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Abstract We test the relationship between canopy photosynthesis and reflected near‐infrared radiation
from vegetation across a range of functional (photosynthetic pathway and capacity) and structural
conditions (leaf area index, fraction of green and dead leaves, canopy height, reproductive stage, and leaf
angle inclination), weather conditions, and years using a network of field sites from across central
California. We based our analysis on direct measurements of canopy photosynthesis, with eddy covariance,
and measurements of reflected near‐infrared and red radiation from vegetation, with light‐emitting
diode sensors. And we interpreted the observed relationships between photosynthesis and reflected
near‐infrared radiation using simulations based on the multilayer, biophysical model, CanVeg.
Measurements of reflected near‐infrared radiation were highly correlated with measurements of canopy
photosynthesis on half‐hourly, daily, seasonal, annual, and decadal time scales across the wide range of
function and structure and weather conditions. Slopes of the regression between canopy photosynthesis and
reflected near‐infrared radiation were greatest for the fertilized and irrigated C4 corn crop, intermediate for
the C3 tules on nutrient‐rich organic soil and nitrogen fixing alfalfa, and least for the native annual
grasslands and oak savanna on nutrient‐poor, mineral soils. Reflected near‐infrared radiation from
vegetation has several advantages over other remotely sensed vegetation indices that are used to infer canopy
photosynthesis; it does not saturate at high leaf area indices, it is insensitive to the presence of dead
legacy vegetation, the sensors are inexpensive, and the reflectance signal is strong. Hence, information on
reflected near‐infrared radiation from vegetation may have utility in monitoring carbon assimilation in
carbon sequestration projects or on microsatellites orbiting Earth for precision agriculture applications.

1. Introduction

Canopy photosynthesis by ecosystems is the foremost input of carbon into carbon cycle models that are
linked to state‐of‐the‐art climate simulations (Bonan & Doney, 2018; Prentice et al., 2000). Unfortunately,
the state of simulating photosynthesis at ecosystem to global scales remains poor (Ryu et al., 2019;
Schaefer et al., 2012). This raises a philosophical question: “If we are unable to simulate ecosystem photo-
synthesis accurately, across a spectrum of time and space scales, how can we have faith in how that carbon
is being allocated as it travels through the carbon cycle?”

To improve model simulations of canopy photosynthesis, we need unbiased and representative empirical
estimates that are compatible with models across a spectrum of time and space. How does one infer canopy
photosynthesis of ecosystems better and use this information to upscale to continental and global scales?
There is a hierarchy of bottom‐up and top‐down approaches that have particular strengths and weakness
across a range of temporal and spatial scales (Canadell et al., 2000). Eddy covariance method measures
canopy photosynthesis directly, but it needs handshaking with remote sensing to upscale assimilatory car-
bon fluxes to scales larger than flux footprints (Falge et al., 2002; Running et al., 1999). The simplest, and
most widely used, method to infer photosynthesis is the light use efficiency model. It quantifies canopy
photosynthesis as the product of photon flux density of incoming visible sunlight (QP) times the fraction
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of that light absorbed by green vegetation (fa,P) times a light use efficiency (ϕ) (Prince & Goward, 1995;
Ruimy et al., 1996; Zhao et al., 2005). This approach has been used to upscale canopy photosynthesis to land-
scape, regional, and global space scales and on to daily to decadal time scales using reflected sunlight mea-
sured by sensors on satellites (Field et al., 1995; Running et al., 2004). However, to do so, we must know how
fa,P varies with leaf area index and how light use efficiency varies with environmental stresses. The reality
remains that light use efficiency models require calibration, optimization, and tuning of two parameters
at representative sites with direct flux measurements and site metadata in order to compute canopy photo-
synthesis with high enough fidelity (Heinsch et al., 2006; Running et al., 1999; Yuan et al., 2007).

How else can we estimate or infer canopy photosynthesis? A classic theoretical study (Sellers, 1987; Sellers
et al., 1992) found that the flux density of absorbed visible light is proportional to the flux density of
near‐infrared radiation reflected by the vegetation. In recent years, a set of papers found that daily integrated
canopy photosynthesis is proportional to the reflectance of near‐infrared radiation of green leaves of a
canopy, as detected by sensors on satellites (Badgley et al., 2017; Badgley et al., 2019). Another set of papers
has interpreted these results by examining how reflected near‐infrared radiation is related to absorbed visi-
ble light (Dechant et al., 2020; Zeng et al., 2019). These findings have the potential for establishing a para-
digm shift in how we estimate canopy photosynthesis, without tuning. But tests at the field scale between
direct measurements of canopy photosynthesis and reflected near‐infrared radiation from vegetation
are needed.

In field conditions, canopy photosynthesis varies on a diel basis due to changes in solar radiation, tempera-
ture, and humidity deficits. And canopy photosynthesis varies seasonally due to changes in climate, phenol-
ogy, and soil moisture. This prompts us to ask how well canopy photosynthesis is related to near‐infrared
reflectance across a spectrum of time scales and variations in ecosystem structure, function, and physiologi-
cal capacity. In this paper, we evaluate the relation between direct measurements of canopy photosynthesis
and reflected near‐infrared radiation from a contrasting set of agricultural and native ecosystems. This eva-
luation is based on data from a network of eddy covariance sites in California which experience similar
weather and climate but possess a range of canopy structural and functional properties and physiological
capacity. First, we explore data from an annual corn (Zea mays) crop; it uses the C4 photosynthetic pathway,
it is irrigated, it is growing on nutrient‐rich organic soils, it is fertilized, it experiences a wide range of leaf
area index and canopy coverage over its life cycle, and its tall canopy and erect leaves trap photons effec-
tively. Second, we explore data from a tule/cattail (Typha spp. and Schoenoplectus acutus) wetland. This eco-
system, and the remaining cases, uses the C3 photosynthetic pathway. In addition, the tule/cattail wetland is
perennial and deciduous, it contains a mixture of green and dead vegetation, it has erect stems, and it is
flooded. Third, we explore data from an alfalfa (Medicago sativa) field. This perennial, nitrogen‐fixing agroe-
cosystem is irrigated, and it undergoes multiple cuttings over the year, which changes its leaf area index and
fraction of absorbed sunlight. Finally, we explore data from two native ecosystems, an annual (Bromus spp.,
Avena spp., Hordeum spp., and Festuca spp.) grassland and an oak (Quercus douglasii) savanna. The annual
grassland is a grazed, native ecosystem that experiences a wet, cool growing season, during the late winter
and spring. Afterward, it experiences seasonal drought in the late spring after the rains stop. And the vegeta-
tion is dead during much of the rainless summer and early autumn. This ecosystem experiences a wide range
in leaf area index and photosynthetic capacity as the soil moisture reservoir fills and becomes depleted (Ma
et al., 2016). The oak savanna is the most complex and heterogeneous canopy. It is composed of an overstory
of scattered, deciduous oak trees and an understory of grass. The oak trees are physiologically active between
April and September during the hot, summer, after the rains have ceased (Ma et al., 2016). The trees experi-
ence physiological stress over the summer as the soil moisture reservoir becomes depleted, and the
understory grass is dead.

