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rechallenge microtubule-
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HER2-low MBC patients with
PI3K mutation
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Meiling Wang, Shanshan Zhao, Zuowei Zhao* and Man Li*

Department of Oncology & Breast Surgery, The Second Hospital of Dalian Medical University,
Dalian, China
This study aimed to explore the efficacy and potential mechanisms of

rechallenge therapy with microtubule-targeting agents (MTAs) in patients with

HER2-low metastatic breast cancer (MBC). We performed a systematic review to

investigate the rechallenge treatment concept in the field of HER2-low MBC

treatment and utilized a series of cases identified in the literature to illustrate the

concept. Here we reported two clinical cases of HER2-low MBC patients whose

disease progressed after prior treatment with MTAs such as docetaxel and

vincristine. When rechallenged with disitamab vedotin ((RC48-antibody-drug

conjugate (ADC), a monomethyl auristatin (MMAE) MTA)), both patients achieved

a partial response and the final progression-free survival (PFS) was 13.5 and 9

months, respectively. Genomic profiling detected a PIK3CA H1047R mutation in

the patients. The patients were treated with everolimus before being

rechallenged with RC48, which may lead to a better response. This study

further summarizes and analyzes the potential mechanism of the PI3K-AKT

signaling pathway in MTA resistance and reveals that the PIK3CA H1047R

mutation may be a potential molecular marker for the efficacy prediction of

mTOR inhibitors, providing new insights and potential therapeutic strategies for

the application of MTAs to MBC patients.
KEYWORDS

HER2-low metastatic breast cancer, disitamab vedotin (RC48), microtubule targeting
agents (MTAs), rechallenge, mTOR inhibitor, PIK3CA mutation
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1 Introduction

Breast cancer (BC) is the most commonly diagnosed

malignancy and has the second highest mortality rate globally

among all cancers in women (1). Compared with other tumors,

the slowing decline in mortality and the rising incidence of breast

cancers are concerning (2). For metastatic breast cancer (MBC),

therapeutic goals are prolonging life and symptom palliation. MBC

remains incurable in virtually all affected patients (3), and a major

contributor to this is the abrogation of the efficacy of chemotherapy

owing to the emergence of drug resistance (4, 5). Consequently,

additional targeted cancer control interventions are needed.

Approximately 60% of human epidermal growth factor receptor 2

(HER2)-negative MBC express low levels of HER2 (HER2-low),

defined as a score of 1+ on immunohistochemical (IHC) analysis or

as an IHC score of 2+ with a negative result of fluorescence in situ

hybridization (FISH). These patients have limited treatment options

after progression during primary therapy and most commonly

receive single-agent palliative chemotherapy. Multiple studies

have shown that the objective response rate (ORR) is only 6%–

17%, and the median PFS is only 1.6–2.8 months in patients with

HER2-negative (including HER2 0, HER2 1+, and HER2 2+) MBC

who received more than three lines of chemotherapy (6, 7).

MTAs, such as taxanes, have been a mainstay of BC therapy for

decades. However, in patients who have previously used taxanes, the

prognosis when reusing taxanes in the first line of relapse or metastasis

within 2 years is poor. Furthermore, there are clinical and resistance

issues that limit the efficacy of these drugs and pose a challenge to

improving patient outcomes. In addition to switching to new

treatments, rechallenge has attracted widespread attention.

Rechallenge therapy is the reintroduction of the same therapy to a

patient who has developed resistance after an interval of treatment (8).

Recent advances in ADC agents have led to the widespread

clinical use of drugs that target cancer cells via specific antigens (e.g.,

HER2 (9–11)). The effectiveness of ADCs in prolonging the survival

of MTA-resistant patients has attracted our attention. Trastuzumab

deruxtecan (also known as T-DXd and DS-8201) is an ADC that

has achieved great success in the treatment of HER2-positive BC.

