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Abstract

The investigation of large multi-modal models (LMMs) has emerged as a focal point

within the Deep Learning community, showcasing its prominence in contemporary

research. LMMs exhibit the capacity to take data from diverse modalities, enabling

them to execute a myriad of tasks by leveraging complementary information for

enhanced predictive capabilities. The learning process of LMMs is bifurcated into two

crucial stages: the computationally intensive pre-training stage, aimed at acquiring

general representations from web-scale noisy data, and the subsequent fine-tuning

stage, focusing on adapting pre-trained models to specific tasks.

Traditionally, the pre-training of foundational LMMs has been considered a privi-

lege limited to research labs with abundant computational resources. In this thesis,

we propose a new method for the effective pre-training of foundational vision-language

models (VLMs). This involves mitigating the data demands by employing off-the-

shelf frozen large language models (LLMs) through a specialized pre-training process.

Additionally, we introduce an efficient VLM pre-training method that reduces redun-

dancy in modality projection. Through our novel approach, the data requirements for

training LLMs are substantially reduced from 129 million to 4 million instances, and

the associated training budget can be curtailed to 1/10 without perceptible decreases

in performance.

Furthermore, we present a straightforward yet potent temporal fusion mechanism

for adapting pre-trained image-language models to downstream video tasks. Our video
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captioning models achieve competitive performance against state-of-the-art bench-

marks without extensive pre-training on video-text datasets. Beyond the established

domains of multi-modal research in computer vision and natural language processing,

our research extends into the realm of bioinformatics by investigating protein-RNA

models for multi-modal learning. Our findings demonstrate that pre-trained protein

models encapsulate information about biological structures that can be shared with

RNAs. Given the limited number of experimentally solved of RNA structures, our

discovery opens avenues for novel research directions in transfer learning between

proteins and RNAs.

Finally, we employ physical augmented simulations to train a T-cell-peptide model

highlights that integrating such simulations in machine learning significantly enhances

model training, especially with limited labeled data. This underscores the potential of

merging simulations with machine learning, providing a valuable strategy for advancing

LMMs training in the biological domain.
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Chapter 1

Introduction

Over the past decade, significant progress in Deep Learning research has yielded notable

achievements in diverse domains, including image classification, image segmentation,

action recognition, and language modeling. While these models exhibit proficient

performance within specific tasks through training on extensive, domain-specific

datasets, contemporary investigations have pivoted towards the development of models

endowed with the capability to interpret information across various modalities, such

as vision, language, and audio.

Moreover, recognizing the potential for improved model predictions, recent studies

advocate for training models that seamlessly integrate information from disparate

modalities. For instance, in the context of an online conference, presenting a video to

the model facilitates enhanced summarization by concurrently considering both visual

contents (depicting human activities) and auditory cues (capturing conversational

dynamics). This integration of complementary modalities is posited to contribute to

more informed decision-making processes.

Additionally, the pursuit of multi-modal learning endeavors to emulate the human

capacity to obtain knowledge from diverse sources. By fostering the acquisition of

abilities akin to human sensory and cognitive functions, these models aim to transcend
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Introduction Introduction

unimodal constraints, exemplifying a convergence towards a holistic understanding of

information encompassing both perception and expression.

The burgeoning interest in computer vision and natural language processing has

propelled significant advancements in the domain of multi-modal learning, particularly

in the development of vision-language models. The prevailing paradigm governing

these models unfolds across two stages:

• Pre-training Stage: This initial phase entails the model’s pre-training using

extensive web-scale datasets, facilitating the acquisition of comprehensive knowl-

edge encompassing both vision and language domains. Commonly denoted as

“Foundational Models”, these pre-trained models serve as the bedrock, capturing

intricate patterns and representations inherent in multi-modal data.

• Fine-tuning Stage: Subsequent to pre-training, the foundational models un-

dergo fine-tuning to cater to specific tasks. Notably, certain scenarios obviate the

need for fine-tuning, allowing models to generate predictions through in-context

learning. This stage plays a pivotal role in tailoring the model’s capabilities to

task-specific requirements.

In the subsequent sections, we will discuss an in-depth exploration of these two training

stages. This thesis introduces a novel modality projection module and proposes a novel

learning paradigm aimed at augmenting the efficiency of pre-training vision-language

models. Additionally, novel fine-tuning modules will be expounded upon, addressing

the challenge of adapting pre-trained foundational models to specific tasks, especially

in instances characterized by limited training examples. Through these contributions,

this research aims to advance the current understanding and efficacy of multi-modal

learning within the realm of vision-language models.

