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Spin anticoherent states acquired re-
cently a lot of attention as the most "quan-
tum" states. Some coherent and antico-
herent spin states are known as optimal
quantum rotosensors. In this work, we in-
troduce a measure of quantumness for or-
thonormal bases of spin states, determined
by the average anticoherence of individual
vectors and the Wehrl entropy. In this
way, we identify the most coherent and
most quantum states, which lead to or-
thogonal measurements of extreme quan-
tumness. Their symmetries can be re-
vealed using the Majorana stellar repre-
sentation, which provides an intuitive ge-
ometrical representation of a pure state
by points on a sphere. Results obtained
lead to maximally (minimally) entangled
bases in the 2j + 1 dimensional symmet-
ric subspace of the 22j dimensional space
of states of multipartite systems composed
of 2j qubits. Some bases found are iso-
coherent as they consist of all states of the
same degree of spin-coherence.

1. Introduction
Geometric methods play an essential role while

studying physical systems in classical mechanics
[1,2], relativity [3], quantum mechanics [4,5], and
quantum field theory [6]. The stellar representa-
tion, also called the Majorana representation, is
one of the important geometrical representations
in quantum mechanics [7]. The stellar represen-
tation presents a spin-j pure state in N = 2j + 1
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dimensional Hilbert space as a collection of 2j
points on a sphere. The same constellation rep-
resents a symmetric state of a system consisting
of 2j qubits. In the case of a spin-1

2 particle, it
reduces to the celebrated Bloch representation of
a two-level quantum system (qubit). This rep-
resentation is used in various contexts such as
spinor Bose gases [8–11], entanglement classifi-
cation in multiqubit systems [12–20], the Berry
phase associated with the cyclic evolution of the
state [21–23], investigating Lipkin-Meshkov-Glick
model [24,25] and studying symmetries and prop-
erties of spin states [26–41].

The Majorana representation appears naturally
in the context of SU(2) coherent and anticoher-
ent states of a given spin j [26–31]. Note that the
spin coherence is not basis dependent. Properties
of a coherent state |n⟩ of size 2j + 1 closely re-
semble the classical state of spin j pointing in the
direction given by the vector n. It has minimal
uncertainty of spin operator S [42] and its Wehrl
entropy [43,44] attains the minimal value [45,46].
In the Majorana representation the most coherent
state is represented by one 2j-degenerated point
on a sphere. On the other hand, the most quan-
tum, or the most anticoherent state |ψ⟩ should
"point nowhere" and be represented as 2j points
equally distributed on a sphere [39–41]. However,
even if the polarization (coherence) disappears,
the higher moments of coherence might not van-
ish. Hence, anticoherence can be defined up to
a given order [26]. Highly anticoherent states
turned out to be applicable as optimal quan-
tum rotosensors [32–35]. They also coincide with
spherical t-designs in several dimensions [36, 38],
however, a general conjecture concerning their re-
lation was disproved [37]. Experimental realiza-
tion of some of those states was discussed in [47].
The Majorana representation has proven to be a
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suitable tool to study properties of anticoherent
states.

As much as the construction of coherent states
is straightforward for N > 2, it is not possible
to construct an orthonormal basis composed only
of coherent states. Furthermore, much effort has
been made to determine quantum states with the
highest possible quantumness or anticoherence,
while the concept of the most anticoherent, or-
thonormal basis of states is largely unexplored.
States of extreme quantumness are often optimal
in several measurement scenarios. Such bases can
thus provide an effective tool to extend the range
of the measured parameter or for multiparame-
ter estimations, for example, using the Bayesian
analysis.

The main goal of this paper is to address the
problem of finding orthogonal bases of extremal
properties in anN -dimensional Hilbert space. On
one hand, we look for the most spin-coherent
bases, which provide "the most classical" quan-
tum orthogonal measurement. On the other
hand, we aim to identify the quantum measure-
ment "as quantum as possible", composed of or-
thogonal vectors which are the least spin-coherent
and maximize the average measure of anticoher-
ence. Several quantities can be used for this pur-
pose, including the Wehrl entropy, which charac-
terizes localization of the state in the phase space
[43–46, 48–51], measures related to the distribu-
tion of Majorana stars representing a state [18]
or cumulative distribution based on multipole ex-
pansion of density matrix [39, 52]. In this work
we rely on the quantity introduced by Baguette
and Martin [31], under the name of measure of
anticoherence.

To highlight the symmetries that arise in the
studied quantum structures, we use the Majo-
rana stellar representation. The constellations
representing the bases and vectors obtained in
this study exhibit classical symmetries, such as a
Platonic solid, its compound or an Archimedean
solid. Geometric configurations of Platonic solids
appear in many areas of quantum information
theory. In particular, such structures were re-
cently used to construct particular classes of
quantum measurements [53, 54], absolutely max-
imally entangled (AME) states [55] and Bell in-
equalities [56,57].

This work is organized as follows. Section 2
recalls the Majorana representation for a spin-j

state |ψ⟩ ∈ H2j+1 or for a symmetric state of 2j
qubits. Section 3 presents a measure of quantum-
ness of orthonormal bases, defined using an anti-
coherence measure initially introduced for quan-
tum states [31]. Section 4 describes our methods
of searching for the most "classical" and the most
"quantum" orthonormal bases and presents the
results obtained. In Section 5 we confront our
results with a measure of quantumness given by
the mean Wehrl entropy of vectors forming the
basis and the maximum of the Husimi function.
Bases of extreme entanglement in the symmet-
ric subspace of 2j-qubit systems are discussed in
Section 6.

2. The stellar representation
The Bloch sphere is a geometrical representa-

tion of pure states of a two-level quantum system,
often called a qubit. In particular, a state of spin-
1
2 quantum system, can be naturally represented
as a point on the sphere. Indeed, a pure quantum
state

Z0 |1
2 ,

1
2⟩ +Z1 |1

2 ,−
1
2⟩ , |Z0|2 + |Z1|2 = 1 (1)

uniquely determines a complex number z =
Z1/Z0 (possibly z = ∞), which can be projected
onto the surface of a 2-dimensional sphere by the
stereographic projection:

z 7→
(
θ, ϕ

)
:=
(
2 arctan|z| , arg(z)

)
, (2)

where θ ∈ [0, π] and ϕ ∈ [0, 2π] are usual spher-
ical coordinates. Note that the stereographic
projection provides a bijection between extended
complex plane C ∪ {∞} and the surface of the
sphere, the reverse transformation is given by
z = eiϕ tan(θ/2). Furthermore, a complex num-
ber z uniquely defines the quantum state (1) sat-
isfying the property z = Z1/Z0.

In 1932 Ettore Majorana generalized the cel-
ebrated Bloch representation for arbitrary spin-
j states [7]. The stellar representation maps a
spin-j state |ψ⟩ from (2j+1)-dimensional Hilbert
space H2j+1 into a constellation of 2j points on a
sphere. More precisely, any spin-j state might be
expressed in the basis of the angular momentum
operator Jz as

|ψ⟩ =
j∑

m=−j
Zj−m |j,m⟩ ∈ H2j+1, (3)
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where
∑j
m=−j |Zj−m|2 = 1. The state coefficients

are further used to construct the Majorana poly-
nomial of degree 2j in complex variable z,

w(z) =
2j∑
k=0

(−1)kZk

√√√√(2j
k

)
z2j−k. (4)

Such a polynomial uniquely determines 2j possi-
bly degenerated roots zi, i = 1, . . . , 2j, which can
be mapped on a sphere by the stereographic pro-
jection (2). In this way, a state (3) is represented
as 2j points on a sphere, which are called stars.
We refer to such a collection of 2j stars written in
the spherical coordinates {θk, ϕk}2j

k=1 as the Ma-
jorana representation of a state |ψ⟩, and denote
it by

M(|ψ⟩) := {θk, ϕk}2j
k=1. (5)

For instance, the state |j, j⟩ corresponds to the
trivial Majorana polynomial w(z) = z2j , which
has 2j-degenerated root at z = 0, and hence is
represented by 2j stars at the north pole. More
generally, the Majorana polynomial correspond-
ing to |j,m⟩ state has two degenerated roots at
z = 0 and z = ∞ with multiplicities j + m and
j −m respectively. Hence the state |j,m⟩ is rep-
resented by j + m stars at the north and j − m
stars at the south pole. Note that for a spin-1

2
particle, the Majorana representation, reduces to
the Bloch representation of a state provided in
Eq. (1).

