrent in the long-time limit
and project only on the vacuum state. We summarize the effect of
each coupling on the performance of both pre- and retrodiction
in Table 1.

5 Conditional state preparation and
verification in optomechanics

The illustrative examples studied in the previous sections
provide the background for the main application of the
formalism to time-continuous measurements on optomechanical
systems (Chen, 2013; Aspelmeyer et al., 2014). The system of interest
is a single mode of a mechanical oscillator, such as a membrane
depicted in Figure 3, which couples to the light field inside a
resonantly driven cavity. The light escaping the cavity is then
mixed with a local oscillator to perform heterodyne detection.
We will be interested in the weak coupling limit of
optomechanics, where the cavity can be adiabatically eliminated
and where the time continuous measurement effectively concerns

the mechanical system only. It is important to note that this weak
coupling limit does not exclude the regime of strong quantum
cooperativity where the measurement back-action noise process
effectively becomes stronger than all other noise processes acting
on the oscillator. Quantum cooperativities of the order of 100 have
been demonstrated in recent optomechanical systems (Rossi et al.,
2018). It is clear that the tools of quantum state pre- and retrodiction
become especially powerful in such a regime.

The adiabatic limit of the conditional optomechanical master
equation has been treated in great detail in Hofer and Hammerer
(2015). We summarize here the main aspects and then apply it to
discuss pre- and retrodiction.

5.1 Optomechanical setup

We consider a mechanical mode with frequencyΩm coupled to a
cavity with resonance frequency ωc, driven by a strong coherent field
with frequency ω0. We move to a rotating frame with respect to the
drive ω0 and assume the generated intracavity amplitude is large so
that we can linearize the radiation pressure interaction. Following
standard treatment (Aspelmeyer et al., 2014), this yields

Ĥlin � Ĥ0 + g â + â†( ) âc + â†c( ), (68a)
Ĥ0 � Ωmâ

†â − Δcâ
†
c âc, (68b)

where Ĥ0 comprises the local Hamiltonians of cavity and
mechanics with Δc = ω0 − ωc and g ∝ g0 is the cavity-enhanced
optomechanical coupling strength. â and âc are the annihilation
operators of the mechanical and cavity mode, respectively.

The cavity field leaks out at a full width at half maximum
(FWHM) decay rate κ. The (unconditional) master equation of the
joint state ρmc of the mechanical and cavity mode reads

_ρmc t( ) � −i Ĥlin, ρmc t( )[ ] + κD[âc]ρmc t( )
+Lthρmc t( ), (69)

TABLE 1 Summary of the predicted quantum state and the retrodictive
POVM realized for a single mode coupled via a beam-splitter or a two-
mode squeezing interaction to the monitoring field.

Prediction ρ Retrodiction Ê

Beam-splitter interaction Coherent Squeezed

Two-mode squeezing int Squeezed Coherent

FIGURE 3
Schematic of a micromechanical membrane coupled to a driven
cavity with coupling strength g. Before entering the cavity, the linearly
polarized driving field is transmitted through a polarizing beam-splitter
(PBS) and quarter-wave plate (QWP). After interaction with the
cavity and membrane, the outgoing light again passes the QWP, such
that it becomes orthogonally polarized to the incoming light. It is
reflected off the PBS and superposed on a second beam-splitter with a
strong local oscillator (LO) to perform homodyne or heterodyne
detection with detection efficiency η. The membrane is additionally
coupled to a thermal bath with rate γ and mean phonon number �n.
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where we also include a thermal bath,

Lthρmc t( ) � γ �n + 1( )D[â]ρmc t( )
+γ�nD[â†]ρmc t( ), (70)

with mean phonon number �n which couples with the mechanical
oscillator at rate γ (FWHM of the mechanical mode).

We monitor the field that leaks from the cavity using homodyne
or heterodyne detection. As usual, the outgoing field is combined on
a balanced beam-splitter with a strong local oscillator, and the
difference of the measured intensities in the two output beams is
the measurement current, depicted at the bottom left of Figure 3. As
compared to the conditional master equation Eq. (48) studied in
Section 4 on the decaying cavity, we consider here a slightly more
general setup where the local oscillator frequency ωlo may be
detuned from the driving frequency ω0, captured by Δlo = ωlo −
ω0. This realizes a measurement of the outgoing field quadrature
operator âout(t)e−iΔlot+iϕlo + â†out(t)eiΔlot−iϕlo , where ϕlo is the tunable
phase of the local oscillator. This yields a conditional master
equation for cavity and mechanics,