The DESTINY-Breast03 trial showed the superiority of DS-8201 in

reducing the risk of progression or death in patients with HER2-

positive MBC who had been previously treated with trastuzumab

and taxane (12, 13). One of the reasons for the success is that DS-

8201 consists of a topoisomerase I inhibitor as a payload, which

does not develop cross-resistance with MTAs and has an effective

bystander effect. RC48 consists of MMAE as a payload (14). MMAE

exhibits a marked mitotic inhibitory effect by inhibiting tubulin

polymerization (15, 16). Pre-clinical studies and two clinical studies

revealed that RC48 demonstrated consistent efficacy in HER2-

positive and HER2-low advanced BC (17–19). In 2021, the

American Society of Clinical Oncology (ASCO) announced that

RC48 can achieve good efficacy in patients with HER2-positive or

HER2-low advanced BC who had received multiline treatments,

with a median PFS of 4.0 months in the HER2-positive and

5.7 months in the HER2-low (20). Further studies are needed to
Frontiers in Oncology 02
explore how MMAE-ADC agents are more effective at prolonging

the prognosis of patients with HER2-low advanced BC compared

with those with HER2-positive advanced BC.

As mentioned above, the role of rechallenge therapy in third-

line or fourth-line settings is not clear, but rechallenge could be a

possibility for patients who do not have any other valid treatment

options (8, 21). Treatment may cause epigenetic alterations that

induce chemoresistance, but altered therapy or intermittent therapy

may restore the epigenetic features. On this basis, our study

explored the rechallenge treatment concept in the field of HER2-

negative MBC treatment and used a series of cases to illustrate.

Furthermore, we suggest a new strategy that rapamycin (mTOR)

inhibitors can be used as an intermittent therapy to prolong PFS in

patients with HER2-negative MBC who receive MMAE-ADC

agents after MTA progression, and the PIK3CA H1047R

mutation may be a potential molecular marker.
2 Materials and methods

2.1 Search strategy

An electronic search was conducted using PubMed. The

following search terms were used: breast cancer, HER2,

rechallenge, microtubule-targeting agent, mTOR inhibitors, PI3K

(phosphoinositide 3-kinase)-AKT pathway, PIK3CA mutation. The

titles and abstracts of all remaining citations were reviewed, and

irrelevant citations were discarded. The full text of potentially

relevant studies was retrieved and evaluated. A manual search of

the reference list of relevant reports was performed to identify any

relevant studies missed by the search strategy. The evaluation of

efficacy was evaluated using the Response Evaluation Criteria in

Solid Tumors (RECIST) guidelines (version 1.1).
3 Results

We reported a series of cases of MBC patients in which RC48

was reintroduced after the progression of multiline standard-of-care

microtubule inhibitors as interventional therapy with mTOR

inhibitors and achieved good PFS (Figure 1). Additionally, five

cases of MBC patients in MTA rechallenge therapy had undergone

next-generation sequencing (NGS), and the mutational signature

profiling is shown in Figure 2.
3.1 Case series: five failed cases in HER2-
low MBC

Five patients (cases 3–7), who were diagnosed with HER2-low

MBC, received multiline chemotherapy treatment, including

taxanes, vinorelbine, etc. However, when these patients were

given RC48 directly after MTA treatment, the disease developed

within 1 or 2 months (Figure 1).
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3.2 Case 1: a 58-year-old woman with
HER2-low MBC

