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We construct a resource theory of sharpness for finite-dimensional positive operator-
valued measures (POVMs), where the sharpness-non-increasing operations are given
by quantum preprocessing channels and convex mixtures with POVMs whose ele-
ments are all proportional to the identity operator. As required for a sound resource
theory of sharpness, we show that our theory has maximal (i.e., sharp) elements,
which are all equivalent, and coincide with the set of POVMs that admit a repeatable
measurement. Among the maximal elements, conventional non-degenerate observ-
ables are characterized as the canonical ones. More generally, we quantify sharpness
in terms of a class of monotones, expressed as the EPR–Ozawa correlations between
the given POVM and an arbitrary reference POVM. We show that one POVM can
be transformed into another by means of a sharpness-non-increasing operation if
and only if the former is sharper than the latter with respect to all monotones.
Thus, our resource theory of sharpness is complete, in the sense that the comparison
of all monotones provides a necessary and sufficient condition for the existence of
a sharpness-non-increasing operation between two POVMs, and operational, in the
sense that all monotones are in principle experimentally accessible.

1 Introduction
While quantum theory has been traditionally developed around the concept of observables as
self-adjoint operators and their spectral decomposition [1], it is a well-known fact that many
fundamental problems, such as optimal approximate joint measurements of noncommuting ob-
servables, and applications, such as optimal parameter estimation (including quantum state
tomography [2] and several instances of the state discrimination problem [3, 4]), require a more
general formalism, where orthogonal projective decompositions of the identity are replaced by
positive operator-valued measures, i.e., POVMs [5, 6, 7].

If POVMs constitute a notion of “approximate” observables, it is a natural question to ask,
given a POVM, how close that is to an observable. This question has led several researchers to
consider the problem of formalizing a concept of “sharpness” as a way to provide a quantitative
measure of how close a given POVM is to a proper observable [8, 9, 10, 11, 12], where the
latter is of course taken as the prototype of a perfectly sharp measurement. In a similar vein,
Refs. [13, 14] consider the closely related problem of how effectively general POVMs can be
simulated using only perfectly sharp measurements.

Notwithstanding the fundamental and practical relevance of POVMs, conventional observ-
ables and their orthogonal projective decompositions still constitute the de facto standard model
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for quantum measurements in various areas of physics, especially in quantum statistical mechan-
ics, where “quantum measurement” is often used as a synonym for “projective measurement
of an observable”. The reasons for this are arguably two-fold. On the one hand, projective
measurements are easier to treat mathematically than general POVMs, as the former can be
conveniently represented using a single self-adjoint operator, from which many important prop-
erties can be readily determined. On the other hand, projective measurements inherently possess
the operational property of repeatability [1]: since projections are idempotent operators, as the
name itself suggests, a projective measurement repeated twice in succession always produces
the same result, which thus acquires a character of “objectivity”1.

The reasons given above, while compelling, provide only an intuitive understanding of what
makes conventional observables “special” among general POVMs. A promising way to make the
discussion more rigorous is to try to characterize measurement sharpness as a resource, following
recent developments in quantum information theory [17]. However, attempts to construct a
comprehensive resource theory of sharpness have until now been only partially successful [10, 18].

In this paper, we fill this gap by proposing a complete and operational resource theory of
sharpness. The picture that we obtain is that conventional non-degenerate observables can
indeed be singled out as the “canonical” elements in the class of maximally sharp POVMs,
which are identified with POVMs that admit a repeatable measurement. Below these, we find
many degrees of sharpness, quantified by a robustness-like function, so that POVMs can be
ordered according to their degree of sharpness. We also introduce a class of sharpness-non-
increasing operations that can be used to transform a sharper measurement into a less sharp
one. This is exactly what one would expect from a resource theory of sharpness. However, our
sharpness resource theory has some additional desirable features that provide connections to
several areas of independent interest. First of all, the sharpness measures (in jargon, the mono-
tones) that we introduce are defined using Ozawa’s degrees of measurements correlation [19, 20]
and, as such, are all in principle experimentally accessible. Second, it is shown that the class of
sharpness-non-increasing transformations (in jargon, the class of free operations) corresponds to
a restricted class of preprocessing channels applied not to the given POVM, but to an extended
object representing a family of POVMs, thus establishing a direct connection with the theory
of programmable measurement devices [21, 22, 23]. Third, our sharpness monotones provide
a complete comparison (in the sense of Blackwell [24, 25]), in that one POVM is sharper than
another with respect to all such monotones if and only if the former can be transformed into
the latter by means of an appropriate free operation.

The paper is organized as follows. In Section 2 we introduce notations and basic definitions,
and review the pre- and postprocessing preorders of POVMs [26]. In Section 3 we define the
set of free operations and show that they can be regarded as preprocessings on objects that
extend POVMs to programmable devices. In Section 4 we review the theory of EPR–Ozawa
measurement correlations [19, 20] and use it to define a class of sharpness measures, which are
by construction non-increasing under free operations. In Section 5 we prove a Blackwell–like
theorem for sharpness, stating the equivalence between the sharpness preorder, arising from
comparing all sharpness measures for a pair of POVMs, and the existence of a sharpness-non-
increasing transformation from one POVM into the other one. Finally, in Section 6 we conclude
the paper with a summary of our resource theory of sharpness.

1One can argue [15] that in the early days of quantum theory, repeatability was considered such an obvious
and natural requirement that it was often implicitly assumed. The situation changed only in the 1970s and 1980s,
with the establishment of the general theory of quantum measurements [5, 16].
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2 Quantum measurements and preorders
Let us consider a quantum system A associated with a finite dA-dimensional Hilbert space HA.
Here and in what follows, all sets are considered finite and all spaces finite-dimensional. States of
A are in one-to-one correspondence with density matrices on HA, i.e., matrices ρA ⩾ 0 such that
Tr[ρA] = 1. A quantum state ρA contains all the information needed to predict the statistics of
any observation done on it, as modeled by a positive operator-valued measure (POVM ), namely,
a family P = {P x

A}x∈X of positive semi-definite operators P x
A ⩾ 0 labeled by the outcome set

X (also assumed to be finite), such that the completeness relation
∑

x∈X P x
A = 1A, where 1A

denotes the identity operator on HA, is satisfied. For notational convenience, we will sometimes
simply take the outcome set X to be a subset of the natural numbers, i.e., X = {1, 2, . . . , N}.