2



1.1 Pre-training of Foundational LMMs Introduction

Section 1.1

Pre-training of Foundational LMMs

The contemporary trajectory of pre-training large multi-modal models finds its roots

in seminal works, such as CLIP [154]. CLIP is a dual encoder model characterized

by a visual encoder designed to process images and a language encoder dedicated to

processing textual information. Operating on the principle of image-text pairs, where

each pair comprises an image and its corresponding caption, CLIP takes the encoding

of both modalities and seeks to maximize the cosine similarity between the resulting

encoded representations. Through extensive training on vast datasets consisting

of hundreds of millions of web-crawled image-text pairs, CLIP has demonstrated

remarkable zero-shot capabilities, particularly in the image classification, as well

as image-text and text-image retrievals. This noteworthy proficiency is ascribed to

CLIP’s utilization of rich semantic information embedded in language as a form of

supervision, diverging from the conventional approach reliant on one-hot hard labels.

The departure from traditional training methods underscores the effectiveness of

leveraging nuanced semantic relationships present in textual data, contributing to

CLIP’s impressive performance in tasks that demand cross-modal understanding and

generalization.

While CLIP has demonstrated proficiency in image classification and retrieval

tasks, it encounters challenges in more intricate tasks such as fine-grained modeling

between images and text, leading to limitations in advanced benchmarks like visual

entailment and closed-set Visual Question Answering (VQA). Recognizing these

limitations, successive models, exemplified by ALBEF [113], have emerged with

innovative architectures aimed at addressing these nuanced shortcomings. ALBEF

introduces a novel design that amalgamates the foundational principles of CLIP with

3



1.1 Pre-training of Foundational LMMs Introduction

the incorporation of a cross-attention module. This module facilitates the infusion of

visual features into the language model, allowing a deeper interaction between the

two modalities. This strategic integration of visual and linguistic domains results

in an enhanced capacity for modeling fine-grained relationships, thereby overcoming

the challenges encountered by CLIP in tasks demanding deeper interactions between

images and textual content.

In more recent developments, the success of pre-trained language generative models

[242] has spurred the evolution of visual-language generative models, designed to

produce open-ended free text conditioned on visual input. CoCa [228] stands out as

one of the pioneering works in this domain, drawing inspiration from the architecture of

ALBEF. CoCa’s pre-training involves leveraging a massive dataset comprising billions

of image-text pairs, underscoring the importance of scale in achieving its success.

The efficacy of CoCa can be attributed, in part, to the utilization of thousands of

accelerator units (e.g., TPUs) during the extensive training process. It is noteworthy,

however, that reproducing such results may pose challenges for research laboratories

with limited computational resources. Despite this constraint, CoCa attained a state-

of-the-art status in various visual-language generation benchmarks at the time of its

introduction.

The escalating computational demands associated with models such as CoCa have

prompted researchers to explore alternative approaches, leading to a shift towards

leveraging off-the-shelf pre-trained unimodal models. This entails the use of pre-trained

visual encoders, exemplified by architectures like Vision Transformer (ViT), in conjunc-

tion with frozen LLMs. The adoption of frozen LLMs offers several advantages in the

pursuit of cost-effective and efficient model development: (1) Preservation of Language

Ability: LLMs have demonstrated exceptional proficiency in language understanding

and generation. Freezing these models at their pre-trained state maximally retains
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1.1 Pre-training of Foundational LMMs Introduction

the acquired language abilities, ensuring that the model capitalizes on the wealth of

linguistic knowledge encoded in the pre-training phase. (2) Computational Savings:

The training of large language models incurs a substantial computational cost. Lever-

aging the pre-trained weights of LLMs obviates the need for retraining from scratch,

resulting in significant computational savings. This approach aligns with the principles

of resource efficiency, making it particularly appealing for researchers operating within

constraints of computational resources. (3) Mitigation of Catastrophic Forgetting: By

refraining from modifying the parameters of the frozen LLMs, the risk of catastrophic

forgetting is mitigated. This not only conserves GPU memory but also expedites

training convergence. The stability introduced by using pre-trained and frozen LLMs

facilitates a smoother and more efficient training process.

A seminal contribution within the paradigm of utilizing frozen ViTs and LLMs

is exemplified by BLIP-2 [115]. In the architecture of BLIP-2, a Query-Transformer

(Q-former) assumes the role of the modality projector, establishing a connection

between the ViT and the LLM. The Q-former is trained to query a fixed number (e.g.,

32) of tokens from the pool of visual features within the ViT, typically comprising

256 tokens. Subsequently, the queried visual features are transmitted to the LLM

as a soft-prompt, guiding the LLM to generate the corresponding textual output.

Notably, BLIP-2 has showcased outstanding performance in diverse tasks, including

zero-shot VQA, image-text and text-image retrievals, and fine-tuned image captioning,

surpassing the capabilities of CoCa. Remarkably, the training of BLIP-2 can be

executed on an 8 A100-80G server (or 16 A100-40G) within approximately 10 days.