In May 2011, the patient underwent radical mastectomy for

left BC with a pathologic diagnosis of invasive ductal carcinoma

of the left breast (pT2N2M0). The IHC analysis confirmed that

the patient was estrogen receptor (ER)-negative, progesterone

receptor (PR)-negative, and HER2-0. After the operation,

adjuvant chemotherapy and radiotherapy and adjuvant

endocrine standard therapy were taken in 5 years. However,

the patient developed bone metastasis in 2016, which was

diagnosed as ER 40%, PR-negative, and HER2 1+. After local

radiotherapy and a multiline line of endocrine therapy (ET), the

disease was poorly controlled, and a liver malignancy was

diagnosed by PET/CT in 2018. Thus, the patient received two

cycles of vinorelbine (MTA) chemotherapy. However, the tumor

markers increased continuously, accompanied by enlargement of

the liver lesions (Figure 3A). After the failure of previous

treatments, a genomic analysis was performed and the PIK3CA

H1047R mutation was identified (Figure 2). The patient was

started on everolimus plus eribulin/utidelone for 9–10-line

therapy. Subsequently, the patient received RC48 for 15 cycles

(2 mg/kg, ivgtt, 14 days/cycle), after which her condition

stabilized and the PFS reached 13.5 months. This case

suggested that mTOR inhibitors as intermittent therapy can

reverse the resistance of microtubule inhibitors.
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3.3 Case 2: a 58-year-old woman with
HER2-low MBC

In 2018, the patient received a modified radical mastectomy for left

BC. At the time of initial diagnosis, the postoperative pathology was

invasive BC (pT1N0M0). The IHC analysis found that the cancer was

ER 70%, PR 30%, and HER2-negative. After adjuvant chemotherapy

and adjuvant ET, sternal metastasis occurred in February 2021, which

was identified as BC metastasis by bone biopsy, and the IHC analysis

confirmed that the cancer was ER 30%, PR-negative, HER2 2+, FISH

no amplification, and Ki67 30%. Following local radiotherapy and

multiline ET, the disease remained poorly controlled and was

confirmed as a liver malignancy by PET/CT; consequently, the

patient received two cycles of vinorelbine chemotherapy. The patient

received advanced first-line ET with abemaciclib plus fulvestrant. Liver

metastasis developed after two cycles, and the curative effect was

evaluated as progressive disease (PD).

Subsequently, docetaxel (MTA) combined with capecitabine

chemotherapy was administered until the liver lesion progressed

after four cycles. Genomic profiling was performed and detected a

PIK3CA H1047R mutation (Figure 2). The liver metastases

continued to deteriorate after two cycles of gemcitabine combined

with a carboplatin regimen and 1 month of ET with exemestane plus

everolimus. However, when the patient received RC48 for four cycles,

the intrahepatic lesions significantly reduced in number and size,

achieving a partial response (Figure 3B). The final PFS was 9 months.
FIGURE 1

Patients’ overview. Clinical timelines for the seven cases of metastatic breast cancer patients in which RC48 was reintroduced after the progression
of multiline standard-of-care microtubule inhibitors. Patients’ histories are shown from advanced first-line treatment until RC48 reintroduction. The
arrows represent distinct therapies and durations. The asterisk represents patients carrying PIK3CA H1047R mutation. ER, estrogen receptor; PR,
progesterone receptor; HER2, human epidermal growth factor receptor 2; SD, stable disease; PD, progressive disease; CAP, capecitabine; GP,
gemcitabine + cisplatin/carboplatin; THP, docetaxel + trastuzumab + pertuzumab; ADM, doxorubicin; MTA, microtubule-targeting agent; AI,
aromatase inhibitor; SERD, selective estrogen receptor downregulator; mTORi, mammalian target of rapamycin inhibitors; CDK4/6i, cyclin 4- and 6-
dependent kinase inhibitors; PD-1 inhibitor, programmed cell death 1 inhibitor; TKI, tyrosine kinase inhibitor.
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4 Discussion

In our study, the failed cases treated with MMAE-ADC agents

after the progression of multiline MTA treatment indicated that the

efficacy of treatment may be affected if the chemotherapy drug is the

same as ADC-payload. This is mainly because they have the same

anti-tumor effect, and the patients develop resistance after the

progression of chemotherapy. In contrast to these cases, we

identified two BC patients who received RC48 after MTA

progression and achieved a better prognosis. These two patients

had the PIK3CA H1047R mutation detected by genomic profiling

and were treated with everolimus before starting the RC48

treatment. The PFS of these two patients treated with RC48 was

13.5 and 9 months, respectively. In addition, one patient achieved a

continuous partial response after treatment with RC48. These two

cases suggested that mTOR inhibitors as an interval treatment can

promote the efficacy of MMAE-ADC agents after the progression of

multiline MTA treatment in HER2-low BC. Meanwhile, this study

provided new insights into the challenges faced by microtubule

inhibitors, implying that mTOR inhibitors can be used as inducers

to restore the therapeutic effects of microtubule inhibitors. We
Frontiers in Oncology 04
hypothesize that mTOR inhibitors as inducers can effectively

enhance the anti-tumor effect of MTAs in BC with HER2-

low expression.

