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papillary thyroid carcinoma
based on ultrasound
radiomics analysis
Mei hua Li1, Long Liu2, Lian Feng1, Li jun Zheng1, Qin mei Xu1,
Yin juan Zhang1, Fu rong Zhang1 and Lin na Feng1*

1Department of Ultrasound, Sijing Hospital of Songjiang District, Shanghai, China, 2Department of
Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine,
Shanghai, China
Objective: To assess the utility of predictive models using ultrasound radiomic

features to predict cervical lymph node metastasis (CLNM) in solitary papillary

thyroid carcinoma (PTC) patients.

Methods: A total of 570 PTC patients were included (456 patients in the training

set and 114 in the testing set). Pyradiomics was employed to extract radiomic

features from preoperative ultrasound images. After dimensionality reduction

and meticulous selection, we developed radiomics models using various

machine learning algorithms. Univariate and multivariate logistic regressions

were conducted to identify independent risk factors for CLNM. We established

clinical models using these risk factors. Finally, we integrated radiomic and

clinical models to create a combined nomogram. We plotted ROC curves to

assess diagnostic performance and used calibration curves to evaluate alignment

between predicted and observed probabilities.

Results: A total of 1561 radiomics features were extracted from preoperative

ultrasound images. After dimensionality reduction and feature selection, 16

radiomics features were identified. Among radiomics models, the logistic

regression (LR) model exhibited higher predictive efficiency. Univariate and

multivariate logistic regression results revealed that patient age, tumor size,

gender, suspicious cervical lymph node metastasis, and capsule contact were

independent predictors of CLNM (all P < 0.05). By constructing a clinical model,

the LR model demonstrated favorable diagnostic performance. The combined

model showed superior diagnostic efficacy, with an AUC of 0.758 (95% CI: 0.712-

0.803) in the training set and 0.759 (95% CI: 0.669-0.849) in the testing set. In the

training dataset, the AUC value of the nomogram was higher than that of the

clinical and radiomics models (P = 0.027 and 0.002, respectively). In the testing

dataset, the AUC value of the nomogram model was also greater than that of the

radiomics models (P = 0.012). However, there was no significant statistical

difference between the nomogram and the clinical model (P = 0.928). The

calibration curve indicated a good fit of the combined model.
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Conclusion: Ultrasound radiomics technology offers a quantitative and

objective method for predicting CLNM in PTC patients. Nonetheless, the

clinical indicators persists as irreplaceable.
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Introduction

Thyroid cancer stands as the most prevalent malignancy within

the endocrine system. Among its histological variations, papillary

thyroid carcinoma (PTC) takes precedence, accounting for

approximately 90% of reported thyroid cancer cases. The

prognosis for most PTC patients is quite favorable, with an

impressive 10-year survival rate reaching up to 98%. However, in

PTC patients, cervical lymph node metastasis (CLNM) is common,

and it closely correlates with postoperative disease recurrence and

survival prognosis (1, 2). Accurately predicting CLNM in

preoperatively holds significant clinical value as it provides crucial

guidance for selecting appropriate clinical treatment strategies.

The utilization of preoperative CT examination has been a

common approach for assessing the presence of CLNM in PTC

patients (3). However, its diagnostic sensitivity remains limited,

especially in detecting subclinical lymph node metastasis, with a

sensitivity of only 60%. Additionally, it is associated with relatively

modest specificity and raises concerns about radiation exposure (4, 5).

The primary benefit of preoperative CT lies in its ability to provide

detailed insights into the dimensions, location, and characteristics of

the primary thyroid tumor. Notably, it also facilitates the assessment of

extrathyroidal extension (ETE), aiding in determining the extent of

surgical resection and guiding appropriate surgical interventions (6).

Currently, ultrasound examination serves as the primary method for

preoperatively diagnosing CLNM in PTC patients. Conventional

ultrasound (CUS) examination can determine the presence of

CLNM by systematically scanning the cervical lymph nodes

according to anatomical regions, and assessing changes in

echogenicity, internal components, calcification, and Color Doppler

flow imaging (CDFI) patterns of the cervical lymph nodes (7).

However, it’s important to acknowledge that the CUS exhibits

relatively lower sensitivity in diagnosing central compartment

CLNM, with its diagnostic effectiveness primarily focused on

detecting lateral CLNM (8, 9). Previous studies have explored the

feasibility of predicting CLNM based on ultrasound characteristics and

clinical features of the tumor in PTC patients. Nevertheless, predictive

models constructed solely on preoperative clinical and ultrasound

parameters tend to have limited effectiveness (10).