This efficiency underscores the feasibility of large-scale pre-training for VLMs, even

for research laboratories with moderate computational resources. As a result, BLIP-2

has emerged as a widely adopted foundational model for numerous downstream tasks,

consolidating its position as a key reference within the evolving landscape of VLMs.
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1.1 Pre-training of Foundational LMMs Introduction

While BLIP-2 has notably advanced the feasibility of training effective VLMs

without massive GPUs, it is pertinent to acknowledge that its training regimen

still necessitates a huge dataset of 129 million image-text pairs. Furthermore, the

computational demands, albeit reduced compared to some counterparts (e.g., CoCa),

remain a consideration, particularly for research laboratories with limited resources.

This realization underscores the need for new approaches to mitigate the challenges

posed by both data demand and computational demand. Within the context of this

thesis, two novel contributions, BLIText [84] and SimVLG [86], are introduced to

specifically address these challenges:

• BLIText addresses the challenge of high data demand by introducing a novel

training strategy. In its methodology, the model undergoes an initial pre-

training phase exclusively on a LLM. This phase is crucial for identifying the

optimal visual prompt that maximally aligns with the capabilities of the LLM.

Subsequently, the visual features are aligned with this identified prompt. This

pre-training approach significantly mitigates the data requirements for training

traditional VLMs. By emphasizing the synergy between language understanding

and visual features through this refined pre-training process, BLIText achieves

notable reductions in the volume of required image-text pairs for subsequent

VLM training.

• SimVLG targets the computational demands inherent in training Visual Lan-

guage Models. Central to its approach is the introduction of a novel modality

connector termed the Token-Merging Transformer. This component plays a

pivotal role in accelerating the convergence of modality alignment, thereby

substantially reducing the number of training iterations required. The Token-

Merging Transformer acts as an efficient bridge between visual and linguistic

modalities, streamlining the learning process and enhancing the computational
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1.2 Adapting Foundational LMMs to Downstream Tasks Introduction

efficiency of VLM training. SimVLG’s contribution lies in its ability to make

VLM training more accessible and feasible on setups with limited computational

resources, ultimately broadening the applicability of these models in diverse

research settings.

Section 1.2
Adapting Foundational LMMs to Downstream

Tasks

Upon acquiring foundational knowledge through pre-training on extensive and readily

available web-crawled datasets, the subsequent refinement of models becomes im-

perative through fine-tuning on meticulously annotated datasets tailored to specific

downstream tasks. Traditional fine-tuning methodologies involve the comprehensive

adjustment of all parameters within the network in an end-to-end fashion. However,

in the context of LLMs and LMMs, where the model’s parameters scale to the order

of billions, a judicious approach is essential. This necessitates a consideration of

several critical issues. Notably, VLMs typically consist of three integral modules: a

visual encoder, modality projection, and the LLM. It is important to determine which

components of the model warrant fine-tuning, given the intricacies posed by the vast

parameter space.

BLIP-2’s findings underscore the advantageous impact of fine-tuning ViT models

on subsequent image captioning tasks. In the area of instruction-based learning,

InstructBLIP [30] adopts a targeted approach by exclusively fine-tuning the vision-

language connector(i.e., Query-Transformer), while maintaining the ViT and the LLM

in a frozen state. Conversely, alternative methods introduced by other researchers

involve the integration of LoRA (Low-Rank Adaptation) modules into LLMs. This

augmentation not only enhances the models’ capacity but also introduces the capability

7
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to dynamically influence and guide the output of the LLMs.

A frequently investigated scenario involves the adaptation of foundational VLMs,

initially pre-trained on image-text pairs, to the domain of video-language tasks.

VideoCoCa [221] extends this paradigm by subjecting CoCa to further pre-training

utilizing billion-scale video-text pairs. Notably, VideoCoCa strategically fine-tunes

the attentive pooler, directing attention primarily towards spatial features while

overlooking temporal modeling aspects. In contrast, Video-LLaMA [236] introduces a

temporal Q-former to imbue VLMs with temporal modeling capabilities. However,

this enhancement comes with the prerequisite of a substantial corpus of video-text

pairs to facilitate the re-alignment of ViT and LLMs. Similarly, the VideoChat [116]

approach incorporates UniFormer modules into ViT to address temporal modeling

requirements. Regrettably, the incorporation of these modules disrupts the integrity

of the well-trained VLMs, presenting a trade-off between temporal modeling efficacy

and model stability.

In this thesis, we propose Attentive Temporal Token Merging Modulesfor ViTs,

aiming to imbue ViTs with temporal modeling capabilities while maintaining the

integrity of well-pre-trained VLMs. This approach eliminates the need to re-align

ViTs and LLMs without relying on massive video-text pairs.

Section 1.3

Main Contributions and Outlines

In this dissertation, we present a series of contributions aimed at advancing the field

of vision-language learning and multi-modal learning, addressing challenges related

to data efficiency, training resource constraints, and domain expansion. Our primary

focus lies in the development of novel models and methodologies that significantly

enhance the efficacy and accessibility of VLMs.
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• Firstly, we introduce BLIText, a data-efficient pre-trained VLM that notably

reduces the demand for pre-training data from 129 million to 4 million instances.