MTAs are widely used in clinical practice, and numerous

studies have identified resistance to paclitaxel and docetaxel. The

major structural subunit of microtubules is tubulin, which is

composed of a- and b-tubulin monomers that form a dimer and

assemble onto the positive ends of the growing microtubule. In

many cancer cell lines, MTA resistance results from alterations in

microtubule dynamics and binding sites on the microtubules (22,

23). The mechanism of MTAs can be divided into three aspects: (1)

disturb the spindle assembly: MTAs, such as taxol, impair the

assembly/disassembly dynamic balance of microtubule, thereby

activating the spindle assembly checkpoint (SAC) through

unattached kinetochores (24); (2) influence on microtubule

dynamics: The altered expression of microtubule proteins causes

mitotic spindle abnormalities and cell cycle arrest, ultimately

leading to genomic instability, which is considered a hallmark of

a range of cancers (25–27). Analysis of clinical specimens has

shown that, in many cancers, a high expression of several b-
microtubulin isoforms is associated with aggressive clinical
FIGURE 2

Mutational profiling of breast cancer cases. Single-nucleotide variants are depicted across the five metastatic breast cancer patients. The asterisk
indicates that this site mutates into a terminator so that the stop codon is encoded in advance, producing a truncated protein.
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manifestations, chemotherapy resistance, and poor patient

prognosis in several cancers, including breast, colon, and renal

cancers (28, 29); and (3) lead to mitotic arrest: The surface of the

globular portion of microtubulin contains several pockets that act as

intercalation sites for MTAs, thereby affecting the structure of

microtubulin. Several studies have demonstrated that treatment

with MTAs with this property leads to mitotic arrest and thus cell

death (30, 31). The emergence of compensatory pathways leads to

MAT resistance due to the alteration of some molecular features

during tumor development. Restoring these resistance alterations

will re-sensitize the cells to MTAs (32). In addition to our report,

other studies have reported a relationship between the PI3K-AKT

pathway and MTAs. This pathway is a vital oncogenic pathway and

can induce tumor cell survival, proliferation, and metastasis (33–

35). Several studies have demonstrated that low-dose PI3K-AKT

inhibitors are effective in reversing paclitaxel resistance in different

tumor types, including gastric, ovarian, lung, and prostate cancers

(36–39). We further explored the mechanisms associated with these

microtubule-targeted drug re-sensitization.

As we all know, tumor cells are often accompanied by

abnormally active mitosis and disruption of spindle dynamics (40,

41). Many microtubules and related proteins consist of the basic

structure of the mitotic spindle and are involved in the regulation of
Frontiers in Oncology 05
mitotic spindle dynamics (42). MTAs inhibit cancer cell

proliferation by disrupting the mitotic spindle (43, 44). It has

been demonstrated that the activation of the PI3K-AKT signaling

pathway is closely related to the stability of the microtubules and the

mitotic spindle. Gris–Oliver and colleagues suggested that 64% of

HER2-negative BC xenografts with resistance to eribulin

(microtubule inhibitors) show PIK3CA, PIK3R1, or AKT1

mutation, indicating that PI3K pathway activation may induce

resistance or early adaptation to microtubule inhibitors (45).

According to the literature, we explored the potential molecular

mechanisms by which mTOR inhibitors reverse MTA resistance by

inhibiting the PI3K-AKT signaling pathway (Figure 4).