The interpretation of POVMs in terms of quantum measurements is based on the Born rule,
which postulates that to any observation with outcomes in set X , there corresponds a POVM
so that, if the state of the system is given by ρA, the expected probability of occurrence of
each outcome x ∈ X is computed as Tr[P x

A ρA]. Notice that, in general, a POVM may contain
some null elements, corresponding to the situation in which some outcomes in X never occur.
Further, a POVM is said to be

• rank-one, whenever all its elements P x
A are proportional to rank-one projectors;

• projective, whenever all its elements P x
A are orthogonal projectors, i.e., P x

AP
x′
A = δx,x′P x

A;

• trivial, whenever all its elements P x
A are proportional to the identity matrix.

Any POVM on HA with outcome set X can also be understood as a linear map from
the set of density matrices on HA to the set of normalized probability distributions on X .
More generally, in operational quantum theory a crucial role is played by completely positive
trace-preserving (CPTP) linear maps, also known as quantum channels, that is, linear maps
transforming density matrices on an input space HA to density matrices on an output space
HB, in such a way that parallel compositions are well-defined2. We will denote any such a
quantum channel as E : A → B for short. The Born rule naturally associates to any quantum
channel E : A → B a trace-dual channel E† : B → A, which maps POVMs on HB to POVMs

on HA and is defined by the equality Tr
[
E†(Y ) X

]
:= Tr[Y E(X)], for all linear operators

Y on HB and X on HA. It is easy to verify that a linear map E : A → B is completely
positive and trace-preserving if and only if its trace-dual E† : B → A is completely positive and
unit-preserving, i.e., E†(1B) = 1A.

In this paper, we propose the following definition.

Definition 1 (sharp POVMs). A POVM P = {P x
A}x∈X is called sharp, whenever all its ele-

ments contain the real unit among their eigenvalues, i.e., there exist normalized vectors |ψx⟩A

such that P x
A|ψx⟩A = |ψx⟩A for all x ∈ X . POVMs that are not sharp are called unsharp or

fuzzy.

Notice that our definition of sharp POVMs differs from the usual one [10, 12, 18], where
sharp POVMs are identified with projective POVMs. For example, while it is obvious that a
sharp POVM need not be projective, also a projective POVM may be not sharp (according
to our definition) if it contains zero elements. However, sharp POVMs share with projective

2In particular, the notion of complete positivity is required so that a quantum channel E remains a quantum
channel even if it is extended with the identity map as E ⊗ id, for any ancillary system.
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POVMs the operational property of being measurable in a repeatable way3. In fact, except for
the trivial case of outcomes that are repeatable simply because they never occur (i.e., those
outcomes corresponding to null POVM elements), it is sharpness (as defined here) and not
projectivity that is the main ingredient for repeatability [29, Section II.3.5]. For example, a
simple way to measure a sharp POVM in a repeatable way might be to prepare the system in
the pure state |ψx⟩A whenever outcome x is observed: in this way, it is clear that a subsequent
measurement of the same POVM would always yield the same result.

Notice also that the completeness relation
∑

x P
x
A = 1A implies that the cardinality of the

outcome set of a sharp POVM cannot exceed the dimension of the underlying Hilbert space, i.e.,
|X | ⩽ dA. Hence, among all sharp POVMs with outcome set X , the “smallest” or canonical ones,
i.e., those with dA = |X |, exactly coincide with rank-one projective POVMs, i.e., conventional
non-degenerate observables.

Another consequence of the completeness relation is that, for a sharp POVM, it must also be
the case that P x′

A |ψx⟩A = 0 for all x′ ̸= x, i.e., the elements of a sharp POVM can be perfectly
discriminated, thus leading to the maximum informational power for any given outcome set
X [31, 32]. In other words, a POVM P = {P x

A}x∈X is sharp if and only if the set of all
probability distributions on X that can be obtained from P by varying the state ρA of the
system, i.e., its testing region [33, 34]

P(P) := {p ∈ R|X | : ∃ρA s.t. px = Tr[P x
A ρA] ∀x ∈ X } ,

coincides with the entire probability simplex on X .

2.1 Preorders of POVMs
Given a set Ω = {ω : ω ∈ Ω}, a preorder is a binary relation ⪰ between elements of Ω that is
reflexive (i.e., ω ⪰ ω) and transitive (i.e., if ω ⪰ ω′ and ω′ ⪰ ω′′, then ω ⪰ ω′′). An element ω
is maximal if there exists no other element strictly above ω: that is, for any other element ω′

with ω′ ⪰ ω, then also ω ⪰ ω′ holds. Analogously, an element an element ω is minimal if there
exists no other element strictly below ω: that is, for any other element ω′ with ω ⪰ ω′, then
also ω′ ⪰ ω holds.

Two preorders that are relevant for the study of the mathematical properties of POVMs, in-
cluding their sharpness, are the quantum preprocessing preorder and the classical postprocessing
preorder [26], which are defined as follows.

Given two POVMs P = {P x
A}x∈X and Q = {Qx

B}x∈X , possibly defined on different Hilbert
spaces HA and HB but with the same outcome set X , we say that P is preprocessing cleaner
than Q, whenever there exists a quantum channel E : B → A such that E†(P x

A) = Qx
B for all

x ∈ X .
Further, given two POVMs P = {P x

A}x∈X and Q = {Qy
A}y∈Y , possibly with different

outcome sets but defined on the same Hilbert space HA, we say that P is postprocessing
cleaner than Q, whenever there exists a conditional probability distribution µ(y|x) such that
Qy

A =
∑

x µ(y|x)P x
A for all y ∈ Y.

Remark 1. Notice that a necessary condition for P to be preprocessing cleaner than Q is that
if, for some x ∈ X , P x

A = 0, then also Qx
B = 0. That is, outcomes that never occur for P

3With the difference that the corresponding repeatable measurement may be not of the von Neumann–Lüders
(or “square-root”) type [1, 27], but rather of the Gordon–Louisell (or “measure-and-prepare”) type [28]. In order
to discuss further the notion of repeatability one should employ the concept of quantum instruments, but this
point is beyond the scope of the present paper. We refer the interested reader to [16, 29, 30] for a careful
presentation of the problem and some fundamental results.
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cannot occur for Q either. This is a consequence of the fact that E† is linear element-wise, that
is, on each POVM element. Instead, the classical postprocessing preorder is more flexible: for
example, it may swap an outcome corresponding to a null POVM element with an outcome
corresponding to a non-zero operator.