Radiomics is a quantitativemethod formedical imaging that aims

to uncover tumor patterns and characteristics imperceptible to the

naked eye by automatically extracting latent data features from

medical images, thus providing important value for the precise
02
diagnosis and treatment of tumors (11). Previous studies have

shown that preoperative CT and MRI radiomics have significant

value in assessing CLNM in PTC patients (12, 13). However, there

have been relatively fewer studies on the role of ultrasound radiomics

in evaluating CLNM in PTC patients (14). The objective of this study

is to examine and confirm the effectiveness of different predictive

models incorporating ultrasound radiomics features in predicting

CLNM among patients diagnosed with solitary PTC.
Materials and methods

Patients

With approval from our institutional ethics committee, we

conducted a retrospective study. Due to the retrospective nature

of the study, patients were exempted from the obligation of signing

informed consent. The study population consisted of patients who

underwent the CUS and contrast-enhanced ultrasound (CEUS)

examinations at our hospital between January 2017 and

December 2022 and were subsequently confirmed to have PTC

on surgical pathology. The inclusion criteria were as follows: (1)

patients who underwent preoperative CUS and CEUS at our

hospital; (2) patients who eventually underwent surgery and were

pathologically confirmed to have PTC; (3) patients with solitary

nodules on both CUS and CEUS examinations. The exclusion

criteria were: (1) mismatch between the nodule on ultrasound

and pathology examinations; (2) patients who did not undergo

cervical lymph node dissection. The flowchart of patient enrollment

is shown in Figure 1. Finally, a total of 570 patients met the

inclusion criteria of the study. Among them, there were 148 male

and 422 female patients, with a mean age of 43.66 ± 11.90 years

(range 17-80 years); the mean nodule size was 9.13 ± 6.01 mm

(range 2.37-49.20 mm). According to the timing of recruitment, all

patients were divided into training set (January 2017 - May 2020)

and testing set (June 2021 - December 2022), with 456 patients in

the training set and 114 patients in the testing set.
Ultrasound examination

All thyroid ultrasound images were acquired using one

ultrasound diagnostic systems, Aplio 500 (Toshiba, Japan). During
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thyroid ultrasound examinations, we used high-frequency linear

array transducers, with a frequency range of 7-14 MHz. To ensure

clear image quality, we set the gain at 84dB and adjusted the depth

and time-gain compensation appropriately. Patients were in the

supine position with neck hyperextended and slightly rotated to one

side, keeping the neck straight. Examinations started with CUS first,

followed by CEUS. It is noteworthy that patients were required to

sign informed consent before CEUS examinations.

In CUS, we first performed grayscale ultrasonography to scan

the entire thyroid. During this process, we paid close attention to

the thyroid’s size, echogenicity, and presence of nodules or masses.

Upon detection of a concerning nodule, more detailed

ultrasonographic characterization was undertaken, documenting

the nodule’s location, number, size, echogenicity, margins, shape,

presence of calcifications, relationship with the capsule, and

assessment of capsule integrity. CDFI was also utilized to evaluate

the vascularity within and surrounding the nodule. In addition to

examining the thyroid and nodules, we also performed

comprehensive ultrasound scans of the entire neck region to look

for suspicious cervical lymph nodes metastasis (SLCNM). Lymph

nodes were assessed for size, echogenicity, hilum, presence of

calcifications, cystic degeneration, and vascular flow patterns. We

stored the following static images of thyroid and cervical lymph

node characteristics, including longitudinal and transverse

grayscale images displaying the maximum diameters of nodules

or lymph nodes, CDFI images, and images with typical imaging

features such as liquefaction and calcification. Furthermore, we also

stored the following dynamic images, including those depicting the

nodule’s relationship with the thyroid capsule in transverse view, as

well as images indicating the continuity of the thyroid capsule.

After the CUS examination, CEUS mode was activated. We

used a lowmechanical index of 0.001for the CEUS examination. We

utilized dual imaging mode to simultaneously display the tumor
Frontiers in Oncology 03
location and the CEUS pattern. An intravenous catheter (20G) was

inserted into the patient’s elbow vein, and 2 ml of contrast agent

suspension was used. The ultrasound contrast agent was SonoVue

(Bracco, Italy). The contrast agent was administered to the patient

via bolus injection, followed by flushing with 10 ml of normal saline.

Upon contrast injection, we started the timer on the ultrasound

machine and recorded a video to document the dynamic contrast

perfusion process for 1 minute.
Ultrasound image and clinical data analysis

The ultrasound imaging features included tumor location, size,

margin, shape, aspect ratio, calcification pattern, capsule contact,

loss of capsule continuity, CDFI pattern, SCLNM, perfusion rate,

homogeneity, enhanced intensity, and discontinuous capsule

enhancement. The ultrasound imaging indicators are explained in

detail in the Supplementary Material. All ultrasound images were

independently assessed by two senior ultrasound specialists, each

with over 5 years of experience in thyroid CEUS examinations.

