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DIC-Transformer: interpretation
of plant disease classification
results using image caption
generation technology
Qingtian Zeng, Jian Sun and Shansong Wang*

College of Computer Science and Engineering, Shandong University of Science and Technology,
Qingdao, China
Disease image classification systems play a crucial role in identifying disease

categories in the field of agricultural diseases. However, current plant disease

image classification methods can only predict the disease category and do not

offer explanations for the characteristics of the predicted disease images. Due to

the current situation, this paper employed image description generation

technology to produce distinct descriptions for different plant disease

categories. A two-stage model called DIC-Transformer, which encompasses

three tasks (detection, interpretation, and classification), was proposed. In the

first stage, Faster R-CNN was utilized to detect the diseased area and generate

the feature vector of the diseased image, with the Swin Transformer as the

backbone. In the second stage, the model utilized the Transformer to generate

image captions. It then generated the image feature vector, which is weighted by

text features, to improve the performance of image classification in the

subsequent classification decoder. Additionally, a dataset containing text and

visualizations for agricultural diseases (ADCG-18) was compiled. The dataset

contains images of 18 diseases and descriptive information about their

characteristics. Then, using the ADCG-18, the DIC-Transformer was compared

to 11 existing classical caption generation methods and 10 image classification

models. The evaluation indicators for captions include Bleu1–4, CiderD, and

Rouge. The values of BLEU-1, CIDEr-D, and ROUGE were 0.756, 450.51, and

0.721. The results of DIC-Transformer were 0.01, 29.55, and 0.014 higher than

those of the highest-performing comparison model, Fc. The classification

evaluation metrics include accuracy, recall, and F1 score, with accuracy at

0.854, recall at 0.854, and F1 score at 0.853. The results of DIC-Transformer

were 0.024, 0.078, and 0.075 higher than those of the highest-performing

comparison model, MobileNetV2. The results indicate that the DIC-

Transformer outperforms other comparison models in classification and

caption generation.
KEYWORDS

transformer, image caption, image classification, plant diseases, Faster R-CNN
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2023.1273029/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1273029/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1273029/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1273029/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2023.1273029&domain=pdf&date_stamp=2024-01-25
mailto:sswang@sdust.edu.cn
https://doi.org/10.3389/fpls.2023.1273029
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2023.1273029
https://www.frontiersin.org/journals/plant-science


Zeng et al. 10.3389/fpls.2023.1273029
1 Introduction

Rapid and accurate detection of plant diseases is crucial for

increasing agricultural productivity. Traditionally, agriculture

professionals rely on manual diagnosis to identify plant

abnormalities caused by disease (Al-Hiary et al., 2011). However,

this approach requires significant human and material resources

and is not realistic (Ngugi et al., 2021). In response to these

challenges, the use of image processing technology for automated

diagnosis of plant diseases has garnered increased attention

(Boulent et al., 2019).

In recent years, there has been remarkable progress in image

classification due to the emergence of deep learning and neural

networks. Among them, convolutional neural networks (CNNs)

have shown good performance in image classification (such as Sun

et al., 2022; Singh et al., 2023). However, a good CNN requires a

large amount of training data (Keshari et al., 2018). Unfortunately,

in the field of agricultural plant disease identification, the available

labeled data are of poor quality and limited in quantity (Singh et al.,

2020). Therefore, the first challenge in the task of classifying

agricultural plant diseases through image classification is

introduced: how to enhance the model ’s classification

performance with a relatively small number of images.

Among the existing agricultural diseases, some diseases have

very similar pathogenic characteristics. For instance, “apple

anthracnose” and “pear anthracnose” in Figure 1 are challenging

to differentiate based on visual features alone. As a result, the

accuracy of CNN-based models in identifying similar disease classes

is significantly reduced (Rzanny et al., 2022). However, this rarely

occurs when agricultural professionals observe and confirm the

disease. This presents a second challenge in identifying images of

agricultural diseases: how to develop a model that can accurately

identify specific plant diseases by replicating the process of manual

disease diagnosis.

To address both of these challenges, this article introduces

image caption generation techniques for the following reasons:
Frontiers in Plant Science 02
1. Image caption generation technology creates visual

semantics based on features in disease images and then

generates textual descriptions of affected areas using these

visual semantics (Yang et al., 2022). This process closely

resembles the behavior of agricultural experts manually

identifying disease categories. This can address the second

challenge presented.

2. The image classification task is single-task learning. When

there are limited training data in the dataset, CNN-based

image classification models may struggle to learn

sufficient discriminant features, leading to slower

performance in recognizing image classes (Luo et al.,

2018). When there are limited image data samples,

leveraging the benefits of multi-task learning can

effectively mitigate the performance decline caused by

the small sample size. Multi-task learning aims to

extract useful information from other tasks and apply it

to the current task, leading to an improved model

performance model (Ruder, 2017). Image caption

generation technology can extract rich semantic features

from images (Xian et al., 2022). These visually and

semantically rich features are shared during training,

typically serving as discriminant features for recognizing

objects. Therefore, by utilizing image caption generation

technology, the model will continue to have a positive

impact on image recognition even when there

are relatively few image samples. Therefore, the

combination of image captioning technology and image

classification tasks addresses the first challenge. CNN-

based image classification models may struggle to learn

sufficient discriminant features, leading to slower

performance in recognizing image classes (Luo et al.,

2018). When there are limited image data samples,

leveraging the benefits of multi-task learning can

effectively mitigate the performance decline caused by

the small sample size. Multi-task learning aims to

extract useful information from other tasks and apply it

to the current task, leading to an improved model

performance model (Ruder, 2017). Image caption

generation technology can extract rich semantic features

from images (Xian et al., 2022). These visually and

semantically rich features are shared during training,

typically serving as discriminant features for recognizing

objects . Therefore , by uti l iz ing image caption

generation technology, the model will continue to have

a positive impact on image recognition even when there

are relatively few image samples. Therefore, the

combination of image captioning technology and image

classification tasks addresses the first challenge.

3. By utilizing image caption generation technology, it is

possible to combine images and text to create a multi-

modal presentation. This tool is valuable for agricultural

managers who need to analyze both visual and

textual information simultaneously, allowing them to

interpret agricultural plant disease classification results

more comprehensively.
FIGURE 1

Examples of two diseases with similar pathogenic characteristics.
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From the early methods to the recent advancements in deep

learning, the accuracy of image caption generation has

continuously improved. This has led to increased attention to

the diversity of captions based on accuracy, which can generate

more stylized image captions (Ghandi et al., 2023). In the field of

agricultural diseases, the use of image caption generation

technology is limited. While existing image recognition and

classification technology for agricultural diseases is advancing,

most models only provide the names of disease classes without

clear explanations of the classification results (Kumar and Kumar,

2023). This lack of easy-to-understand explanations hinders

farmers without specialized knowledge from correctly

interpreting the recognition results, which does not align with

real-world application needs. Given the current situation, this

paper utilizes image caption generation technology in conjunction

with image classification technology to produce descriptive

information about disease characteristics based on the results of

plant disease identification.

Based on image caption generation technology, a method called

DIC-Transformer is proposed for agricultural plant disease image

classification. This method can generate descriptive interpretations

of disease areas in images.

The fourth section breaks down the method into four modules

to accomplish three tasks: detection, interpretation, and

classification. The four modules are the region detection module,

sequence encoding module, caption generation module, and

classification module. The disease region detection module

completes the task of detecting the disease region. The second

and third modules complete the interpretation task. The purpose of

the interpretation task is to generate a textual description of the

disease image features. The purpose of the classification task is to

train a classifier that can identify categories of plant diseases.

Finally, the name of the disease corresponding to the image is

displayed. In the fifth section, the experimental part, we evaluate the

DIC-Transformer on our self-constructed dataset (ADCG-18). The

dataset contains 3,971 images, 9,040 instances of disease areas, and

3,971 textual descriptions. Experiments demonstrate that the DIC-

Transformer method applied to the ADCG-18 dataset can address

the proposed research topic. The article’s contributions are divided

into the following three parts:
Fron
• A method for plant disease image classification is proposed.

This method can output the name of the disease class and

additionally generate an explanatory description of the

characteristics of this disease class.

• An agricultural disease caption generation dataset is collected,

named ADCG-18, which contains images of 18 diseases and

textual descriptions of the corresponding images.

• Extensive experiments prove that the performance of the

DIC-Transformer on the dataset ADCG-18 is the best.
This paper is divided into six chapters: Abstract, Introduction,

Related Work, Dataset Construction, Methods, Experiments, and

Conclusion. The Abstract introduces the limitations of existing

methods, the structure of the DIC-Transformer, the dataset, and the
tiers in Plant Science 03
experimental results. The Introduction outlines the article’s

structure and the primary contributions. The Methods section

outlines the principles and core concepts of DIC-Transformer.