(I) dρ t( ) � −i Ĥlin, ρmc t( )[ ]dt + κD[âc]ρmc t( )dt
+Lthρmc t( )dt
+ ��

ηκ
√ H âce

i Δc+Δlo( )t−iϕlo[ ]dW t( ),
(71)

where η ∈ [0, 1] is the detection efficiency.
We would like an effective master equation for the mechanics

alone. To this end, one can start from the combined master equation
Eq. (71) and move to an interaction picture with respect to Ĥ0.
Assuming the cavity field decays rapidly on the time scale
established by the optomechanical interaction g/κ ≪ 1, one can
adiabatically eliminate the cavity dynamics from the description. For
details of this procedure see Hofer and Hammerer (2015) and Hofer
and Hammerer (2017). However, before we state the result, we take a
closer look at the optomechanical interaction.

5.2 Optomechanical interaction

The linearized radiation-pressure interaction is given by the
last term in Eq.68a. The interaction decomposes into two terms:
i) a beam-splitter (BS) coupling g(ââ†c + â†âc) and ii) a two-
mode squeezing (TMS) part g(ââc + â†â†c ). These give rise to
Stokes and anti-Stokes scattering processes (Figure 4). If we
work in an interaction picture with respect to Ĥ0, these terms
oscillate at frequencies Ωm ±Δc. For a red-detuned drive,
Δc = −Ωm, the BS interaction becomes resonant and is thus
enhanced while the TMS interaction oscillates quickly at 2Ωm

and is suppressed. For a blue-detuned drive, Δc = Ωm, the
situation is reversed so that the TMS interaction is enhanced
and the BS interaction suppressed. For a resonant drive, Δc = 0,
both processes contribute equally.

As we have seen in the initial example in Section 4, the
entangling TMS interaction enhances our ability to prepare a
conditional mechanical state. Because the outgoing light is
entangled with the mechanics, performing a quantum-limited
squeezed detection will also project the oscillator onto a
squeezed state. On the other hand, the BS interaction generates
light with the mechanical state swapped onto it. Observing it allows
us to determine what the state was before the interaction but will

not enable the preparation of squeezed states. For retrodiction, the
situation is reversed. Extracting information about the system in
the past from BS light produces squeezed effect operators (sharp
measurements) on the past state, while entangled TMS light lets us
at best retrodict coherent effect operators. Thus TMS (blue drive)
enhances our ability to prepare while the BS interaction (red drive)
enhances our ability to retrodict.

5.3 Master equation of the mechanics

In Hofer and Hammerer (2015) and Hofer and Hammerer
(2017), the master equation Eq. (71) is turned into an effective
evolution equation for the mechanical state ρm ≡ ρ through adiabatic
elimination of the cavity mode. Since the result is not a proper
Lindblad master equation, a rotating wave approximation is needed
for which we integrate the dynamics over a short time,

(I) δρ t( ) ≔ ∫t+δt

t
dρ τ( ). (72)

We are interested here in the case of mechanical oscillators with high
quality factors Q = Ωm/γ, where Ωm is much larger than other
system frequencies set by the optomechanical interaction and
decoherence— Ωm ≫g2/κ, �nγ. In fact, we assume Ωm is so much
larger that we can choose δt such that Ωm ≫ 1/δt≫g2/κ, �nγ, which
allows us to pull ρ(t) out of all deterministic time integrals since it is
approximately constant on this time-scale. Note that this requires
Q≫ �n to be fulfilled with a safe margin. We emphasize that sideband
resolution (Ωm ≫ κ) is not required for the following. We can then
perform the rotating wave approximation by dropping all resonant
terms oscillating at ± 2Ωm. Choosing the right phase ϕlo and
quadrature frame, we find

(I) δρ t( ) � Γ−D â[ ]ρ t( )δt + Γ+D â†[ ]ρ t( )δt
+ �

η
√ ∫t+δt

t
H Ĉ τ;Δlo( )[ ]ρ τ( )dW τ( )

+Lthρ t( )δt,
(73a)

FIGURE 4
Top: Schematic conversion processes occurring in the
optomechanical setup depicted in Figure 3 that scatter cavity photons
at frequency ωc into the outgoing sidebands while creating or
annihilating a mechanical phonon at frequency Ωm. Bottom:
Spectrum of outgoing light (not to scale). As discussed in Section V B,
the linearized optomechanical interaction facilitates two processes:
the beam-splitter interaction converts a cavity photon into a phonon
and an outgoing photon in the lower (red) sideband at ωc − Ωm. Two-
mode squeezing combines a cavity photon and a phonon to produce
an outgoing photon in the upper (blue) sideband at ωc + Ωm.
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with the time-dependent measurement operator

Ĉ τ;Δlo( ) ≔ ��Γ−√
âe−i Ωef f−Δlo( )τ

+ ��
Γ+

√
â†ei Ωef f+Δlo( )τ .