On the one hand, the interaction between PI3K-AKT mainly

involves two metabolites: PIP2 (phosphatidylinositol-4,5-

bisphosphate) and PIP3 (phosphatidylinositol-3,4,5-bisphosphate)

(46, 47). PI3K is an intracellular phosphatidylinositol kinase. PI3K

consists of a regulatory subunit (p85) and a catalytic subunit (p110)

(48). When the ligand binds to the membrane receptor, the receptor

activates p85 and recruits p110, which, in turn, catalyzes the

production of PIP3 from PIP2 on the inner surface of the

membrane (49–51). p110a is activated at the initiation of mitosis,

producing PIP3 in the mesocortex of metaphase cells to guarantee

proper orientation of the spindle. Lipid phosphatases (e.g., PTEN)
A

B

FIGURE 3

Basic information of the patients. (A) Treatment timelines and images of liver metastases of the patient in case 1. (B) Treatment timelines and images
of liver metastases of the patient in case 2. AC, doxorubicin + cyclophosphamide; T, paclitaxel, TAM, tamoxifen; UTD1, utidelone; RC48, disitamab
vedotin. The asterisk indicates when the patient developed liver metastases, and the red arrow represents the tumor tissue.
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can metabolize (dephosphorylate) PIP3 back to PIP2, thereby

terminating the PI3K signaling pathway. In addition, PI3K-C2a,
a class II PI3K family member, interacts with the transformed acidic

coiled-coil 3 (TACC3) and clathrin heavy chain (CHC) complexes

to stabilize the kinetochore–microtubules formed by the spindle

(52, 53). Due to the critical role of PI3K-AKT signaling in spindle

formation, drug inhibitors such as LY-294002 and MK-2206 can

lead to aberrant centrosome and mitotic spindle formation, thereby

reversing MTA resistance and enhancing antitumor effects (52,

54, 55).

On the other hand, the PI3K-AKT-mTOR pathway has been

implicated in the regulation of microtubule stability (35, 56–58).

Onishi et al. showed that the addition of the pan-PI3K inhibitor LY-

294002 destabilized microtubules in fibroblasts (59). Previous

studies have shown that the localization of AKT to microtubules

is important for sustaining AKT phosphorylation. Consistently, the

introduction of a predominantly negative form of AKT into cells

showed destabilized microtubules (57, 58). The regulation of

microtubule dynamics by the PI3K-AKT pathway can be

transduced by glycogen synthase kinase-3b (GSK-3b). As

previously mentioned, PI3K-AKT inhibits the activity of GSK-3b
activity (60). The inhibition of PI3K-AKT signaling by LY-294002

induces the activation of GSK-3b, which, in turn, regulates a large

repertoire of protein substrates, including microtubule-associated

proteins (MAPs) (60). MAPs interact with tubulin dimers of the

microtubule (e.g., MAP1, MAP2, MAP3, MAP4, and tau) (61). This

interaction leads to microtubule stabilization and subsequent

polymerization—for example, MAP4 decorates the microtubule

network and participates in microtubule assembly and endosomal

vesicle trafficking along microtubule tracks. Thapa et al. discovered

that MAP4 is a binding partner of the p110a catalytic subunit of

PI3Ka (62). The loss of MAP4 perturbs PI3Ka recruitment along

microtubule tracks and endosomes and disrupts PI3Ka association

with activated receptor complexes, which collectively contribute to
Frontiers in Oncology 06
impaired PI3Ka activation (62–64). A previous study revealed that

LY-294002 did not induce cell death but resulted in the marked and

selective enhancement of the induction of apoptosis by

microtubule-destabilizing agents such as vincristine (60). The

mechanism is that blockade of the PI3K-AKT pathway induces

the activation of GSK-3b, which phosphorylates MAPs such as tau

and thereby reduces their ability to bind and stabilize

microtubules (64).