Figure 1: A sphere with the stereographic projection
of points z1 = eiϕ1 tan(θ1/2) and z2 = eiϕ2 tan(θ2/2)
presented.

2.1 The stellar representation for symmetric
multi-qubit states

The stellar representation has a natural inter-
pretation while identifying a spin-j system with
a symmetric subspace of a system of 2j qubits.

The symmetric subspace of dimension 2j + 1 is
spanned by the Dicke states |D2j,k⟩, which are a
uniform superposition of states with a given num-
ber of k excitations [58],

|D2j,k⟩ =
(

2j
k

)− 1
2 ∑
σ∈S2j

σ
(
|0⟩⊗2j−k⊗|1⟩⊗k). (6)

Here σ ∈ S2j denotes a permutation of subsys-
tems determined by an element of the symmetric
group S2j . Any symmetric state may be uniquely
expressed as a combination of Dicke states,

|ψsym⟩ =
2j∑
k=0

Zk |D2j,k⟩ ∈ H⊗2j
2 , (7)

with normalization
∑2j
k=0 |Zk|2 = 1. By identify-

ing the eigenstates of the Jz operator with Dicke
states

F : |j,m⟩ 7→ |D2j,j−m⟩ , (8)

one can relate a H2j+1 state space with symmet-
ric subspace of H⊗2j

2 , and hence a state |ψ⟩ ∈
H2j+1 with a symmetric state |ψsym⟩ of 2j qubits,
– see Eqs. (3) and (7). Above equation deter-
mines the isomorphism F of two spaces, and for
any spin-j state |ψ⟩ we denote by |F (ψ)⟩ the re-
lated symmetric state of 2j qubits. As we shall
see, both states have the same Majorana repre-
sentation, M(|ψ⟩) = M(|F (ψ)⟩).

Interestingly, there is another way of present-
ing a symmetric state of 2j qubits. Consider the
collection of 2j quantum states

|Φk⟩ = cos( θk
2 ) |0⟩ + eiϕk sin( θk

2 ) |1⟩ , (9)

with θk ∈ [0, 2π], ϕk ∈ [0, π] and k = 1, . . . , 2j. A
symmetric superposition of their tensor products
constitutes a symmetric state

|ψsym⟩ = N
∑
σ∈S2j

|Φσ(1)⟩ ⊗ · · · ⊗ |Φσ(2j)⟩ , (10)

where σ ∈ S2j runs over all permutations of in-
dices, and N denotes the normalization factor.
A connection between those two representations
of symmetric states (7) and (10) is given by the
Majorana representation. Consider a symmetric
state (7) with state coefficients Zk. The related
Majorana polynomial w(z), Eq. (4), has 2j roots
zi with respect to z variable. On one hand, the
stereographic projection zk 7→ (θk, ϕk), given by
Eq. (2), maps roots of the polynomial w(z) onto
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the surface of a sphere. On the other hand, how-
ever, the set of angles (θk, ϕk) provides an al-
ternative description of the symmetric state, as
symmetrization (10) of 2j qubit states (9), deter-
mined by the angles (θk, ϕk).

3. Measures of quantumness
In this section, we introduce the concept of an-

ticoherence in spin-j system and provide its quan-
titative description. Furthermore, we extended
those concepts to the notion of anticoherence on
an orthonormal basis to quantify its quantum-
ness.

A spin coherent state |ψ⟩ ∈ H2j+1 that points
in direction n in R3 is a state |n⟩ for which the
polarization vector p is of length j i.e.

p ≡ ⟨n|J|n⟩ = jn, (11)

where J = (Jx, Jy, Jz) is the spin-j operator, and
ℏ is set to unity. In the Majorana representa-
tion, a spin-j coherent state is represented by
2j degenerated stars on a sphere. Their posi-
tion is given by the vector n. A spin state |ψ⟩ is
anticoherent, if its polarization vector vanishes,
p = 0. One may introduce higher orders of an-
ticoherence, namely a spin state |ψ⟩ is called t-
anticoherent [26] if ⟨ψ|(n · J)k|ψ⟩ is independent
of n for k = 1, . . . , t.

For a pure symmetric quantum state of 2j sub-
systems |ψ⟩ ∈ H⊗2j

2 , we consider a t-partite re-
duced density operator,

ρt(ψ) := tr1,...,2j−t |ψ⟩ ⟨ψ| , (12)

and analyze its purity,

Rt(|ψ⟩) := tr
(
ρt(ψ)2). (13)

This quantity can be used to quantify the coher-
ence of the related system of spin-j particle [28].
Recall that the isomorphism (8) identifies a spin-
j system with a symmetric state of 2j qubits.
Thus, Baguette and Martin [31] introduced the
following measures of anticoherence of order t ≥ 1
based on the purity of the reduced state:

At(|ψ⟩) = t+ 1
t

[1 −Rt(F (|ψ⟩))]. (14)

where |ψ⟩ ∈ H2j+1 is a spin-j system, and
F (|ψ⟩) ∈ H⊗2j

2 denotes the corresponding sym-
metric state, – see the map (8). As discussed in
Ref. [31] this quantity enjoys the following prop-
erties,

1. At(|ψ⟩) = 0 ⇐⇒ |ψ⟩ is coherent,

2. At(|ψ⟩) = 1 ⇐⇒ |ψ⟩ is t-anticoherent,

3. At(|ψ⟩) ∈ [0, 1] for all |ψ⟩.

4. At(|ψ⟩) is invariant under phase changes and
spin rotations,

and hence provides a plausible measure of t-
anticoherence. Making use of this quantity we
propose the quantumness measure Bt for an or-
thonormal basis using the arithmetic mean of t-
anticoherence measure of constituting states

Bt(U) =
N∑
i=1

At(|ψi⟩)
N

. (15)

Here N=2j + 1 denotes the dimension of the
Hilbert space, U is a unitary matrix that rep-
resents a basis and |ψi⟩ is i-th state in this ba-
sis. Observe that the higher value of the quantity
Bt(U), defined in Eq. (15), the more "quantum"
(anticoherent), is the analyzed basis determined
by the unitary matrix U . It is easy to note that if
a basis represented by U gives Bk(U) = 1, then all
the vectors forming the basis are k−anticoherent.

4. Bases of extreme quantumness

In this section, we present the most "classi-
cal" bases characterized by the smallest values
of quantumness. Furthermore, we identify also
the bases of the maximal quantumness. Note
that such bases can be interpreted as orthogo-
nal measurements of extreme quantumness. We
present both, numerical and analytical results in
dimensions N = 3, 4, 5, 6, 7, which correspond to
spin j = 1, 3

2 , 2,
5
2 , 3. For convenience, we present

the basis vectors {|ψi⟩} in the form of a unitary
matrix U , where the i-th column of the matrix
U corresponds to the i-th vector |ψi⟩ in the ba-
sis expressed in the angular momentum basis Jz,
i.e. U = (Uki), where Uki = ⟨j,m|ψi⟩, with
m = j+1−k. Unitary matrices corresponding to
the basis maximizing (minimizing) the quantum-
ness B1 in dimension N = 2j+1 shall be denoted
by U qN and U cN respectively. In general, bases
of extreme values of a given measure of quan-
tumness correspond to highly symmetric constel-
lations of stars in the Majorana representation,
– see Fig. (2-10).
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Note that the measure of quantumness are in-
variant under SU(2) transformations represented
as an action of the D-matrices of Wigner. Any
such action corresponds to the rotation of a
sphere in the Majorana representation, for more
details see Appendixes E and F.