(73b)

The effective mechanical frequency

Ωeff ≔ Ωm − �
2

√
g2 β+ + β−( ), (74a)

β± ≔
Δc ± Ωm

κ/2( )2 + Δc ± Ωm( )2 (74b)

results from a shift of Ωm due to the optical spring effect, and
the rates

Γ± ≔
g2κ

κ/2( )2 + −Δc ± Ωm( )2 (75)

are the usual Stokes and anti-Stokes rates known from sideband
cooling. From these, we can define two effective cooperativities

C± ≔ Γ±/γ � Ccl
κ2

κ2 + 4 −Δc ± Ωm( )2, (76)

in terms of the classical cooperativity

Ccl � 4g2

κγ
. (77)

Each C± compares the rate of the respective (anti-)Stokes process to
the incoherent coupling rate of the thermal bath. In the regime
κ ≫Ωm of a broad cavity (Authors Anonymous, 2023c) and
assuming κ ≫Δc, the cooperativities reduce to the classical
cooperativity, C± ≈ Ccl. As an example of the orders of
magnitude involved here, consider Rossi et al. (2018), who
realized C ≈ Ccl ~ 107 and for �n ~ 105 a corresponding quantum
cooperativity (Aspelmeyer et al., 2014)

Cq ≔
C

�n + 1
~ 102. (78)

To obtain a proper master equation from Eq. 73a, we must still
perform the integral over the measurement term, which depends on
the choice of Δlo. However, Eq. 73a already illustrates the point we
made in Section 5 B: detuning the driving field affects the
optomechanical interaction. Driving on resonance Δc = 0, TMS
and BS interaction occur with equal strength, reflected by Γ+ = Γ−. A
blue drive, Δc = Ωm, enhances TMS and causes Γ+ > Γ−, while a red
drive, Δc = −Ωm, enhances the BS interaction and causes Γ− > Γ+.
Additionally, we can tune the local oscillator either to resonantly
detect at the driving frequency Δlo = 0 or to either the blue or red
sideband Δlo = ±Ωeff. We will explore these different dynamics step
by step, starting with a resonant drive and resonant detection in the
following section, then considering detection of the sidebands in
Section 5 E, and finally treating an off-resonant drive with sideband
detection in Section 5 F.

5.4 Drive and detect on resonance

We start by exploring a cavity driven on resonance, Δc = 0, so we
find equal rates Γ+ = Γ−≕Γ and equal cooperativities C≔C+ = C−with

C � Ccl
κ2

κ2 + 4Ω2
m

, (79)

and Ωeff = Ωm. The first detection scheme we consider is homodyne
detection on resonance, Δlo = 0. Plugging this into Eq. 73a yields the
measurement operator

Ĉ τ;Δlo � 0( ) ≔ �
Γ

√
âe−iΩmτ + â†eiΩmτ( ), (80)

� ��
2Γ

√
x̂ cos Ωmτ( ) + p̂ sin Ωmτ( )( ), (81)

with x̂ � (â + â†)/ �
2

√
and p̂ � −i(â − â†)/ �

2
√

. Using that again, we
can extract ρ(t) from the integrals to find the master equation

(I) δρ t( ) � Lthρ t( ) + ΓD â[ ]ρ t( )δt + ΓD â†[ ]ρ t( )δt
+ ��

ηΓ
√ H x̂[ ]ρ t( )δWc t( )

+ ��
ηΓ

√ H p̂[ ]ρ t( )δWs t( )
(82)

with the coarse-grained Wiener increments

(I) δWc t( ) ≔ �
2

√ ∫t+δt

t
cos Ωmτ( )dW τ( ), (83a)

(I) δWs t( ) ≔ �
2

√ ∫t+δt

t
sin Ωmτ( )dW τ( ). (83b)

It turns out that these are approximately normalized, δW2
c(t) �

δt(1 +O(Ωmδt)−1) and δW2
s(t) � δt(1 +O(Ωmδt)−1), and

independent δWc(t)δWs(t) � δtO(Ωmδt)−1. Thus, we can
replace δt → dt, δρ → dρ, and δWc/s → dWc/s to obtain effective
system dynamics

(I) dρ t( ) � Lthρ t( ) + ΓD x̂[ ]ρ t( )dt + ΓD p̂[ ]ρ t( )dt
+ ��

ηΓ
√ H x̂[ ]dWc t( ) + ��

ηΓ
√ H p̂[ ]dWs t( ) (84)

with independent Wiener increments dWc(t) and dWs(t).