The connection between sharpness and POVMs preorders arises from the following result
proved in Ref. [26].

Theorem 1. A POVM P = {P x
A}x∈X , defined on a Hilbert space HA and with outcome set X ,

is sharp if and only if P is preprocessing cleaner than any other POVM with the same outcome
set X .

Remark 2. Theorem 1 identifies sharp POVMs as the maximal elements of the quantum pre-
processing preorder. Instead, the minimal (or “maximally fuzzy”) elements turn out to be the
trivial POVMs4. This is due to the fact that the map E† is linear and unit-preserving, so that
any trivial POVM on A, such as {p(x)1A}x∈X for some probability distribution p(x), cannot be
transformed into anything that is not trivial. In fact, any trivial POVM cannot be transformed
into anything but itself (apart from changing the system). This fact constitutes an important
difference between the maximal and the minimal elements of the quantum preprocessing pre-
order. While the former are all equivalent, the latter are all inequivalent. Since in a sound
resource theory “free objects” are all equivalent (simply because they can be freely generated,
by definition), we understand that a resource theory of sharpness should include more general
operations than just quantum preprocessing channels. We will return to this point in the next
section.

Proof of Theorem 1. We briefly recount here the proof of the above theorem for the sake of
completeness. We begin by showing that any sharp POVM is a maximal element for the
quantum preprocessing preorder. If a POVM P = {P x

A}x∈X is sharp, then there exist normalized
vectors |ψx⟩A such that P x

A|ψx′⟩A = δx,x′ |ψx′⟩A. This condition in particular implies that the
normalized vectors |ψx⟩A are also mutually orthogonal. Consider then the linear operator from
HB to HA ⊗ HB

V :=
∑
x∈X

|ψx⟩A ⊗
√
Qx

B ,

which takes a vector |φ⟩B in HB to
∑

x∈X |ψx⟩A ⊗
√
Qx

B|φ⟩B in HA ⊗ HB. Notice that it may
be that, for some x, Qx

B = 0. (Instead, the POVM P is assumed to be sharp.) It is easy to
check that V is an isometry, since V †V =

∑
xQ

x
B = 1B. Moreover, by direct inspection,

V †(P x
A ⊗ 1B)V = Qx

B ,

for all x ∈ X . Since the linear map V †(•A ⊗ 1B)V is by construction completely positive and
identity-preserving, the above equation shows that P is preprocessing cleaner than Q, for any
Q, as claimed.

Conversely, let us suppose that P is preprocessing cleaner than Q, for any other POVM
Q. This is equivalent to say that, however we choose the POVM elements Qx

B, there exists
a completely positive unit-preserving linear map E† : A → B such that E†(P x

A) = Qx
B for all

x ∈ X . Let then Qx
B constitute a sharp POVM, that is, all Qx

B’s have the real number one as

4When the outcome set X is a singleton, there exists only one POVM, which is at once maximal and minimal,
sharp and trivial.
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an eigenvalue. Now we invoke the fact that a completely positive unit-preserving linear map is
spectrum-width decreasing: putting |φx⟩B such that Qx

B|φx⟩B = |φx⟩B for all x, we have

1 = Tr[|φx⟩⟨φx|B Qx
B] = Tr

[
|φx⟩⟨φx|B E†(P x

A)
]

= Tr[E(|φx⟩⟨φx|B) P x
A] ⩽ 1 ,

that is, the real unit must already be an eigenvalue also of all P x
A’s, whence their sharpness. ■

Instead, the classical postprocessing preorder is not related with the sharpness of POVMs,
but rather to their being rank-one or not [35, 26]. For example, a POVM with repeated elements
like the following {1

2 |ψ1⟩⟨ψ1|A,
1
2 |ψ1⟩⟨ψ1|A,

1
2 |ψ2⟩⟨ψ2|A,

1
2 |ψ2⟩⟨ψ2|A, . . .

}
,

is postprocessing clean (because it is rank-one), even though it is obviously unsharp. Nonethe-
less, assuming ⟨ψi|ψj⟩ = δij , the POVM above can be turned into a sharp POVM by classically
postprocessing its element: merging the outcomes two by two, we obtain the projective (and
thus, sharp) POVM

{
|ψ1⟩⟨ψ1|A, |ψ2⟩⟨ψ2|A, . . .

}
. This arguably is the reason why attempts to

characterize POVMs sharpness using classical postprocessings can only be partially successful,
as noticed in [18].

3 Fuzzifying operations
In the light of Theorem 1 and Remark 2, it is tempting to conclude that sharpness-non-increasing
or fuzzifying operations exactly coincide with quantum preprocessing channels. This however
cannot be the case for a resource theory of sharpness, as the following example shows. Let
us consider two trivial POVMs, such as {0,1} and {1, 0}. Since any quantum preprocessing
channel is linear and unit-preserving, as noticed in Remark 2, it is impossible to transform
{0,1} into {1, 0} or vice versa, since both 0 and 1 are fixed points for any linear unit-preserving
map. In fact, any trivial POVM on system A can only be transformed into the corresponding
trivial POVM on B. This simple observation leads us to conclude that, if free operations were
given only by quantum preprocessing channels, the resulting resource theory would have many
inequivalent minimal, i.e., resource-free, elements. Instead, one would like a resource theory of
sharpness to have all trivial POVMs equivalent to each other, following the prescription that
resource-free objects in a resource theory should all be freely available under free operations [17].

We thus introduce the following definition:

Definition 2 (sharpness preorder). Given two POVMs P = {P x
A}x∈X and Q = {Qx

B}x∈X ,
possibly defined on different Hilbert spaces HA and HB but with the same outcome set X , we
say that P is sharper than Q, and write

P ⪰sharp
X Q , (1)

whenever there exists a quantum channel E : B → A, a trivial POVM {p(x)1B}x∈X on B, and
a number µ ∈ [0, 1], such that

Qx
B = µE†(P x

A) + (1 − µ)p(x)1B ,

for all x ∈ X .

The above definition immediately suggests also the following:
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Definition 3 (fuzzifying operations). Given a POVM P = {P x
A}x∈X , a fuzzifying operation on

P is any transformation of the form

∀x ∈ X , P x
A 7→ µE†(P x

A) + (1 − µ)p(x)1B , (2)

for some arbitrary but fixed probability µ ∈ [0, 1], probability distribution p(x), and quantum
preprocessing channel E† : A → B.