This innovation represents a substantial stride toward mitigating the resource-

intensive nature of traditional pre-training processes.

• To facilitate the training of large VLMs in research environments with limited

resources (i.e., GPU hours), we propose SimVLG, a training-efficient model.

This contribution aims to democratize the training of formidable VLMs, making

them more accessible to research labs operating under resource constraints.

• Furthermore, we present SimVLG-video, an extension of SimVLG tailored for

video-language tasks. This adaptation incorporates a novel Temporal Token

Merging technique, enhancing the model’s effectiveness in handling temporal

aspects inherent in video data.

• In the field of vision models, we introduce LabelHalluc [77], a method designed

to maximize the utility of base datasets for effective fine-tuning. This approach

seeks to optimize the transferability of pre-trained vision models to specific tasks,

thereby reducing the reliance on task-specific data.

• For language models, we introduce LM-SupCon [80], utilizing contrastive learning

to mitigate overfitting challenges during adaptation. This approach improves

the generalization capabilities of language models, especially in situations with

limited adaptation datasets. Given that contemporary VLMs typically employ

frozen LLMs as decoders, the implications of LM-SupCon extend significantly

into the VLM domain.

• Lastly, we extend our multi-modal exploration beyond traditional vision-language

domains into the field of bioinformatics. Demonstrating the versatility of pre-

trained protein models, we showcase their effectiveness as multi-modal biological
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1.3 Main Contributions and Outlines Introduction

models capable of accurately encode information of RNA structures [85]. Ad-

ditionally, akin to traditional VLMs handling image-text pairs, we construct a

T-cell-peptide interaction model. This model holds significance in predictions of

reactions in human immunity [83].

Through these contributions, our research not only contributes to the advancement

of vision-language models and multi-modal learning but also underscores the broader

applicability of such models in diverse domains.

10



Chapter 2

Related Work

Section 2.1

Vision-Language Learning

In Chapter 3 and Chapter 4, we introduce two vision-language models, BLIText [84] and

SimVLG [86] which significant reduce the demand for training data and computation,

respectively. The following covers the related work on vision-language modeling that

is investigated/discussed in “Bootstrapping Vision-Language Learning with Decoupled

Language Pre-training” [84] and “SimVLG: Simple and Efficient Pretraining of Visual

Language Generative Models” [86].

The landscape of end-to-end vision-language pre-training models generally falls

into two overarching categories: dual-encoder and fusion-encoder models. In the dual-

encoder paradigm, distinct networks are dedicated to processing visual and linguistic

information. The interaction between modalities is achieved through the computation

of the dot product between corresponding features, as seen in models like CLIP [154].

Notably, the effectiveness of dual-encoder models shines in tasks involving image-text

retrieval, owing to the efficient computation of vector dot-products facilitated by

feature caching. Nevertheless, their efficacy faces limitations in tasks such as VQA,

11



2.1 Vision-Language Learning Related Work

captioning, and visual reasoning, primarily attributed to the deficiency in establishing

fine-grained alignment between the two modalities.

Dual-encoder architectures utilize distinct neural networks dedicated to processing

visual and linguistic information. The interaction between these modalities is achieved

by computing the dot product between corresponding visual and linguistic features,

as demonstrated by CLIP [154]. The efficiency of dual-encoder models in image-text

retrieval tasks is notable, attributed to the streamlined computation of vector dot-

products facilitated by feature caching. Despite their effectiveness in this domain, their

performance in tasks such as VQA, captioning, and visual reasoning is constrained

due to the absence of nuanced alignment between the two modalities.

Fusion-encoder models, exemplified by ALBEF [113], VLMo [9], and CoCa [228],

incorporate novel fusion-Transformer layers to capture intricate interactions between

vision and language, augmenting traditional vision and language encoders. These

models adopt various design approaches, such as concatenating visual and linguistic

features prior to inputting them into a self-attentive Transformer [9, 25, 27, 53, 73,

74, 94, 98, 117, 119, 121, 175, 189, 204, 206, 207, 210, 220, 225, 241], or employing

cross-attention mechanisms between vision and language encoders to compute fused

features [3, 42, 43, 111, 113, 114, 125, 128, 130, 195, 218]. The vision encoder exhibits

diversity, ranging from straightforward linear embeddings [98] and ConvNets [73, 74,

94, 175, 206, 210, 225] to Transformer architectures [9, 42, 43, 113, 114, 204, 207, 220],

employing offline pre-trained object detectors like Faster-RCNN [25, 27, 53, 117, 119,

121, 189, 241], or integrating ensemble models [127]. The language encoder may be

initialized with a BERT-based [96] model or serve as part of a fusion-Transformer

[9, 42, 43, 207, 231]. During pre-training, most methods employ three primary

losses: image-text contrastive (ITC) loss, image-text matching (ITM) loss, and either

mask language modeling (MLM) loss or language generation (ITG) loss. While
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fusion-encoder models exhibit notable success in VQA and captioning tasks, their

efficiency in retrieval tasks is comparatively lower. A comprehensive overview of recent

advancements in vision-language pre-training is available in [54].