The Experimental section introduces the planned experiments,

including the hardware configuration, software version,

framework information, various parameters used, evaluation

indicators, and the quantitative and qualitative analyses of the

results. The Conclusion briefly outlines the issues addressed by

our proposed model, its primary contributions, its limitations, and

the future directions for improving the model.
2 Related work

2.1 Object detection

The continuous advancement of artificial intelligence, big data,

and other technologies has ushered in new opportunities and

challenges for image processing technology. The application of

image processing technology in various fields is also more and

more extensive and deep (Li et al., 2023). The rapid evolution of

deep learning has also revolutionized the field of object detection. A

large number of models of object detection use CNNmodels related

to deep learning, such as R-CNN (Girshick et al., 2014), Fast R-

CNN (Girshick, 2015), and Faster R-CNN (Ren et al., 2015). These

methods improve detection performance by transforming object

detection problems into classification and bounding box regression

problems for candidate regions. In addition, these methods are

essentially two-stage structures. After further development, single-

stage detectors YOLO7 (You Only Look Once) (Wang et al., 2023)

and SSD (Single Shot MultiBox Detector) (Liu et al., 2016)

appeared. These methods reduce the complex candidate region

generation process and improve the detection speed by predicting

the class and location of the target directly on the image, but the

detection accuracy in some scenarios is slightly inferior to that of

the two-stage model. As object detection continues to evolve,

researchers are constantly improving algorithms to improve

performance. For example, attention mechanism, multi-scale

feature fusion, and target shape information are introduced to

enhance detection performance. Table 1 summarizes the

techniques related to objective detection, showing the name of the

method, the time it was proposed, and the advantages and

disadvantages of the method. Since the method proposed in this

paper mainly requires the accuracy of the object detection module,

the two-stage object detection model Faster R-CNN based on deep

learning was selected as the disease area detection module of

DIC-Transformer.
2.2 Image caption generation

Image caption generation is a task that involves generating human-

like descriptions or captions for given images. By generating textual

descriptions related to the image, additional semantic information can

be provided, enabling the computer to understand the image content

more fully and deeply. Image captioning models generally come in
frontiersin.org
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three classes: template-based (TB), retrieval-based, and artificial neural

network (ANN)-based (Bai and An, 2018).

The template-based (TB) model is a traditional image caption

model, which requires the appropriate title structure to be defined

in advance. Kulkarni et al. (2013) proposed a method called

Babytalk, which combines computer vision and natural language

processing techniques. First, they used computer vision algorithms

to extract key visual features from images, such as objects, people,

and scenes. They then used these features as input to generate

simple descriptions related to the image through natural language

processing models. However, image captioning technology based on

TB mode can only detect image content visually, which generally

causes problems such as complexity, creativity, and extracted

sentence coverage. In addition, unlike the manually written image

title information, if the main structure of the caption is a

constrained template, it will make the generated caption a bit

unnatural (Deorukhkar and Ket, 2022).

The retrieval-based image caption generation technology

retrieves a sentence or set of sentences from a pre-defined text

description dataset based on a given query image to generate the

title that best matches the image features of the target image. The

generated caption can be either a defined statement or a statement

composed of multiple retrieved statements (Bai and An, 2018).

Hodosh et al. (2013) treated caption generation as a ranking task.

Captions and images are then mapped into the latent space based

on canonical relevance. Also, the top-ranking caption for the target
Frontiers in Plant Science 04
image is selected by calculating the cosine similarity between the

caption and the image. In addition, two developments in caption

retrieval were proposed by Ordonez et al. (2016) to score the

relationship between captions and images. The two developments

are as follows: one is the retrieval of the entire available image, and

the other is the retrieval of captions based on the geometric distance

of scenes and objects. In Jeong et al. (2023), a novel search-type

radiology report generation module called X-REM is proposed to

improve clinical accuracy. Compared to the benchmark retrieval

method, X-REM increases the number of zero error reports and

reduces the average error severity.

ANN-based models use an encoder–decoder architecture when

generating image captions. Images are first encoded to generate a

corresponding high-level representation and then decoded using

language modeling algorithms. There are two types of ANN-based

models: 1) recursion-based models and 2) transformer-based

models (Parvin et al., 2023).

The recursive encoder–decoder structure is widely used in

multiple tasks, such as machine translation, language generation,

and code generation. Among them, long short-term memory

network (LSTM) (Naga Srinivasu et al., 2023) and gated recurrent

units (GRUs) are neural network units that are often used to

construct recursive structures. For example, Ye et al. (2018)

utilized attention mechanisms and linear transformations to

improve image caption generation. Through steps such as

calculating similarity, normalizing processing, and weighted

summation, dynamically focus on image areas to generate more

accurate and coherent captions. Yang et al. (2018) introduced a

shared backbone network that is used to extract image features.

Then, on top of the backbone network, multiple domain-specific

task networks are built to process image caption generation tasks in

different fields. Each task network has its own independent decoder

for generating captions for the corresponding domain.

However, the recursion-based encoder–decoder architecture

needs to be generated word by word in the process of generating

the caption sequence, so the parallel computation is not possible,

resulting in a slower speed (Khan et al., 2022). Due to the nature of

the self-attention mechanism in the Transformer model, the

representation of each position can be computed simultaneously

with other locations without the need for sequential loop structures.

This makes the Transformer model highly parallel computing

power (Khan et al., 2022). At the same time, the transformer

model consists of multiple stacked encoder and decoder layers,

each with multiple self-attention sublayers and feedforward neural

network sublayers. This multi-layered structure enables the gradual

extraction of higher-level abstract features and more accurate

predictions. These features make the Transformer-based caption

generation model have advantages in handling long-distance

dependency, parallel computing, and abstract feature extraction.

They enable the model to better understand the image content and

produce accurate, smooth captions. In the study of Wang et al.

(2020), a geometry perception converter is constructed to obtain the

geometric representation capabilities of encoders and decoders. Liu

et al. (2021a) proposed a full-network structure CPtr based on

Transformer for image caption generation tasks. By combining

image feature representation with position encoding through an
TABLE 1 Summary of work related to object detection.

Object
Detection

Time Advantages Disadvantages

R-CNN 2014 SS is used to
generate regions,
and CNN is used to
extract features

The training is multi-stage,
the space consumption is
large, and the detection is
slow; duplicate calculations
are performed at the time
of feature extraction

Fast R-CNN 2015 The speed is higher
than that of R-
CNN; end-to-end
training is achieved

An external SS module is
required to generate the
candidate region, which can
only run on the CPU and
is slow

SSD 2016 High accuracy, fast
detection, small
targets, and ease
of use

Sensitive to target intensity;
sensitive to dataset quality;
performance degradation in
complex scenarios

Faster R-CNN
(Swin
Transformer)

2022 High detection
accuracy and great
speed
improvement, truly
realize the end-to-
end object
detection
framework

It takes a relatively
long time

YOLO7 2022 Faster speeds,
sufficient accuracy,
and lower
computing
resource
requirements

The accuracy is inflated;
inaccurate detection of
small targets; not
versatile enough
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encoder, the decoder uses multiple Transformer layers to produce

accurate captions. The attention mechanism is used to interact with

the image with the text to improve the modeling ability. CPtr has

shown excellent performance in image understanding and caption

generation. In the study of Parvin et al. (2023), a transformer-based

image description generative model is proposed that does not rely

on recurrent or convolutional neural networks and is able to

capture the interrelationships between objects. Experiments on

COCO and Flickr datasets prove that the proposed method

outperforms various state-of-the-art models in various evaluation

indicators. In the study of Fang et al. (2022), ViTCAP, an image

captioning model based on a pure visual transformer, is proposed,

in which a grid representation is used without extracting regional

features. In the study of Fei (2022), an attention-aligned converter

for image captions is proposed, called A2, which is a perturbation-

based, self-supervised way to guide attention learning without any

annotation overhead. In the study of Liu et al. (2022), a new model

based on the encoder–decoder framework is proposed. In the

encoder, the features of different layers in the ResNet-50 are fused

to extract multi-scale information. In the decoder, a multi-layer

aggregation converter (MLAT) is proposed to utilize the extracted

information to fully generate sentences. In the study of Jing and Jin-

guang (2023), a hybrid structure image caption generation model

based on a convolutional neural network and Transformer was

proposed. It mainly fuses lightweight high-precision attention with

convolutional networks to form attention residual blocks, which are

used to extract visual features from input images. The features are

then entered into the sequence model transformer. Table 2 is a

summary of the related technologies for image caption generation

and lists the proposed time, advantages, and disadvantages of

different methods. Then, the appropriate type of method is

chosen according to the actual needs. Transformer architecture is

first used in natural language processing and later widely used in the

field of computer vision. Many transformer-based image captioning

models were introduced in the study of Ondeng et al. (2023),

including those pre-trained using visual language, which has

produced several state-of-the-art models, etc. Recent models show

the Transformer’s advantages in image caption generation.