Then, Definition 2 can be reformulated as follows: P ⪰sharp
X Q if and only if there exists

a fuzzifying operation transforming P into Q. It is easy to see that the maximal elements of
⪰sharp

X are all equivalent and coincide with sharp POVMs, as it was the case for the quantum
preprocessing preorder. Now, however, also all trivial POVMs turn out to be equivalent to each
other, thus solving the problem that we raised in Remark 2.

But at this point another problem arises: fuzzifying operations, seen as maps acting on
the POVM elements P x

A, are in general not linear, since they could transform zero operators
into non-zero operators. But neither they are combinations of quantum preprocessing and
classical postprocessing5 of the POVM P. Thus, the question is how fuzzifying operations can
be understood operationally.

3.1 Local preprocessing with shared randomness (LPSR)

The starting point is to reformulate Definition 2 as follows: denoting by T(i) = {T x|i
B }x∈X the

extremal trivial POVM on B such that T
x|i
B = δx,i1B for all x, i ∈ X , then P is sharper than Q

if and only if Q belongs to the convex hull of {E†(P)} ∪ {T(i)}i∈X . This suggests the following
construction.

Given a finite outcome set X = {1, 2, . . . , N}, we take as the objects of the theory not just
POVMs with outcome set X , but rather families comprising N + 1 POVMs: the first POVM,
which is the given POVM P whose sharpness is being evaluated, together with the N extremal
trivial POVMs T(i), with i = 1, . . . , N , introduced above. More explicitly, given a POVM
P = {P x

A}x∈X , the corresponding object in the resource theory is given by the family

P ≡ {P0,P1,P2, . . . ,PN }
:= {P,T(1),T(2), . . .T(N)} (3)

=




P 1

A

P 2
A
...
PN

A

 ,

1A

0
...
0

 ,


0
1A
...
0

 , . . . ,


0
0
...
1A


 .

Notice that there is a one-to-one correspondence between POVMs P and extended families P.
Hence, in what follows, when writing P we will understand it as the family of N + 1 POVMs
that have the POVM P as its first element, and the N extremal trivial POVMs, in the same
order as in Eq. (3).

Since P is a family of POVMs, following [21] we regard it as a programmable POVM, where
the program is an element i of the set I := {0}∪X = {0, 1, 2, . . . , N}. As schematically depicted
in Fig. 1, a programmable POVM is a device with two inputs and one output: one quantum
input A, i.e., the quantum system being measured, one classical input i ∈ I, i.e. the program
deciding which POVM to measure, and one classical output, i.e., the outcome x ∈ X .

5In fact, as noticed in Ref. [18], classical postprocessing can increase sharpness, and thus cannot be part of
sharpness-non-increasing operations.
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Figure 1: Local preprocessing with shared randomness (LPSR). Given a POVM P with outcome set X ,
we uniquely associate to it a programmable POVM P (in grey). Correspondingly, any fuzzifying operation
on P is uniquely associated with an LPSR operation (in blue) on P. The quantum preprocessing channel
B → A is an arbitrary completely positive trace-preserving linear map, while the classical preprocessing on
the program alphabet I := {0} ∪ X is restricted to act as the identity channel on all program values different
from zero. Free shared randomness (in green) between the two local preprocessing channels is allowed. In the
picture, thin arrows represent quantum systems; thick arrows represent classical systems.

We now want to show that fuzzifying operations on a POVM P can be seen as a suitably
chosen family of preprocessing channels applied to the corresponding extended object P. Such
a family of preprocessing is obtained if the free operations are taken as follows (again, refer to
Fig. 1 for a diagram):

1. any quantum preprocessing channel E mapping system B into system A is a free operation;

2. any classical preprocessing channel (i.e., conditional probability) from I to I, acting iden-
tically on I \ {0}, is a free operation;

3. shared randomness between the above is free.

For simplicity, let us call preprocessing channels of the above form local preprocessing with shared
randomness, or LPSR operations. Let us also introduce the notation P ⪰LPSR

X Q to indicate
that the programmable device P on A can be transformed into the programmable device Q on
B by means of an LPSR operation.

Theorem 2. Given two POVMs P = {P x
A}x∈X and Q = {Qx

B}x∈X , possibly defined on different
Hilbert spaces HA and HB but with the same outcome set X ,

P ⪰sharp
X Q ⇐⇒ P ⪰LPSR

X Q .

Proof. Let us write explicitly the action of a LPSR operation on P : A×I → X . By construction,
the resulting device Q : B × I → X is given by

1. Qx|0
B =

∑
r ν(r)E†

r

(∑N
i=0 µ(i|r)P x|i

A

)
, for all x ∈ X ;

2. Qx|i
B = δx,i1B, for all x ∈ X and all i ∈ {1, . . . , N}.

In the above we have used the facts that:

1. the probability distribution ν(r) models the shared randomness between quantum and
classical preprocessings;

8



2. E†
r : A → B are all completely positive unit-preserving linear maps (i.e., the quantum

preprocessings);

3. the conditional probability µ(i|r) represents the action of the classical preprocessing chan-
nel when the input program value is 0, i.e., µ(i|r) ≡ µ(i|j = 0, r);

4. for the remaining input program values in I \ {0} the classical preprocessing acts as
the noiseless channel, and thus the trival POVMs corresponding to i ∈ {1, . . . , N} are
preserved (apart from the change of system A → B).

The proof then simply amounts to show that the equation

Q
x|0
B =

∑
r

ν(r)E†
r

(
N∑

i=0
µ(i|r)P x|i

A

)

=
∑

r

N∑
i=0

ν(r)µ(i|r)E†
r (P x|i

A ) (4)

can be rewritten in the form of Eq. (2). This can be done with the following replacements:

1. for each r, define µr := µ(0|r), so that 1 − µr :=
∑N

i=1 µ(i|r);

2. for each r such that 1 − µr > 0, define pr(i) := 1
1−µr

µ(i|r) for all i ̸= 0;

3. for each r such that 1 − µr = 0, define pr(i) as arbitrary positive numbers, for example,
1/N for all i ̸= 0.