Previous studies suggested that cleaved-PARP may be involved

in the action of the PI3K-AKT inhibitors in the paclitaxel-resistant

cell line (65, 66). PARP is a family of enzymes of poly (ADP-ribose)

polymerases. In addition to mediating DNA damage response

pathways, PARP is crucial in regulating genome stability through

transcription and regulating the expression of oncogenes and tumor

suppressor genes (67, 68). In the cases in this study, the

administration of the combination of everolimus and ET or

chemotherapy did not improve PFS and disease progression

continued. However, after everolimus treatment, patients with

HER2-negative BC who received RC48 achieved an improvement

in PFS. These results indicate that mTOR inhibitors may act as

inducers that support MMAE-ADC agent rechallenge in patients

with MTA-resistant HER2-negative BC. HER2 and insulin receptor

substrate (IRS) stimulate the RAS-ERK-RSK and AKT-mTOR

pathways. Activation of mTOR signaling phosphorylates S6

kinase 1 (S6K) and eukaryotic initiation factor 4E-binding protein

1 (4E-BP1), which promote cancer growth and metastasis (69). The

use of mTOR inhibitors and PI3K inhibitors to overcome resistance

to current HER2 therapies is an active area of research (70). These

may be the reasons for the re-sensitization of MTAs by mTOR

inhibitors, and we still need more basic and clinical trials to

verify this.

PIK3CA mutations are present in approximately 20% of HER2-

positive BCs (71, 72). In patients with advanced hormone receptors

(HR)+/HER2-negative BC, 28% of PIK3CA mutations were
FIGURE 4

Potential molecular mechanisms between PI3K/AKT signaling pathway and microtubule-targeting agent resistance.
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identified in circulating tumor DNA (73, 74). The results from the

SAFIR02 trial showed that PIK3CA mutations were associated with

chemoresistance and poorer overall survival (OS) in ER+ HER2-

negative BC (75). PIK3CA was the most frequent mutation

observed, associated with an increased kinase activity of the PI3K

pathway. In BC, the most frequent PIK3CA mutations lead to

protein residue changes at the following positions of exon

mutations: E542K (76–78), E545K (77, 78) in exon 9 and H1047R

(77, 78) in exon 20, comprising approximately 78% of all PIK3CA

mutations observed in breast tumors (79). Numerous studies have

demonstrated that these hotspot mutations prompt transformation

and tumorigenicity by inducing enhanced PI3K function and

activating downstream signaling in the AKT-mTOR pathway (75,

80), with robust in vitro and in vivo transformation phenotypes

(81–84). Different mutations at the same residues had different

phenotypic activities depending on their mutation frequency. It has

been reported that a higher frequency mutation (H1047R) showed a

stronger tumorigenic phenotype compared to mutations of E542K,

E536K, and E545K (85–88). In recent years, the relationship

between gene mutations and response to mTOR inhibitors has

received particular attention. Consistently, experimental studies

have demonstrated that BCs with PIK3CA mutations are more

sensitive to everolimus, and the IC50 value of the mTOR inhibitor is

lower for H1047R than for E542K or E545K (89). The PIK3CA

H1047R mutation was also reported to confer sensitivity to

everolimus in early-phase clinical trials in many types of cancers

(90, 91). The potential underlying mechanism is that the PIK3CA

H1047R mutation is a stronger driver of tumor development than

other types of PIK3CA mutations (92, 93).

Therefore, patients with PIK3CA H1047R mutations were more

sensitive to the mTOR inhibitor everolimus (94). Based on the

previous studies, among MBC patients who had been treated with

everolimus, patients with the PIK3CAH1047R mutation had longer

PFS compared with patients with wild-type or other mutant forms

of PIK3CA (p <0.050) (95). It is worth noting that PIK3CA H1047R

was detected in two cases with a favorable prognosis that was

mentioned above (Figure 2). Both of them used mTOR inhibitors

before MTA rechallenge treatment and showed longer PFS.