Therefore, the image caption generation model in this article used

a transformer-based structure.
Frontiers in Plant Science 05
3 Dataset construction

3.1 Image collection and preprocessing

To establish a plant disease image dataset, it is first necessary to

determine which plants and diseases are selected. Then, high-

quality images are collected, and finally, the images are

preprocessed according to the requirements. The specific process

is as follows:
1. Determination of plant species and diseases: Before

collecting images, it is first necessary to determine the

plant species and diseases. The difficulty of image

collection is taken into account when determining plant

species and diseases. If a plant disease can be searched for

more images and related image characterization

information through common search engines, then the

disease is listed as a candidate. Finally, 18 diseases

belonging to 10 plant species are selected as research

objects to construct the dataset, for example, common

plants such as apples, pears, and tomatoes.

2. Image collection: Images are collected in a variety of ways,

such as search engine downloads, web crawling, and

manual collection. The image collection is mainly based

on web crawling and search engine downloads,

supplemented by manual collection. In the end, more

than 50,000 candidate images are collected. At the same

time, the collection of images complies with relevant

regulations such as copyright and privacy.

3. Image preprocessing: More than 50,000 images need to be

processed to ensure that they are fit for use. Disease-affected

areas in plant disease images need to have clear outlines,

obvious symptoms, appropriate exposure, and other

features. Low-quality, blurry, or unclear images need to

be removed. The image filtering process is as follows:

• Auto-filtering: For images that are not related to

agricultural plant diseases, such as people, watermarks,

and text, we use deep learning models to identify and

remove them.
TABLE 2 Summary of work related to image caption generation.

Image
caption

Method Time Advantages Disadvantages

Template-
based

Babytalk 2013 Descriptions can be accurately generated. The content is single and relatively fixed, and the degree of human
involvement is high.

Retrieval-
based

X-REM 2023 Improved accuracy; simple to implement. Performance depends on dataset size and retrieval algorithms;
The generated descriptions are also relatively limited.

ANN-
based

ALT
MLADIC
CPtr
DPP
ViTCAP
A2

MLAT

2018
2018
2021
2022
2022
2022
2022

Automatically learn features in images; high flexibility
and generalization ability; strong
contextual comprehension.

High data demand; long training time; it is difficult to explain the
specific decision-making process of the model for the generation of
image captions.
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• Manual filtering: After automatic filtering, because the

content of the image is generally very complex, some

images still do not meet the requirements, and relevant

agricultural professionals needmanual screening to ensure

that the dataset images are basic and suitable for use.
The filtered image is more suitable for use in terms of content

and resolution. In addition, most of the images are based on

different backgrounds, closer to real agricultural scenes. Finally, a

dataset containing 3,971 high-quality images for 18 diseases

is constructed.

In summary, the ADCG-18 contains two modes, text and

image, which have the characteristics of data diversity. Many

different forms of data can enrich feature representation: images

and text are two different forms of data that can provide

complementary information to describe an object or scene. By

using both image and text data, richer and more comprehensive

feature representations can be obtained, which improves the

performance and generalization ability of the model.

Data augmentation and transfer learning are also possible: fusing

image and text data can augment the size and diversity of datasets to

achieve data augmentation and improve the robustness and

generalization of models. In addition, transfer learning between

image and text data can help learning in one domain and improve

the effectiveness of the model by helping another with what is learned

in another. Therefore, it would be beneficial to consider both image and

text data when building datasets. However, while data diversity is

beneficial, there may be some potential biases, such as modal bias and

data association bias. Modal bias is due to semantic differences between

images and text, and models can produce bias when processing data

with different modalities. For example, in image recognition tasks, the

model may be more inclined to classify by image features and ignore

the information described by text. Data correlation bias is the

possibility of correlation bias when image and text data are

combined through association rules or manual matching. Even if the

association rule or matching process is deterministic, it is inevitable that

there will be some errors or biases, resulting in the inaccurate

correlation of images and text in the dataset.

These biases can affect the performance and generalization

ability of the model, allowing the model to perform poorly

against real-world samples. Therefore, when using datasets

containing image and text information, it is necessary to pay

attention to and minimize these potential biases and make

corresponding preprocessing and adjustments to improve the

robustness and accuracy of the model.
3.2 Data segmentation

The ADCG-18 contains 18 types of diseases due to the presence

of data-enhanced similar images in the dataset, so it cannot be

randomly divided according to the proportion when dividing the

dataset. It is necessary to divide the images of each disease category

according to the proportion and finally combine each divided disease

data into the final dataset. Otherwise, the data images in the training
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set and the test set will be duplicated, resulting in higher experimental

results than the real results. The data in this article are divided

according to a 7:3 ratio. Table 3 shows the results of the dataset

division. The method of image enhancement is shown in Figure 2.
3.3 Dataset details

The ADCG-18 contains two parts: images and textual

descriptions. In addition, the images and textual descriptions in

the dataset should correspond to each other. In order to achieve

this, it is necessary to determine which descriptive keywords are

unique to a certain disease class and ensure that the characteristic

keywords in the textual description of each disease are clearly

distinguished from the others.

Collect the description of diseases in the dataset from Internet

resources such as relevant agricultural websites and then

artificially extract sentences that meet the requirements for use.

Finally, the textual description of each image consists of

approximately six to 14 words. Note that each image

corresponds to one textual description.

Image labeling uses relevant tools to mark the disease area in the

image, including the label of each disease category and the disease

area’s true bounding box location. We use the image annotation

tool LabelMe (Torralba et al., 2010) to manually mark the

boundaries of the disease area in the image and save the

boundary information in a JSON file. The version of LabelMe is

4.5.13. Figure 3 shows the result of a hand-annotated image.

Since at least one disease region exists per image, there are more

disease instances (NOAD) than images (NOAI) for each class. Since

the symptoms of each disease are different, the number of bounding

boxes for each disease varies greatly. For example, in Table 4,

Infection of Peanut_leaf_spot and Pear_Rust are characterized by

the presence of more small-area spots on the foliage, and the

number of instances is 1,478 and 951, respectively, which is much

higher than the average number of instances. Figure 4 shows some

image samples and corresponding textual descriptions. Figure 5

shows the characteristic images of 18 diseases.

In addition, as depicted in Figure 3, we primarily describe the

quantity, color, size, sharpness of boundary lines, brightness,

darkness, and the degree of variation in characteristics when

constructing the dataset. These characteristics encompass all the

pathogenesis features of the disease and can fully describe the

occurrence of the disease. The text is stored in a JSON file as a

dictionary. Each entry begins with a disease name followed by a

description of its features. It is important to note that image name
TABLE 3 Dataset segmentation results.

Image_num Instance_num

Test set 1,180 2,842

Train set 2,791 6,198

Total 3,971 9,040
Image_num is the number of disease images. Instance_num is the number of disease instances.
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labels have been included in the text dataset to link each statement

to an image, which aids in the model’s training process.
4 Methods

4.1 Overview

Figure 6 shows the overall structure diagram of the model DIC-

Transformer proposed in this paper, with the DIC-Transformer

divided into four modules. ① is a disease region detection module,

which is used to obtain relevant information about the disease area

in the image. Relevant information is divided into two categories:

location vectors and visual feature vectors of disease areas. ② and ③

are sequence encoding module and caption generation module,

respectively, which are used for image caption generation tasks. ④ is

a classification module designed to classify images. We divide these
Frontiers in Plant Science 07
four modules into two stages, where the first stage model includes

module ① and the second stage model includes modules ②, ③,

and ④.

The first stage model, the region detection module, can

acquire the label of the disease image and the vector

representation of the disease area feature in the image. These

feature vectors are integrated into the sequence as inputs to the

sequence coding module. The average value of the integrated

visual feature vector sequence is used to represent the entire

image. The output of the sequence encoding module, in turn,

serves as keywords and values for attention blocks in each text

generation module. The input to the text generation module is a

sequence of word vectors, and the first position of the sequence is

the symbol [Start], which marks the beginning of generating the

word vector sequence. The output of the text generation module is

a sequence of word vectors similar to the input. The text

generation module is like RNN one word input, the Q is

calculated by the word that has appeared, the K and V are

calculated by the sequence coding module, and the result is

obtained after all the text generation modules and then

FC+Softmax. After that, the result is used as input to the text

generation module, and the whole process is repeated until the

symbol END is output. The output of the END symbol at this

point indicates that a text sequence has been generated. The

output of each layer of the text generation module is a visual

vector weighted by text features. Now, it is used as the keyword

and value of the classification module, and the average value of the

visual feature vector sequence is used as the query of the

classification module. Finally, the output of the disease

classification module is the probability for each category. In

order to clearly describe the implementation details of each

module, a symbology is established.
4.2 Region detection module

The region detection module is used to obtain the feature

vectors and bounding box coordinates for each disease area in the

image. Let I  =   I1, : : :  , Is, : : :  , ISf g denote the set of images, where
FIGURE 2

Examples of plant disease images of 18 types in the dataset.
FIGURE 3

An example image processed by LabelMe.
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S denotes the total number of images. Let Ds  = ds1, d
s
2 : : :  ,  d

s
tf g

denote disease areas that appear in each image Is. Each disease area

contains two types of information: a) dst,1 ∈ R1�T represents the

label of the diseased area, where T represents the total number of

categories for disease areas, and b) dst,2 ∈ R1�4 represents the

bounding box coordinates of each diseased area. Specifically, the

region detection module learns two mapping functions: μa and μb.