Language models trained on extensive text corpora exhibit remarkable proficiency

in language generation tasks. Consequently, integrating these large, pre-trained LLMs

into Vision-Language models proves advantageous, especially in tasks such as VQA and

captioning. Flamingo [3] incorporates visual signals into each layer of a large frozen

LLM through cross-attention mechanisms. In contrast, Frozen [199] fine-tunes the

image encoder, aligning visual features as soft prompts input into the frozen language

model. More recently, BLIP-2 [115] introduced the Q-former, a vision-to-language

adaptation module used in conjunction with a frozen ViT [41] and an LLM. BLIP-2

employs a two-stage training process to address challenges in learning visual-language

alignment. In the initial stage, the Q-former is optimized to extract beneficial visual

features, utilizing Image-Text Contrastive (ITC), Image-Text Matching (ITM), and

Image-Text Generation (ITG) losses. Subsequently, in the second stage, all three

modules (ViT, Q-former, and LLM) undergo end-to-end training, with only the

parameters in the Q-former updated. Despite being trained on a dataset comprising

129 million image-text pairs and using relatively modest computational resources,

BLIP-2 exhibits competitive performance across various benchmarks. Additionally,

concurrent work on the visual chat-bot X-LLM [21] follows a similar architectural

design philosophy to BLIP-2, further reinforcing the efficacy of this approach.

In addition to leveraging off-the-shelf pre-trained vision encoders like ViT and

Faster-RCNN [59, 162] and language models, there is a compelling interest in exploring

how unimodal training can contribute to the enhancement of multi-modal models.

VLMo [9] exemplifies the advantages of a stage-wise pre-training approach using

image-only and text-only data for their proposed model architecture. A different
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perspective is presented by Li et al. [118], who suggest employing object tags from

detectors as anchor points to establish connections between unpaired images and text.

Similarly, Zhou et al. [247] create pseudo-image-text pairs through an image-text

retrieval alignment strategy. In video-language models, image-text pairs are utilized

by repeating images to generate static videos, thereby constructing auxiliary paired

datasets for pre-training. Furthermore, Jian et al. [82] demonstrated that contrastive

visual learning not only benefits visual tasks but also contributes to the improvement

of contrastive sentence embeddings, highlighting the potential impact of unimodal

training on tasks primarily focused on language.

Section 2.2

Efficient and Effective Adaptation of LMMs

In Chapter 5, we introduce SimVLG-video [86] as an effective method for adapting the

well pre-trained image-based model SimVLG to video understanding tasks. The follow-

ing covers the related work on vision-language modeling that is investigated/discussed

in “SimVLG: Simple and Efficient Pretraining of Visual Language Generative Models”

[86].

Image-Language Models to Video-Language Models While many models

designed for image-text tasks can be adapted for video-text applications using simple

feature pooling, as demonstrated by VideoCoCa [221], specialized models incorporating

temporal dynamics have emerged. Expanding upon the groundwork laid by BLIP-2,

Video-LLaMA [236] enhances its architecture by introducing additional temporal

Q-former layers positioned between the spatial Q-former and the LLM components of

the original BLIP-2 model. Following the inspiration from BLIP-2, recent works such

as VideoChat [116], PandaGPT [190], Valley [132], and Video-ChatGPT [139] have
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adopted the use of frozen LLMs in their video-language models.

Token Merging Token Merging (ToMe) [13] seeks to enhance the inference speed

of pre-trained Vision Transformers (ViTs) without necessitating re-training. In this

approach, tokens are partitioned into two sets at each Transformer layer and then

merged based on their similarity. This process effectively reduces the overall token

count, leading to an acceleration in inference speed. Notably, ToMe achieves this

without compromising the quality of classification and generation tasks.

In Chapter 5, we adapt ToMe to compress the visual features utilized as language

prompts in the LLM. Our approach involves incorporating ToMe capabilities into a

standard Transformer, resulting in a novel model termed TomeFormer. This model

functions as a robust bridge between the visual and language domains, retaining

semantic richness while reducing the token count. Crucially, the integration of ToMe

in TomeFormer does not introduce any extra parameters. Drawing inspiration from

spatial ToMe, we introduce a new variant called soft temporal ToMe within the

vision encoder, thereby enhancing our image-text models with temporal modeling

capabilities.

In Chapter 5, we also propose Label Hallucination [77] as a general effective

approach to adapt the pre-trained model, given a few examples (i.e., few-shot learn-

ing). The high-level idea rooted in Label Hallucination is Transfer Learning plus

pseudo-labeling of base examples, using the label space of novel few-shot datasets.