With the above substitutions, Eq. (4) becomes

Q
x|0
B =

∑
r

ν(r)E†
r

µrP
x|0
A + (1 − µr)

∑
i ̸=0

pr(i)T x|i
A


=
∑

r

ν(r)

µrE†
r (P x|0

A ) + (1 − µr)
∑
i ̸=0

pr(i)E†
r (T x|i

A )


=
∑

r

ν(r)

µrE†
r (P x|0

A ) + (1 − µr)
∑
i ̸=0

pr(i)T x|i
B


=
∑

r

ν(r)
{
µrE†

r (P x|0
A ) + (1 − µr)pr(x)1B

}
.

Since
∑

r ν(r)µrE†
r is a scalar multiple of a completely positive unit-preserving linear map, we

can write it is as µE† with E† completely positive and unit-preserving, and µ ∈ [0, 1]. For the
same reason,

∑
r ν(r)(1 − µr)pr(x)1B is proportional to a trivial POVM. Since the POVM on

the left-hand side is normalized by definition, we have that the right-hand side can be written
as in (2), as claimed. ■

Hence, we see that fuzzifying operations given in Def. 3, even though they are not linear in
P, they can nonetheless be regarded as linear maps, more precisely, as LPSR operations, acting
on the programmable device P.
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4 Measures of sharpness
In what follows, we introduce and study a class of sharpness measures, that are by definition
non-increasing under the action of fuzzifying operations and thus provide a class of monotones
for a resource theory of sharpness. Our construction generalizes other sharpness measures
introduced in [12, 18] and it is based on the theory of EPR-Ozawa measurement correlations.

4.1 EPR-Ozawa measurement correlations
In order to clarify in a mathematically rigorous way the meaning of the statement, crucial for
the EPR argument [36], that “two observables have the same value”, Ozawa introduced the
concept of quantum perfect correlations [19, 20].

Definition 4. Given a state ρA on HA and two POVMs on A with the same outcome set X ,
P = {P x

A}x∈X and Z = {Zx
A}x∈X , we say that P and Z are jointly distributed in ρ if and only

if Tr
[
P x

AZ
x′
A ρA

]
⩾ 0 for all x, x′ ∈ X . If they are jointly distributed, their degree of correlation

is defined as

κρ(P : Z) :=
∑
x∈X

Tr[P x
AZ

x
A ρA] .

Remark 3. The sharpness measure PL(ρ; P) :=
∑

x Tr
[
ρA (P x

A)2] introduced in Eq. (6) of
Ref. [18], is a special case of the degree of correlation: more precisely, it coincides with the
degree of autocorrelation κρ(P : P).

In what follows we will consider in particular the case in which the state ρA is maximally
mixed. We do this for two reasons. The first is that, in the maximally mixed state, any two
POVMs are always jointly distributed, so that their degree of correlation is always defined. In
that case, we will use the term degree of uniform correlations, together with the short-hand
notation

κu(P : Z) := 1
dA

∑
x∈X

Tr[P x
A Zx

A] , (5)

where the subscript u stands for the “uniform”, i.e., maximally mixed state 1
dA
1A. A second rea-

son to focus on the case of the maximally mixed state, is that the degree of uniform correlations
can also be written as follows:

κu(P : Z) =
∑
x∈X

Tr
[
(tP x

A′ ⊗ Zx
A) |Φ+⟩⟨Φ+|A′A

]
,

where |Φ+⟩A′A := 1√
dA

∑dA
i=1 |i⟩A′ ⊗ |i⟩A is the maximally entangled state between A and an

auxiliary system A′ ∼= A, and the left-hand superscript t• denotes the transposition done with
the respect to the basis {|i⟩}i used in the definition of |Φ+⟩A′A. This shows that the degree
of uniform correlation κu(P : Z) can be, in principle, always experimentally estimated, from
the joint probability distribution of two POVMs measured by two separated parties sharing the
maximally entangled state.

4.2 Tuning games, tuning preorder, and sharpness monotones
When computing the degree of uniform correlation in Eq. (5), let us imagine that the POVM
Z plays the role of a “reference measurement”, with respect to which the outcome set is fixed.
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Let us hence consider a reference POVM Z = {Zx
R}x∈X , with outcome set X and defined on

some reference system R with Hilbert space HR. The choice of a reference POVM can be
understood as defining a “tuning game”, closely related to the notion of “guessing games”,
which have already been widely used in the construction of operational resource monotones:
see, e.g., [37, 38, 39, 40, 41, 21, 42]. In what follows, we utilize tuning games to compare
different POVMs with respect to their expected utilities in playing such games.

Fixed a reference POVM Z = {Zx
R}x∈X , we can now measure how another POVM, say,

P = {P x
A}x∈X , with the same outcome set of the reference but otherwise arbitrary, can be

“tuned” with the reference Z. Here, we focus on the following quantity

κ∗
u(P∥Z) : = max

L
κu(L(P) : Z) (6)

= max
L

1
dR

∑
x∈X

Tr[L(P x
A) Zx

R] ,

where the optimization is done over all fuzzifying operations L, as given in Eq. (2). In other
words, the quantity κ∗

u(P∥Z) measures the degree of uniform correlations that can be established
between a POVM P (seen here as the resource that the player employs to play the tuning game)
and the reference Z, by means of a sharpness-non-increasing operation applied on P. We will
refer to the quantity κ∗

u(P∥Z) as the tuning degree of P with respect to Z. Notice that while
the degree of correlation (5) is symmetric in the POVMs, the tuning degree (6) is not, since
the optimization is done only on one of the two POVMs. The notation κ∗

u(P∥Z) reflects this.
Notice also that other choices for the tuning process may be done: this freedom is similar
to what happens, for example, in the resource theory of entanglement, for which there exist
different, though all operationally meaningful, notions of entanglement manipulation, such as
LOCC [43] or LOSR [44]. However, in the context of the present paper it is natural to define
the optimization with respect to the same class of transformations that is used to define the
sharpness preorder ⪰sharp

X in Definition 2.
From the definition (6), it is clear that a sharp POVM P allows for ideal tuning. Since,

as Theorem 1 states, sharp POVMs are exactly those that can be transformed into any other
POVM by means of a suitable fuzzifying operation, the quantity κ∗

u(P∥Z), if P is sharp, can be
pushed up to its maximum value, namely,

κ∗
u(Z) := max

{Z̃x
R}x: POVM

κu(Z̃ : Z) = max
{Z̃x

R}x: POVM

1
dR

∑
x∈X

Tr
[
Z̃x

R Zx
R

]
, (7)

which is a quantity that only depends on the reference Z.
More generally, for any given reference Z, the tuning degree κ∗

u(P∥Z), seen as a function of
P, constitutes a sharpness monotone, i.e., a function that is maximal on sharp POVMs and is
by definition non-increasing under the action of sharpness-non-increasing operations.