μa is used to obtain the category labels of each disease area, while μb
is used to obtain the bounding box coordinates for each disease

area. The details of the two functions are shown in Equations 1, 2.

d̂ s
∗,2 = mb(Is;ab), d

s
∗,2 ∈ Rt�4 (1)

d̂ s
∗,1 = ma(Is;aa), d

s
∗,1 ∈ Rt�T (2)

where aa represents the weight of the function μa and ab

represents the weight of the function μb. Area ① in Figure 6

represents the region detection module, where Fs  =   f s1 , f
s
2 ,…, f stf

represents the features of diseased areas in the image. These features

are obtained from the feature map generated by the last

convolutional layer of the backbone network in the object

detection process. Specifically, f st ∈ R1�C represents the feature

vector of a specific disease area in the image. The default value

for C is 1,024.
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4.3 Sequence encoding module

The structure of the sequence encoding module is shown in area

② in Figure 6. The intermediate variable of the function μa in the

region detection module is used as input to the sequence encoding

module, where the intermediate variable is essentially the visual

vector generated by the integration of all disease regions in the

image. This collection of visual vectors is referred to as the visual

vector sequence, denoted as Fs = f s1 , f
s
2 ,   :   :   :  , f

s
tf g, where Fs ∈

Rt�C . To encode this sequence of visual vectors, an input

embedding layer is utilized, which consists of two fully connected

layers with an output dimension of C 0, having a default value of

1,024. This process is represented by Equation 3.

F*s = MLP1
emb(F

s;a1
emb), F

*
s ∈ Rt�C

0
(3)

where a1
emb is the weight of MLP1

emb.

The self-attention mechanism can be regarded as an

improvement mechanism for the attention mechanism in a

certain application scenario. It becomes less dependent on

external information and has a superior performance in capturing

internal correlations in data or features. The calculation process of

the self-attention mechanism is as follows: first, the input data is

converted into an embedding vector. According to the embedding
TABLE 4 Statistical analysis of datasets.

SN Category name NOAI NOAD NOTRI NOTRD NOTI NOTD

1 Anthrax 165 344 116 219 49 125

2 Apple_bitter_rot 252 408 176 270 76 138

3 apple_cracking 156 248 110 175 46 73

4 Apple_mould_heart_disease 195 277 135 177 60 100

5 Apple_water_heart_disease 230 898 162 684 68 214

6 Brown_rot 261 289 173 184 88 105

7 Citrus_schizoderma 381 557 291 324 90 233

8 cracking 371 673 263 388 108 285

9 Jujube_Anthrax 219 649 150 337 69 312

10 Mango_Anthracnose 217 343 152 258 65 85

11 Olive_anthracnose 115 234 77 137 38 97

12 Papaya_anthracnose 212 673 149 499 63 174

13 Peanut_leaf_spot 235 1,478 164 1,140 71 338

14 Pear_Rust 268 951 190 680 78 271

15 Penicillium 165 187 115 136 50 51

16 strawberry_anthracnose 174 204 121 139 53 65

17 Tomato_anthracnose 188 348 130 251 58 97

18 Tomato_cotton blight 167 279 117 200 50 79
SN, the category index; NOAI, the total number of images; NOAD, the total number of disease areas; NOTRI, the number of images in the training set; NOTRD, the number of disease areas in the
training set; NOTI, the number of images in the test set; NOTD, the number of disease areas in the test set.
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vector , the three vectors of Query(Q =   q1,…, qsf g), Key

(K =   k1,…, ktf g), and Value(V =   v1,…, vtf g) are obtained.

Calculate a score for each vector. To ensure gradient stability, use

score normalization by dividing by., where
ffiffiffiffi
Y

p
is a scaling factor to

prevent the input values for the softmax function from becoming

too large. Apply a softmax activation function to score. The specific

process is represented by Equation 4.

Self Atention(Q,K ,V) = Softmax(
QKTffiffiffiffi

Y
p )V (4)

where Q ∈ Rs�a,K ∈ Rt�a,V ∈ Rt�a.

The attention mechanism is position-insensitive, and even

swapping the position of two elements in the sequence has no

effect on the encoded result. Therefore, a positional vector notation

is proposed in the Transformer to add a fixed positional vector to

each position of the sequence. However, the visual vector sequences

in this paper only have a spatial position relationship and no

context relationship. Therefore, for the use of positional encoding,

we use the four coordinates of the visual bounding box as positional

encoding, discarding the original sine cosine function. In addition,

the multi-head self-attention mechanism is used to study the

relationships within the visual vector sequence. The self-attention

mechanism is repeated h times in the long self-attention

mechanism. The specific process is represented by Equation 5.

MultiHead(Q,K ,V) = Concat(H1,…,Hh)W
O,

Hs = Self Atention(QWQ
s ,KW

K
s ,VW

V
s )

(5)

where WO ∈ Ra�a and WQ
s ,W

K
s ,W

V
s ∈ Ra�a

h .
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The sequence coding module consists of two sublayers: the multi-

head self-attention layer and the feedforward neural network layer.

Each sublayer is followed by the AddNorm function. The AddNorm

function is a common regularization operation commonly used in

neural networks. It combines residual connectivity and layer

normalization to enhance the representation and training effect of

the network. The calculation process of the sequence encoding

module is shown in Equations 6, 7.

A1
s = AddNorm(MultiHead(½F*s ;Ds

2�, ½F*s ;Ds
2�, ½F*s ;Ds

2�)) (6)

Sout1s = AdNorm(FFN(A1
s ))

= AddNorm(max(0,A1
sW1 + b1)W2 + b2) (7)

w h e r e A1
s ∈ Rt�C

0
,W1,W2 ∈ RC

0 �C
0
, b1, b2 ∈ RC

0
, Sout1s ∈

Rt�C
0
. The output of each layer of the encoder in the sequence

encoding block is SoutNs ∈ Rt�C
0
, N represents the number of

encoders in the sequence encoding module.
4.4 Caption generation module

Area ③ in Figure 6 shows the structure of the caption generation

module. This module predicts the next word based on the input

word and ensures that the resulting sentence visually corresponds to

the disease area in the image. Prediction begins upon recognizing

the marker [Start]} and concludes when the marker [End]} is

generated. Both [Start]} and [End]} are zero vectors. The input to

the caption generat ion module is denoted as Pinput
s =

½Start�,  p1,   :   :   :  ,  pl ,   :   :   :  ,  pL,f g, w h e r e Pinput
s ∈ R(L+1)�L 0

represents the description statement corresponding to the visual

part Ds. The output of the caption generation module is represented

a s Poutput
s = p1,   :   :   :  ,  pl ,   :   :   :  ,  pL,   End½ �, w h e r e Poutput

s ∈
R(L+1)�L 0

. Here, L is the length of the input statement and L 0 is
the number of words in the database.

The input statement of the module needs to be encoded by the

word embedding layer, which consists of two fully connected layers

with an output dimension of C 0. The embedding layer process is

represented by Equation 8.

Pinput,∗
s = MLP2

emb(P
input
s ;a2

emb), P
input
s ∈ R(L+1)�C

0
(8)

where a2
emb is the weight of MLP2

emb.

The decoder model consists of N identical decoder blocks

stacked, each consisting of three different sublayers. There are

residual connections and layer normalization between each

sublayer. Moreover, the masked multi-head self-attention sub-

layer uses a mask to prevent information from future output

words from being used when training a given output word. The

form of MASK is shown in Equation 9.

MASK =

1 0 ⋯ 0

1 1 ⋯ 0

⋮ ⋮ ⋱ ⋮

1 1 1 1

2
666664

3
777775,MASK ∈ R(L+1)�(L+1) (9)
FIGURE 4

Dataset examples.
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FIGURE 5

Examples of plant disease images of 18 types in the dataset.
FIGURE 6

Model overview diagram. The numbers at the bottom of the figure represent four modules: ① represents the region detection module, ② represents
the sequence encoding module, ③ represents the caption generation module, and ④ represents the classification module.
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Thus, the process of self-attention with masking can be

expressed as Equation 10.

MaskMultiHead(Q,K ,V) = Concat(H1,…,Hh)W
O

Hs = Self  Attention(QWQ
s ,KW

K
s ,VW

V
s )�MASK

(10)

where WO ∈ Ra�a and WQ
s ,W

K
s ,W

V
s ∈ Ra�a

h .

The first layer decoder in the caption generation module is

taken as an example, and formulas are used to describe the working

process of the decoder. The input encoded by the embedding layer

is first copied three times and then input into a masked self-

attention block to obtain an output, which can be represented by

Equation 11.

Pinput,
0

s = AddNorm(maskMultiHead(Pinput,∗
s , Pinput,∗

s , Pinput,∗
s ))

(11)

where Pinput,
0

s ∈ R(l+1)�C 0
. The output Sout1s of the first-layer

encoder in the sequence encoding module is K, V, and Pinput,
0

s is Q.