Another reason we are conducting this research is to provide an alternative proxy for canopy photosynthesis
that is inexpensive and whose application does not suffer from technical challenges that are associated with
measuring solar‐induced fluorescence and carbon fluxes with eddy covariance. If proven effective, this
inferred approach has potential to be used to evaluate photosynthesis of carbon sequestration projects,
which may serve as natural carbon solutions (Griscom et al., 2017). Or cheap radiation sensors can be
mounted on microsatellites (CubeSats) orbiting the Earth and used for agricultural and ecological manage-
ment (Aragon et al., 2018).
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2. Materials and Methods
2.1. Field Sites

The locations and vegetation of the sites are listed in Table 1. These are Ameriflux sites with publicly avail-
able data. Many of the details of the sites, their vegetation, and soil properties are reported in prior papers by
this group (Eichelmann et al., 2018; Hemes et al., 2019; Ma et al., 2016) or are accessible through the respec-
tive Ameriflux web sites. The agricultural and wetland sites in the Sacramento‐San Joaquin Delta are on
highly organic soils with high nitrogen content (1% to 2%). The savanna and grassland sites are on mineral
soils with much lower nitrogen (0.1%).

2.2. Eddy Covariance and Meteorological Measurements

We used the eddy covariance method to measure flux densities of sensible and latent heat and carbon diox-
ide between vegetation and the atmosphere (Baldocchi, 2003). The set of sites are ideal from the perspective
of applying micrometeorological theory and the eddy covariance method; they are flat, they experience
vigorous winds from a preferred direction, and they possess extended fetches.

Implementing the eddy covariance method requires that wemeasure the covariance between fluctuations in
vertical velocity and trace gas mixing ratio. The sensor system measures three‐dimensional wind velocities
(horizontal, u; lateral, v; vertical, w; m s−1) and temperature (Tsonic) with a sonic anemometer (Gill Wind
Master Pro; Gill Instruments Ltd, Lymington, Hampshire, England). Fluctuations in CO2 and H2O molar
density ( ρCO2

and ρH2O ) were measured with an open‐path infrared gas analyzer (LI‐7550A; LI‐COR

Biogeosciences, Lincoln NE, USA).

The eddy covariance instrument systems and meteorological and light sensors were mounted on scaffold
towers. Depending upon the height of the vegetation, the sensors were mounted between 3 and 5 m above
the ground at the agricultural and grassland sites. The instruments were mounted at 20 m over the savanna.
Depending upon the time of day, the preferred upwind fetch ranged between 450 and 2,000 m (Eichelmann
et al., 2018; Kim et al., 2006).

Sampling theory requires that we measure the contributions of the fastest to slowest eddies. Covariances
between scalars (CO2; temperature, T; and humidity, q) and vertical velocity (w) were computed by sampling
fluctuations 20 times per second and averaging for 30 min. We applied a series of standard corrections using
in‐house software (Eichelmann et al., 2016; Hemes et al., 2019) Coordinate rotations were applied to align
the streamlines with the surface at the site resulting in zero mean w and v within each 30‐min average.
When using open‐path sensors, the effects of fluctuations in air density by temperature and moisture need
to be considered (Webb et al., 1980). Sonic temperature, Tsonic, fluctuations were calculated from fluctua-
tions in the speed of sound after crosswind and humidity corrections are applied. No high‐frequency spectral
corrections were applied to fluxes computed using open‐path sensors since cospectral analysis indicated that
flux losses were less than 5% (Detto et al., 2011; Knox et al., 2015), which is within the accuracy of any
spectral correction algorithm; we designed the system sampling rates and sensor placement (height and
separation) to minimize such corrections.

Fluxes were filtered for spikes in half‐hour average densities, variances, covariances, and nonstationary
conditions. We filled the missing data with neural network and gap‐filling methods using meteorological
variables as inputs (Moffat et al., 2007).

A suite of meteorological variables was measured in conjunction with the mass and energy flux measure-
ments. Air temperature and relative humidity were measured with an aspirated and shielded thermistor
and capacitance sensor (Vaisala, models HMP 45 and HMP 60, Woburn, MA). We measured incoming
and outgoing shortwave and longwave radiation with Hukseflux (model NR01) and Kipp and Zonen (model
CNR1) net radiometers. Soil and water temperatures were measured with a profile of copper‐constantan
thermocouples. Soil moisture was measured with a network of capacitance (Theta Probe ML3, Delta‐T
Devices, Cambridge, UK) sensors.

Total photosynthetically active radiation (PARtotal) measurements were made with upward facing, boom‐

affixed, quantum sensors (Kipp & Zonen, PAR‐Lite or PQS1) at each tower. Diffuse PAR (PARdiffuse) was
measured with a homebuilt rotating shadow band. The quantum sensor was periodically shaded (approxi-
mately once per minute) by a shadow band that rotated around the sensor (Michalsky et al., 1986). This
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sensor was sampled at 2 Hz resulting in several measurements each time the shadow passed over the sensor.
The minimum PAR measured during one full cycle of the shadow band was recorded and stored in 30‐min
averages as PARdiffuse.