Starting from N = 4, we use a numerical al-
gorithm inspired by a random walk to find bases
of extreme quantumness with respect to the mea-
sure of 1-anticoherence B1. To find a basis that
maximizes quantumness we choose a random uni-
tary matrix U0, that represents an orthonormal
basis, then we make a random step

U0 → U1 = U0 exp (iHa), (16)

where H is a random hermitian matrix from
Gaussian Unitary Ensemble, while a real param-
eter a is a small time step. If B1(U1) > B1(U0),
then we treat U1 as new basis U0 and repeat
the procedure. Otherwise, we pick another ran-
dom hermitian matrix H and repeat the above
steps. During the procedure, the parameter a is
decreased in a way to obtain an extremal basis
with increased precision. Usually, the number a
varied from 0.1 to 10−15. Analogously, one can
obtain bases that minimize the average coherence
using a similar approach. A simplified version of
our code is given below.

#ba s i s
U0
#number o f s t e p s
n1
n2
#step l en g t h
a
Do [

Do [
H=RandomVariete [GUE[N ] ]
U1=U0exp [ i ∗H∗a ]
I f [B[U1]>B[U0 ] , U0=U1 ]
, n1 ]

a=a/2
, n2 ]

To show that a final basis U0 yields a local ex-
tremum, one should check that the gradient
vanishes, ∇B1(U0) = 0 and the Hessian is
negative definite (for maximum) or positive
definite (for minimum). For further details see
Appendix D.

It turns out that for higher dimensions, start-
ing from N = 5, the measure of quantumness
B1 is saturated by many different bases without
any visible symmetries. This implies that sev-
eral bases can be formed by 1-anticoherent states.
Therefore, it is natural to ask whether it is pos-
sible to obtain a maximal value of B2, keeping
B1 = 1. Interestingly, by requiring both measures
B1 and B2 to increase in a single step of the al-
gorithm we managed (except for the case N = 6)
to obtain bases consisting states of higher orders
of anticoherence with interesting symmetries.

4.1 Extremal bases for N=3
Consider an orthonormal basis in H3, corre-

sponding to j = 1. Up to SU(2) transforma-
tions, corresponding to the rigid rotation of the
entire sphere, any basis can be parametrized by
three real parameters, – see Appendix A. The Bt
measure is invariant under the SU(2) transfor-
mations, so one may use this parametrization to
find bases of extreme quantumness. Therefore,
the problem reduces to finding the global extrema
of a function of three real variables B1(Θ1,Θ2,Φ),
which we solved analytically. The most classical
basis, for which B1 = 1

9 , consists the following
states,

|ψc3⟩ = 1√
3

(|1, 1⟩ + |1, 0⟩ + |1, -1⟩),

|ψ′ c
3 ⟩ = 1√

3
(|1, 1⟩ + ω3 |1, 0⟩ + ω2

3 |1, -1⟩), (17)

|ψ′′ c
3 ⟩ = 1√

3
(|1, 1⟩ + ω2

3 |1, 0⟩ + ω3 |1, -1⟩),

where ω3 = e2πi/3. Basis represented in the Ma-
jorana representation is depicted in Fig. 2. Each
state in this basis can generate another two states
by rotation around ẑ axis by angle 2π/3 and 4π/3.
All stars lie on the equator. This basis corre-
sponds to the Fourier matrix,

U c3 = F3 = 1√
3

1 1 1
1 ω3 ω2

3
1 ω2

3 ω3

 . (18)

The most quantum basis, for which the mea-
sure B1 = 1, reads

|ψq3⟩ = |1, 0⟩ ,

|ψ′ q
3 ⟩ = 1√

2
(|1, 1⟩ + |1, -1⟩), (19)

|ψ′′ q
3 ⟩ = 1√

2
(|1, 1⟩ − |1, -1⟩).
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Figure 2: The most classical basis (18) in H3 (j = 1) is
represented by three pairs of stars in the Majorana repre-
sentation. Each state is presented by two dots of a given
color at the equator. The angles between lines connect-
ing stars with the center of the sphere read α=π/6 and
β=π/2. The left panel shows the stars on the sphere
while the right one uses the Mercator projection, with
the geographic grid drawn.

This basis corresponds to the following unitary
matrix

U q3 = 1√
2

 0 1 1√
2 0 0

0 1 −1

 , (20)

In the stellar representation, the points represent-
ing a single state lie on a line, going through the
center of a sphere that graphically corresponds
to 1-simplex ∆1. The entire constellation spans
a regular octahedron, – see Fig. 3. This basis
may be generated by rotating one of its elements
around a vector directed to the center of any face
of a regular octahedron by 2π/3. Observe that
the same constellation represents 3 mutually un-
biased bases (MUB) in H2 i.e. two points of the
same color correspond to a single basis.

Figure 3: The most quantum basis (20) in H3 (j = 1)
represented by three pairs of points on the sphere (left).
The same configuration in the Mercator projection is
shown on the right. The Orange arrow represents one
of the rotational axes that may be used to generate the
entire basis by rotation of one state by 2π/3 and 4π/3.

Since the least quantum basis in dimension
N = 3 was found as an analytical solution of

minimizing the B1(Θ1,Θ2,Φ) function, while the
most quantum basis saturates the bound for the
measure B1, we can conclude this reasoning with
the following statement.

Proposition 1. The least quantum and the
most quantum bases in H3 are presented in
Eqs. (17) and (19), and correspond to U c3 and
U q3 respectively. The measure of coherence B1
archives values B1(U c3) = 1

9 and B1(U q3 ) = 1.

I a close analogy to the notion of iso-entangled
bases for the multiqubit systems [59–62] we will
introduce a related notion. An orthogonal basis
{|ψi⟩} in HN , determined by unitary U ∈ U(N)
is called iso-coherent, if all its vectors |ψi⟩ are
equivalent with respect to the SU(2) group, so
that for any measure of spin-coherence all its val-
ues are equal.

4.2 Extremal bases for N=4

Figure 4: The most classical basis (21) in H4 (j = 3/2)
represented by 4 triples of points. The sphere (left) and
the Mercator projection (right).

According to the quantum walk algorithm, the
most classical basis for N = 4 (j = 3/2) was
found, for which B1 = 1

9 , – see Fig. 4. This basis
is formed by four states which are equivalent up
to SO(3) rotation on a sphere. This basis corre-
sponds to the following unitary matrix

U c4=
1√

18(3-2
√

2)


1 1 1 τ

√
3

ν νω3 νω2
3 0

ν νω2
3 νω3 0

τ τ τ -
√

3

 , (21)

where ν =
√

3(2 −
√

2), τ = 3 − 2
√

2 and
ω3 = ei2π/3. This result was obtained by an ob-
servation of specific symmetries of purely numeri-
cal expression and then using them as constraints
to reduce the problem to finding an extremum of
a one parameter function, which allowed us to ob-
tain an analytical solution for the optimal basis.
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The most quantum basis, – see Fig. 5, for which
B1 = 1, corresponds to following unitary matrix

U q4 = 1√
6


√

3 1 1 1
0 ξ ξω3 ξω2

3
0 ξ ξω2

3 ξω3
-
√

3 1 1 1

 , (22)

where ω3 = ei2π/3 and θ3 = arcsin (1/
√

3) with
z3 = tan θ3

2 e
−i5π/6 and ξ = (1 + z3 + 1/z3)/

√
3.

Figure 5: The most quantum basis in H4 (j = 3/2)
represented by 4 × 3 = 12 points. The sphere (left) and
the Mercator projection (right). Three stars representing
a single state span an equilateral triangle. Constellation
of the entire basis spans cuboctahedron, the edges are
denoted by black lines.

In analogy to the most classical basis, the four
states are equivalent up to SO(3) rotation on a
sphere. The entire basis may be generated by
rotating a single state by multiples of π/2 around
the z axis. Each vector of the basis is represented
by three stars that form an equilateral triangle,
then graphically it corresponds to the 2-simplex
∆2. The entire constellation of 12 stars forms an
Archimedean solid, called cuboctahedron, – see
Fig. 5. Therefore this basis belongs to the class
of iso-coherent bases.