Then, Q, K, and V are used to calculate multi-head self-attention,

the purpose of which is to explore the implicit relationship between

visual features and semantic features, essentially using visual vectors

weighted by text features to generate descriptive statements. The

specific process can be represented by Equations 12, 13.

B1
s = AddNorm(MultiHead(Sout1s , Sout

1
s , P

input,
0

s )) (12)

Tout1s = AddNorm(FFN(B1
s )) (13)

where B1
s ∈ R(L+1)�C

0
. Tout s1 ∈ R(L+1)�C0

represents the output

of the first layer decoder of the caption generation module.

The caption generation module contains a total of N decoders,

and the output of the last layer decoder is Tout Ns . Then, two fully

connected layers are used to convert the output ToutNs into the

distribution probability of each word in the database. This

probability can be expressed using Equation 14.

cPt s = Softmax(MLPgen(Tout
N
s );agen) (14)

where P̂t s  ∈ R(L+1)�L0 is the weight of MLP_gen.
4.5 Classification module

The structure of the classification module is shown in area ④ in

Figure 6. The purpose of the classification module is to predict

disease image categories based on the output of the caption

generation module. The output of the caption generation module

serves as K and V for attention blocks in the classification decoder.

Its output is essentially a visual vector weighted by text features. In

addition, the classification module and the caption generation

module have the same number of decoders. Let Fc1s   =  Mean(F*s ),

 Fc1s   ∈ R1�C
0
denote a complete image of an agricultural disease,

which is taken as the Q in the attention block. Taking the first

attention block in the classification module as an example, the

operation process is represented by Equations 15, 16.

C1
s = AddNorm(MultiHead(Tout1s ,Tout

1
s , Fc

1
s )) (15)
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Cout1s = AddNorm(F F N(C1
s )) (16)

where C1
s ∈ R1�C

0
. Cout1s ∈ R1�C

0
is the output of the first

decoder in the classification module. Let CoutNs ∈ R1�C
0
denote the

output of the last decoder. The output CoutNs of the last decoder is

then converted into a probability distribution of the agricultural

disease image category through two fully connected layers. The

probability equation is shown in Equation 17.

cPcs =  Softmax(MLPcls(Couts);  acls) (17)

where P̂c s ∈ R1�T , T is the number of disease categories, and

acls is the weight of MLPcls.
5 Experimental

5.1 Experimental content

The DIC-Transformer mainly includes three modules: disease

region detection module, image caption generation module, and

classification module. Then, the results of Faster R-CNN

experiments in 16 different backbones are analyzed, and an

optimal object detection model is selected to process the input

images. Next, the second task, the image caption generation task,

needs to be tested and analyzed, and its main job is to compare

DIC-Transformer with some existing caption generation models.

Finally, we need to evaluate the performance of the classifier. Since

DIC-Transformer is a two-stage method, the experiment mainly

consists of two tasks:
1. Object detection backbone comparison experiment based on

Faster R-CNN.

2. Quantitative and qualitative analyses of the DIC-

Transformer. This task is divided into the following

four experiments:

a. Comparative experiment of image caption generationmodel.

b. Comparative experiments of classification models.

c. Ablation experiments of DIC-Transformer.

d. Qualitative analysis of DIC-Transformer and classic

image caption generation models.
5.2 Experimental details

Object detection backbone comparison experiments based on

Faster R-CNN are implemented in two open-source frameworks,

Detectron2 (Wu et al., 2019) and MMDetection (Chen et al., 2019).

Detectron2 is a robust object detection platform developed by FAIR

(Facebook AI Research) in 2019. Several state-of-the-art detection

and segmentation algorithms are already integrated, eliminating the

need to develop these networks from the ground up. There are two

types of object detectors: one-stage and two-stage detectors.

Detectron2 is a two-stage system, and the detection task is carried
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out in two steps. The first step is to extract the region of interest

(RoI). The second step involves target classification and positioning.

The nature of these two-stage detectors makes them slower than

one-stage detectors such as YOLO and SSD, but they can produce

more accurate results. Under Detectron2, we utilize the Faster R-

CNN + FPN algorithm and employ a pre-trained model. In

Detectron2, there are no epochs, only iterations. However, the

maximum number of iterations can be artificially set based on the

size of the dataset.

MMDetection is an open-source project initiated by SenseTime

and the Chinese University of Hong Kong for object detection tasks.

It implements a wide range of object detection algorithms based on

PyTorch and encapsulates the processes of dataset construction,

model building, training strategies, and other tasks into modules.

When building a new algorithm with MMDetection, the process

typically involves the following steps: registering the dataset,

registering a model, building a configuration file, and conducting

training and validation.

The second stage of the DIC-Transformer is trained and tested

on an NVIDIA P100-16G with CUDA 11.3 using Python 3.8 and

PyTorch 1.10 on Ubuntu 18.04. Additionally, the version of

Detectron2 is v0.6, and the version of MMDetection is 2.25.1.

The parameters used in the experimental process are detailed in

Table 5. Both frameworks employ the same parameter settings,

where unexposed parameters utilize the default values within

the framework.

The region detection module is used to extract the feature and

location of the disease area as the input of the caption generation

module. The parameters for all comparison and ablation

experiments are shown in Table 6.

The second stage of the DIC-Transformer is trained and tested

on NVIDIA P100-16G with CUDA 11.3 using Python 3.8 and

PyTorch 1.10 on Ubuntu 18.04. Additionally, the Detectron2

version used is v0.6, and the MMDetection version is 2.25.1.
5.3 Evaluation metrics

We mainly evaluate three tasks: object detection task, image

caption generation task, and image classification task. Object

detection task uses mAP/mAP50/mAP75 as quantitative indicators.

The image caption generation task uses BLEU, Cider-D, and Rouge

as quantitative indicators. Image classification task uses Acc, Recall,

and F1 as quantitative indicators. Some basic concepts of evaluation

indicators are as follows.
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5.3.1 IoU
This represents an intersection over the previous union,

essentially the overlap between the predicted range and the true

range divided by the sum of the predicted range and the true range.

Equation 18 is the calculation process of the IoU.

IoU =
P ∩  G
P ∪  G

(18)

where P is the predicted bounding box and G is the ground-

truth bounding box.
5.3.2 Confusion matrix
This is a summary of the prediction results, where TP

represents the number of predictions that will be positive to

positive classes. FN differs from TP in that it is the number of

positive classes predicted as negative classes. FP is the exact

opposite of FN, and it is the number of negative classes

predicted as positive classes. The final TN is the exact opposite

of TP, which represents the number of predicted negative classes

as negative classes. In the taxonomic issue, for a disease category

like strawberry anthracnose, the sample labeled “strawberry

anthracnose” is considered a positive sample, while all other

samples are considered negative. Therefore, in the classification

problem, TP represents the image predicted by the model as

strawberry anthracnose, and the true label is also strawberry

anthracnose, i.e., the number of samples correctly predicted as

positive. FN represents the image that the model predicts to be

non-strawberry anthracnose, while the true label is strawberry

anthracnose, i.e., the number of samples that are falsely predicted

as positive. TN represents the image that the model predicts to be

non-strawberry anthracnose, while the true label is also not

strawberry anthracnose, i.e., the number of samples correctly

predicted to be negative. FP represents the image that the model

predicts to be strawberry anthracnose, but the true label is not

strawberry anthracnose, i.e., the number of samples that are

incorrectly predicted as positive.
5.3.3 Precision
It indicates the proportion of samples that are actually positive

in a sample that is predicted to be positive. The calculation process

is shown in Equation 19.

precision =
TP

TP + FP
(19)
TABLE 5 Faster R-CNN benchmark experiment parameter setting.

Parameter Pre-trained model Optimizer Warm-up strategy Warm-up iters Warm-up ratio

Value ImageNet SGD Liner 1,000 0.001

Parameter BatchSize Learning rate Momentum Weight decay Iteration rounds

Value 16 0.02 0.9 0.0001 10,000
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5.3.4 mAP
It measures the ability of the trained model to detect all classes.

mAP/mAP50/mAP75 is mAPIoU=0.5:0.05:0.95/mAPIoU=0.5/mAPIoU=0.75.

IoU = 0.5:0.05:0.95 means that the intersection over union ratio is

calculated for values ranging from 0.5 to 0.95, with an interval of

0.05. Equation 20 represents the calculation process of mAP.

mAP = o
K
i=1APi
K

(20)

where AP is defined as the area between the interpolated

precision-recall curve and the X-axis, K represents the number of

categories, and APi represents the AP value for a category.