They were blinded to the CLNM features of PTC in the patients.

The final assessments for each indicator were reached through

consensus between these two assessors. In cases where there was

disagreement between them, a third highly experienced physician

with over 10 years of experience in thyroid CUS examinations

reviewed the patient’s images, and the results were based on the

assessment of the third physician.

Clinical data were retrieved from the hospital information

system of our institution. The clinical data included patient’s age,

gender, Hashimoto’s thyroiditis, surgical procedures performed,

postoperative pathology results, and presence of CLNM. The

solitary PTC was defined as the condition observed after the

surgical treatment of a thyroid nodule. The conclusive
FIGURE 1

Patient inclusion and exclusion flowchart. This flowchart delineates the comprehensive patient inclusion and exclusion criteria for this study
conducted on individuals diagnosed with solitary PTC at our institution. PTC, Papillary Thyroid Carcinoma; CUS, Conventional Ultrasound; CEUS,
Contrast-enhanced Ultrasound.
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pathological result verified the existence of a PTC focus within the

patient’s thyroid, with only one such focus identified.
Ultrasound image segmentation

The workflow of radiomics analysis was shown in Figure 2. For

radiomic analysis, grayscale ultrasound images (maximum diameter

of tumor on longitudinal view) were acquired as jpg format before the

region of interest (ROI) delineation and converted to nii.gz format.

Ultrasound image preprocessing included resampling and

normalization. Two radiologists with 5 and 7 years of experience in

thyroid ultrasound examinations, blinded to CLNM status, utilized

the ITK-SNAP software (version3.8.0, http://www.itksnap.org/) to

delineate tumor ROIs from the images. The delineation was

performed tightly along tumor margins. To ensure reliability and

consistency of radiomics features, we randomly selected ultrasound

images from 50 patients after one month and had the first radiologist

re-delineate the ROIs. ICC (intraclass correlation coefficient) was

used to assess intra- and inter-observer consistency. Parameters with

ICC greater than 0.9 were considered to have good consistency and

were included in the radiomics feature analysis. Radiomics features

were extracted using the pyradiomics software (http://

pyradiomics.readthedocs.io). These features can be categorized into

three groups: (I) shape features, (II) intensity features, and (III)

texture features. Shape features describe the three-dimensional

shape characteristics of the tumor. Intensity features describe first-

order statistical distributions of voxel intensities within the tumor.

Texture features describe patterns in intensity, encompassing second-

and higher-order spatial distributions of intensities. For texture

feature extraction, various methods were utilized, including gray

level co-occurrence matrix, gray level run length matrix, gray level
Frontiers in Oncology 04
size zone matrix, and neighborhood gray-tone difference matrix and

gray level dependence matrix. After feature extraction, all radiomics

features were normalized. Then, feature selection was performed

using t-test or Mann-Whitney U test, retaining only radiomics

features with p-value < 0.05. Subsequently, Spearman’s rank

correlation coefficients were computed between features, and only

one of features with correlation greater than 0.9 between any two was

kept. To reduce feature dimensionality while maintaining descriptive

capability, least absolute shrinkage and selection operator (LASSO)

was employed. Through 10-fold cross-validation, the l value that

minimized cross-validation error was chosen, and the final retained

non-zero coefficient features were used for model building. Next, a

linear combination of the retained features was constructed, and a

radiomics score was generated for each patient based on their model

coefficients. All feature selection steps were performed on the training

set, and the resultant features applied to the test set.
Radiomics signature establishment

The Establishment of the radiomics model involved the

following steps: First, after Lasso feature selection, we input the

selected features into different machine learning (ML) models

including logistic regression (LR), support vector machine (SVM),

random forest, K nearest neighbors (KNN), ExtraTrees, XGBoost,

LightGBM and multilayer perceptron (MLP) to build models for

predicting the risk of CLNM. We used 10-fold cross-validation to

derive the final radiomics signature. In evaluating model

performance, we compared the diagnostic efficacy of the various

models using metrics like area under the receiver operating

characteristic curve (AUC), accuracy, sensitivity, specificity,

positive predictive value (PPV) and negative predictive value
FIGURE 2

Schematic diagram of ultrasound radiomics analysis and model development. The radiomics approach is employed to extract features within the
region of interest of thyroid tumors in ultrasound images. Valuable features are acquired through dimensionality reduction for machine learning to
establish radiomics models. Univariate and multivariate analyses are conducted to investigate independent risk factors for cervical lymph node
metastasis in papillary thyroid carcinoma, and clinical models are developed using machine learning techniques. Subsequently, a nomogram is
generated based on the optimal results obtained from the radiomics and clinical models. The diagnostic performances of diverse models are
thoroughly assessed and compared. LR, Logistic Regression; SVM, Support Vector Machine; KNN, K-Nearest Neighbors; RF, Random Forest; MLP,
Multilayer Perceptron.
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(NPV). These metrics were used to determine the optimal