We evaluated canopy height using the aerodynamic method (Chu et al., 2018; Pennypacker &
Baldocchi, 2015). A digital camera monitored the phenological status of the vegetation and field manage-
ment, through the computation of the greenness index or gap fraction (Ryu et al., 2012; Sonnentag
et al., 2012). Time series of canopy height of the agricultural crops are presented in supporting information
Figures S1 and S2.

Reflected near‐infrared radiation was measured with Decagon SRS‐Ni NDVI sensors mounted on towers
near the flux equipment. An advantage of tower‐based reflectance sensors is that no atmospheric corrections
were needed. These sensors measure incident or reflected radiation in two bands in energy units. The sensor
bands were centered at 630 and 800 nm with 50 and 40 nm full width half maximum, respectively.
Normalized Difference Vegetation Index, NDVI, was computed as the difference between the
near‐infrared (NIR, 800 nm) and red (630 nm) reflectance divided by the sum of the NIR and red reflectance
(Tucker, 1979). To increase the area of the footprint viewed by the sensors and minimize biases between
sites, we used the hemispherical view setting. The sensors were mounted on extended booms from the main
tower and were several meters above the vegetation. We deployed these sensors at various sites in 2017, 2018,
and 2019.

Reflected near‐infrared radiation from the vegetation, NIRv, was calculated in terms of a renormalized NDVI
times reflected NIR; NDVI was renormalized by setting its minimum value to 0 and its maximum value to 1,
effectively, subtracting off the soil component (Zeng et al., 2019).

To examine decadal relationships between near‐infrared radiation and ecosystem photosynthesis, we
extracted data from a homemade sensor that measured the reflectance of red and near‐infrared radiation
with light‐emitting diodes (Ryu et al., 2010). We assumed that the flux density of reflected near‐infrared
radiation was one‐half incoming shortwave radiation (Ross, 1980) times the reflectance of near‐infrared
radiation. The homemade sensor was calibrated with periodic comparisons with an Ocean Optics spectro-
meter (Ryu et al., 2010).

2.3. CanVeg Model Simulations

We applied the biophysical CanVeg model to interpret the mechanisms by which canopy photosynthesis
may or may not respond to NIRv. The CanVeg model is a canopy photosynthesis and evaporation model that
has been described and validated elsewhere (Baldocchi et al., 1999; Baldocchi & Meyers, 1998; Oikawa
et al., 2017). CanVeg computes the microclimate of a canopy by considering the radiative transfer of visible,
near‐infrared, and longwave photons through a multilayer, one‐dimensional canopy (Norman, 1979). For
the computations of radiative transfer through the vegetation, we applied Beer's law and assumed a spherical
leaf inclination angle distribution; the mean direction cosine between the mean leaf normal and the Sun (G)
has a value of 0.5 (Ross, 1980). Turbulent transport of gases between leaves and the atmosphere was consid-
ered using a Lagrangian turbulent transfer theory (Raupach, 1989). Based on the computation of microme-
teorological conditions, the CanVeg model computes leaf energy balance (Paw, 1988), photosynthesis
(Farquhar et al., 1980) and stomatal conductance (Collatz et al., 1991) on the sunlit and shaded fractions
of each layer in the canopy (Norman, 1981). Information on the fluxes and turbulent mixing was used to

Table 1
List of Ameriflux Eddy Covariance Sites Operated by the Berkeley Biometeorology Lab

Site ID Vegetation Latitude, N Longitude, W AmeriFlux site

US‐Bi1 alfalfa 38.102 121.504 https://ameriflux.lbl.gov/sites/siteinfo/US-Bi1
US‐Bi2 corn 38.109 121.535 https://ameriflux.lbl.gov/sites/siteinfo/US-Bi2
US‐Tw1 wetland 38.107 121.647 https://ameriflux.lbl.gov/sites/siteinfo/US-Tw1

US‐Ton Oak savanna 38.431 120.965 https://ameriflux.lbl.gov/sites/siteinfo/US-Ton
US‐Var Annual grassland 38.41 120.95 https://ameriflux.lbl.gov/sites/siteinfo/US-Var
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compute scalar fields (temperature, humidity, and carbon dioxide). Flux
profiles were recomputed with new information on concentration fields.
Iteration between flux and concentration fields continue until steady
state. Simulations were made, using CanVeg, for an ideal alfalfa canopy
and weather inputs from the 2018 growing season.

3. Results

In the following, we explore the relationship between measurements of
canopy photosynthesis and reflected near‐infrared radiation from vegeta-
tion for a suite of cases, varying in function and structure.

3.1. C4 Photosynthesis, Corn

A corn canopy is a good test for the utility of using NIRv as a proxy for
canopy photosynthesis because it achieves high rates of photosynthesis
and it experiences a wide range in height and leaf area index over the
growing season. These attributes influence how well photons are trapped
and reflected by vegetation (Ross, 1980) and how the captured photons
modulate canopy photosynthesis.

Figure 1 shows the seasonal pattern of daily integrated canopy photo-
synthesis, Ac, and mean midday (1000 through 1400 hours) flux density

of near‐infrared radiation reflected from the green vegetation; these data were averaged each day over the
3‐year period, 2017–2019. During this time period, the structure of the corn canopy varied from (1) seedling
stage, with wide open rows; (2) a closed canopy, 3 m tall, with a leaf area index reaching 4.2; (3) a reproduc-
tive stage, with tassels and ears; and (4) senescence.

In general, we observed strong temporal correlation (Table 2) between Ac and NIRv (r2 = 0.84). During
the 2017 through 2019 growing seasons, daily integrated corn photosynthesis ranged between 0 and
30 gC m−2 day−1, and reflected near‐infrared radiation from vegetation ranged between 0 and
0.6 W m−2 nm−1. Close inspection of Figure 1 reveals that there was a phase difference between Ac

and NIRv, with Ac leading during the middle to late growing season. Inspection of phenocam images reveals
that the downturn in Ac occurred when the corn began to tassel, around Day 210 (supporting information
Figure S3). Subsequently, the downturn in NIRv occurred around Day 234. This occurred when the canopy
tasseling was complete, which is when this reproductive organ competed most with leaves for capturing
photons. It is also noteworthy that the NIRv sensors detected springtime bumps (approximately Day 100)
in canopy photosynthesis. This was due to weeds growing after the winter flood waters receded and before
the soil was cultivated and planted in corn.