5.3.5 BLEU
What the BLEU algorithm is actually doing: judging how

similar two sentences are. Equation 21 represents the

implementation of BLEU.

bleun =
oc∈candidates  on−gram∈e  Countclip(n − gram)

oc
0∈candidates  on−gram

0∈e
0  Count(n − gram

0
)

(21)

where the purpose of the first summation symbol in the formula is

to calculate all the candidates because there may be several sentences in

the calculation. Then, the purpose of the second summation symbol is

to count all n-gram in the candidate. The number of n-gram in the

reference statement is denoted by Countclip(n − gram). Thus, the

numerator is the representation of how many n-gram appears in a

given candidate reference statement. The number of n-gram′ in the

candidate is represented by Count(n − gram0). Therefore, the

denominator is the number of n-gram among all candidates.

5.3.6 Cider-D
The purpose of A is to prevent gaming problems with

evaluation indicators. The problem with gaming is to prevent

optimizing the algorithm for a certain evaluation indicator so that

when the human gives a low score, the evaluation index gives a high

score. Equations 22, 23 describe the calculation process for this

evaluation metric.

Clder − Dn(xi, yi)

=
100
m o

j
  e
−(l(xi) − l(yi,j))

2

2d 2 *
min   (ɡn(xi),ɡ

n(yi,j)) · ɡ
n(yi,j)

jjɡn ≤ ft(xi)jjjjɡn(yi,j)jj
(22)

Cider D (xi, yi) = o
n=1

N
 wnCiderDn(xi, yi) (23)
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where l(xi) is the length of the text generated by the model and l

(yij) is the length of the real text. Multiplying by 100 makes the value

of Cider-D similar in size to the value of other evaluation indicators.

gn consists of g1, g2… gn. gk is used to calculate the TF-IDF value for

each N-gram. We set d = 6 and N = 4.

5.3.7 Rouge
Rouge metrics are very similar to BLEU metrics. The main

difference is that ROUGE is based on recall, while BLEU focuses

more on precision. The calculation process is shown in Equation 24.

Rougelcs =
(1 + b2)RlcsPlcs
Rlcs + b2Plcs

(24)

where b = 1.2. The calculation process for Rlcs and Plcs is shown

in Equations 25, 26, respectively.

Rlcs =
LCS(X,Y)

m
(25)

Plcs =
LCS   (X,Y)

n
(26)

where X represents the text generated by the model, and the

length ism. Y represents the real text of the image, and the length is

n. LCS is the longest common subsequence.
5.3.8 Acc
The full name of ACC is Accuracy, which stands for accuracy.

The accuracy can be expressed by Equation 27.

Accuracy =
TP + TN

TP + TN + FP + FN
(27)
5.3.9 Recall
It indicates the proportion of correctly predicted true values

among all positive cases, which can be understood as how many

correct targets are recalled. The calculation process is shown in

Equation 28.

Recall =
TP

TP + FN
(28)
5.3.10 F1
The core idea of F1 is to improve Precision and Recall as much

as possible and also to make the difference between the two as small

as possible. Equation 29 represents the calculation process for

evaluating criterion F1.
TABLE 6 Comparative experiment parameter settings for DIC-Transformer.

Parameter Noamopt Warmup Optim Alpha Optim Beta Optim Epsilon Noamopt Optimizer

Value Adam 0.9 0.999 1e−4 True 2,000

Parameter Noamopt Factor Grad Clip BatchSize Learning Rate T-Depth Epoch

Value 1 0.1 16 2e−4 6 30
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F1 = 2� P � Recall
P + Recall

(29)

where P is precision.
5.4 Experimental results

5.4.1 Object detection benchmark experiment
based on Faster R-CNN

The primary objective of this experiment is to assess the impact

of different feature extraction networks on object detection. In the

end, 16 backbones are selected to evaluate the overall performance

of the Faster R-CNN. The backbones fall into 10 main types: ResNet

(He et al., 2016), Res2Net (Gao et al., 2019), ResNeSt (Zhang et al.,

2022), RegNet (Radosavovic et al., 2020), HrNet (Sun et al., 2019),

HarDNet (Chao et al., 2019), EfficientNet (Tan and Le, 2019),

MobileNetV2 (Sandler et al., 2018), VoVNet (Lee et al., 2019), and

Swin Transformer (Liu et al., 2021b). While the experiments are

conducted using two different frameworks, Detectron2 and

MMDetection, the parameters remain consistent. Table 5 shows

the parameter settings used in the current experiment, and

undisclosed parameters use the default settings of the

respective frameworks.

In the first stage of object detection, the size of the input image

is not fixed, but we normalize the size of the image in the dataset.

This means that the processed image has a moderate aspect ratio

and sharp pixels. Before extracting the image features in the initial

stage, we standardize the image size to 448 × 448 and extract 1 ×

1,024 feature tensors using the feature extractor. These are then

saved in an npy file for use in subsequent image caption generation

tasks. It should be noted that there will be multiple diseased regions

in an image, and each diseased region will generate a 1 × 1,024

tensor. Therefore, there will be several tensors in the.npy file

corresponding to an image. The Faster R-CNN model used to

extract image features utilizes the Swin Transformer as its

backbone. In the Swin Transformer, the default stride of the

convolution is set to 2, and the size of the convolution kernel is

3 × 3. This is because in the Swin Transformer Block, the

convolutional kernel size of each 2D convolutional layer is set to

3 × 3 for local feature extraction. It is important to note that the size

of the convolutional kernel can be adjusted based on the specific

task and dataset to achieve optimal performance. In the Swin

Transformer, using a 3 × 3 size as the default is a common

choice, but it can be adjusted as necessary. Specifically, in a Swin

Transformer Block, a 2D convolutional layer typically employs a

convolution operation with a stride of 2. Using a two-step

convolution can effectively decrease the size of the feature map

and reduce the computational workload. This configuration is used

in the Swin Transformer to achieve a balance between chunk

processing and attention mechanisms, leading to improved

performance and results. The activation function used in the

encoder–decoder is ReLU, which enhances the expressive

capability of the features through non-linear transformation. It
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strengthens the part with larger values and suppresses the part with

smaller values, resulting in better expression of the relevant features.

Tables 7, 8 show the experimental results under the Detectron2

and MMDetection frameworks, respectively. Finally, the Swin

Transformer is selected for feature extraction. Swin Transformer

adopts a hierarchical structure, creating layered representations by

initially using small-sized patches and gradually merging

adjacent patches into deeper layers of the Transformer. When

IoU = 0.5:0.05:0.95, mAP is 0.674. When IoU = 0.5, mAP50 is

0.862. When IoU = 0.75, mAP75 is 0.793. The results indicate that,

among the tested backbones, the Swin Transformer performs the

best. Moreover, the experimental results show that there is no

absolute linear upward relationship between the backbone

performance and parameter scale, and the appropriate parameter

scale should be analyzed according to the specific use scenario. For

example, ResNet-101 and ResNet-50 have mAP50 values of 0.771

and 0.788, respectively, indicating a proportional relationship

between backbone performance and parameter scale. However,

HarDNet-68 and HarDNet-39 achieve mAP values of 0.679 and

0.729, respectively, suggesting an inversely proportional

relationship between backbone performance and parameter scale.

5.4.2 Quantitative and qualitative analyses of
DIC-Transformer

We show the changes in various information during the model

training process in the form of a line chart. Figure 7 shows the

change process of learning rate during model training. Figure 8

shows the changes in the three losses in the training process, which

are the loss changes in the image caption generation module, the

loss changes in the image classification module, and the total loss

changes in the model. Figure 3 shows the variation curves of various

evaluation indicators of image classification and image subtitle

generation results.

5.4.2.1 DIC-Transformer image caption generation
performance test

This is followed by a simple description of the eight image

caption generation models to be compared. AoANet (Huang et al.,

2019) introduces a new multi-level attention mechanism to enhance

image caption generation by incorporating attention weighting in

an attention weight. UpDown (Anderson et al., 2018) introduces

underlying and top-level attention mechanisms, proposes trainable

underlying features, and combines the attention mechanism with

the language model. Adaatt (Lu et al., 2017) introduces visual flags

to guide the allocation of attention, proposes an adaptive attention

mechanism, and builds an end-to-end generative model. ShowTell

(Vinyals et al., 2015) utilizes attention mechanisms and employs

Multilayer Perceptron (MLP) as generators, combining CNN and

LSTM. FC (Rennie et al., 2017) uses a CNN-encoded image as input

to predict the second word. Instead of using a static spatial pool

representation of the image, the attention model in Att2in

(Dosovitskiy et al., 2020) dynamically reweights the input space

(CNN) feature to focus on a specific area of the image at each time
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step. M2 Transformer (Cornia et al., 2020) integrates prior

knowledge of learning, learns multi-level representations of

relationships between image regions, and uses mesh connections

to leverage low-level and high-level features during the decoding

stage. DLCT (Luo et al., 2021) enhances contextual information and

fine-grained details through a new bidirectional self-attention

(DWSA) and a locally constrained cross-attention module.

ExpansionNet v2 (Hu et al., 2022) explores the potential

performance bottlenecks in input length in deep learning methods.