radiomics model.
Construction of clinical signature

For constructing the clinical model, we adopted the following

approach: First, we performed univariate logistic regression analysis

on clinical features, followed by multivariate logistic regression

analysis on features with statistical significance to obtain the final

predictors for establishing the clinical signature. It is important to

emphasize that in developing the clinical signature, we similarly

utilized the same ML models as the radiomics signature to ensure

consistency of methodology and techniques.
Development of combined model

After integrating the radiomics signature with the clinical

signature, we established a combined model and visualized it as a

nomogram. We selected the optimal model results for obtaining the

combined model. By evaluating and validating on the training and

test sets, we calculated a series of metrics including AUC, accuracy,

sensitivity, specificity, PPV, and NPV to assess the model’s

predictive performance. The AUC values are compared between

the integrated model and the clinical and radiomics models in both

the training and testing datasets. To assess the agreement between

the models’ predicted outcomes and actual observations, we also

plotted calibration curves.
Statistical analysis

For statistical analysis, Python programming language (version

3.5.6) was used for data analysis. For continuous variables, mean

and standard deviation or median and interquartile range were used

for description, with t-test or U-test for intergroup comparison. For

categorical variables, frequency or percentage was used for

description, and chi-square test or Fisher’s exact test for analysis.

For selection of clinical indicators, univariate and stepwise

multivariate analyses were utilized. DeLong tests were employed

to compare the AUC values among different models. A two-tailed P

value of < 0.05 was considered statistically significant.
Results

Patients’ clinical and ultrasound
imaging characteristics

This study included 570 patients (148 males and 422 females).

The training set consisted of 456 patients, and the test set had 114

patients. The clinical and ultrasound characteristics of the patients
Frontiers in Oncology 05
are summarized in Table 1. Clinical features, such as age, size, aspect

ratio, sex, location, SCLNM, shape, calcification, capsule contact,

discontinuous capsule enhancement, CDFI, homogeneity, and

Hashimoto’s thyroiditis were comparable between the training

and testing sets (all P > 0.05). However, four features—margin,

loss of capsule continuity, perfusion rate, and enhanced intensity—

exhibit statistically significant differences between the training and

testing sets (all P < 0.05). In the training dataset, age, size, aspect

ratio, gender, presence of SCLNM, calcification pattern, capsule

contact, CDFI, perfusion rate, and enhanced intensity exhibited

significant differences between the CLNM (-) group and the CLNM

(+) group (all P values < 0.05). In the testing dataset, age, size,

calcification pattern, capsule contact, and the presence of

Hashimoto’s thyroiditis showed significant differences between

the CLNM (-) group and the CLNM (+) group (all P values <

0.05). Univariate and multivariate logistic regression analysis results

showed that patient’s age (OR, 0.991; 95% CI, 0.988-0.994), size

(OR, 1.009; 95% CI, 1.003-1.015), gender (OR, 0.859; 95% CI, 0.799-

0.922), SCLNM (OR, 1.125; 95% CI, 1.023-1.239), and capsule

contact (OR, 1.112; 95% CI, 1.036-1.194) were independent

factors for predicting CLNM (Table 2).
Clinical prediction model results

Using the independent risk factors for CLNM, clinical

signatures were built for the training and testing sets using ML

models (Table 3). Results showed that RandomForest, ExtraTrees

and XGBoost models exhibited overfitting. After comparative

analysis, it was observed that the AUC values of LR and MLP

models were similar on the training set. However, the AUC value of

the LR model was higher than that of the MLP model on the testing

set. Therefore, we ultimately chose the LR model as the optimal

model, with AUC of 0.757, sensitivity of 0.897, specificity of 0.622,

accuracy of 0.711, PPV of 0.547, and NPV of 0.920.
Ultrasound imaging radiomics prediction
model results

A total of 1561 radiomics features were extracted from each

patient’s ultrasound image. After feature selection, 16 non-zero

features were finally chosen for ML modeling (Figure 3). Using ML

approaches, 8 radiomics models were built for the training and test

sets respectively (Table 4). Based on the AUC performance of

different ML models on the training and testing sets, we evaluated

that SVM, KNN, RandomForest, ExtraTrees, XGBoost, LightGBM

models exhibited overfitting. It was observed that The AUC values of

LR and MLP models were similar on both the training set. However,

the AUC value of the LR model was higher than that of the MLP

model on the testing set. Therefore, we ultimately chose the LRmodel

as the optimal model with a sensitivity of 0.513, specificity of 0.720,

accuracy of 0.649, a PPV of 0.488, and a NPV of 0.740.
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TABLE 1 Analysis of clinical data and ultrasonographic features in training and testing sets of patients with PTC.