How well does reflected near‐infrared radiation from vegetation match canopy photosynthesis on shorter
time scales? A one‐to‐one plot between half‐hour averages of canopy photosynthesis, Ac, and NIRv is shown
in Figure 2. We observe a linear relationship (slope was 98.3 (μmol m−2 s−1)/(W m−2 nm−1)) and high cor-
relation (r2 = 0.818) between these two variables at short time intervals. It is noteworthy that simple mea-
surements of the flux density of reflected NIRv were able to resolve changes in canopy photosynthesis that
were simultaneously being modulated by variations in sunlight, temperature, and vapor pressure deficit
and changes in leaf area index, reproduction state, senescence, and fraction of soil exposure. We also note
that linearity holds well across a wide range of photosynthesis and does not become saturated like it
does with other vegetation indices, such as reflected NIR from the soil and vegetation and NDVI
(Sellers, 1985); see supporting information Figures S4 and S5.

3.2. C3 Photosynthesis With a Mixture of Green and Dead Vegetation, Tule/Cattail Wetland

The tule/cattail wetland is a good case to compare with corn, as it too is apt to trap photons effectively; it is
tall (~3 m), it possesses a high plant area index (greater than 6), and it possesses erect leaf orientation. And
because the wetland is flooded, it provides us with a case with little reflectance from the “soil” as the water is
dark. On the other hand, the wetland also retains much legacy dead vegetation (Dronova & Taddeo, 2016;

Figure 1. Daily variation in daily integrated canopy photosynthesis (Ac)
and the flux density of near‐infrared radiation reflected by vegetation,
NIRv during midday. The data were measured over a corn canopy during
the years 2017 through 2019. NIRv data were averaged for the midday (1000
to 1400) period of each day.
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Rocha et al., 2008; Taddeo & Dronova, 2018), which can complicate the estimated canopy photosynthesis
with light use efficiency models, which is based on the green leaves that intercept sunlight.

Figure 3 shows the seasonal pattern of daily integrated canopy photosynthesis, Ac, and mean near‐infrared
radiation reflected from the green vegetation for two contrasting years. Both measures experienced a high
correlation between one another (r2 = 0.94 in 2018 and r2 = 0.88 in 2019). Carbon assimilation fluxes and
reflected NIRv followed a similar seasonal pattern of increasing in the spring, then decreasing photosynth-
esis into the autumn, and near‐zero values during the winter dormant period. During 2018, wetland photo-
synthesis ranged between 0 and 15 gC m−2 day−1 and reflected near‐infrared radiation from vegetation
ranged between 0 and 0.35 W m−2 nm−1. However, we observed a slight phase shift between the two time
series during the 2018 growing season, with canopy photosynthesis decreasing more quickly than NIRv; this
period corresponded to the period of smoke and higher diffuse fraction (Hemes et al., 2020) which affects
how photons are trapped by the vegetation (Knohl & Baldocchi, 2008). During 2019, the water table of the
wetland was not maintained. Consequently, we observed much lower sums of daily integrated
photosynthesis and reflected near‐infrared radiation from green vegetation.

The one‐to‐one plot between half‐hour measurements of Ac and NIRv revealed a linear relationship with a
very high correlation among one another (r2 = 0.87) across the contrasting years; the slope between the two
variables was 74.1 (μmol m−2 s−1)/(W m−2 nm−1) (Figure 4). Again, these data support the hypothesis that

Table 2
Regression Statistics Between Canopy Photosynthesis and Reflected Near‐Infrared Radiation From Vegetation

Field site
Half‐hour time step

slope
R2

(μmol m−2 s−1)/(W m−2 nm−1)

Corn 98.3 0.818
Tule/cattails 74.1 0.869
alfalfa 81.0 0.841
Oak savanna 54.2 0.447
Annual grassland 59.0 0.803

Daily time step

Amax

gC m−2 day−1/W m−2 nm−1 gC m−2 day−1

Corn, 2017 45.5 0.742 24.9
Corn, 2018 39.7 0.848 24.6
Corn, 2019 32.7 0.757 21.1
Tule/Cattails, 2018 33.0 0.943 14.4
Tule/Cattails, 2019 45.2 0.886 10.4
Alfalfa, 2018 29.5 0.818 18.1
Alfalfa, 2019 38.0 0.859 21.0
Oak savanna, 2018–2019 28.2 0.711 9
Annual grassland, 2019 27.4 0.880 10.2

μmol m−2 s−1/W m−2

CanVeg, LAI = 1 0.133 0.852 21.2
CanVeg, LAI = 2 0.128 0.924 28.5
CanVeg, LAI = 3 0.119 0.945 31.3
CanVeg, LAI = 4 0.117 0.962 33.3

CanVeg, LAI = 4, 0.8 *Vcmax 0.105 0.931 33.1
CanVeg, LAI = 4, 0.6 *Vcmax 0.0925 0.877 32.3

Note. Statistics include slopes from half‐hour averages between Ac and NIRv and of daily integrals of canopy photo-
synthesis versus midday (1000 to 1400 hours) mean values of NIRv. Slope is the regression slope between Ac and
NIRv. R2 is the coefficient of determination; Amax is the maximum daily flux of canopy photosynthesis. Listed are
regression slopes and the coeficient of determination (r2). For daily time steps we also list maximum photosynthesis
over the growing season (Amax). Data are presented for measurements in the field and for computations based on
the CanVeg model.

10.1029/2019JG005534Journal of Geophysical Research: Biogeosciences
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NIRv is able to predict canopy photosynthesis as temperature, humidity,
water table, and the fraction of green to dead vegetation vary over the
course of the growing season.