LATGeO (Dubey et al., 2023a) proposes a novel attention

mechanism that is capable of efficiently processing geometrically

related objects in images when generating image descriptions. This

method not only considers global information but also pays attention

to the spatial relationship between different objects in the image

through a fine-grained local attention mechanism. The proposed

framework, label-attention transformer with geometrically coherent

objects (LATGeO (Dubey et al., 2023b)) acquires proposals of

geometrically coherent objects using a deep neural network (DNN)

and generates captions by investigating their relationships using label

attention module (LAM). Stack-Captioning (Gu et al., 2018), a

coarse-to-fine multi-stage prediction framework for image

captioning, is composed of multiple decoders, each of which

operates on the output of the previous stage, producing

increasingly refined image descriptions. A new diffusion model-

based paradigm tailored for image captioning is proposed, namely,

Semantic-Conditional Diffusion Networks (SCD-Net; Luo et al.,
Frontiers in Plant Science 15
2023), which breaks the deeply rooted conventions in learning

Transformer-based encoder–decoder.

Next, we test the performance of the DIC-Transformer and the

above model on the image classification task based on ADCG-18.

The criteria used to evaluate the model are Bleu1, Bleu2, Bleu3,

Bleu4, CiderD, and Rough, which are common in the field of

caption generation. Finally, Table 9 shows the test results of seven

classic caption generation models and the DIC-Transformer model.

In this paper, there are seven comparison methods used for

image caption generation tasks, which are roughly divided into two

categories: one is the top-down method, and the other is a bottom-

up approach. Experiments show no significant difference between

top-down and bottom-up approaches. For example, the ShowTell

method exhibits the worst results in the top-down method, whereas

the Fc method performs the best effect, showing little difference

from the optimal method in the bottom-up method. The model

with the highest CiderD score is AoANet, with a value of 431.09.

However, the model presented in this paper achieves a CiderD score
TABLE 7 Faster R-CNN benchmark experiment (Detectron2 framework).

Framework Backbone mAP mAP50 mAP75

Faster R-CNN HarDNet-68 0.472 0.679 0.514

HarDNet-39 0.469 0.729 0.506

EfficientNet-B4 0.544 0.781 0.640

EfficientNet-B0 0.532 0.740 0.618

MobileNetV2 0.511 0.734 0.600

VoVNet-19 0.625 0.792 0.733

VoVNet-99 0653 0.812 0.763

Swin Transformer 0.674 0.862 0.793
TABLE 8 Faster R-CNN benchmark experiment
(MMDetection framework).

Framework Backbone mAP mAP50 mAP75

Faster R-CNN ResNet-101 0.580 0.771 0.671

ResNet-50 0.585 0.788 0.694

Res2Net-101 0.582 0.772 0.682

RegNetX-3.2GF 0.580 0.798 0.683

ResNeSt-50 0.525 0.746 0.597

ResNeSt-101 0.609 0.821 0.705

HrNet w-18 0.584 0.782 0.649

HrNet w-32 0.599 0.782 0.691
FIGURE 7

Model learning rate change curve.
FIGURE 8

Model loss change curve.
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of 450.51, which is 19.42 points higher than the CiderD score

of AoANet.

5.4.2.2 DIC-Transformer classification performance test

The purpose of this experiment is to demonstrate that DIC-

Transformer is superior to other classification models in terms of

classification performance. To compare with classical classification

methods, DIC-Transformer is evaluated on ADCG-18, and the

results are shown in Table 10. Under the context of error

propagation (where the region detection module is trained solely

on the training set), the classical CNN model with the best

classification performance is MobilenetV2, achieving an Acc value

of 0.830. In contrast, DIC-Transformer achieves an Acc value of

0.854, which is 0.024 higher than the Acc of MobilenetV2. In
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addition, in the absence of error propagation (where the region

detection module is trained using both the training and testing sets),

the DIC-Transformer’s ACC value increases by an additional 0.031,

resulting in an Acc value of 0.885. The results show that in the

classification performance comparison experiment using the

ADCG-18, DIC-Transformer outperforms other classical

classification models, showing a better classification effect.

5.4.2.3 Ablation experiment of DIC-Transformer

In this set of ablation experiments, the main purpose is to verify

the contribution of each module in the model. The modules involved

in the experiment include the patch embedding module, the region

detection module, the caption generation module, and the position

encoding module. The results are shown in Table 11. In Experiments

I and II, the region detection module is not used, and the image is

divided into 16 * 16 and 32 * 32 grid input to the sequence encoding

module. This method of dividing images comes from VIT

(Dosovitskiy et al., 2020), called the PetchEmbedding method. In

Experiment III, the visual feature vector outputted by the region

detection module is used as the input to the sequence encoding

module. The output of the sequence encoding module is then fed into

the caption generationmodule to obtain the visual vector weighted by

text features. Finally, this vector is used as the input of the

classification module to obtain the category label of the disease. In

addition, the positional coding module is used in the sequence

encoding module. Experiment IV is based on Experiment III but

without a position coding module. Experiment V removes the

caption generation module from the setup in Experiment IV, and

the visual feature vectors generated by the sequence encoding module

are directly inputted to the classification module to classify the image.

Experiments VI and VII remove the caption generation module from

the setup in Experiments I and II, respectively. They directly input the

visual feature vectors obtained by the segmented image processed by

the sequence encoding module into the classification module to

obtain the category label of the image.
TABLE 10 Comparison results of DIC-Transformer and classical
CNN models.

Method Acc Recall F1

AlexNet, Krizhevsky et al. (2012) 0.743 0.641 0.652

ResNet-101 0.827 0.779 0.786

EfficientNet 0.814 0.775 0.778

VggNet, Simonyan and Zisserman (2014) 0.772 0.698 0.705

GoogleNet, Szegedy et al. (2015) 0.754 0.683 0.695

InceptionV3, Szegedy et al. (2016) 0.717 0.640 0.653

MobileNetV2 0.830 0.776 0.778

RepVGG, Ding et al. (2021) 0.793 0.705 0.712

GhostNet, Han et al. (2020) 0.752 0.685 0.689

SqueezeNet, Koonce and Koonce (2021) 0.784 0.725 0.732

Ours w/EP 0.854 0.854 0.853

Ours w/o EP 0.885 0.885 0.886
TABLE 9 Comparison results of DIC-Transformer and classic image caption generation models.

Method Bleu1 Bleu2 Bleu3 Bleu4 CiderD Rough

Fc 0.746 0.535 0.364 0.249 420.96 0.707

Att2in 0.712 0.466 0.242 0.159 342.95 0.637

DLCT 0.721 0.502 0.348 0.293 434.54 0.664

LATGeO 0.682 0.472 0.305 0.214 335.26 0.636

Stack-Captioning 0.706 0.495 0.335 0.257 362.24 0.669

UpDown 0.679 0.489 0.316 0.228 383.40 0.657

SCD-Net 0.714 0.451 0.253 0.161 351.24 0.640

AoANet 0.727 0.539 0.353 0.280 431.09 0.677

M2 Transformer 0.738 0.543 0.378 0.271 433.71 0.685

ExpansionNet v2 0.741 0.549 0.386 0.287 437.09 0.708

LATGeO 0.739 0.531 0.363 0.278 432.12 0.701

Ours 0.756 0.561 0.404 0.294 450.51 0.721
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Experiments I, II, and III are conducted to verify the influence of

the region detection module on the overall model performance, as

shown in Table 11. Taking Bleu as an example, the average values of

Experiments I and II are 0.612 and 0.632, respectively, while the

average value of Experiment III is 0.722. The latter is 0.11 and 0.09

higher than the average values of the previous two experiments. This

difference is due to the image meshing method used in Experiments I

and II, which results in the divided images containing much

background information. Additionally, Experiments I and II

demonstrate that meshing the image into 32 * 32 works better than

dividing it into 16 * 16 grids. Notably, location information is utilized

in both experiments. Experiments III and IV evaluate the effect of the

position coding module in the sequence encoding module on the

overall model performance. In Experiment IV, the bounding box

coordinates of the disease area in the image are used as location

encoding. The mean value of Bleu1 in Experiment IV using position

coding is 0.756, whereas the mean value of Bleu1 in Experiment III

without position coding is 0.722, resulting in a difference of 0.034.

This indicates that using bounding box coordinates as position

coding has a positive impact on the model’s performance.

Experiments IV and V evaluate the influence of the caption

generation module on classification performance. Taking Acc as an

example, the classification result of the model containing the caption

generation module is 0.854, while the classification result of the

model without the caption generation module is 0.846. The results

indicate that the introduction of the caption generation module to
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weigh visual feature vectors with text features can improve

classification performance. In addition, in both experiments,

location information is used. Experiments VI and VII remove the

caption generation module based on Experiments I and II,

respectively. The results show that the classification performance is

significantly reduced, with the classification accuracy being 0.478 and

0.425, respectively.