Remark 4. Notice that the quantity appearing in Eq. (7) is equal to the maximum probability
of correctly discriminating among the states of the ensemble {p(x), ρ(x)}x∈X , where p(x) :=
1

dR
Tr[Zx

R] and ρx
R := 1

Tr[Zx
R]Z

x
R. It can thus be effectively computed using a simple semi-definite

program, see for example Section 3.1.2 of Ref. [45].

Remark 5. Let us go back for a moment to the degree of autocorrelation introduced by Mitra
in [18], and already considered in Remark 3. It is easy to verify that it is not a sharpness
monotone. This is a consequence of the fact that κρ(P : P) can always be made equal to its
algebraic maximum (i.e., equal to one), simply by replacing the initial POVM P with any one
of the trivial POVMs T(x), x ∈ X , introduced in (3), an action that is by definition a fuzzifying
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operation. One way around this problem is to use the degree of autotuning κ∗
u(P∥P), which is a

sharpness monotone instead. A relation between the degree of autotuning κ∗
u(P∥P) (a sharpness

monotone) and the degree of uniform autocorrelation κu(P : P) (not a sharpness monotone)
can be found using the theory of pretty good measurements [46, 47], using which we can show
that

κ∗
u(P∥P) ⩾ κu(P : P) ⩾ κ∗

u(P∥P) − (1 − κ∗
u(P∥P)) .

In other words, if the degree of autotuning κ∗
u(P∥P) is not smaller than 1 − ϵ, the degree of

uniform autocorrelation κu(P : P) is not smaller than 1 − 2ϵ: i.e., it provides a “pretty good”
estimate of κ∗

u(P∥P), even though it is not optimized over all fuzzifying operations.

We now use the operational task of tuning to compare two POVMs with the same outcome
set as follows.

Definition 5 (tuning preorder). Given a tuning game as a reference POVM Z = {Zx
R}x∈X and

two POVMs P = {P x
A}x∈X and Q = {Qx

B}x∈X , possibly defined on different Hilbert spaces HA

and HB but with the same outcome set as the reference Z, we say that P is more tunable than
Q with respect to Z, and write

P ⪰t
Z Q , (8)

whenever κ∗
u(P∥Z) ⩾ κ∗

u(Q∥Z).
Further, given two POVMs P = {P x

A}x∈X and Q = {Qx
B}x∈X , possibly defined on different

Hilbert spaces HA and HB but with the same outcome set X , we say that P is always more
tunable than Q, and write

P ⪰t
X Q , (9)

whenever P ⪰t
Z Q for all reference POVMs Z with outcome set X .

4.3 Robustness of tunability
By looking at the “tuning advantage” that a given POVM P has with respect to trivial POVMs,
we introduce the following definition:

Definition 6 (tunability robustness). For any POVM PA = {P x
A}x∈X with outcome set X , its

tunability robustness R t
X (P) is defined by

1 + R t
X (P) := max

Z

κ∗
u(P∥Z)

maxT κ∗
u(T∥Z) , (10)

where the first maximization is over all reference POVM Z = {Zx
R}x∈X , and the second maxi-

mization is done over all trivial POVMs T = {T x
A}x∈X .

The robustness of tunability satisfies the three basic properties of a robustness measure, that
is, convexity, monotonicity, and faithfulness. We postpone the proof of this fact after Theorem 3
in the next section. What we show here is that the tunability robustness is never larger than
the measurement robustness [48, 40, 49, 50], which is defined as

R(P) := min
{
r ≥ 0

∣∣∣∣ {P x
A + rQx

A

1 + r

}
x∈X

∈ TX : Q = {Qx
A} is POVM

}
, (11)

where TX denotes the set of trivial POVMs on A with outcome set X .
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This fact can be shows as follows. From the definition of the measurement robustness (11),
for any POVM P = {P x

A}x∈X , there exists a POVM Q = {Qx
A}x∈X and a probability distribution

{q(x)}x∈X such that ∀x, P x
A = [1 + R(P)]q(x)1A − R(P)Qx

A. Then, for any reference system R
and any POVM Z = {Zx

R}x∈X , we have

dR κ∗
u(P∥Z) = max

L

∑
x∈X

Tr[L(P x
A) Zx

R]

≡
∑
x∈X

Tr[L∗(P x
A) Zx

R]

=
∑
x∈X

Tr[L∗ {[1 + R(P)]q(x)1A − R(P)Qx
A} Zx

R]

⩽
∑
x∈X

Tr[L∗ {[1 + R(P)]q(x)1A} Zx
R]

= [1 + R(P)]
∑
x∈X

Tr[L∗ {q(x)1A} Zx
R]

⩽ [1 + R(P)] max
T∈T

∑
x∈X

Tr[T x
R Zx

R]

= dR [1 + R(P)] max
T∈T

κ∗
u(T∥Z) ,

where L∗ in the second equality is the optimal fuzzifying operation; the first inequality is
obtained simply discarding the negative term; the second inequality come from the fact that L∗

acting on a trivial POVM is again a trivial POVM, so that, maximizing over all trivial POVMs
can only achieve a better score.

Summarizing, the above shows that, for any reference system R and any POVM Z =
{Zx

R}x∈X ,
κ∗

u(P∥Z)
maxT κ∗

u(T∥Z) ⩽ 1 + R(P) .

Optimizing the left-hand side over Z (the right-hand side does not depend on Z), we finally
obtain

R t
X (P) ⩽ R(P) , (12)

as claimed.