The most quantum basis U q4 saturates the
bound for the measure B1, which leads to the fol-
lowing statement.

Proposition 2. The most quantum basis in H4
is given by Eq. (22) for which B1 = 1.

Conjecture 1. The matrix U c4 given in (21), for
which B1 = 1

9 , leads to the most spin-coherent
(classical) basis in H4.

4.3 Extremal bases for N=5
Using the numerical procedure described above

we found the most classical basis presented in
Fig. 6. The set of states forming this basis can be
divided into two equivalence classes, with respect

to rotation of the sphere. The first class contains
two states

|ψc5⟩ = N1(|2, 2⟩ + r3
1
2 |2, -1⟩), (23)

where r1 ∈ R is the only possible parameter that
does not change the symmetry of the state and
N1 is the normalization constant. The other state
is obtained by rotation around the x axis by angle
π. The second class contains the state

|ψ′ c
5 ⟩ = N2(|2, 2⟩ + χ |2, 1⟩ +

+ χ′
√

6
|2, 0⟩ + χ |2, -1⟩ + |2, -2⟩) (24)

and its rotations by angles 2π/3 and 4π/3 around
the z axis. Here, N2 is the normalization con-
stant, χ = (r2 + 1/r2 + 2 cosϕ3)/2,
χ′ = 2((r2 + 1/r2) cosϕ3 + 1), and r2, ϕ3 ∈ R are
parameters of the symmetry of this class of states.

Figure 6: The most classical basis in H5 (j = 2) repre-
sented by 5 × 4 = 20 points. The sphere (left) and the
Mercator projection (right).

In the stellar representation, the state |ψc5⟩ cor-
responds to one star at the north pole, and an-
other three equally distributed at a circle of lat-
itude θ4 = arctan(2r1), where r1 is determined
numerically – see Appendix B and red stars in
Fig. 6. Similarly |ψ′ q

5 ⟩ is represented by one star
which horizontal angle θ5 = arctan(2r2). Hori-
zontal angle of the second star reads θ6 = π− θ5.
The remaining two stars lie on the equator with
azimuthal angles ϕ3 and -ϕ3, – see blue stars in
Fig. 6.

Imposing these symmetries and orthogonal-
ity conditions reduces the number of degrees
of freedom to a single one. The minimum of
the quantumness measure obtained numerically
reads, B1 ≈ 0.126 – see Appendix B. Anticoher-
ence measure values for individual states of the
basis are A1(|ψc5⟩) ≈ 0.139 and A1(|ψ′c

5 ⟩) ≈ 0.118.
Numerical results allow us to advance the follow-
ing statement.
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Conjecture 2. The most classical basis in H5 is
U c5 , for which B1 ≈ 0.126.

Numerical analysis provided us several differ-
ent bases saturating measure of quantumness (1-
anticoherence) B1 = 1. After imposing condition
to increase both measures B1 and B2 in a single
algorithm step we arrived at the basis for which
B2 = B1 = 1. Exactly the same basis was earlier
described by Zimba in [26]. It is formed by five
states equivalent up to rotation on the sphere.
Each of those states is represented by four stars
that form a regular tetrahedron, then graphically
it corresponds to 3-simplex ∆3. It may be con-
structed by rotation of a state

|ψtet5 ⟩ = 1√
3

(|2, 2⟩ +
√

2 |2, -1⟩). (25)

The corresponding unitary matrix reads

U q5 =
1√
5


1 1 1 1 1
-κ -κω5 -κω2

5 -κω3
5 -κω4

5
λ λω2

5 λω4
5 λω6

5 λω3
5

κ κω3
5 κω6

5 κω4
5 κω2

5
1 ω4

5 ω3
5 ω2

5 ω5

 , (26)

where κ = 1
4(1+i

√
15), λ =

√
-κ and ω5 = ei2π/5.

The entire constellation of basis consists of 20
stars and forms a regular dodecahedron, – see
Fig. 7. Above reasoning leads to the following
statement.

Proposition 3. The most quantum basis in H5
is U q5 , for which B1 = B2 = 1.

Figure 7: The most quantum basis (26) in H5 (j = 2)
represented by 5×4 = 20 points on the sphere (left) and
in the Mercator projection (right). Stars representing
each state span a regular tetrahedron and the entire basis
forms a compound of five tetrahedra and spans a regular
dodecahedron, plotted with solid lines.

Note that a regular dodecahedron arises in
quantum theory in several contexts, including the
Penrose dodecahedron [63–65] formed by 40 pure

states in H4 which allow one to construct a proof
of the Bell’s nonlocality theorem. The same con-
figuration is related to the set of five iso-entangled
two-qubit mutually unbiased bases, as the partial
traces of 20 pure states in H4 lead to a regular
dodecahedron inside the Bloch ball [61].

4.4 Extremal bases for N=6
The basis with an octahedral symmetry, found

by the numerical search (see Fig. 8) is conjec-
tured to be the most classical. All states in
this basis are equivalent up to a rotation. By
imposing this symmetry and orthogonality re-
quirement one gets an analytical expression con-
cerning the basis, for which the measure equals
B1(U c6) = 8(137 − 34

√
10)/2025 ≈ 0.116. The

basis contains the state

|ψc6⟩ = N3
(
|52 ,

5
2⟩ − 1

3(2
√

2-
√

5) |52 , -
3
2⟩
)

(27)

and the remaining five states, which may be ob-
tained by appropriate rotations, where N3 de-
notes the suitable normalization constant. Thus
this basis belongs to the class of iso-coherent
bases. In the Majorana representation, a state
|ψq6⟩ is represented by a single star at the north
pole and the remaining four equally distributed
on a parallel with latitude defined by condition,
tan θ7

2 = (1
3(2

√
10 − 5))1/4, – see red stars in

Fig. 8. The corresponding unitary matrix reads

U c6 = 1
2



2a 0 -b -b -b -b
0 2b a -a -ia ia
0 0 1 1 -1 -1
0 0 1 -1 i -i
2b 0 a a a a
0 2a -b b ib -ib


, (28)

where a = 1
3

√
11/2 +

√
10 and b = (2 −

√
10)/6.

Conjecture 3. The most classical basis in H6

is U c6 for which B1 = 8(137−34
√

10)
2025 ≈ 0.116, – see

Eq. (28).

Similarly to the case N = 5, the numerical pro-
cedure leads to several solutions saturating the
bound B1 ≤ 1. The standard method of increas-
ing both B1 and B2 in a single step returns differ-
ent bases, for which B1 and B2 < 1. However, if
we impose the maximization of the sum of mea-
sures B1 and B2, we observe the emergence of
an intriguingly symmetric structure. This basis
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Figure 8: A most classical basis in H6 (j = 5/2) repre-
sented by 6 × 5 = 30 points. The sphere (left) and the
Mercator projection (right).

is comprised of 30 points that are equally dis-
tributed across five circles of latitude on a sphere,
with each circle hosting six stars in vertices of a
regular hexagon. The Majorana representation of
this basis is displayed in Fig. 9. A single state is
represented, up to rotation, by a set of points in
spherical coordinates (θ, ϕ) given by{

(π/2, 0), (θ8, 5π/6 − δ1), (θ9,−π/2 − δ2),
(π − θ8,−5π/6 + δ1), (π − θ9, π/2 + δ2)

}
. (29)

The remaining four states can be obtained
through rotation around the ẑ axis by an an-
gle of π/3, so this basis is iso-coherent. Based
on numerical experiments, we have imposed this
parametrization and obtained numerical results
for the four real parameters θ8, θ9, δ1, and δ2, re-
sulting in one state described by Eq. (29) and four
rotations. These rotations generate mutually or-
thogonal states up to accuracy of 10−8. Thus on
basis, denoted as Ũ q6 , yields B1 ≈ 0.999994 and
B2 ≈ 0.989291. It maximizes the sum of B1 + B2,
and leads to a solution with rotational symme-
tries. See Appendix B for further details of the
numerical procedure.