The following covers the related work on vision-language modeling that is investi-

gated/discussed in “Label Hallucination for Few-shot Classification” [77].

Pseudo-labeling or self-training [108, 213] involves initially labeling the unlabeled

dataset using the model itself and subsequently re-training the model with both the

labeled and pseudo-labeled datasets. This technique has exhibited significant success
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in semi-supervised learning scenarios [11, 184, 229], particularly when pseudo-labeling

is applied to a large unlabeled dataset with classes that overlap with the labeled set

(i.e., the unlabeled and labeled datasets share similar distributions). Algorithms are

often designed to filter out low-confidence pseudo-labeled examples. The recent work

by Pham et al. [150], combining gradient-based meta-learning with pseudo-labeling,

has achieved a state-of-the-art performance on the ImageNet benchmark [36]. This

approach has also been extended to semi-supervised few-shot learning [106, 120, 209],

and in the application of semantic segmentation [76].

Furthermore, BLIP [114] has demonstrated that pseudo-labeling noisy web-crawled

image-text pairs is an effective method for learning vision-language models.

Transfer learning stands as the predominant approach for training effective models

in various tasks [40], especially when labeled examples are limited. Recent baseline

methods [24, 38] have demonstrated competitive performances in few-shot classification

by employing pretraining on a base training set and subsequent finetuning on the

support set from each episode. RFS [196] has surpassed advanced meta-learning

methods of its time by adopting a fixed embedding model followed by linear regression.

The efficacy of transfer learning methods heavily relies on the quality of pretrained

feature embeddings. To obtain more generalized embeddings of examples, SKD [155]

proposes the inclusion of a rotational self-supervised loss during the pretraining stage.

Invariant and Equivariant Representations (IER) [165] delves into contrastive learning

during the embedding learning process.
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Chapter 3

VLM Pre-training with Less Data

In this Chapter, we present BLIText (Bootstrapping Vision-Language Learning with

Decoupled Language Pre-training [84]). This work has been published in NeurIPS

2023.

Section 3.1

Overview

We present a novel methodology aimed at optimizing the application of frozen large

language models (LLMs) for resource-intensive vision-language (VL) pre-training.

The current paradigm uses visual features as prompts to guide language models,

with a focus on determining the most relevant visual features for corresponding text.

Our approach diverges by concentrating on the language component, specifically

identifying the optimal prompts to align with visual features. We introduce the

Prompt-Transformer (P-Former), a model that predicts these ideal prompts, which

is trained exclusively on linguistic data, bypassing the need for image-text pairings.

This strategy subtly bifurcates the end-to-end VL training process into an additional,

separate stage. Our experiments reveal that our framework significantly enhances the

performance of a robust image-to-text baseline (BLIP-2), and effectively narrows the
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performance gap between models trained with either 4M or 129M image-text pairs.

Importantly, our framework is modality-agnostic and flexible in terms of architectural

design, as validated by its successful application in a video learning task using varied

base modules.

Section 3.2

Motivation

The field of vision-language (VL) learning seeks to create AI systems that mimic human

cognition, processing the world through multi-modal inputs. Core research areas in VL

include visual-question-answering (VQA), image captioning, image-text retrieval, and

visual reasoning. VL learning began with task-specific learning [5, 217] and has since

progressed to large-scale image-text pre-training paired with task-specific fine-tuning

[154]. Furthermore, contemporary studies have begun exploring the use of off-the-shelf

frozen pre-trained large language models (LLMs) in VL models [3, 86, 115, 199], which

have delivered impressive results in language generation tasks such as VQA and image

captioning.

Present VL models utilizing frozen LLMs are characterized by shared design

elements: visual encoders, visual-to-language modules, and frozen LLMs. Except

for Flamingo [3], which employs a visual signal at each layer of the frozen LLM via

gated cross-attention, the majority of works [21, 115, 126, 136, 199] feed aligned visual

features as soft language prompts [110] into the frozen LLMs (see Figure 3.1 left). The

models are then trained end-to-end with an image-conditioned language generation loss

using large-scale image-text pairs. This conceptually simple and implementation-wise

straightforward design has proven effective. BLIP-2 [115] demonstrates that decoupling

the end-to-end training into two stages is crucial for state-of-the-art results. The

second stage of training involves standard end-to-end learning, while the first stage of
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Figure 3.1: left: End-to-end training of X-to-language models (where X can be images,
videos, or audio), in which aligned input features are provided as prompts to LLMs. Ex-
amples include Frozen [110] and ClipCap [136]. middle: “Forward-decoupled training” as
demonstrated in BLIP-2 [115] and X-LLM [21]. For instance, in BLIP-2, the Q-Former is first
trained to extract relevant features from the image encoder, and then the selected features are
used as prompts for LLM for end-to-end learning. right: We propose “backward-decoupled
training”, which initially identifies the “reference prompt” for the LLM to generate the target
text, followed by mapping input features to the “reference prompt”.