3.3. C3 Photosynthesis of Alfalfa, With Varying Leaf Area Index

Alfalfa is an ideal test case for examining the relationship between Ac and
NIRv because the canopy experiences multiple cuttings over the course of
the year, which abruptly modulates its leaf area index; between cuttings
leaf area index ranged between 0 and 3. At this study site, we experienced
six sets of cuttings during 2018, which forced Ac to range between 0
and 20 gC m−2 day−1 and average NIRv to range between 0 and
0.35 W m−2 nm−1 (Figure 5). In general, we observed tight coherence
and correlation (r2 = 0.82) between the ups and downs in both Ac and
NIRv through each cutting cycle. Data from 2019 are not shown here,
but they show similar behavior.

Figure 6 shows the comparison between Ac and NIRv for half‐hour mea-
surements over the repeated cycling of growth, cutting, and regrowth
over two years, 2018–2019. Like for the case of corn and tule/cattail wet-
lands, we observe a strong correlation and a linear response between the
independent and dependent variables for the wide range of structural
conditions experienced by the alfalfa canopy over the year (r2 = 0.841,

slope = 81.1). In contrast, NDVI does not capture the variations in Ac well (supporting information
Figure S6).

3.4. C3 Photosynthesis of Native Vegetation That Experiences Seasonal Drought
3.4.1. Annual Grassland
Over the course of the year, the annual grassland experiences a cool winter growing season, with rapid
growth after the last frost in March and then senescence and death after the last rains occur in April (Ma
et al., 2016). By June, the grass is dead and photosynthesis ceases, until rains resume in the autumn.
Figure 7 shows that NIRv tracks the seasonal change in canopy photosynthesis through this wide range of
phenoseasons with high fidelity, yielding a strong correlation between the two variables (r2 = 0.88).

Figure 8 shows the one‐to‐one plot between Ac and NIRv at the 30 min time scale. Despite a wide range
in meteorological and soil moisture conditions, the correlation between Ac and NIRv remained relatively

high (r2 = 0.804); this performance was on par with what we observed
over the agricultural crops and wetlands (r2 > 0.8). On the other hand,
the slope of this relationship was noticeably lower than those for the
managed crops and wetland, which experience higher photosynthetic
capacity due to fertilization, irrigation, nitrogen fixation, and/or higher
N in their organic soils.
3.4.2. Oak Savanna
The oak savanna provides an interesting test of the links between Ac

and NIRv because the canopy is spatially heterogeneous (Béland
et al., 2014; Chen et al., 2007) and it experiences seasonal water deficits
(Baldocchi et al., 2004). Over the growing season air temperature ranged
between 0 and 40°C, volumetric soil moisture ranged between 0.10 and
0.4 m3 m−3, and photosynthetic capacity ranged between 25 and
125 μmol m−2 s−1 (Osuna et al., 2015; Xu & Baldocchi, 2003). Figure
9 shows very high fidelity between the time series of daily integrated
canopy photosynthesis and mean NIRv for 2018 and 2019; the coeffi-
cient of determination (r2) between these two variables is 0.71. Both
variables experience a ramp up in values in the spring, when photosyn-
thetic capacity is highest and soil moisture and temperature conditions
are moderate. Then both variables experience a rapid decline during

Figure 2. Plot between 30‐min averages of canopy photosynthesis, Ac, and
NIRv. NIRv is the flux density of near‐infrared radiation reflected by the
vegetation. These data are from Days 150 through 270 during 2017 through
2019. The coefficient of variation (r2) is 0.818. The slope between these two
variables is 98.3 (μmol m−2 s−1)/(W m−2 nm−1).

Figure 3. Seasonal patterns of daily integrated canopy photosynthesis (Ac)
and reflected NIR from vegetation (NIRv) plotted by day of year over tule/
cattail wetland for years 2018 and 2019.

10.1029/2019JG005534Journal of Geophysical Research: Biogeosciences
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the hot, rainless summer as soil moisture reservoir is depleted. It is
worth noting that NIRv corresponded well with Ac through the growing
season despite the wide range in photosynthetic capacity that the trees
experience (Osuna et al., 2015; Xu & Baldocchi, 2003).

The comparison between half‐hour average canopy photosynthesis and
NIRv reflectance values, on the other hand, experiencemuch scatter, com-
pared to the other sites (Figure 10; slope = 54.2; r2 = 0.447). We suspect
differences in the footprints sampled by the light sensors and that of the
eddy covariance measurements, over this spatially heterogeneous canopy,
may degrade the correlation between these two variables on short time
scales; the savanna is composed of widely spaced trees and underlying
grass that is either green or dead.

4. Discussion

In this analysis, we found that well‐watered crops, wetland vegetation,
annual grasslands, and savanna experienced a strong linear relation
between Ac and NIRv. Except for the heterogeneous savanna, all experi-
enced relationships having a coefficient of variation, r2, greater than
0.80 when examined on half‐hourly and daily time scales (Table 2). This

linear and well‐correlated behavior was robust across a range of function (C3 and C4 photosynthesis), struc-
ture (fraction of green and dead leaves, variable leaf area index and leaf angles, and reproductive state), and
physiological capacity (nitrogen fixing, fertilized, high and low soil N, and high and low soil moisture).

We conclude that this strong linearity across many conditions is a marked improvement over the perfor-
mance of light use efficiency models; in comparison, light use efficiency models require tuning of the frac-
tion of absorbed light for variations in fraction of green and dead leaves and tuning of light use efficiency
for variations in physiological stresses to achieve this level of performance (Heinsch et al., 2006; Yuan
et al., 2007).