4.5 Extremal basis for N=7
The most quantum basis U q7 , found by numeri-

cal search is formed by seven regular octahedrons,
– see Fig. 10. All states in this iso-coherent basis
are equivalent up to a rotation of the state,

|ψoct7 ⟩ = 1√
2

(|3, -2⟩ + |3, 2⟩). (30)

No symmetry has been observed in the rela-
tive positions of those octahedrons. Further de-
tails regarding the numerics are provided in Ap-
pendix B.

Figure 9: The selected most quantum basis in H6
(j = 5/2), for which the sum of B1 and B2 achieves
maximum. It is represented by 6 × 5 = 30 points. The
sphere with a regular hexagon on each circle of latitude
(left) and the Mercator projection (right).

Figure 10: The most quantum basis in H7 (j = 3) rep-
resented by 7×6 = 42 points. Each state is represented
by a regular octahedron. The sphere (left) and the Mer-
cator projection (right).

Proposition 4. The most quantum basis in H7
is represented by U q7 for which B1 = B2 = B3 = 1
and B4 = 5

6 .

4.6 Asymptotic results
We observed that the average value of the mea-

sures of quantumness Bt(U) increase with the di-
mension N of the Hilbert space HN for any t – see
Fig. 11 as an example.

In Appendix C we prove the following state-
ment.

Theorem 1. The average value of Bt with re-
spect to the Haar measure on U(N) group is

⟨Bt(U)⟩U∈U(N) = N − t− 1
N − t

. (31)

Obtained results suggest that it is possible to
construct a basis, using t−anticoherent states and
t grows with dimension N of a Hilbert space. The
overlap between spin coherent states as a function
of their distance on a sphere goes to zero faster for
higher spin states. It suggests that the minimal
value of quantumness decreases with N .
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Figure 11: Maximal and minimal value of the quantum-
ness B1, as a function of the dimension N = 2j + 1.
Solid lines are plotted to guide the eye. The numerical
average values ⟨Bt⟩, obtained by averaging over Circular
Unitary Ensemble (CUE), are denoted as the red trian-
gles. Solid red lines show analytical result from Theorem
1.

5. Husimi Function and Wehrl Entropy

Another useful measure of quantumness of a
state |ψ⟩ is its Wehrl entropy [43, 48], defined as
an entropy of the quasi-probability distribution in
a phase space. Suitable quasi-probability distri-
bution is given by Husimi function (Q-function)

[66], defined as

Qψ(α) = | ⟨ψ|α⟩ |2, (32)

where |α⟩ = |θ, ϕ⟩ is spin coherent state point-
ing in (θ, ϕ) direction in spherical coordinates i.e.
C ∋ α = tan θ

2e
iϕ and all stars representing this

state in the stellar representation are placed in
(θ, ϕ) point on a sphere. Note, that points on
a sphere (stars), representing a state |ψ⟩ in the
stellar representations are antipodal to zeros of
the Husimi function Qψ [4]. The function Qψ is
normalized, bounded and always non-negative.

For a pure spin state |ψ⟩ ∈ HN , the Wehrl en-
tropy reads [43],

SW (|ψ⟩) = −N

4π

∫
Ω
dΩ Qψ(α) ln(Qψ(α)), (33)

According to the long-standing Lieb conjecture
[44, 45], transformed into theorem by Lieb and
Solovej [46], the Wehrl entropy is minimal for spin
coherent states,

SminW (ψ) = N − 1
N

= 2j
2j + 1 −−−−→

N→∞
1. (34)

Its maximal value is attained for states that
are represented by stars equally distributed on
a sphere (most quantum) [39].

Classical |j,m⟩ Average Quantum
N B1 B1 ⟨B1(U)⟩CUE B1 B2 B3 B4

3 1
9≈0.111 1

3≈0.333 1
2 1 - - -

4 1
9≈0.111 4

9≈0.444 2
3≈0.667 1 3/4 - -

5 0.126 1/2 3
4 = 0.75 1 1 2/3 -

6 8(137-34
√

10)
2025 ≈0.116 8

15≈0.533 4
5 = 0.8 0.999994 0.989 0.879 0.625

1 0.908 0.807 0.625
7 - 5

9≈0.556 5
6≈0.833 1 1 1 5/6

Table 1: Measures of quantumness Bt for identified extremal bases of order N = 2j + 1 = 3, . . . , 7, canonical spin
j bases |j,m⟩ [51] and average over unitary group with respect to Circular Unitary Ensemble (CUE) ⟨B1(U)⟩CUE .
Analytical results are shown in bold purple, while analytical results with constraints suggested by numerical outcomes
are shown in blue. The remaining bases were obtained via numerical search with imposed symmetry constraints to
enhance precision. Analyzing the most quantum basis in N = 6, we identified two results, the first with the symmetric
structure (see Fig. 9) and the second with the highest measure of quantumness B1 without any specific symmetries.

We investigated the problem of finding bases
of extreme mean Wehrl entropy of states forming
the basis. We use a similar algorithm as for the
measure Bt and obtain the same extremal bases

(except for the case of the most quantum basis in
N = 6) as for the previous measure. In search for
the most quantum basis in N = 6 the algorithm
did not converge to a single local extremum, sim-
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ilarly to the case of maximizing B1 discussed in
Section 4.

An average value of the Wehrl entropy of ran-
dom pure state equals [67]

⟨SW (|ψ⟩)⟩|ψ⟩∈HN
=

N∑
k=2

1
k
, (35)

and gives the mean value for a generic basis cor-
responding to a Haar random unitary matrix U .
All results for the Wehrl entropy are presented in
the Table 2.

Plots of Husimi functions Qψi
of states forming

the most classical bases are presented in Fig. 12.
Observe the relation to the constellations of Ma-
jorana stars shown in Fig. 2, 4, 6 and 8. For any
N the stars form N clusters containing N − 1
points each. The corresponding Husimi function
Qψi

is localized at the point antipodal to the clus-
ter in which a given color is missing. Shapes of
states with high quantumness are delocalized and
are hardly distinguishable, so will not be repro-
duced here.

Classical |j,m⟩ Average Quantum
N S̄W S̄W ⟨S̄W (U)⟩CUE S̄W

3 0.712 1- ln 2
3 ≈0.769 5

6≈0.833 5
3 - ln 2≈0.974

4 0.831 3
2 - ln 3

2 ≈0.951 13
12≈1.08 1.24

5 0.912 2- ln 96
5 ≈1.09 77

60≈1.28 1.50
6 0.965 5

2 -1
3 ln 50≈1.20 29

20 = 1.45 1.65
7 - 3- ln 162000

7 ≈1.29 223
140≈1.59 1.84

Table 2: Means Wehrl entropy S̄W of vectors forming the extremal bases of order N = 3, . . . , 7, on canonical Jz
basis |j,m⟩ with j = (N − 1)/2 and average over unitary group [67]. Analytical results are shown in bold purple,
while analytical results with constraints suggested by numerical outcomes are shown in blue. The remaining bases
were obtained via numerical search with imposed symmetry constraints to enhance precision.

Another interesting measure of quantumness is
the maximum of the Husimi function for a state
|ψ⟩ ∈ HN ,

Qmax(ψ) = max
α∈C

| ⟨α|ψ⟩ |2. (36)

The Qmax value determines the minimal Fubini-
Study distance of the state analyzed to the man-
ifold of spin-coherent states, which reads
DFS = arccos

√
Qmax [4]. Therefore, states |ψ⟩

that minimize Qmax(ψ) are considered as most
quantum [39, 41]. Interestingly, finding extremes
of the maximum of the Husimi function in small
dimensions leads to another set of bases than
those that are extreme for anticoherence and
Wehrl entropy. Indeed, we used a similar search
algorithm as for the measure Bt to find a basis
with the extreme values of (36). However, the
Qmax measure seems to be problematic for the
numerical search, as in many cases it has a nu-
merical plateau around its extreme values. In
such cases, the numerical search for a basis with
the extreme values of Qmax leads to bases with-
out any particular symmetries. In some special

cases (bases in dimension N = 3, and the most
coherent basis in dimensions N = 5, 6), the Qmax
extreme basis coincides with extreme Bt (antico-
herent) basis. Due to the aforementioned prob-
lem of finding the extreme value of Qmax, and
the lack of symmetry in a numerical approxima-
tion of such a solution, we do not present extreme
bases for the functionQmax in a detailed way. Ta-
ble 3 presents the values of Qmax measure for the
bases described in Section 4. Notice that due to
the previously mentioned problem, in many cases
these bases do not reach the extreme values of the
Qmax function.