5.4.1 Conditional state evolution
Using the notation of Section 2 B, we find H � 02,

Δ � (Γ + 1
2 γ(2�n + 1))12, and Ω � 1

2 γσ, as well as the
measurement matrices A � ��

ηΓ
√

12, and B � 02. As before, we
solve _Vρ � 0 to obtain the steady state covariance Vρ

xp � 0 and
equal variances

V∞
ρ ≔ Vρ

xx � Vρ
pp

� 1
4ηC

������������������
1 + 8ηC 2C + 2�n + 1( )

√
− 1( ) (85)

in terms of the cooperativity Eq. 79. The purity is simply the inverse
of the variance, P(ρ) � 1/V∞

ρ , so it suffices to consider V∞
ρ . Note

that, as η → 0, the variance approaches its thermal state value
V∞

ρ → 2�n + 1 + 2C. We can compute from the covariance matrix
the conditioned drift matrix from Eq. 19 which turns out to
be diagonal,

M∞
ρ � λρ12, λρ � −γ

2

������������������
1 + 8ηC 2C + 2�n + 1( )

√
. (86)

The degenerate eigenvalue λρ is always real and is negative so long as
γ or ηΓ are non-zero and thus guarantee stable dynamics. We obtain
the mode functions with which the cosine and sine components of
the measurement current are Itô-integrated in Eq. 23 by evaluating
the kernel
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fxc t( ) fxs t( )
fpc t( ) fps t( )[ ] � eM

∞
ρ t V∞

ρ AT − σBT( ). (87)

We find that fxs(t) = fpc(t) = 0 and

fρ t( ) ≔ fxc t( ) � fps t( ) � ��
ηΓ

√
V∞

ρ e−λρt, (88)

which shows that the cosine and sine components of the
photocurrent each only enter the corresponding (x̂ or p̂) quadrature.

In the following we assume that ηC ≫ 1 and �n≫ 1 so �n + 1 ≈ �n.
In terms of the quantum cooperativity (Aspelmeyer et al., 2014)

Cq � C

�n + 1
≈
C

�n
, (89)

we find the variance

V∞
ρ ≈

������
Cq + 1

ηCq

√
� 1�

η
√

������
1 + 1

Cq

√
, (90)

plotted in Figure 5A, and the mode function damping rate is
given by

λρ ≈ − 2ηΓ
������
Cq + 1

ηCq

√
. (91)

The equal variances in Eq. 85 and vanishing covariance indicate
that we prepare a thermal steady state, which approaches a pure
coherent state as η → 1 and Cq → ∞, as we see from the limiting
expression Eq. 90 and also from the purity plot in Figure 5B. The
exponent λρ in Eqs 86 and (91) determines how fast the mode
functions in Eq. 88 decay, and thereby the “memory time” of the
conditional state. In the regime where Cq ≫ 1 5 Γ≫ γ(�n + 1), we
find λρ ≈ − 2

�
η

√ Γ, so the mode function is only determined by the
measurement rate. If Γ is much larger than typical evolution time
scales, it becomes sharply peaked at t, so the conditional state
essentially follows the measurement current in real time.
However, Γ must stay well below Ωm or it will violate the
assumptions underlying our coarse-graining. In the opposite
regime of Cq ≪ 1 5 Γ≪ γ(�n + 1), the exponent is given by
λρ ≈ − 2

����������
Γγ(�n + 1)/2√

. As Γ → 0, the mode function becomes
essentially flat but also goes to zero itself. In this limit, the
detection will yield mostly noise and only little signal, so the
evolution becomes effectively unconditional.

5.4.2 Retrodiction of POVM elements
We obtain the asymptotic effect operator by solving the Riccati

equation resulting from Eq. 43. Again VE
xp � 0 and

V∞
E ≔ VE

xx � VE
pp

� 1
4ηC

������������������
1 + 8ηC 2C + 2�n + 1( )

√
+ 1( ), (92)

≈

������
Cq + 1

ηCq

√
, (93)

so we find effect operators with equal variance, which corresponds to
a POVM realizing a heterodyne measurement.

The asymptotic variance of the retrodicted effect operator is
strictly greater than the asymptotic variance of the conditional state
V∞

E − V∞
ρ � 1/(2ηC). The difference vanishes as C → ∞, so the

limits in Eqs 90 and(93) are the same, and the plot in Figure 5A also

holds for V∞
E . As expected, the exact V∞

E in Eq. 92 diverges without
observations: V∞

E ~ 1/(2ηC) as η → 0. Otherwise, the forward and
backward dynamics are very similar: we find the same drift matrix as
in Eq. 86 with a degenerate negative eigenvalue λE = λρ, and the
mode function takes the same form as before,

fE t( ) � ��
ηΓ

√
V∞

E e−λEt, (94)
with the strictly greater variance V∞

E placing more weight on the
backward optical mode compared to the evolution of the conditional
state. Assuming C, �n≫ 1, forward and backward mode functions
become identical.