training of BLIP-2 utilizes a learnable module (called Query-Transformer/Q-Former)

to selectively choose/query visual features relevant to the corresponding text. This

reduces 256 features of an entire image to the 32 most relevant visual features that

will be sent into the following parts of the model. Stage 1 of BLIP-2 can be viewed as

a refined learnable version of early VL works [5, 121, 241] that use object detectors

like Faster-RCNN [59] to select features from regions of objects (objects in images are

likely to be mentioned and thus relevant to the accompanying text). We refer to this

strategy as “forward-decoupling” since it uses a heuristic to learn/select which useful

features are forward-passed into the subsequent model to mitigate challenges in the

end-to-end optimization (shown in Figure 3.1 middle).

We provide a novel insight to mitigate the challenges in end-to-end optimization

by introducing “backward-decoupling” during back-propagation. For a caption t (e.g.,

“a cat wearing sunglasses”) from VL pre-training dataset DVL, the optimizer first finds
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the optimal continuous prompt p for a fixed decoder LLM Dlanguage:

p = argmin
p
L(Dlanguage(p), t) (3.1)

before further back-propagating into the vision-to-language module (e.g., Q-Former in

BLIP-2, or MLP in ClipCap) and the vision encoder (shown in Figure 3.1 right). We

realize that the first stage, optimization of p given Dlanguage and t, is purely linguistic

and does not restrict the learning text examples from DVL. Thus, we propose to learn

this part independently with the available sentence dataset.

While it’s not feasible to learn individual prompts p for each sentence t due to

the infinite number of possible sentences, we propose to parameterize prompt p by a

Prompting-Transformer (P-Former): p = EP-Former(t). This effectively transforms the

learning of p given Dlanguage and t into learning EP-Former by

argmin
EP-Former

L(Dlanguage(EP-Former(t)), t) (3.2)

Essentially, this is an autoencoder with the causal LLM Dlanguage as the decoder. As

for P-Former, we use a bidirectional Transformer and the [CLS] representation as the

bottleneck. Besides the reconstruction loss, we add a contrastive loss to discriminate

each sample. Such a design makes EP-Former a semantic sentence embedding model like

SimCSE [56] (i.e., semantically similar sentences have similar representations). Once

EP-Former is learned, p = EP-Former(t) will be the “reference prompt” for LLM Dlanguage

to generate t auto-regressively. The training overview and P-Former details are shown

in Figure 3.2.

Returning to the VL pre-training, we add a complementary loss to minimize the

distance between aligned visual features (being used as language prompts) and the

"reference prompt" given by P-Former. We expect this to improve the VL pre-training
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Figure 3.2: Overview of P-Former. left: The P-Former training resembles an autoencoder,
with the bidirectional P-Former as the encoder and a causal LLM (frozen) as the decoder.
The objective is to reconstruct input text auto-regressively. The [CLS] representation serves
as sentence embeddings, which are projected back to the length of prompts. The contrastive
loss at [CLS] mirrors the training of SimCSE [56]. A regularization vocabulary loss is utilized
to encourage the prompts to be close to the vocabulary embeddings. right: Overview of
bootstrapping VL pre-training with the trained P-Former. The alignment loss introduced by
P-Former is agnostic to input modalities, encoders, and X-to-language modules (i.e., modules
within the dashed box can be flexible). P-Former is only used during training and not during
inference.

in two ways: (1) We further decouple the VL learning into another stage, as Li et al.

[115] suggest that multi-stage training is important to mitigate alignment challenges.

(2) A semantically rich space is learned for aligned visual features/prompts by a

SimCSE design for our P-Former trained with the unimodal sentence dataset (i.e.,

semantically similar images are encouraged to align to “reference prompts” with close

representations).

Our proposed framework only adds a learning objective on tensors feeding into

LLMs as prompts (a.k.a images/multi-modalities as foreign languages [21, 207]).

Therefore, our method is agnostic to the input modalities, X encoders, and X-to-

language modules (where X can be images, videos, and audio). This could be especially

salient for videos, which have much less high-quality paired data [54] compared to

image-text pairs. And because P-Former is only trained with the LLM, there is no

need to re-train the P-Former for different modalities.

In our experiments, we take BLIP-2 as an example and show that our proposed
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framework improves this latest VL method by great margins in various benchmarks of

VQA and image captioning. Also, we demonstrate its effectiveness in other modalities

(i.e., video) using different vision-to-language modules (i.e., plain Transformer over

Q-Former).