Features Training set(n=456) Testing set(n=114)

CLNM (-) (n=287) CLNM (+) (n=169) P
CLNM (-)
(n=75)

CLNM (+)
(n=39) P

Age(year) 46.60 ± 11.71 39.55 ± 11.02 <0.001* 44.04 ± 10.65 39.13 ± 13.04 0.033*

Size(mm) 7.95 ± 4.19 10.56 ± 6.57 <0.001* 8.50 ± 6.91 12.84 ± 9.47 0.006*

Aspect ratio 1.15 ± 0.32 1.05 ± 0.28 0.002* 1.10 ± 0.32 1.08 ± 0.33 0.695

Sex <0.001* 0.131

Male 52(18.12) 61(36.09) 19(25.33) 16(41.03)

Female 235(81.88) 108(63.91) 56(74.67) 23(58.97)

Location 0.553 0.398

Right 136(47.39) 89(52.66) 33(44.00) 16(41.03)

Left 138(48.08) 73(43.20) 39(52.00) 23(58.97)

Isthmus 13(4.53) 7(4.14) 3(4.00) 0 (0)

SCLNM 0.002* 0.830

Absent 262(91.29) 137(81.07) 66(88.00) 33(84.62)

Present 25(8.71) 32(18.93) 9(12.00) 6(15.38)

Margin† 0.169 0.787

Clear 115(40.07) 56(33.14) 40(53.33) 19(48.72)

Unclear 172(59.93) 113(66.86) 35(46.67) 20(51.28)

Shape 0.66 1.000

Regular 104(36.24) 57(33.73) 32(42.67) 16(41.03)

Unregular 183(63.76) 112(66.27) 43(57.33) 23(58.97)

Calcification <0.001* 0.033*

No 153(53.31) 67(39.64) 35(46.67) 9(23.08)

Microcalcification 84(29.27) 73(43.20) 20(26.67) 20(51.28)

Macrocalcification 38(13.24) 11(6.51) 11(14.67) 4(10.26)

Mixed calcification 12(4.18) 18(10.65) 9(12.00) 6(15.38)

Capsule Contact 0.038* 0.017*

Absent 92(32.06) 38(22.49) 27(36.00) 5(12.82)

Present 195(67.94) 131(77.51) 48(64.00) 34(87.18)

Loss of capsule continuity† 0.662 0.395

Absent 237(82.58) 136(80.47) 48(64.00) 21(53.85)

Present 50(17.42) 33(19.53) 27(36.00) 18(46.15)

Discontinuous capsule
enhancement 0.524 1.000

Absent 213(74.22) 120(71.01) 55(73.33) 29(74.36)

Present 74(25.78) 49(28.99) 20(26.67) 10(25.64)

CDFI 0.014* 0.125

Type I 112(39.02) 47(27.81) 17(22.67) 9(23.08)

Type II 35(12.20) 14(8.28) 15(20.00) 3(7.69)

(Continued)
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Construction and evaluation of the
combined model

We used the optimal model results to construct a combined

model, which we then visualized as a nomogram. To ensure

consistent and objective assessment of clinical utility of the models,

LR was chosen for both the clinical and radiomics signatures. In the

training dataset, the AUC value of the nomogram was greater than

that of the clinical and radiomics models (P = 0.027 and 0.002,

respectively). Moreover, there was no significant statistical difference

observed in the AUC values between the clinical model and the

radiomics model (P = 0.356). In the testing dataset, the AUC value of

the nomogram model was also greater than that of the radiomics

model (P = 0.012). However, the statistical difference between the

nomogram and the clinical model was not significant (P = 0.928).

Furthermore, the AUC of the clinical model was higher than that of

the radiomics model (P = 0.041). The nomogram demonstrated good

agreement between predicted and actual observed values in both

training and testing sets (P values for Hosmer-Lemeshow test were

0.280 and 0.051, respectively) (Figure 4).
Discussion

The findings of this study demonstrate that the radiomics

model based on ultrasound image features has limited value in
Frontiers in Oncology 07
preoperatively predicting CLNM for patients with PTC. However,

combining the radiomics features with clinical data can improve

predictive performance. This result may offer valuable insights for

tailoring personalized treatment strategies for PTC patients in

clinical practice.

This study revealed an association between age and CLNM in

PTC patients, indicating younger patients were more prone to

developing CLNM. This is consistent with a recent study that also

showed a negative correlation between age and CLNM, despite

different age group cutoffs (15). Our study also revealed a higher

CLNM detection rate in males, which is consist with the

observations of Zhu et al. (16). The negative correlation in

females may be related to hormonal and reproductive factors

(17). Additionally, there was a positive correlation between larger

tumor size and the CLNM. Larger tumors had a greater tendency to

develop CLNM, consistent with prior research findings (18, 19).