For both preparation and retrodiction, we see that we can never
measure or prepare states with sub-shot noise resolution. In fact, in
the ideal limit of perfect detection η → 1 and large cooperativity Cq

FIGURE 5
(A) Log-linear plot of the steady state variance V∞

ρ (same for x̂ and
p̂) from Eq. 85 obtained for homodyne detection on resonance,
plotted against detection efficiency η and quantum cooperativity
Cq � C/(�n + 1). We chose a bath occupation of �n ~ 105 (Rossi
et al., 2018), which entails a classical cooperativity of C ~ 103. . .107 in
the plotted regime. The exact variance is virtually indistinguishable
from its approximate value Eq. 90 because the difference goes as
~ 1/C. The plot is also indistinguishable from the exact and
approximate variances V∞

E of the effect operator in Eqs 92 and 93. (B)
The purity of the covariance matrix corresponds to the variance in (A).
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→∞, both V∞
ρ and V∞

E approach 1, so we can at best measure and
prepare coherent states. This symmetry is not surprising since
detection on resonance means both TMS and BS interaction
contribute equally to the observed light. The situation is different
when the local oscillator is resonant with either of the sidebands.

5.5 Drive on resonance, detect sidebands

We now detune the local oscillator with respect to the driving
laser Δlo = ±Ωm to resolve the information contained in the
sidebands located at ωc ±Ωm. Recalling the general equation Eq.
(73), we see that detecting the red sideband Δlo = −Ωm makes â†

resonant while â oscillates at −2Ωm and yields the
measurement operator

Ĉ τ;Δlo � −Ωm( ) � �
Γ

√
âe−2iΩmτ + â†( ). (95)

Resonant detection of the blue sideband with Δlo = Ωm analogously
makes â resonant and results in

Ĉ τ;Δlo � Ωm( ) � �
Γ

√
â + â†e2iΩmτ( ). (96)

Thus, we expect after coarse-graining to better observe an effect of
the TMS interaction on the red sideband and of the BS interaction
on the blue sideband. To evaluate the integrals in Eq. 73a,
we introduce

(I) δW0 t( ) ≔ ∫t+δt

t
dW τ( ), (97a)

(I) δWc,2 t( ) ≔ �
2

√ ∫t+δt

t
cos 2Ωmτ( )dW τ( ), (97b)

(I) δWs,2 t( ) ≔ �
2

√ ∫t+δt

t
sin 2Ωmτ( )dW τ( ), (97c)

analogous to Eq. 83a, which separates the photocurrent
oscillating at twice the mechanical frequency from its DC
component (at the given sideband frequency). As before, these
are approximately normalized and independent of one another
(up to O(Ωmδt)−1), so we treat them as independent Wiener
increments. Making the replacements δt → dt and δWα → dWα,
we obtain two coarse-grained master equations depending on the
choice of Δlo = ±Ωm.

5.5.1 Detecting the red sideband
We first consider the local oscillator tuned to the red sideband

Δlo = −Ωm. This yields the coarse-grained master equation

(I) dρ t( ) � Lthρ t( ) + ΓD x̂[ ]ρ t( )dt + ΓD p̂[ ]ρ t( )dt
+ ��

ηΓ
√ H â[ ]ρ t( )dWc,2 t( )

− ��
ηΓ

√ H iâ[ ]ρ t( )dWs,2 t( )
+ ��

ηΓ
√ H â†[ ]ρ t( )dW0 t( ).

(98)

Analogous to the case of resonant detection, we can use the Gaussian
formalism to compute the conditional steady state variances,

Vρ
xx �

1
3ηC

�����������������������
1 + 4ηC 3 − 2η( )C + 3�n + 2( )√

− 1( ) − 1
3
, , (99)

Vρ
pp � 1

ηC

�������������
1 + 4ηC C + �n( )

√
− 1( ) + 1, (100)

which, for C, �n≫ 1, become approximately

Vρ
xx ≈

2
3

������������
3 − 2η( )Cq + 3

ηCq

√
− 1
3
, (101)

Vρ
pp ≈ 2

������
Cq + 1

ηCq

√
+ 1. (102)

To find the corresponding Gaussian effect operators realizable
through retrodiction, we could translate the full master equation
above to an effect equation and then apply the Gaussian formalism
as before. Instead, we take the shortcut of directly reading off the
Riccati equation Eq. (43) from the corresponding Riccati equation of
the conditional state. Solving it yields the asymptotic variances