Use of hemispherical view on the outgoing near‐infrared radiation sensors gives us the ability to compare
measurements among sites. Consequently, the ranking of the slopes may give us new information and will
have utility for spatial upscaling of canopy photosynthesis if these relations are to be applied to interpret
measurements derived from remote sensing platforms. On hourly and daily time scales, Table 2 shows that
the C4 corn had the steepest slope, as expected, because C4 plants have a greater quantum efficiency than C3

plants (Pearcy & Ehleringer, 1984). Quantitatively, the Ac‐NIRv slope of
the corn canopy was about 25% greater than that for the C3 tule/cattail
wetland, which was deciduous and harbored a significant fraction of dead
legacy vegetation that also intercepted photons. In turn, theAc‐NIRv slope
of the tule/cattails was about 10% less than that of the nitrogen fixing
alfalfa. While both are perennial vegetation, the alfalfa experienced
repeated cuttings, which altered the amount of light it absorbed. Yet,
the relation between Ac and NIRv remained tight across a wide range in
the fraction of absorbed light. The native ecosystems on nitrogen‐poorer
soils experienced the smallest slopes. Otherwise, the relation between Ac

and NIRv remained tight as the ecosystems experienced a wide range in
carbon assimilation due to soil water deficits and temperature stress,
instead of cutting.

No proxy or reference is perfect. Some of the scatter observed in Figures 2,
4, 6, 8, and 10 can be attributed to sampling error of the eddy covariance
measurements (Moncrieff et al., 1996; Richardson et al., 2006), errors in
the partitioning of direct measurements of net ecosystem carbon
exchange into canopy photosynthesis (Reichstein et al., 2005), and

Figure 4. Plot between 30‐min averages of canopy photosynthesis, Ac, and
NIRv during 2018 and 2019. The coefficient of variation (r2) is 0.869. The
slope between these two variables is 74.2 (μmol m−2 s−1)/(W m−2 nm−1).

Figure 5. Seasonal patterns of daily integrated canopy photosynthesis (Ac),
mean reflected NIR from vegetation (NIRv), plotted by day over alfalfa
across multiple harvest dates. Day of year starts in 2018.

10.1029/2019JG005534Journal of Geophysical Research: Biogeosciences
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differences between the relatively large flux footprint (Kljun et al., 2015)
and the smaller footprint observed by the light sensors.

4.1. Interannual Variability

If the relation between NIRv and Ac is to have wider utility, it will need to
work across multiple years. In California, interannual variation in
spring rain and temperature have a huge effect on annual canopy
photosynthesis through the timing of the start and end of the growing sea-
son (Ma et al., 2007; Ma et al., 2016), which can vary by up to 50 days
(Figure 11). A question that remains begging is whether or not reflected
near‐infrared radiation from vegetation can serve as a successful proxy
for such year‐to‐year variation in annual canopy photosynthesis.

While we only have up to 3 years of data with the commercial red and NIR
sensors, we started measuring reflected red and near‐infrared radiation
over the annual grassland in 2007 with a homebuilt light‐emitting diode
sensor (Ryu et al., 2010). While it has different properties from the sensors
used in this study, we can extract information from it on the reflected
NIRv. Hence, we can address how well reflected near‐infrared radiation
from vegetation correlates with Ac for a wide range in rain and growing
conditions. Figure 12 shows the comparison between daily integrated
canopy photosynthesis and midday NIRv for 12 years. Year‐to‐year varia-
bility in the slopes was relatively small, being on the order of ±11%

(0.044 ± 0.0049 gC m−2 day−1/W m−2). Moreover, the coefficient of determination, r2, on the regression
between Ac and NIRv was high, 0.762, which is nearly as good as the commercial sensor over a shorter time
frame. This figure gives us confidence that we may be able to extract information on interannual variation of
Ac from measurements of NIRv from satellite‐based sensors.

4.2. Theoretical Basis

On first inspection it may seem counterintuitive how and why ecosystem photosynthesis would be related so
closely to reflected near‐infrared radiation from vegetation. However, we can make a case based on its rela-
tion to absorbed sunlight and its superiority to light use efficiency models.

Dechant et al. (2020) recently showed that over 50% to 80% of the variance in Ac was explained in terms of
the product absorbed visible light times the fraction of photons escaping the canopy, fesc.

Ac ¼ Qa;P�f esc (1)

In comparison they found that the classic light use efficiency equation
explained only 40% to 50% of the variance in Ac.

Why does this occur? Zeng et al. (2019)) showed that the fraction of
photons escaping the canopy, fesc, is defined as the ratio of the reflectance
of near‐infrared radiation from the vegetation (ρNIRv) and the fraction of
absorbed photosynthetically active radiation, fa,P.

f esc ¼
ρNIRv

f a;P
(2)

Traditionally, Ac has been computed from space as a function of photon
flux density of photosynthetically active quanta absorbed by green vege-
tation (Qa,P) times a light use efficiency (ϕ),

Ac ¼ Qa;P�ϕ (3)

In equation 3, Qa,P is the product of fraction of absorbed photosyntheti-
cally active quanta (fa,P) times the photon flux density of incident photo-
synthetically active quanta, QP:

Figure 6. One‐to‐one plot between canopy photosynthesis of alfalfa and
the near‐infrared radiation reflected from the vegetation. These data are
plotted according to the aerodynamic canopy height. The data are from
2018 and 2019 and are half‐hour averages between 0900 and 1700 hours.
The slope is 81.1 (μmol m−2 s−1)/(W m−2 nm−1), and the coefficient of
determination, r2, is 0.841.

Figure 7. Seasonal patterns of canopy photosynthesis (Ac), mean reflected
NIR from vegetation (NIRv) over an annual grassland. Day of year starts
in 2019.

10.1029/2019JG005534Journal of Geophysical Research: Biogeosciences
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Qa;P ¼ f a;P�QP (4)

Thereby, fa,P is defined as

f a;P ¼
Qa;P

QP
(5)

With further algebraic manipulation we can define Ac as a function of
the reflectance of NIR from vegetation (ρNIRv), which scales with the
flux density of near‐infrared radiation reflected by vegetation, NIRv.

Ac ¼ Qa;P�f esc ¼ f a;P�QP
ρNIRv

f a;P
¼ QP�ρNIRV

~NIRv (6)

The identity QP�ρNIRV
eNIRv holds because incoming solar radiation is

about half visible and half near infrared (Ross, 1980), so it is legitimate
to substitute QP with incoming NIR. Together, this set of equations
provide a theoretical explanation for the empirical results we show in
the paper.