In summary, different mutations in PIK3CA lead to different

sensitivities of tumors to everolimus, and patients with PIK3CA

H1047R mutations were more sensitive to the mTOR inhibitor

everolimus. This may be because the PIK3CAH1047R mutation is a

stronger driver of tumor development than other types of PIK3CA

mutations (94). More importantly, relevant clinical studies

suggested that PIK3CA H1047R mutations may be a potent

biomarker of sensitivity to everolimus in MBC (95–97). The

combination of alpelisib, a selective PIK3CA inhibitor, with

mTOR inhibitors has also shown a synergistic efficacy in

PIK3CA-mutated (H1047R) hepatocellular carcinoma (98). These

results still need further exploration in clinical trials.

In our study, we found that patients had other mutations in

addition to PIK3CA. However, they were not associated with

mTOR inhibitors and MTAs—for example, mutations in the

fibroblast growth factor receptor (FGFR) 1/2 gene were associated

with FGFR kinase inhibitor resistance (99, 100). Dihydropyrimidine

dehydrogenase genotyping is related to the sensitivity of
Frontiers in Oncology 07
fluoropyrimidines (5-fluorouracil, capecitabine, and tegafur) (99,

101). Sensitivity to combined RAF kinases (BRAF) and mitogen-

activated protein kinase kinase (MEK) treatments is associated with

co-mutations of mitogen-activated protein kinase kinase 1

(MAP2K1) and BRAF (102). There are still some meaningful

variations that are worth exploring. In addition, tumor

progression is, in essence, an evolutionary process, and different

adaptive changes in molecular characteristics during tumor

development can enable tumors to progress through tumor

pathologic stages or transformation barriers (40, 103). According

to the theory of “evolutionary selection”, molecular pathways that

are activated or inactivated during tumor evolution may

play important adaptive roles in promoting tumorigenesis,

proliferation, and metastasis. This evolutionary theory could

explain the molecular mechanisms that emerged during tumor

evolution in the patient in our case after mTOR inhibitor

treatment, and restoration of these alterations would re-sensitize

cells in HER2-low MBC to MTAs.

Two-thirds of BC patients express HR and lack HER2

overexpression and/or amplification (104, 105). For these

patients, the combination of ET with cyclin-dependent kinase

(CDK)4/6 inhibitors exhibited significant survival benefits and is

now the gold standard for HR+/HER2-negative MBC (106, 107).

The choice of drug for use in clinical practice should be based on the

response to prior treatment before progression. Previous studies

revealed that when the disease progressed after the administration

of microtubule inhibitors, rechallenging with the same drugs seems

to be inadvisable. Conversely, few clinical studies have evaluated the

role of rechallenge in BC (108, 109). We summarized eight reports

about rechallenges in BC (Table 1), which highlight the clinical

importance of paying more attention to rechallenges. Toulmonde

et al. demonstrated docetaxel rechallenge as a second, third, fourth,

or more line of chemotherapy in the metastatic setting. Among the

33 patients with disease assessed according to RECIST guidelines,

14 (42.5%) had a partial response and 11 (33.5%) had a stable

disease >6 weeks. Globally, 55 patients (76%) obtained a benefit

from the treatment. The median time to progress and OS were 5.7

months (95% CI: 5.0–6.3) and 10.2 months (95% CI: 8.6–11.8). This

retrospective analysis supported the pragmatic strategy to retreat

patients with MBC with docetaxel (111). Meanwhile, some trials

with trastuzumab and CDK inhibitors have demonstrated the

potential of rechallenge in clinical applications (113, 114, 116). In

recent years, there have been many studies on ADC drugs in BC

with HER2-low-expression, including a number of clinical

trials (Table 2).

However, most clinical trials are still recruiting and further

research results are anticipated. RC48 is the representative MMAE-

ADC agent for BC treatment, showing consistent efficacy in

posterior line HER2-low-expressing MBC. Collectively, the role of

rechallenge therapy in the treatment of MBC has not yet been

established—whether a MMAE-ADC agent is feasible as a choice

after MTA resistance rechallenge in BC. Further studies are needed

to verify this strategy.