VE
xx �

1
3ηC

�����������������������
1 + 4ηC 3 − 2η( )C + 3�n + 2( )√

+ 1( ) + 1
3
, (103)

VE
pp � 1

ηC

�������������
1 + 4ηC C + �n( )

√
+ 1( ) − 1, (104)

which for C, �n≫ 1 approach

VE
xx ≈

2
3

������������
3 − 2η( )Cq + 3

ηCq

√
+ 1
3
, (105)

VE
pp ≈ 2

������
Cq + 1

ηCq

√
− 1. (106)

Considering the ideal limit η → 1 and Cq → ∞, we find

VE
xx → 1, VE

pp → 1 (107)
for the effect operator, so at best we retrodict POVMs that project
onto coherent states. On the other hand, we find

Vρ
xx →

1
3
, Vρ

pp → 3 (108)

for the conditional steady state, showing that we can, in principle,
prepare squeezed states. Necessary conditions for going below shot
noise in the preparation are Cq > 1 and η > 1/2 since

Vρ
xx < 1 5 η> C + �n

2C
≈
1
2

1 + 1
Cq

( ), (109)

which is confirmed by the plot of Vρ
xx in Figure 6A. However, even

with one quadrature below shot noise, the prepared state will never
be entirely pure (Figure 6B).

5.5.2 Detecting the blue sideband
Tuning the local oscillator to the blue sideband, we find for Δlo =

+Ωm the master equation

(I) dρ t( ) � Lthρ t( ) + ΓD x̂[ ]ρ t( )dt + ΓD p̂[ ]ρ t( )dt
+ ��

ηΓ
√ H â†[ ]ρ t( )dWc,2 t( )

+ ��
ηΓ

√ H iâ†[ ]ρ t( )dWs,2 t( )
+ ��

ηΓ
√ H â[ ]ρ t( )dW0 t( ),

(110)

which asymptotically results in a conditional state with variances

Vρ
xx �

1
3ηC

�����������������������
1 + 4ηC 3 − 2η( )C + 3�n + 1( )√

− 1( ) + 1
3
, (111)

Vρ
pp � 1

ηC

����������������
1 + 4ηC C + �n + 1( )

√
− 1( ) − 1, (112)

Frontiers in Quantum Science and Technology frontiersin.org14

Lammers and Hammerer 10.3389/frqst.2023.1294905

https://www.frontiersin.org/journals/quantum-science-and-technology
https://www.frontiersin.org
https://doi.org/10.3389/frqst.2023.1294905


which for C, �n≫ 1 become approximately

Vρ
xx ≈

1
3

������������
3 − 2η( )Cq + 3

ηCq

√
+ 1
6
, (113)

Vρ
pp ≈

������
Cq + 1

ηCq

√
− 1
2
. (114)

We see here that, in the limit of η → 1 and Cq → ∞, the
variances approach

Vρ
xx→ 1, Vρ

pp→ 1, (115)

so we can at best prepare coherent states.
To find the corresponding effect operators, we again translate

the forward Riccati equation directly to a corresponding backward
equation. This yields the asymptotic variances

VE
xx �

1
3ηC

�����������������������
1 + 4ηC 3 − 2η( )C + 3�n + 1( )√

+ 1( ) − 1
3
, (116)

VE
pp � 1

ηC

����������������
1 + 4ηC C + �n + 1( )

√
+ 1( ) + 1, (117)

which for C, �n≫ 1 become approximately

VE
xx ≈

2
3

������������
3 − 2η( )Cq + 3

ηCq

√
− 1
3
, (118)

VE
pp ≈ 2

������
Cq + 1

ηCq

√
+ 1. (119)

Considering the ideal limit η → 1 and Cq → ∞, we see that the
asymptotic effect operators can in principle project onto
squeezed states

VE
xx →

1
3
, VE

pp → 3, (120)

provided Cq > 1 and η > 1/2 since

VE
xx < 1 5 η> C + �n + 1

2C
� 1
2

1 + 1
Cq

( ). (121)

Since both the limiting x̂-variances Eqs 101 and (118) and
corresponding p̂-variances agree, the plots in Figure 6 also hold
for the effect operators retrodicted on the blue sideband.