6. Permutation symmetric states of
multiqubit systems

Due to the correspondence (8) between spin-j
states and symmetric states of 2j spin-1/2 par-
ticles and the fact that the measure A1 of 1-
anticoherence defined in Eq. (14) is equivalent
to the linear entropy of reduced density oper-
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Figure 12: The Husimi functions Qψi of vectors |ψi⟩,
i = 1, . . . , N of the most classical bases in N = 3, 4, 5, 6
as envelopes on the sphere. Black shadow denotes the
position of the Bloch sphere. Colors of the Husimi func-
tion correspond to the colors of stars in Fig. 2, 4, 6 and 8.
The maximum of the red distribution is placed antipodal
to the cluster of Majorana stars, where the red point is
missing.

ators, the extremal bases we found correspond
to the most and the least entangled bases with
respect to the bipartition into one and 2j − 1
qubits. Specifically, the 1-anticoherent states,
A1(|ψ⟩) = 1, are maximally entangled, while the
coherent states A1(|ψ⟩) = 0 represent biseparable
states of the composite system.

Note that the basis (20), represented in Fig. 3
by a regular octahedron, is equivalent to the well-
known Bell basis in the symmetric sector of H⊗2

2 ,

|ψ1⟩ = 1√
2

(|01⟩ + |10⟩),

|ψ2⟩ = 1√
2

(|00⟩ + |11⟩), (37)

|ψ3⟩ = 1√
2

(|00⟩ − |11⟩).

The last state that completes the orthonormal
basis in H⊗2

2 is the singlet state

|ψ4⟩ = 1√
2

(|01⟩ − |10⟩), (38)

which does not belong to the symmetric subspace.
In a similar way, the most quantum basis in H4,

represented by a cuboctahedron shown in Fig. 5,
corresponds to the maximally entangled basis in
the symmetric subspace of H⊗3

2 . Each state is
equivalent, up to a local unitary transformation
U(2) ⊗ U(2) ⊗ U(2), to a GHZ state [4],

|GHZ⟩ = 1√
2

(|000⟩ + |111⟩). (39)

Therefore, this basis is iso-entangled [59–62].
In H5, the most quantum basis (26), repre-

sented in Fig. 7 by five regular tetrahedrons that
form a regular dodecahedron, corresponds to the
iso-entangled basis in the symmetric sector of
H⊗4

2 . This basis consists five, maximally entan-
gled states of four qubits, which are known to
be the most sensitive states for alignment of the
reference frame [20] and having the highest ge-
ometric entanglement [13]. A simple calculation
leads to the form

|ψtet.⟩ = 1√
3

|0000⟩ + 1√
6

(|0111⟩ (40)

+ |1011⟩ + |1101⟩ + |1110⟩).

In a similar way the matrix U q7 of maximal quan-
tumness leads to the iso-entangled basis of the
symmetric sector of H⊗6

2 with the maximal ge-
ometric entanglement. Each state is equivalent,
up to a local unitary, to

|ψoct.⟩ = 1√
2

(|D6,1⟩ − |D6,5⟩), (41)

which is known to display the highest geometric
entanglement [13].

7. Concluding remarks
This study introduces the measure Bt as the

tool to characterize the quantumness of a given
basis in HN . The search for the most quantum
bases for N = 3, 4, 5 and 7 is performed. Numer-
ical results suggest, that the obtained solutions
are unique. A set of candidates for the "classical"
bases consisting of the most spin-coherent states
is indicated for N = 3, 4, 5, 6. Presented bases
give also extremal values of the average Wehrl
entropy of basis vectors. Some of the most quan-
tum bases, analyzed in the stellar representation
of Majorana, reveal symmetries of Platonic solids.
Most classical bases display intriguing structures.
Stars of different colors group in N clusters con-
sisting of exactlyN−1 stars. In each cluster, only
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a single color is missing and the Husimi function
corresponding to this color is concentrated at the
point antipodal to the barycenter of the cluster -
see Fig. 12. Obtained results, including the aver-
age and the extremal values of B1, are presented
in Fig. 11 and summarized in the Table 1.

Extremal states, coherent and anticoherent,
have practical applications in quantum metrology
as optimal rotosensors [32–35]. This work pro-
vides a natural extension of previous studies con-
cerning the search for such states proposing opti-
mal orthogonal measurements of Lüders and von
Neumann of the extreme spin coherence. Note,

that several of the presented bases have specific
rotational symmetries and are iso-coherent which
allows one to obtain the entire basis by rotation of
a reference state and therefore makes them easier
to prepare. Such states, generating basis by rota-
tion, are called optimal quantum protractors [68].
Observe that all bases found, except the basis for
N = 5, are generated by a single quantum pro-
tractor. Therefore t-anticoherence measure At of
all states in a basis are equal to the quantum-
ness measure Bt of the entire basis, which are
iso-coherent.

Classical |j,m⟩ Average Quantum
N Q̄max Q̄max ⟨Q̄max⟩CUE Q̄max

3 1
6

(
3 + 2

√
2
)

≈ 0.971 5
6≈ 0.833 0.831 1

2

4 1
6

(
3 + 2

√
2
)

≈ 0.971 13
18≈0.722 0.718 1

2

5 2∗0.9518+3∗0.9608
5 ≈ 0.957 556403

1179648≈0.472 0.633 1
3

6 1
18

(
11 + 2

√
10
)

≈ 0.962 1097
1875≈0.585 0.568 0.331

0.333
7 - 1223

2268≈0.539 0.514 2
9≈0.222

Table 3: Arithmetic means of the Qmax function for states in identified extremal bases with respect to Bt measure
for dimensions N = 3, . . . , 7, canonical spin j bases |j,m⟩ and numerical average over Circular Unitary Ensemble
(CUE). Analytical results are shown in bold purple.

We also considered other measures of quantum-
ness of vectors forming a given basis. Optimiza-
tion of the mean Wehrl entropy of N orthogonal
vectors leads to the same bases distinguished by
extremal values of the quantities Bt, with a sin-
gle exception of the quantum basis for N = 6
– see Table 2. Similar bases are distinguished by
the search for the extremal values of the maxi-
mum Q̄max of the Husimi function, averaged over
all orthogonal states of the basis – see Table 3.
This quantity characterizes the average distance
of the basis vectors |ψi⟩ to the set of spin coherent
states. In such a way, we presented in this work
several alternative possibilities to distinguish or-
thogonal measurements of N -dimensional state
with extremal properties concerning the minimal,

maximal and average spin coherence of the basis
vectors.
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A. Parametrization of bases in H3

Any orthonormal basis in H3, consisting of three states |Ψ3⟩, |Ψ′
3⟩ and |Ψ′′

3⟩ can be expressed, up to
a SU(2) rotation, in terms of three real parameters Θ1,Θ2 ∈ [0, π) and Φ ∈ [0, 2π),

|Ψ3⟩ = N4(|1, 1⟩ − tan2 Θ1
2 |1, -1⟩),

|Ψ′
3⟩ = N5(|1, 1⟩ + Υ |1, 0⟩ + cot2 Θ1

2 |1, -1⟩), (42)

|Ψ′′
3⟩ = N6(|1, 1⟩ −

1 + cot4 Θ1
2

Υ∗ |1, 0⟩ + cot2 Θ1
2 |1, -1⟩),

where Υ = (e−iΦ cot Θ2
2 cot2 Θ1

2 + eiΦ tan Θ2
2 )/

√
2, and N4, N5, N6 denote suitable normalization

constants. In the stellar representation of Majorana, the state |Ψ3⟩ is represented by two points on the
opposite sides of a single circle of latitude, Θ1. The state |Ψ3⟩ was chosen arbitrarily without loosing
generality, and the states |Ψ′′

3⟩ and |Ψ′
3⟩ were obtained by imposing orthogonality conditions.