In conclusion, our study provides a new insight that mTOR

inhibitors, as an intermittent treatment, may induce sensitivity to

MMAE-ADC agents in HER2-low-expressing BC, especially after
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TABLE 1 Prior reports about rechallenge in breast cancer.

Regimen No.
of patients

Results Subtype References

Tamoxifen MCF7 vs.
MCF7-TAM12.5

Metastatic potential decreased;proliferation and
clonogenicity increased

p-AuroraA/
B upregulated

(110)

Docetaxel rechallenge 72 55 patients (76%) obtained a benefit from
the treatment

MBC (111)

Adjuvant anthracyclines vs.
anthracycline rechallenge

70 ORR: 38%; CB: 71%; mOS: 16.5 MBC (112)

(Neo) adjuvant trastuzumab–trastuzumab
rechallenge vs. lapatinib

101 vs. 27 No significance between two groups HER2+ (113)

Lapatinib-resistant vs. trastuzumab
Trastuzumab-resistant vs. lapatinib rechallenge

74
50

CB: 32% HER2+ (114)

Pembrolizumab vs. atezolizumab rechallenge 1 Excellent response without drug-related
adverse effects

TNBC (115)

CDK inhibitors 6 1 CR
2 PFS, 6 months
1 PFS, 10 months

HER2-
negative MBC

(116)

Anthracyclines and taxanes vs.
eribulin rechallenge

22 No significance in OS between two groups MBC (117)
F
rontiers in Oncology
 08
ORR, objective response rate; CB, clinical benefit; mOS, median overall survival; PFS, progression-free survival.
TABLE 2 Clinical trials of antibody–drug conjugate (ADC) drugs in breast cancer with HER2-low expression.

Target ADC
drugs

Tumors Status Combination Trial
phase

Results NCT

HER2

DS8201 Third-line advanced HER2-low
BC, post-chemo

Active,
not
recruiting

None Phase III PFS: 10.1 m
OS: 23.9 m
mPFS: 9.9 m

NCT03734029
(118)

Third-line advanced HER2-low
BC, chemo-naive

Recruiting None Phase III NCT04494425

SYD985 Neoadjuvant HER2-low BC None Phase II NCT01042379
(119)

ARX788 R/R Advanced HER2-low BC None Phase II NCT05018676

RC48 R/R Advanced HER2-low BC None Phase III NCT04400695

MRG002 R/R Advanced HER2+ BC None Phase II NCT04924699

R/R Advanced HER2 low BC None Phase II NCT04742153

A166 R/R Advanced HER2-
expressing cancer

None Phase II NCT03602079

HER2-low advanced
breast cancer

DS-8201a
(single arm)

ORR: 37.0% 95%CI: 24.3%–51.3%

Trop-2

DS-1062 Second-line advanced hormone
receptor+/HER2- BC

None Phase III NCT05104866

IMMUN-
132

Third-line advanced hormone
receptor+/HER2- BC

None Phase III ORR: 31.0% DOR: 7.4 m
95%CI: 4.4%–18.3%
PFS: 6.8 m 95%CI: 4.6%–8.9%

NCT03901339
(120)

Post-neoadjuvant HER2- BC None Phase III NCT04595565
(121)

CD166 CX-2009 Post-neoadjuvant HER2- BC None Phase III NCT04595565
(121)

HER3 U3-1402 Preoperative hormone receptor
+/HER2- BC

Recruiting None Phase I The primary endpoint is a CelTIL
score after one single dose

NCT04610528
(122)
PFS, progression-free survival; mPFS, median progression free survival; OS, overall survival; ORR, objective response rate; DOR, duration of response; m, month.
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disease progression following MTA multiline treatment. The NGS

indicates that PIK3CA H1047R mutation may correlate to this

better prognosis. Our data may help clinicians and patients make

personalized decisions to try and rechallenge the ominous situation

of metastatic disease to maximize efficacy and extend patient

wellbeing for as long as possible.
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