These results are summarized in Table 2: for large quantum
cooperativity and resonant drive, homodyne detection of the blue
(red) sideband generates coherent (squeezed) conditional states and
squeezed (coherent) retrodictive POVMs. This conforms with the
expectation that blue (red) sideband photons have been generated
via a beam-splitter (two-mode squeezing) interaction, as discussed in
Section 5 B. Thus, these two cases perform qualitatively similarly to the
basic examples studied in Section 4 and Table I. There is, of course, a
significant quantitative difference as, for example, the squeezed POVM
realized by resonant drive exhibits a noise reduction by 66% only. A
perfect quadrature measurement, such as found in Section 4, would
require infinite squeezing. In order to achieve this, the driving field has
to be detuned from cavity resonance, as will be discussed next.

5.6 Off-resonant drive

The case of an off-resonant drive, Δc ≠ 0, is also very relevant in
experiments—for example, performing sideband cooling or
preparing squeezed mechanical states in pulsed schemes (Hofer
and Hammerer, 2017). Detuning also enables richer retrodictive
dynamics since it allows selective enhancement and suppression of
the Stokes and anti-Stokes rates Γ± and, thus, the BS and TMS
components of the optomechanical interaction. Of course, it must be
remembered that a detuned drive requires more power to maintain
the same level of linear coupling.

FIGURE 6
(A) Linear-logarithmic plot of the approximate steady state
variances Vρ

xx and VE
xx from Eqs 101 and 118 plotted against detection

efficiency η and quantum cooperativity Cq in the limit of large
cooperativity C ≫ 1. The dashed line denotes the shot noise-
limited variance of the vacuum state at Vxx = 1. (B) The purity of the
covariance matrices corresponds to the variances plotted in (A).

TABLE 2 Conditional states and retrodictive POVMs generated by resonant
drive and homodyne detection of the blue or red sideband.

Detected sideband Prediction ρ Retrodiction Ê

Blue Δlo = Ωm Coherent Squeezed

Red Δlo = −Ωm Squeezed Coherent
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To analyze the effects of non-zero detuning, we need to return to
the original coarse-grained master equation Eq. (73). Evaluating the
integral over the measurement term for homodyne detection of the
carrier or sideband frequencies proceeds analogously to the previous
sections.We only need to remember that the sidebands are now located
at ωc ±Ωeff with the effective frequency Ωeff from Eq. 74a. The Stokes
and anti-Stokes rates Γ± from Eq. 75 are no longer equal to a single rate

Γ � g2κ

κ/2( )2 +Ω2
m

, (122)

but can be written as

Γ± � Γf±, (123a)

f± ≔
1 + 4 Ωm/κ( )2

1 + 4 −Δc ± Ωm( )2/κ2. (123b)

For a blue-detuned drive, Δc > 0 such that Γ+ ≥Γ− + γ, the
mechanical dynamics are unstable. Since we are interested in
stationary states obtained through continuous driving and
observation, we will thus consider only a red-detuned drive, Δc <
0, in the following.We see that with Δc = −Ωm, we can enhance Γ− by
a factor f− � 1 + 4(Ωm/κ)2 > 1 while suppressing Γ+ by
f+ � (1 + 4(Ωm/κ)2)/(1 + 16(Ωm/κ)2)< 1. In the broad cavity
regime (Ωm/κ ≪ 1), this imbalance becomes negligible, so we do
not expect any benefit from a detuned drive, but, whenever Ωm/κ >
1, the enhancement of Γ− greatly enhances our ability to retrodict
POVMs with sub-shot noise resolution, as will now be shown.

Analogous to the previous sections, we solve the Riccati equations
for the asymptotic covariance matrices of filtered Gaussian states and
retrodicted POVM elements. We will only consider x̂ variances, since
the results can be applied to any other quadrature by changing the
local oscillator phase. Additionally, since we are interested in
fundamental limits, we consider only detection of the sidebands
that are optimal for preparation and retrodiction, respectively, in
the sense that they minimize the stationary variance: the red sideband
Δlo = −Ωeff for preparation and the blue sideband Δlo = Ωeff for
retrodiction. The solutions are conveniently expressed in terms of the
classical and quantum cooperativities

C± ≔
Γ±
γ
� Cf±, (124)

C±
q ≔

C±

�n + 1
� Cqf±, (125)

where the “bare” cooperativities C and Cq are the same as for a
resonant drive considered in the previous sections. The solution for
a conditional Gaussian steady state prepared by observing the red
sideband Δlo = −Ωeff then reads

Vρ
xx�

1
η C− +2C+( ) −1− 1−η( )C−( + 1−2η( )C+ + �

r
√ ), (126a)

r ≔ C− − C+ + 1( )2 + 4η 3 − 2η( )C−C+
+8ηC+ �n + 1( ) + 4�nηC−.