B. Numerical results
In this Section, we present further details concerning the numerical procedure. Detailed expressions

for the vectors forming orthonormal bases found numerically are available online [69].

N = 5

The least quantum basis in H5, for which B1 ≈ 0.1263012, is generated by rotation of two reference
states (23) and (24) with parameters χ = (r2 + 1/r2 + 2 cosϕ)/2 and r1 = 3

√
4/(1/r2

2 + r2
2 + 2 cosϕ).

Numerical optimization gives the following values of the free parameters, r2 ≈ 7.564405 and
ϕ ≈ 0.93380835. The basis is orthonormal up to accuracy

∑
i,j,k |U∗

ijUik − δjk| ≈ 2.1 × 10−15.

N = 6

Minimizing B1 leads to several different bases with B1 ≈ 1, without any internal symmetry. To
distinguish among them, we analyzed the sum of B1 + B2. The measure B1 is no longer ≈ 1, but this
choice leads to a rotational symmetry by π/3 and an internal state symmetry (29). Numerical search
gave us the following values of the parameters of the state (29), θ8 ≈ 0.5922575, θ9 ≈ 1.1820735,
δ1 ≈ 0.0822441, δ2 ≈ 0.0522207. Therefore, the corresponding reference vector in H6 reads,

|ψq6⟩ ≈ (0.4082482,−0.3757166 − 0.1596989i, 0.0850774 − 0.3992850i,
0.0850774 − 0.3992850i,−0.3757166 − 0.1596989i, 0.4082483).

The other four vectors are obtained by rotation of |ψq6⟩ around the ẑ axis by an angle of π/3. Rotation
matrix reads R̂ẑ(π/3) = diag(1, eiπ/3, ei2π/3, eiπ, ei4π/3, ei5π/3) and the entire iso-coherent basis takes
the form, {

R̂ẑ(π/3)k |ψq6⟩
}5
k=0.

The obtained constellation of vectors provides the following values of the quantumness measures,
B1 ≈ 0.9999940, B2 ≈ 0.9892914 and B3 ≈ 0.8793702. The basis is orthonormal up to accuracy∑
i,j,k |U∗

ijUik − δjk| ≈ 9.4 × 10−7.

N = 7

The basis U q7 is orthonormal with accuracy
∑
i,j,k |U∗

ijUik − δjk| ≈ 6.3 × 10−15. Positions of stars
representing states in this basis differ from those of the regular octahedrons by less than 10−15, for a
unit radius of the sphere.
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C. Anticoherence measure in terms of matrix elements.
The t-anticoherence measure At(|ψi⟩) of a state |ψi⟩ is defined in Eq. (14) using purity of the reduced

state F (|ψi⟩), discussed in [28, 31]. Thus, the quantumness measure Bt(U) of an orthonormal basis
U = {|ψ1⟩ , . . . , |ψN ⟩}, can be expressed in terms of the purity of the corresponding reduced symmetric
states F (|ψi⟩). The purity Rt of the state F (|ψi⟩), corresponding to |ψi⟩, expressed in the eigenbasis
(3) of angular momentum operator Jz reads,

Rt(|ψi⟩) =
t∑

k1=0

t∑
k2=0

∣∣∣∣ j-t∑
k=−j

Z∗
j-k-k1Zj-k-k2Γk1k2

j+k

∣∣∣∣2, (43)

where
Γk1k2
k = 1

C2j
t

√
Ck+k1
k C2j-k-k1

t-k1
Ck+k2
k C2j-k-k2

t-k2
(44)

and C lq =
(l
q

)
if 0 ≤ q ≤ l and 0 otherwise. Then the t-coherence measure Bt(U) of an orthonormal basis,

represented by unitary matrix U can be expressed in terms of its matrix elements Uki = ⟨j, j + 1 − k|ψi⟩
as

Bt(U) = t+ 1
Nt

N∑
p=1

(
1 −

t∑
k1,k2=0

∣∣∣∣ j−t∑
k=−j

U∗
j−k−k1+1,pUj−k−k2+1,pΓk1k2

j+k

∣∣∣∣2). (45)

Proof of the Theorem 1
Expanding Eq. (45) gives the sum of expressions of the structure

U∗
j−k−k1+1,pUj−k−k2+1,pUj−k′−k1+1,pU

∗
j−k′−k2+1,pΓ

k1k2
j+k Γk1k2

j+k′ , (46)

that could be averaged over unitary group U(N) by the Weingarten calculus [70]∫
U(N)

dUUijUklU
∗
mnU

∗
pq = (δimδjnδkpδlq + δipδjqδkmδln)Wg(12, N)

+(δimδjqδkpδln + δipδjnδkmδlq)Wg(2, N),
(47)

where Wg is the Weingarten function. Inserting the known values of the Weingarten functions (see [71])
into Eq. (45), using expression (44) and applying the following identity

p∑
m=0

(
m

l

)(
p−m

k − l

)
=
(
p+ 1
k + 1

)
, (48)

one arrives at the desired expression

⟨Bt(U)⟩U(N) = N − t− 1
N − t

. (49)

D. Extremality of solution.
Extremal point x0 of n-variable function f satisfies ∇f |x0 = 0. The most convenient way to de-

termine whether it is a local minimum, maximum, or saddle point is the analysis of the positive
definiteness of the Hessian Hf defined as,

Hf =


∂2f
∂x2

1

∂2f
∂x1∂x2

. . . ∂2f
∂x1∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

. . . ∂2f
∂x2

n

 . (50)
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1. If Hf |x=x0 > 0 ⇐⇒ x0 is a local maximum.

2. If Hf |x=x0 < 0 ⇐⇒ x0 is a local minimum.

3. If Hf |x=x0 = 0 ⇐⇒ x0 is a saddle point.

Following [72] we recall the Lie group structure of the manifold of unitary matrices to introduce
directions in the neighborhood of the matrix U. Lie algebra of unitary matrices is formed by Hermitian
matrices. We select the following basis,

Hii= |i⟩ ⟨i| for i ∈ 1, . . . , N,
H+
kl= |k⟩ ⟨l| + |l⟩ ⟨k| for k, l ∈ 1, . . . , N, k ̸= l,

H−
kl=i(|k⟩ ⟨l| − |l⟩ ⟨k|) for k, l ∈ 1, . . . , N, k ̸= l,

(51)

that give N2 directions in the neighbourhood of any U . Now we may define the derivative of a function
f on a unitary matrix as

∇rf(U) = lim
ϵr→0

f(Uϵr ) − f(U)
ϵr

, (52)

where Uϵr is the matrix U , transformed in r-th direction as Uϵr = U exp(iϵrHr) = U(1+iϵrHr+O(ϵ2r)),
where Hr is an element of the Lie algebra (51).

For a given unitary matrix U the derivative of the quantumness Bt(U), determined by Eqs. (15)
and (45) reads,

∇rBt(U) = −4 t+ 1
Nt

N∑
p,p′=1

t∑
k1,k2=0

j−t∑
k,k′=−j

Γk1k2
j+k Γk1k2

j+k′Im
(
Uj−k′−k1+1,pU

∗
j−k′−k2+1,p×

(
U∗
j−k−k1+1,pUj−k−k2+1,p′Hr∗

p′,p − Uj−k−k2+1,pU
∗
j−k−k1+1,p′Hr∗

p′,p

))
,

(53)

where Γk1k2
k is defined in Eq. (44). In a similar way, we arrive at the second derivative:

∇r∇sBt(U) = −8 t+ 1
Nt

N∑
p,p′,p′′=1

t∑
k1,k2=0

j−t∑
k,k′=−j

Γk1k2
j+k Γk1k2

j+k′Re
(
Uj−k′−k1+1,pUj−k−k2+1,pU

∗
j−k′−k2+1,p′×

Hr∗
p′,pU

∗
j−k−k1+1,p′′Hs∗

p′′,p − Uj−k′−k1+1,pU
∗
j−k−k1+1,pU

∗
j−k′−k2+1,p′Hr∗

p′,pUj−k−k2+1,p′′×

Hs
p′′,p − Uj−k′−k1+1,pU

∗
j−k′−k2+1,pU

∗
j−k−k1+1,p′Hr∗

p′,pUj−k−k2+1,p′′Hs
p′′,p

))
.