4.3. Interpreting Field Measurements With the CanVeg Model

To better understand how structure and function influence the relation we observed between Ac and NIRv,
we ran simulations of the biophysical CanVeg model. We used the conditions for an alfalfa field, which was
tested and validated in an earlier paper (Oikawa et al., 2017). We compared computations of canopy photo-
synthesis with computations of broadband NIR reflected from the vegetation for the cases when soil reflec-
tance was 0.

First, we ran simulations for a range of leaf area indices. Figure 13 shows a strong theoretical and linear rela-
tion between the two variables, which is consistent with the linearity of the results shown above; in general,
r2 values are very high (r2 > 0.94). Theoretically, there is overlap betweenAc andNIRv for a family of leaf area
indices; technically, the slopes ranged between 0.117 and 0.133) with increasing leaf area indices (1 to 4).
And it is noteworthy that the relationship between these two variables does not saturate at high reflectance
values or low leaf area indices, as NDVI may do (Sellers, 1985). From these calculations, we conclude that
the differences in slopes observed over the tules/cattails and alfalfa were not due to differences in leaf area
index. This relative invariance with leaf area index helps explain why this correlation held well over the
alfalfa crop that experienced multiple cuttings.

Leaf photosynthesis models depend upon the specification of the maxi-
mum carboxylation velocity (Vcmax) (Farquhar et al., 1980), a measure
of photosynthetic capacity. We hypothesize that the ranking among C3

canopies may be associated with differences in soil nitrogen, which affects
leaf nitrogen and photosynthetic capacity.

We base this hypothesis on the connected evidence that photosynthetic
capacity (Field & Mooney, 1986) and the amount of reflected near‐
infrared radiation by a canopy (Ollinger, 2011; Ollinger et al., 2008) scales
with nitrogen. If true, this conjecture would be consistent with the obser-
vation that greater values in canopy photosynthesis were associated with
greater flux densities of reflected near‐infrared radiation, and vice versa.
There remains controversy as to the mechanism explaining the correla-
tion between reflected NIR and leaf nitrogen because nutrition can
affect canopy structure and plant traits, which also influence canopy
near‐infrared radiation reflectance (Knyazikhin et al., 2013; Ollinger
et al., 2013).

To explore the hypothesis that the slope between Ac and NIRv depended
upon photosynthetic capacity, we ran the CanVeg model and changed

Figure 8. Plot between canopy photosynthesis, Ac, and NIRv. Data are
half‐hour averages between 1000 and 1600 hours, from 2019.

Figure 9. Seasonal patterns of daily integrated canopy photosynthesis (Ac)
and mean reflected NIR from vegetation (NIRv), plotted by day over oak
savanna. Day of year starts in 2018 and runs through 2019.

10.1029/2019JG005534Journal of Geophysical Research: Biogeosciences
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the relative fraction of maximum carboxylation velocity (Vcmax) as a proxy
for changing leaf nitrogen. Figure 14 shows that we get a family of curves
between Ac and NIRv, with gradually flattening slopes as Vcmax decreases.
As Vcmax decreased by 20% to 40%, the slope between Ac and NIRv

dropped by 10% to 21%. These results are consistent with recent computa-
tions that showed that Sun‐induced fluorescence, which scales with NIRv,
decreased with decreasing Vcmax (Qiu et al., 2019). In sum, these compu-
tations tie together the connections between photosynthetic rates, leaf
nitrogen, photosynthetic capacity, and the amount of NIR reflected from
leaves and canopies, discussed above.

Canopy photosynthesis is known to increase with increasing diffuse frac-
tion at a given light level. Why? As the sky becomes more isotropic,
photons are better trapped by the vegetation, shaded leaves receive more
sunlight, and sunlit leaves receive less sunlight. Together, these interac-
tions increase canopy photosynthesis for a given level of incoming
sunlight by increasing integrated canopy light use efficiency and by
increasing the canopy's ability to absorb light (Jarvis et al., 1985; Knohl
& Baldocchi, 2008; Niyogi et al., 2004).

To test this hypothesis, we applied the CanVeg model to examine the
effect of diffuse light during the 2018 smoke period that veiled

California in 2018 (Hemes et al., 2020). Like the field measurements, the model computations indicate that
a steeper slope betweenAc and NIRv occurs when diffuse light fraction is greater (Figure 15). As noted above,
diffuse light coming into the canopy frommultiple angles is trapped better and is converted into photosynth-
esis more efficiently. In these circumstances, diffuse conditions alter canopy photosynthesis but has no
immediate effect on canopy structure, as proxied by NIRv, resulting in a transient deviation in the mean
NIRv‐Ac relationship. The results here confirm the empirical findings reported for the corn, tule/cattails,
and alfalfa.

4.4. Relation to Past Work

The late Piers Seller (Sellers, 1987; Sellers et al., 1992) proposed that the photosynthesis of a vegetated canopy
should be a linear function of the flux density of near‐infrared photons reflected from that canopy. The pro-
position was based on the conjecture that reflected near‐infrared radiation is a proxy for the fraction of visi-

ble light absorbed by the canopy (fQp). Why and how? In principle, Sellers
argues that the change in NIR reflectance from vegetation (ρNIRv) with a
change in leaf area index (L) is proportional to the change in the fraction
of absorbed QP with leaf area index, fa,P:

dρnir
dL

~
df a;P
dL

(7)

Incoming photons in the visible and near‐infrared wave bands have the
same probability of passing through gaps in the canopy and intercept-
ing leaves. It is how these photons, with different wavelengths, interact
with leaves and exit the canopy that differ, as the scattering coefficient
of near‐infrared radiation is much greater than that of visible radiation.
Sellers et al. (1992) explains this behavior by the following:

“… near infrared reflectance is proportional to double the pathlength of
near infrared radiation in the canopy as this radiation must enter and
leave the canopy, while fa,P is proportional to only the one‐way pene-
tration ….”

To test this conjecture, we computed the reflectance of near‐infrared
radiation from the vegetation (ρNIRv) and fa,P as a function of leaf area

Figure 10. One‐to‐one plot between canopy photosynthesis of oak savanna
and the near‐infrared radiation reflected from the vegetation. The data are
from 2018 and 2019.