Finally, the influence of error propagation on model

performance in DIC-Transformer is quantitatively analyzed. In

effect, all the images in the dataset are used as the training set for

the first stage disease region detection module. This eliminates

errors caused by the region detection module. Next, the trained

disease area detector is used to obtain the feature information and

disease area location details of the image. The ablation experiment is

then repeated using the obtained data. The results of this

experiment are summarized in Table 12. The mean accuracy in

the final results of Experiments X, XI, and XII is 0.875, while

Experiments VIII, IX, XIII, and XIV are consistent with the results

presented in Table 11, as they do not involve the region

detection module.

5.4.2.4 Case study of the DIC-Transformer

To demonstrate the superiority of the proposed DIC-

Transformer in the field of image caption generation, we compare

it with the AoANet, AdaAtt, UpDown, and ShowTell models. The

caption generation results of each model are shown in Figure 9. It
TABLE 11 In the presence of error propagation, the effect of a single module on model performance results.

Ablation Image caption Classification Index

P16 P32 Detection Describe Position Bleu1 Bleu2 Bleu3 Bleu4 CiderD Rouge Acc Recall F1

✓

✓

✓ 0.612 0.443 0.285 0.204 404.67 0.537 0.714 0.714 0.711 I

✓ 0.632 0.487 0.313 0.224 413.25 0.583 0.786 0.786 0.782 II

✓ ✓ 0.722 0.539 0.389 0.283 430.71 0.678 0.837 0.837 0.834 III

✓ ✓ ✓ 0.756 0.561 0.404 0.295 450.51 0.721 0.854 0.854 0.853 IV

✓ ✓ – – – – – – 0.846 0.846 0.844 V

✓ – – – – – – 0.478 0.478 0.467 VI

✓ – – – – – – 0.425 0.425 0.416 VII
frontie
The ✓ in the table means that the model in the experiment contains the current module, and the model in the experiment does not contain the current module without the ✓ symbol.
TABLE 12 In the absence of error propagation, the effect of a single module on model performance results.

Ablation Image caption Classification Index

P16 P32 Detection Describe Position Bleu1 Bleu2 Bleu3 Bleu4 CiderD Rouge Acc Recall F1

✓

✓

✓ 0.612 0.443 0.285 0.204 404.67 0.537 0.714 0.714 0.711 VIII

✓ 0.632 0.487 0.313 0.224 413.25 0.583 0.786 0.786 0.782 IX

✓ ✓ 0.764 0.583 0.411 0.325 478.56 0.729 0.862 0.862 0.8 X

✓ ✓ ✓ 0.7778 0.599 0.416 0.346 490.22 0.74 0.885 0.885 0.886 XI

✓ ✓ – – – – – – 0.877 0.877 0.877 XII

✓ – – – – – – 0.478 0.478 0.467 XIII

✓ – – – – – – 0.425 0.425 0.416 XIV
The ✓ in the table means that the model in the experiment contains the current module, and the model in the experiment does not contain the current module without the ✓ symbol.
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should be noted that the image caption dataset used in the

experiment is Chinese, and the statements in the case study are

translated into English for ease of understanding. The red part of

the figure represents the wrong word, the blue part represents the

missing word or the wrong combination of words and other

inaccurate results, and the green part represents the correct

disease keyword. Based on the four examples in Figure 9, we

perform a meticulous analysis of the captions generated by each

model, and the results are as follows:
Fron
1. As illustrated in Figure 9, the captions generated by the

other four models lack relevant disease feature keywords.

Specifically, the models AoANet and UpDown do not

generate the color of the rings, the model AdaAttNet

does not include any ring-related statements, and the

model ShowTell omits the color of the disease area.
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2. In the case of apple mold heart disease shown in Figure 9,

the image caption generated by the model AoANet repeats

the phrase “gray-green mold” twice, and the model

AdaAttNet also repeats the word “mold” twice, both of

which result in semantic confusion. Although both

UpDown and ShowTell did not have duplicate issues,

they both lacked the keyword “mold”.

3. In the last image, the caption generated by models AOANet

and UpDown lacks color information. The model

AdaAttNet generates words with repetitive meanings in

captions. The model ShowTell generates the wrong

word “with”.
However, the DIC-Transformer model we build generates

comprehensive keywords and fluent sentences. The above

experimental results can fully prove the superiority of the DIC-
FIGURE 9

Comparison of caption generation results with real caption.
FIGURE 10

The change curve of evaluation indicators related to image classification and image caption generation.
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Transformer in image caption generation. In order to more fully

evaluate the quality of the generated statements, we invite experts or

volunteers to perform a manual evaluation of the generated

statements. This can be carried out through subjective scoring or

preference sorting. By gathering opinions and feedback from

evaluators, we can determine the advantages of the utterances

generated by our model over other methods in terms of

readability, fluency, and accuracy. In addition to expert

assessments, we also conduct user surveys to gain a broader

perspective. By inviting real users to rate and rank the generated

statements, we can obtain more feedback that verifies the

superiority of the statements generated by our model in terms of

user experience. Through the above statistical analysis methods, we

can objectively prove the superiority of the statements generated by

our model over other methods.

5.4.2.5 Summary of the comparison results between DIC-
Transformer and other methods

In this paper, we conduct a total of three experiments, and the

specific results of the experiments are as follows.

The first experiment is the Faster R-CNN benchmark experiment,

which aims to select an optimal backbone for Faster R-CNN. Specifically,

we select 16 different backbones based on the dataset to test the

performance of Faster R-CNN in detecting disease regions, and the

experimental results show Swin Transformer works best as backbones.

In the second experiment, the DIC-Transformer is compared with

seven existing image caption generation models. The experimental

results in Table 7 show that the model proposed by us based on

ADCG-18 performs well in the field of image caption generation, and

the performance is due to the other seven existing models. First, we

consider the caption generation accuracy of the model. Compared to

other models, DIC-Transformer can more accurately generate caption

descriptions that match the content of the image. Second, we evaluate

the language fluency and sentence quality of the model. The results

show that the captions generated by DIC-Transformer are more

natural and smooth, and the sentence structure is more reasonable

and coherent. In contrast, other models may have some imperfections

or non-conform to grammatical rules in terms of language expression.

The third experiment aims to test the classification performance of

the DIC-Transformer based on ADCG-18. We compare the DIC-

Transformer with seven classical CNN models, and the results show

that the classification performance of theDIC-Transformer is better than

that of other existing models. Figure 10 shows the variation curves of the

evaluation indicators related to image classification and image caption.

In summary, our experimental results show that our proposed

method has better performance than other methods in different

tasks. This provides broad prospects for the application of our

method in areas such as caption generation and image classification.

To evaluate the results of image caption generation, it is

necessary to comprehensively consider the indicators of accuracy,

completeness, semantic consistency, naturalness, and information
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richness and combine the experimental results for objective

evaluation. The quantitative experimental results prove the

accuracy of the model, and the indicators such as completeness

and information richness of the generated sentences are also

superior in the qualitative analysis section.
6 Conclusion

In this paper, we propose a model called DIC-Transformer,

which is capable of generating explanatory textual descriptions

corresponding to the classification results of agricultural plant

diseases. Then, we collect a dataset called ADCG-18, which

includes images of 18 diseases and their corresponding textual

descriptions. We conduct numerous experiments on the proposed

method from multiple angles on this constructed dataset to

demonstrate the method’s superiority. For the two challenges

presented in the Introduction section, the experimental results

indicate that the identification accuracy of DIC transformers

reaches 85.4% in a relatively small sample, which is 2.4% higher

than that of the model with the best performance based on CNN.

This demonstrates that the DIC-Transformer effectively addresses

the first challenge of enhancing image classification performance in

the context of limited data volume. In response to the second

challenge, we introduced technology for generating image captions.

The technology can generate descriptive information based on

images, similar to how agricultural experts describe plant diseases.

The results of ablation experiments show that combining image

caption generation and image classification technology can improve

the accuracy of image classification. Based on ADCG-18, the results

of the six evaluation indexes Bleu1, Bleu2, Bleu3, Bleu4, Cider-D,

and Rouge of the proposed DIC-Transformer model are 0.756,

0.561, 0.404, 0.294, 450.51, and 0.721, respectively. These results

indicate that the model outperforms other models.

Image caption generation technology can accurately describe

the diseases affecting crops, enhance the precision of disease

identification, aid in early detection and diagnosis of plant

diseases, and minimize crop losses. It can also be integrated with

other agricultural intelligence technologies, such as drones and

sensors, to achieve automatic monitoring and management of

farmland. This integration can enable farmers and agricultural

practitioners to accurately identify diseases through image

capture, even without expertise in disease identification. This will

help reduce the barrier to identifying diseases and promote the

adoption and application of agricultural technology.

However, the model we propose still has certain limitations. The

DIC-Transformer is a two-stage model that suffers from the issue of

error propagation, as depicted in Figure 10. For instance, a distinctive

characteristic of peanut leaves is their green color. If the first-stage

region detection module fails to recognize this aspect, the second-

stage caption generation module will not generate a corresponding
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caption. In our upcoming work, we intend to integrate the initial

stage of the feature extraction module with the subsequent caption

generation and classification modules to create a comprehensive

model. This will help prevent some of the issues that arise with

two-stage models and improve their performance.
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