This study identified tumor contact with the capsule as an

independent risk factor for CLNM. In agreement with Wang

et al. (20), we also emphasized the association between tumor-

capsule correlation and CLNM. Seong et al. found that a distance

from the capsule <1.9 mm was associated with CLNM in PTC

patients (21). Different from their quantitative method, we opted for

the assessment of capsule contact as the indicator, aiming to

facilitate a more practical clinical application of our prediction

model. Moreover, consistent with previous studies, the preoperative

detection of SCLNM on ultrasound was also identified as a risk
TABLE 1 Continued

Features Training set(n=456) Testing set(n=114)

CLNM (-) (n=287) CLNM (+) (n=169) P
CLNM (-)
(n=75)

CLNM (+)
(n=39) P

Type III 115(40.07) 84(49.70) 37(49.33) 19(48.72)

Type IV 25(8.71) 24(14.20) 6(8.00) 8(20.51)

Perfusion rate† 0.013* 0.229

Earlier 13(4.53) 19(11.24) 4(5.33) 5(12.82)

Later 150(52.26) 73(43.20) 28(37.33) 10(25.64)

Simultaneous 124(43.21) 77(45.56) 43(57.33) 24(61.54)

Homogeneity 0.937 1.000

Homogeneous 140(48.78) 81(47.93) 35(46.67) 18(46.15)

Heterogeneous 147(51.22) 88(52.07) 40(53.33) 21(53.85)

Enhanced intensity† 0.018* 0.247

Hyper-enhancement 14(4.88) 20(11.83) 9(12.00) 9(23.08)

Hypo-enhancement 119(41.46) 59(34.91) 26(34.67) 14(35.90)

Iso-enhancement 154(53.66) 90(53.25) 40(53.33) 16(41.03)

Hashimoto’s thyroiditis 0.552 0.017*

Absent 207(72.13) 127(75.15) 48(64.00) 34(87.18)

Present 80(27.87) 42(24.85) 27(36.00) 5(12.82)
fro
*Indicates P<0.05 between the CLNM (-) and the CLNM (+) group.
† Indicates P<0.05 between the training set and the testing set.
SCLNM, suspicious cervical lymph node metastasis; CDFI, Color Doppler flow imaging.
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TABLE 2 Univariate and multivariate analyses of clinical indicators.

Parameter Univariate analysis Multivariate analysis

OR 95%CI P OR 95%CI P

Age(year) 0.989 0.986-0.992 <0.001* 0.991 0.988-0.994 <0.001*

Size(mm) 1.019 1.013-1.024 <0.001* 1.009 1.003-1.015 0.013*

Aspect ratio 0.828 0.744-0.921 0.004* 0.930 0.839-1.031 0.243

Sex 0.810 0.752-0.874 <0.001* 0.859 0.799-0.922 <0.001*

Location 0.966 0.912-1.024 0.331

SCLNM 1.207 1.091-1.331 0.002* 1.125 1.023-1.239 0.041*

Margin 1.067 0.997-1.142 0.114

Shape 1.025 0.957-1.099 0.556

Calcification 1.058 1.020-1.096 0.011* 1.027 0.993-1.064 0.190

Contact 1.149 1.068-1.236 0.002* 1.112 1.036-1.194 0.014*

LCC 1.044 0.965-1.131 0.372

DCE 1.208 0.954-1.108 0.535

CDFI 1.065 1.033-1.100 0.001* 1.020 0.989-1.053 0.290

Perfusion rate 0.974 0.923-1.027 0.413

Homogeneity 1.007 0.941-1.077 0.864

Enhanced intensity 0.946 0.899-0.995 0.073

HT 0.921 0.855-0.993 0.072
F
rontiers in Oncology
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*Indicates P<0.05.
LCC, Loss of capsule continuity; DCE, Discontinuous capsule enhancement; HT, Hashimoto’s thyroiditis; CDFI, Color Doppler Flow Imaging; SCLNM, Suspected Lymph Node Metastasis.
TABLE 3 Diagnostic performance of different clinical models in the training and test sets.