(54)
Therefore, the local extremality of the solution U , for Bt(U) function, could be verified by its matrix
elements Uij .

E. Wigner D-Matrices

Let Jx, Jy, Jz be components of the angular momentum operator J. The three operators satisfy the
following commutation relations,

[Jx, Jy] = iJz [Jz, Jx] = iJy [Jy, Jz] = iJx, (55)

where the reduced Planck’s constant is set to identity, ℏ = 1. Mathematically, the operators Jx, Jy, Jz
generate the Lie algebra su(2). The sum of squares of Jx, Jy, Jz is known as the Casimir operator,

J2 = J2
x + J2

y + J2
z (56)
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which commutes with Jx, Jy and Jz operators. In particular, J2 might be diagonalized together with
Jz, which defines an orthonormal basis of joint eigenvectors labeled by quantum numbers j,m,

J2 |j,m⟩ = j(j + 1) |j,m⟩ ,
Jz |j,m⟩ = m |j,m⟩ ,

with j = 0, 1
2 , 1, . . . and m = −j,−j + 1, . . . , j. Note that for a given j, the operator Jz is non-

degenerated and has exactly 2j + 1 distinct eigenvalues.
A three-dimensional rotation operator has the form

R(α, β, γ) = e−i(αJz+βJy+γJz). (57)

The Wigner D-matrix [73] is a unitary matrix of dimension 2j + 1 defined in the angular momentum
basis as

Dj
mm′(α, β, γ) := ⟨j,m′| R(α, β, γ) |j,m⟩ . (58)

Recall, that the matrix elements of the operator Jz in the angular momentum basis read

⟨j,m′| Jy |j,m⟩ = 1
2i
[
δm′,m+1

√
(j −m)(j +m+ 1) − δm′,m−1

√
(j −m)(j −m+ 1)

]
, (59)

then, the precise form of the Wigner D-matrix for j = 1
2 is

D
1
2 (α, β, γ) =

cosβ2 e
− i

2 (α+γ) −sinβ2 e
− i

2 (α−γ)

sin θ2e
i
2 (α−γ) cos θ2e

i
2 (α+γ)

 (60)

and for j = 1:

D1(α, β, γ) =

 cos2 β
2 e

−i(α+γ) −
√

2 cos β2 sin β
2 e

−iα sin2 β
2 e

−i(α−γ)
√

2 cos β2 sin β
2 e

−iγ cosβ −
√

2 cos β2 sin β
2 e
iγ

sin2 β
2 e
i(α−γ) √

2 cos β2 sin β
2 e
iα cos2 β

2 e
−i(α+γ)

 . (61)

Wigner matrices Dj represent rotations in the space HN with N = 2j + 1, which allow us to generate
from a single fiducial vector |ψ1⟩ the entire iso-coherent basis {|ψ1⟩ , . . . , |ψN ⟩}, – see also Appendix F.

F. Invariance under rotation
The Majorana representation presents a spin-j state as a collection of 2j stars on a sphere. In this

section, we discuss the behavior of such a representation, while rotating the sphere. Firstly, we show
that the rotation of a sphere preserves the scalar products of related states, in particular, transforming
any orthonormal basis into another orthonormal basis. Secondly, we show that the rotation of a sphere
preserves the anticoherence (14) of related states. Lastly, we present the rotation of a sphere in terms
of the transformation of related spin-j and symmetric states. As a consequence, all orthonormal bases
of extreme quantumness specified in this work are defined up to the global rotation of related Majorana
stars, or equivalently, up to the action of any Wigner D-matrix on related spin-j basis elements.

Recall that there is a direct correspondence between a unitary evolution of a two-level system and
rotations of the related Bloch sphere representation, which follows directly from the fact that the
group SU(2) doubly covers SO(3). In particular, any two-dimensional unitary matrix is of the form
U =

(
a b

−b∗ a∗

)
with |a|2 + |b|2 = 1 and hence can be expressed as

U(α, β, γ) =

cosβ2 e
− i

2 (α+γ) −sinβ2 e
− i

2 (α−γ)

sin θ2e
i
2 (α−γ) cos θ2e

i
2 (α+γ)

 . (62)
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As a quantum state |ψ⟩ ∈ H2 can be presented as a single point on the Bloch sphere, its evolution
under the above unitary operator might be presented as a sequence of three Euler rotations acting on
the Bloch sphere. More precisely, rotation RZ(α) of α angle along Z axis, then RX(β) by β angle
along X axis and RZ(γ) by γ angle along Z axis again on the Bloch sphere. We shall denote such a
rotation by R(α, β, γ).

Any symmetric state |ψ⟩ ∈ H⊗2j
2 remains symmetric under any action of the joint unitary local

operator U⊗2j [16]. In fact, the reverse statement is also true, all local unitary operations that preserve
a given symmetric state are of the form U⊗2j [12]. For a unitary matrix represented in the form (62)
the action of U⊗2j is equivalent to the rotation R(α, β, γ) of the sphere. As a consequence, any rotation
of stars in the Bloch representation does not change the scalar product of underlying symmetric states
|ψ1,2⟩ ∈ H⊗2j

2 as ⟨ψ1| (U⊗2j)† U⊗2j |ψ2⟩ = ⟨ψ1|ψ2⟩. In particular, the orthonormal basis is mapped
to another orthonormal basis of symmetric states. Furthermore, the purity of the reduced density
operator (13) does not change under local unitary transformation U⊗2j , and hence is the same for
states related by the rotation of a sphere in the Majorana representation.

Recall that the system of symmetric states of 2j qubits is related to the spin-j system by isomorphism
F , – see Eq. (8), hence it preserves a scalar product, i.e ⟨ψ3|ψ4⟩ = ⟨F (ψ3)|F (ψ4)⟩, where |ψ3,4⟩ ∈ H2j+1.
Moreover, by the definition, both states |ψ⟩ and |F (ψ)⟩) have the same Majorana representation. As
a consequence, any rotation of stars in the Bloch representation of the spin-j system does not change
the scalar product of underlying states, as was the case for symmetric states. Notice also that any
rotation of the sphere does not change the coherence properties of the represented states. Indeed, for
any symmetric state |F (ψ)⟩ the purity of the reduced density operator (13) does not change under local
unitary transformation U⊗2j , or rotation of the sphere in the Majorana representation, respectively.
Hence, both states, the initial one and the rotated one, achieve the same t-anticoherence (14). We can
summarize this discussion by the following two observations.

Observation 1. An action of a Wigner D-matrix Dj(α, β, γ) on a collection of spin-j sets {|ψk⟩}mk=1
belonging to H2j+1 preserves their mutual scalar products and t-anticoherence measure At(|ψk⟩).
Furthermore, it is represented by the rotation R(α, β, γ) in the stellar representation, i.e.

M
(
Dj(α, β, γ) |ψk⟩

)
= R(α, β, γ)M(|ψk⟩). (63)

Observation 2. An action of a joint local unitary operator U(α, β, γ)⊗2j on a collection of sym-
metric states {|ψksym⟩}mk=1 belonging to H⊗2j

2 preserves their mutual scalar products and purity. It is
represented by the rotation R(α, β, γ) in the stellar representation, i.e.

M
(
U(α, β, γ)⊗2j |ψksym⟩

)
= R(α, β, γ)M(|ψksym⟩). (64)
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