5 Equivalence of comparisons
In this section we develop the theory of statistical comparison for the sharpness preorder that
we introduced above. Statistical comparison is a concept introduced by Blackwell [24] with the
aim of extending the ideas of Lorenz curves and majorization [51, 52] to more general scenarios.
It establishes an equivalence between two kinds of preorders: a “sufficiency” preorder, analogous
to the majorization preorder, which is given by the existence of a suitable transformation (e.g.,
a doubly stochastic matrix, in the case of majorization) between two objects; and a “game-
theoretic” preorder, which instead concerns the comparison of the expected performance with
respect to a certain class of statistical tests (e.g., hypothesis testing, in the case of Lorenz curves).
Such an equivalence between, on the one hand, the existence of a transformation and, on the
other hand, the comparison of operational utilities (i.e., the “monotones” of resource theories),
summarizes the core concept that lies at the basis of all resource theories [17]. In this spirit,
various generalizations of Blackwell’s theory of statistical comparison [25, 53, 54, 33, 55, 56, 57]
have been successfully applied in several specific resource-theoretic scenarios, including entan-
glement and nonlocality theory [44, 58, 59, 60], quantum communication theory [37, 61], open
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quantum systems dynamics [62, 39], quantum coherence [63], quantum thermodynamics [64, 65],
and quantum measurement theory [53, 40, 21, 22, 23].

The Blackwell–like theorem that we prove in this work is the following.

Theorem 3. Given two POVMs P = {P x
A}x∈X and Q = {Qx

B}x∈X , possibly defined on different
Hilbert spaces HA and HB but with the same outcome set X , P can be transformed into Q by
means of a fuzzifying operation, that is,

P ⪰sharp
X Q ( ⇐⇒ P ⪰LPSR

X Q)

if and only if P is always more tunable than Q, that is,

P ⪰t
X Q . (13)

Moreover, the preorder (13) can be restricted without loss of generality to reference POVMs
defined on the same Hilbert space as Q, i.e., HB.

Hence, the tuning degrees κ∗
u(P∥Z), for varying reference POVM Z, provide a complete set

of monotones for the resource theory of sharpness.

Proof of Theorem 3. Our aim is to show that the condition about the existence of a fuzzifying
operation transforming P into Q, can be equivalently written as Eq. (13).

From Theorem 2, we know that P ⪰sharp
X Q, if and only if there exists a LPSR operation

transforming the extended programmable device corresponding to P, i.e., P, into the extended
programmable device corresponding to Q, i.e., Q. For notational convenience, let us denote the
LPSR operation as L and the elements of the resulting programmable device as L(P)x|i

B .
Let us now consider an arbitrary but fixed complete set of density matrices {γb

B}b∈B, in
the sense that the linear span of {γb

B}b∈B coincides with the set of all linear operators on HB.
Then, P ⪰sharp

X Q if and only if

Tr
[
L(P)x|i

B γb
B

]
= Tr

[
Q

x|i
B γb

B

]
, ∀x, ∀i,∀b . (14)

Looking at the two conditional distributions above as vectors in R|X |×|I|×|B|, that is, pL and q,
respectively, let us consider the subset of R|X |×|I|×|B| defined as

C(P) :=
{

pL : pL(x|i, b) = Tr
[
L(P)x|i

B γb
B

]}
,

where L can range over all LPSR operations. Then, Eq. (14) can be equivalently rewritten as

q ∈ C(P) . (15)

The crucial observation now is that, since the definition of LPSR operations involves free
shared randomness, they form a convex set. For this reason, also C(P) is a convex subset of
R|X |×|I|×|B|. Hence, as a consequence of the separation theorem for convex sets, we can rewrite
condition (15) in terms of linear functionals as follows

λ · q ⩽ max
pL∈C(P)

λ · pL , ∀λ ∈ R|X |×|I|×|B| ,

which, once rewritten in a more explicit form, becomes

max
L

∑
x,i,b

λxib Tr
[
L(P)x|i

B γb
B

]
⩾
∑
x,i,b

λxib Tr
[
Q

x|i
B γb

B

]
, ∀λxib ∈ R .
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Introducing the self-adjoint operators Γxi
B :=

∑
b λxibγ

b
B, the above condition becomes

max
L

∑
x,i

Tr
[
L(P)x|i

B Γxi
B

]
⩾
∑
x,i

Tr
[
Q

x|i
B Γxi

B

]
, ∀ self-adjoint {Γxi

B }x,i .

First, we notice that since, by construction, L(P)x|i
B = Q

x|i
B = δx,i1B for all x, i ∈ X and any

choice of the LPSR operation L, we can in fact focus only on the case i = 0. Therefore, in what
follows, we will only consider the conditions

max
L

∑
x

Tr
[
L(P)x|0

B Γx
B

]
⩾
∑

x

Tr[Qx
B Γx

B] , ∀ self-adjoint {Γx
B}x . (16)

The next step is to notice that it is possible to shift and rescale the operators Γx
B in such

a way that, without loss of generality, we can restrict condition (16) to families of operators
{Zx

B} such that
∑

x Z
x
B = 1B and Zx

B ⩾ 0 for all x ∈ X , i.e., POVMs Z = {Zx
B}x∈X on B. In

fact, by the linearity of the trace and the fact that
∑

x L(P)x|0
B =

∑
xQ

x
B = 1B, for any choice

of self-adjoint operators {Γx
B}x in (16), we have

max
L

∑
x

Tr
[
L(P)x|0

B Γx
B

]
⩾
∑

x

Tr[Qx
B Γx

B]~w�
max

L

∑
x

Tr
[
L(P)x|0

B

Γx
B + αΛB

β

]
⩾
∑

x

Tr
[
Qx

B

Γx
B + αΛB

β

]
,

for any choice of α ∈ R, β > 0, and ΛB linear operator on HB. In particular, by taking α = 1
and ΛB = 1

|X |(β1 −
∑

x Γx
B) we obtain

Γx
B + αΛB

β
= 1

|X |
+ 1
β

(
Γx

B − 1
|X |

∑
y

Γy
B

)
,

so that, by choosing β > 0 sufficiently large, it is always possible to make the above operators
the elements of a POVM6.

In this way, we can rewrite condition (16), which we recall is equivalent to P ⪰sharp
X Q, as

follows:

max
L

∑
x

Tr
[
L(P)x|0

B Zx
B

]
⩾
∑

x

Tr[Qx
B Zx

B] , ∀ POVMs Z = {Zx
B}x ,

namely,

κ∗
u(P∥Z) ⩾ κu(Q : Z) , ∀ POVMs Z = {Zx

B}x . (17)

Finally, since the inequality κ∗
u(Q∥Z) ⩾ κu(Q : Z) is true by definition, we reach the conclusion

that if condition (13) holds, then also condition (17) holds, which in turn is equivalent to (14).
Hence, we have proved that if P ⪰t

X Q then P ⪰sharp
X Q.