Models AUC 95% CI Acc. Sen. Spe. PPV NPV

LR

Train 0.728 0.679-0.776 0.719 0.485 0.857 0.667 0.739

Test 0.757 0.666-0.849 0.711 0.897 0.622 0.547 0.920

SVM

Train 0.691 0.639-0.743 0.691 0.521 0.808 0.615 0.741

Test 0.738 0.642-0.835 0.728 0.667 0.760 0.591 0.814

KNN

Train 0.803 0.766-0.841 0.695 0.84 0.61 0.559 0.866

Test 0.646 0.540-0.752 0.693 0.487 0.822 0.559 0.75

RF

Train 0.995 0.991-0.999 0.974 0.976 0.972 0.954 0.986

Test 0.659 0.557-0.761 0.632 0.564 0.685 0.468 0.746

ExTra Trees

Train 1.000 1.000-1.000 0.996 1.000 0.993 0.988 1.000

Test 0.636 0.527-0.745 0.632 0.692 0.643 0.474 0.789

(Continued)
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factor for CLNM (22, 23). Despite the significant value of

preoperative clinical characteristics in predicting CLNM, there are

limitations in subjectivity for evaluation and analysis of certain

ultrasound features. Hence, this study aimed to explore more

objective, automated, and accurate preoperative CLNM prediction

approaches to overcome these limitations.

Radiomics is a methodology that involves the extraction of a

multitude of quantitative features from medical images through the

utilization of data characterization algorithms. This method

transforms digital medical images into high-dimensional data that

is imperceptible to the human eye, extracting meaningful

information hidden in the images that may have value for

decision support, personalized medicine, and predictive modeling.

This study highlights the substantial significance of texture features

in predicting CLNM within the tumor region of PTC. Following a

dimensionality reduction analysis of radiomics features extracted
Frontiers in Oncology 09
from the tumor’s ROI, a total of 16 radiomics features were

ultimately retained and employed for machine learning modeling.

Among these features, 75% (12/16)are texture features,

concentrating on assessing the contrast of grayscale distribution,

the consistency and repeatability of the texture, the complexity and

disorder of the texture, as well as the linear correlation of grayscale

values between pixels and their neighboring pixels in the tumor.

Additionally, 25% (4/16) features are categorized as first-order

features. These first-order features evaluate tumor heterogeneity

by scrutinizing variations in pixel intensity within the tumor region.

They encompass the mean, median, standard deviation, maximum,

and minimum pixel intensities in the tumor, providing insights into

the distribution and fundamental properties of pixel intensities in

the image, including overall brightness, contrast, and uniformity.

This finding was consistent with the results reported by Park et al.

(24). These features delineated the intensity and distribution of gray
TABLE 3 Continued

Models AUC 95% CI Acc. Sen. Spe. PPV NPV

XGBoost

Train 0.928 0.904-0.951 0.860 0.858 0.861 0.784 0.911

Test 0.684 0.579-0.789 0.623 0.821 0.520 0.471 0.848

LightGBM

Train 0.825 0.788-0.863 0.743 0.805 0.707 0.618 0.860

Test 0.680 0.576-0.784 0.614 0.795 0.520 0.463 0.830

MLP

Train 0.701 0.651-0.751 0.686 0.538 0.774 0.583 0.740

Test 0.702 0.596-0.808 0.684 0.744 0.653 0.527 0.831
LR, logistic regression; SVM, Support Vector Machine; KNN, K-Nearest Neighbors; RF, Random Forest; MLP, Multilayer Perceptron; Acc., accuracy; Sen., sensitivity; Spe., specificity; PPV,
Positive Predictive Value; NPV, Negative Predictive Value.
FIGURE 3

Coefficient values of selected ultrasonographic radiomics features for machine learning modeling. This bar chart illustrates the coefficient values of
ultrasonographic radiomics features that were selected for inclusion in machine learning models. Each bar represents the magnitude of the feature’s
coefficient, with positive values indicating a feature that contributes positively to the model’s output and negative values indicating a
negative contribution.
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levels within tumors, which could potentially be associated with

alterations in the structure and density of tumor cells. Radiomics

features can reflect underlying pathologic alterations, thereby

providing important evidence for preoperative prediction of

CLNM in PTC patients.

In this study, we performed ML modeling using radiomics

features from ultrasound images after Lasso feature selection.

However, logistic regression (LR) was eventually chosen as the

model. While the majority of ML models, including SVM, KNN,

random forest, ExtraTrees, XGBoost, and LightGBM, demonstrated

strong performance on the training set, their AUCs exhibited a

significant decline on the testing set, indicating overfitting

problems. In comparison, the LR model maintained relatively

high AUC on the testing set. Similarly, in building clinical

signature, we also utilized various MLmodels, which showed

overfitting issues with RandomForest, ExtraTrees, XGBoost,
Frontiers in Oncology 10
LightGBM models. Ultimately, we selected the model that

demonstrated superior performance on the testing set as the

clinical signature, which remained the LR method. In exploring

the integration of clinical and radiomics models, we combined the

optimal results of the clinical model with those of the radiomics

model to create a combined model. Results demonstrated the

combined model achieved the highest AUC, followed by the

clinical model, and then the radiomics model. In this study, the

AUC value of the radiomics model was similar to the clinical model

in the training set but lower in the testing set. This suggests that, in

clinical practice, radiomics technology cannot replace traditional

clinical indicators. We also found that a new model combining

radiomic and clinical outcomes showed higher diagnostic

performance in both the training and testing sets compared to the

standalone radiomics model. Additionally, the combined model

exhibited superior performance only in the training set compared to
TABLE 4 Diagnostic performance of different ultrasound radiomics models in the training and test sets.