(126b)

Here, we see in the broad cavity regimeΩm/κ≪ 1, where C− ≈ C+

≈ C, that the variance is just given by what one finds by driving on
resonance. Thus, theminimal variance obtained for η = 1 andCq→∞
will be given by Vρ

xx → 1/3< 1 and thus corresponds to a squeezed
state. On the other hand, when Ωm/κ > 1, we find that C−

q ≫C+
q and

Vρ
xx → 1, so we can at best prepare coherent states. The effect of

different cavity linewidths is also depicted in Figure 7, where we see
that a red-detuned drive does not help preparation as expected.

We can compare these results to the asymptotic variance of a
Gaussian effect operator retrodicted by observing the blue sideband,
Δlo = Ωeff, which reads

VE
xx �

1
η 2C− + C+( ) 1 − 1 − η( )C+( + 1 − 2η( )C− + �

s
√ ), (127a)

s ≔ C− − C+ + 1( )2 + 4η 3 − 2η( )C−C+
+4ηC+ �n + 1( ) + 8�nηC−.

(127b)

Here, we find that, to retrodict POVMs with sub-shot noise
resolution VE

xx < 1, the detection efficiency must satisfy

η> 1
2

1 + 1
C−

q

⎛⎝ ⎞⎠, (128)

and thus necessarily η > 1/2 but also C−
q > 1. This is interesting

because it means that, with detuning Δc = −Ωm, we no longer require
a large “bare” cooperativity Cq > 1 to measure with sub-shot noise
resolution but only a large productCq(1 + 4(Ωm/κ)2)> 1, which can
be rewritten as

FIGURE 7
(A) Conditional steady state variance Vρ

xx from Eq. V F and (B)
asymptotic variance VE

xx of retrodicted effect operators from Eq. 127a
in the ideal limit of η = 1 and Cq → ∞ plotted against detuning of the
driveΔc in units of themechanical frequencyΩm. Different curves
correspond to different values of Ωm/κ ranging from the broad cavity
(Ωm/κ ≪ 1) to the sideband-resolved regime (Ωm/κ ≫ 1). The upper
dotted line is the shot noise limit Vρ

xx � VE
xx � 1 and the lower dashed

line the limit obtainable with a resonant drive (Vρ
xx � VE

xx � 1/3).
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Ωm

κ
( )2

> 1 − Cq

4Cq
. (129)

Thus, a detuned drive in the sideband-resolved regime allows
retrodiction of POVMs that beat the shot noise limit even for
sub-unit quantum cooperativities. In fact, whenever Ωm/κ ≫ 1
such that C−

q ≫ 1 and C−
q ≫C+

q , the minimal variance will approach

VE
xx →

1 − η

η
, (130)

as can also be seen in Figure 8, where we plot the achievable variances
for conservative values of Cq = 1/2 and η = 0.77. These results show
that, with an off-resonant (red-detuned) drive and using only
continuous measurements, measurement is possible with sub-shot
noise variance limited only by the detection efficiency η.

In summary, it is possible to perform quadrature measurements
of the mechanical state with sub-shot noise variance through
continuous monitoring of the cavity output. By using a red-
detuned cavity drive and sufficiently efficient homodyne
detection of the blue sideband of the output, one achieves a
squeezed retrodictive POVM realizing a quadrature measurement
for the past mechanical state. In the resolved sideband limit, the
quality of the quadrature measurement is essentially only limited by

the detection efficiency and does not require a quantum
cooperativity larger than 1.

6 Conclusion and outlook

We have given here a self-contained introduction to the theory
of retrodictive POVMs, demonstrating the potential to retrieve
information about the initial quantum state of a system based on
the outcomes of a continuous measurement process. The general
formalism has been illustrated in detail for linear quantum systems
and applied to realistic models of optomechanical systems.

The application of our theoretical framework to optomechanics has
revealed promising avenues for achieving retrodictive state analysis. By
characterizing achievable retrodictive POVMs in various
optomechanical operating modes, such as resonant and off-resonant
driving fields, we have illustrated the potential for precise retrodictive
measurements of mechanical oscillators. Notably, our findings reveal
the possibility of nearly ideal quadrature measurements, offering direct
access to the position or momentum distribution of mechanical
oscillators at specific time instances. This advance opens doors to
novel possibilities in quantum state tomography and of non-Gaussian
states, albeit with the caveat of being inherently destructive.

We hope that this presentation will facilitate and advance the use
of retrodictive POVMs in other linear quantum systems beyond
optomechanics. Extending the formalism to more complex and
nonlinear systems presents an intriguing challenge. As quantum
technology continues to advance, the insights gained from this work
will contribute to the expanding toolkit of quantum state analysis
and manipulation.
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variance is plotted in the bottom figure against η.
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