The converse is trivial: if P ⪰sharp
X Q then obviously any tuning degree that can be achieved

with Q can also be achieved with P, simply because the latter can be transformed into the
former, and the compositions of fuzzifying operations is again a fuzzifying operation. ■

6In fact, by taking β > 0 large enough, the obtained POVM has elements which are all invertible. On this
point, see Remark 6
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Remark 6. The proof of Theorem 3 shows that another, at first sight weaker condition is in
fact equivalent to (13), i.e.,

κ∗
u(P∥Z) ⩾ κu(Q : Z) , (18)

for all reference POVMs Z = {Zx
B}x∈X . Notice that the right-hand side in the above equation is

not optimized, so for any given reference POVM Z, condition (18) is in general strictly weaker
(i.e., easier to be satisfied) than (8). However, it turns out that condition (18) holds for all
reference POVMs Z if and only if (8) does. The proof also shows that the reference POVMs Z
defining the monotones can be restricted, without loss of generality, to POVMs with full-rank
elements, i.e., Zx

R > 0 for all x. This observation may be helpful when performing numerical
experiments.

Since all sharp POVMs and all trivial POVMs are equivalent under sharpness-non-increasing
operations, we immediately obtain the following:

Corollary 3.1. All sharp POVMs achieve exactly the same tuning degree for any reference
POVM. The same holds for all trivial POVMs. Hence, for any reference POVM Z = {Zx

R}x∈X
and any POVM P = {P x

A}x∈X ,

1
dR

max
x

Tr[Zx
R] ⩽ κ∗

u(P∥Z) ⩽ κ∗
u(Z) .

In particular, any value κ∗
u(P∥Z) strictly larger than the trivial lower bound provides a mea-

surement device-independent witness of the non-triviality of P.

5.1 Properties of the tunability robustness
With Theorem 3 and Corollary 3.1 at hand, it is easy to prove the properties of the tunability
robustness that we anticipated in Subsection 4.3.

Theorem 4. The tunability robustness R t
X satisfies the following properties:

1. convexity, i.e., given two POVMs with the same outcome set X , R t
X (pP1 + (1 − p)P2) ⩽

pR t
X (P) + (1 − p)R t

X (P2), for all p ∈ [0, 1];

2. monotonicity, i.e., for any fuzzifying operation L, R t
X (L(P)) ⩽ R t

X (P);

3. faithfulness, i.e., P is trivial if and only if R t
X (P) = 0, and P is sharp if and only if

R t
X (P) = |X | − 1.

Proof. Convexity and monotonicity can be easily proved from the definition (10). We show only
faithfulness.

First of all, if P is trivial, then its measurement robustness is zero, i.e., R(P) = 0 [48, 40,
49, 50], and by Eq. (12), also R t

X (P) = 0. Vice versa, if R t
X (P) = 0, then we know that P

does not provide any advantage in any tuning game with respect to trivial POVMs. But since
Theorem 3 shows that there always exists a tuning game that separate non-trivial POVMs from
trivial ones, if R t

X (P) = 0, then the POVM P must be trivial.
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To prove the case of sharp POVMs, let us first notice that, as a consequence of Corollary 3.1,

1 + R t
X (P) = max

Z
max

L

∑
x Tr[L(P x

A) Zx
R]

maxx Tr[Zx
R]

⩽ max
ζx

R⩾0
Tr[ζx

R]⩽1

max
L

∑
x

Tr[L(P x
A) ζx

R]

= max
L

∑
x

λmax(L(P x
A))

⩽ |X | ,

where λmax(X) denotes the maximum eigenvalue of self-adjoint operator X. The last inequality
is a consequence of the fact that the output of a fuzzifying operation is still a POVM so that
the maximum eigenvalues of its elements are all upper bounded by 1. Now, a sharp POVM
saturates the bound, with L = id. Hence, if P is sharp, then R t

X (P) = |X | − 1.
Conversely, assume that P is not sharp. Then, for any fuzzifying operation L, also L(P) is

not sharp, and therefore
∑

x λmax(L(P x
A)) < |X |, that is, R t

X (P) < |X | − 1. ■

Remark 7. The optimization over Z in the definition of the tunability robustness (10) includes,
in principle, also the optimization over all finite-dimensional reference systems R. From the
above proof, however, it turns out that it is enough to restrict to R ∼= A.

6 Summary of the theory
For the reader’s convenience, we summarize the main points of the resource theory of sharpness
that we have derived.

• The objects of the theory are POVMs. In particular, this means that our resource theory
of sharpness does not depend on the specific numerical values associated with each mea-
surement outcome, i.e., the observable’s eigenvalues, nor on any particular instrument or
measurement process used to realize the POVM.

• The free operations are given by the class of fuzzifying operations, which is by construction
convex and closed under sequential composition (see Definition 3). Though fuzzifying
operations are neither quantum preprocessings nor classical postprocessings of the POVM
alone, they can be seen as suitable preprocessings (LPSR operations) of a programmable
measurement device that extends the given POVM in a one-to-one way.

• The maximal objects in the resource theory of sharpness (i.e., sharp POVMs) are all equiv-
alent, in the sense that any sharp POVM can be freely transformed into any other sharp
POVM with the same outcome set. We recall that, in this work, we define sharp POVMs
as those whose elements all possess at least one eigenvector associated with eigenvalue 1
(see Definition 1).

• The minimal objects are trivial POVMs, i.e., POVMs whose elements are all proportional
(including the possibility of zero elements) to the identity operator. As it happens for
sharp POVMs, also trivial POVMs are, as one would expect, all equivalent.

• The sharpness monotones are given by the tuning degrees κ∗
u(P∥Z), for varying reference

POVM Z, defined in Eq. (6). A robustness-like measure, i.e., the tunability robustness,
can be introduced, which is convex, monotone, and faithful, and it is upper bounded by
the measurement robustness.
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• A Blackwell–like theorem for sharpness holds, i.e., a POVM can be transformed into
another POVM by a fuzzifying operation, if and only if there exists no tuning degree for
the latter that is higher than for the former. This automatically implies that all sharp
POVMs and all trivial POVMs achieve exactly the same tuning degree for any reference
POVM, as given in Corollary 3.1. By normalizing these two numbers, our sharpness
monotones satisfy Busch’s requirements for sound sharpness measures [10]. Moreover,
sharpness monotones can be used to witness in a measurement device-independent way
the non-triviality of a POVM, exactly in the same way that semiquantum games can
witness non-separability [44, 66].
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