Models AUC 95% CI Acc. Sen. Spe. PPV NPV

LR

Train 0.701 0.651-0.750 0.656 0.645 0.662 0.529 0.76

Test 0.630 0.520-0.740 0.649 0.513 0.72 0.488 0.740

SVM

Train 0.831 0.792-0.871 0.761 0.888 0.686 0.625 0.912

Test 0.581 0.463-0.700 0.675 0.462 0.787 0.529 0.737

KNN

Train 0.796 0.758-0.835 0.689 0.858 0.589 0.551 0.876

Test 0.584 0.479-0.690 0.579 0.667 0.533 0.426 0.755

RF

Train 0.998 0.996-1.000 0.991 0.988 0.993 0.988 0.993

Test 0.572 0.460-0.684 0.553 0.667 0.493 0.406 0.74

ExTra Trees

Train 1.000 1.000-1.000 1.000 1.000 1.000 1.000 1.000

Test 0.565 0.456-0.675 0.482 0.821 0.307 0.381 0.767

XGBoost

Train 0.995 0.990-0.999 0.963 0.976 0.955 0.927 0.986

Test 0.595 0.483-0.707 0.588 0.615 0.573 0.429 0.741

LightGBM

Train 0.953 0.935-0.971 0.888 0.929 0.864 0.801 0.954

Test 0.561 0.446-0.676 0.684 0.256 0.919 0.588 0.701

MLP

Train 0.737 0.689-0.784 0.686 0.663 0.700 0.566 0.779

Test 0.608 0.496-0.719 0.658 0.436 0.784 0.500 0.725
LR, logistic regression; SVM, Support Vector Machine; KNN, K-Nearest Neighbors; RF, Random Forest; MLP, Multilayer Perceptron; Acc., accuracy; Sen., sensitivity; Spe., specificity; PPV,
Positive Predictive Value; NPV, Negative Predictive Value.
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the clinical model. In the testing set, their diagnostic performance

was similar, indicating the crucial value of clinical indicators in

predicting CLNM in PTC patients. However, one of the primary

advantages inherent in radiomic method is their ability to provide

an objective assessment (25). In clinical practice, it is essential to

combine ultrasound radiomics features along with clinical

characteristics to optimize the preoperative prediction of CLNM

in patients with PTC.

There are some limitations in this study. First, this was a single-

center retrospective study, which may introduce selection bias.

Thus, the results need to be verified in larger-sample, multi-

center, prospective studies. Second, evaluation of clinical

ultrasound features has a certain degree of subjectivity. Although

two experienced physicians performed independent assessments

and consistency evaluation was carried out in this study, subjectivity

may still affect the diagnostic performance of the clinical and

combined models. Third, this study only analyzed radiomics

features of the primary thyroid tumor ultrasound images, without
Frontiers in Oncology 11
in-depth analysis of radiomics features of the lymph nodes. In

future studies, we plan to construct multi-modal combined models

to incorporate lymph node radiomics features and thereby further

improve model prediction performance. Finally, tumor ROI

delineation in this study was performed manually, which is

notably inefficient. In future studies, we will try automatic

delineation approaches to reduce human intervention and

improve research efficiency and objectivity.
Conclusion

Ultrasound radiomics technology provides a quantitative and

objective means for predicting CLNM in PTC patients. However,

the value of traditional clinical indicators remains irreplaceable,

underscoring the imperative need for their combined utilization in

clinical practice.
B
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A

FIGURE 4

Diagnostic performance of different predicting models. (A) The performances of various models in the training set. The AUC value of the nomogram
was superior to both the clinical and the radiomics models. Additionally, the clinical model demonstrated a similar AUC value compared to the
radiomics model. (B) The performance of the models in the testing set. Both the nomogram and the clinical model exhibited higher AUC values than
that of the radiomics model. (C, D) represent the calibration curves for the three models in the training and testing datasets, respectively. “*”
represents the statistical P-value when comparing the AUCs of the nomogram and the radiomics model. “#” indicates the statistical P-value when
comparing the AUCs of the nomogram and the clinical model. “&” indicates the statistical P-value when comparing the AUCs of the clinical model
and the radiomics model. AUC, area under the curve.
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