Figure 11. Interannual variability of daily integrated canopy photosynthesis
over the annual grassland between 2007 and through 2019.

10.1029/2019JG005534Journal of Geophysical Research: Biogeosciences
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index, L. Figure 16 shows that the relative change in ρNIRv with L is similar to the relative change in fa,P with
L, lending support to the Sellers conjecture in equation 5.

How absorbed visible, or reflected near‐infrared, radiation leads to a linear dependence by photosynthesis
arises from ecophysiological optimality. Under optimal conditions, plants invest just enough nitrogen such
that the mean light environment, which decreases exponentially with cumulative leaf area index, is close to

Figure 12. Correlation between ecosystem photosynthesis of an annual grassland and reflected near‐infrared radiation
from vegetation. These data are for the 2007 through 2019 time frame and are based on a homebuilt light‐emitting
diode sensor. The coefficient of determination, r2, was 0.762 over these 12 years.

Figure 13. Simulations of canopy photosynthesis and reflected near‐infrared radiation. The computations were run for a
range of leaf area index. The model assumed the structure and function of an alfalfa canopy. Data are reported for when
leaf temperature was less than 28°C. Meteorological inputs were from the summer of 2018.

10.1029/2019JG005534Journal of Geophysical Research: Biogeosciences
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the inflection point between light saturation and light dependence (Anten, 2016; Hikosaka, 2014; Hikosaka
& Terashima, 1995; Hirose & Werger, 1987). By having photosynthetic capacity, as defined by nitrogen con-
tent per unit area, decrease with depth in the canopy, the integration of leaf photosynthesis layer by layer
produces a linear response between canopy photosynthesis and absorbed visible light (Sellers et al., 1992).

4.5. Further Directions

In the past decade there has been a growing number of papers
inferring ecosystem photosynthesis to the global scale from measure-
ments of Sun‐induced fluorescence (Frankenberg et al., 2014; Guan
et al., 2015; Guanter et al., 2013; Meroni et al., 2009; Parazoo et al., 2014;
Porcar‐Castell et al., 2014). Although Sun‐induced fluorescence is gaining
much popularity, it faces many technical challenges before it can be used
widely to assess ecosystem photosynthesis. First, Sun‐induced fluores-
cence has narrow emission peaks (near 680 and 740 nm) and the photon
flux density leaving the canopy is tiny compared to the background
signal of reflected radiation (Guanter et al., 2013; Meroni et al., 2009;
Porcar‐Castell et al., 2014). These constraints require a spectroradiometer
with very high spectral resolution and high signal‐to‐noise ratio (Damm
et al., 2011; Meroni et al., 2009). Second, the amount of solar‐induced
fluorescence observed by a satellite or a tower‐mounted spectrometer con-
sists of three mechanistic components. These components are the amount
of absorbed radiation, the physiological fluorescence emission yield, and
the fraction of photons that escape the canopy (Gu et al., 2019; van der
Tol, Verhoef, & Rosema, 2009; van der Tol, Verhoef, Timmermans,
et al., 2009; Yang & van der Tol, 2018; Zeng et al., 2019). The interpreta-
tion of solar‐induced fluorescence requires better information on
(1) how canopy structure (e.g., leaf area index, leaf angle, and leaf clump-
ing) affects the absorption of solar radiation; (2) sensitivity of fluorescence

Figure 14. Computations of canopy photosynthesis and reflected near‐infrared radiation from vegetation. Runs were
performed for a closed canopy (LAI = 4) and a range of maximum carboxylation capacity of the leaf photosynthesis
model; the reference value of Vcmax was 170 μmol m−2 s−1.

Figure 15. Computations of canopy photosynthesis and near‐infrared
radiation reflected by vegetation, as a function of diffuse light fraction.
Computations were confined to periods with low vapor pressure deficits.
Computations were based on half‐hour meteorological data from between
Days 195 and 258 in 2018 when smoke from fires in northern California
veiled the ecosystems.
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production to photosynthetic capacity (Verma et al., 2017), which may
vary with leaf nutrition or physiological stress; and (3) how fluorescent
photons escape the canopy through a tortuous path of gaps and multiple
scattering (Qiu et al., 2019; Zeng et al., 2019).

There is growing evidence that solar‐induced fluorescence escaping the
canopy may better represent the amount of visible light absorbed by green
vegetation (Badgley et al., 2017; Yang et al., 2018) rather than being a cor-
relate with canopy photosynthesis, per se. Therefore, if solar‐induced
fluorescence escaping the canopy is just a measure of absorbed light, are
there easier and more direct ways to measure absorbed light, in order to
assess canopy photosynthesis? Here we provide direct evidence of the
power of using NIRv, instead, especially given its stronger signal and its
history being measured on many satellites for decades. Of course, many
pertinent questions remain. For example, how to upscale single observa-
tions from space to daily integrals (Sims et al., 2005).

The key aspect of applying measured reflected NIR from vegetation as a
proxy to canopy photosynthesis is to remove signal contaminated by soil
and dead vegetation. At present, NIRv is determined by measuring

reflected NIR times a renormalized NDVI that ranges between 0 and 1. More work is needed to test the uni-
versality of this assumption, especially for sparse canopies that do not achieve a high NDVI value, near 1.

5. Conclusions

Reflected near‐infrared radiation from green vegetation was found to be a strong predictor of canopy photo-
synthesis on across hourly, daily, seasonal, and interannual time scales. This simple and inexpensive mea-
sure also worked well across a wide range of structural and functional types and weather conditions.

This paper raises the potential to use this simpler and inexpensive vegetation metric to scale photosynthesis
more widely. For example, information on reflected near‐infrared radiation from vegetationmay have utility
in monitoring carbon assimilation in carbon sequestration projects or on microsatellites orbiting Earth for
precision agriculture applications. And it does not suffer from many of the idiosyncrasies associated with
the measurement and interpretation of NDVI or Sun‐induced fluorescence. We recommend that more eddy
covariance flux towers add this set of measurements.
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