We anticipate a growing body of future work within the paradigm of “images/multi-

modalities as language prompts with frozen LLMs” due to its simplicity and effec-

tiveness, as demonstrated by BLIP-2. For example, a concurrent work X-LLM [21]

extends BLIP-2 from images to videos/speech with more advanced LLMs, augmenting

BLIP-2’s vision-to-language module Q-Former with Adapters. Because our proposed

method is agnostic to input modalities, encoders, and X-to-language modules, it should

seamlessly apply to future work within this paradigm of “images/multi-modalities as

language prompts with frozen LLMs”.

Section 3.3

Technical Approach

Problem formulation Given an image-text dataset {I, t} ∈ DVL and a unimodal

language dataset composed purely of sentences {t} ∈ DL, our objective is to optimize

the pre-training of a vision-language (VL) model. This model consists of a pre-trained

vision encoder Evision, a vision-to-language adaptation module Θ
V→L

, and a frozen

pre-trained language decoder Dlanguage. The goal is to minimize the image-conditioned

language generation loss, given that the vision encoder Evision is also frozen:

argmin
Θ

V→L

LCrossEntropy(Dlanguage( Θ
V→L

(Evision(I))), t) (3.3)

As Li et al. [115] have noted, end-to-end optimization of Equation 3.3, visualized in

Figure 3.1 left, can sometimes lead to catastrophic forgetting in LLMs.
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3.3.1. Backward-decoupling and soft prompt pre-training

Let’s denote the adapted visual features as p = Θ
V→L

(Evision(I)), which serve as

soft prompts for the LLM Dlanguage. During the optimization, Equation 3.3 can be

decomposed into two parts, visualized in Figure 3.1 right :

argmin
p
LCrossEntropy(Dlanguage(p), t) (3.4)

argmin
Θ

V→L

LMSE( Θ
V→L

(Evision(I)), p) (3.5)

Equation 3.4 essentially asks “What is the optimal soft prompt p that enables the auto-

regressive language model Dlanguage to generate the sentence t." Like all gradient-based

deep learning models, depending on the training dataset, learning p given {Dlanguage, t}

could lead to different sub-optimal points1 (a conventional deep learning problem is

usually learning Dlanguage given {p, t}). End-to-end learning of Equation 3.3 can only

use text t from image-text dataset DVL to update its intermediate variable p. However,

we observe that the learning of Equation 3.4 involves no image, thus allowing us to

leverage abundantly available unimodal sentences in DL.

Learning p for each t in DL without constraint is intractable. Thus, we model

p by a bidirectional Transformer EP-Former (named Prompt-Former, or P-Former)

p = EP-Former(t). Specifically, we use the output [CLS] hidden state of BERT as a

compact representation for t and project it back to the token length of p. Equation 3.4

can thus be reformulated as:

argmin
EP-Former

LCrossEntropy(Dlanguage(EP-Former(t)), t) (3.6)

1It can be easily verified that there exist multiple different soft prompts for an LLM to generate
the same text auto-regressively. In an extreme example, a prompt with 32 tokens and a prompt with
16 tokens padded with 16 empty tokens (zeros vectors) can be both optimized for a LLM to generate
the same text.
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In essence, Equation 3.6 describes the training of an autoencoder with the bidirectional

P-Former EP-Former serving as the encoder, and the auto-regressive LLM Dlanguage as the

decoder. To enhance our model, we include an unsupervised contrastive loss Lcontrast,

acting on the [CLS] representations of sentences to differentiate distinct instances.

This loss, combined with our P-Former design, emulates the training of SimCSE [56],

a semantic sentence embedding model (i.e., for semantically similar image-text pairs,

the predicted prompts by P-Former should also be close). Furthermore, we introduce

a regularization loss Lvocab to minimize the distance between each token in p and the

closest embedding of the LLM’s (Dlanguage) vocabularies. The final objective becomes:

argmin
EP-Former

(LCrossEntropy(Dlanguage(EP-Former(t)), t) + Lcontrast + Lvocab) (3.7)

A comprehensive view of the P-Former’s architecture and learning losses is presented

in Figure 3.2 left. We emphasize that the optimization of Equation 3.7 and P-Former

training rely only on the text. Upon training the P-Former, Equation 3.5 can be

reformulated as:

argmin
Θ

V→L

LMSE( Θ
V→L

(Evision(I)), EP-Former(t)) ≡ argmin
Θ

V→L

Lalignment (3.8)

This new form, depicted in Fig 3.2 right, minimizes the distance between the aligned

visual features and the prompts predicted by the trained P-Former, effectively aligning

visual-linguistic representations.

3.3.2. Preliminary: BLIP-2 forward-decoupled training

While our proposed framework is flexible in regards to the specific architecture of

Θ
V→L

or the learning strategy deployed, for illustrative purposes, we employ BLIP-2 as

a case study to demonstrate the applicability of our approach with state-of-the-art
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learning methods, owing to the strong performance and reproducibility of BLIP-2. In

the context of BLIP-2, Evision is a ViT-g, Θ
V→L

is referred to as Q-Former, and Dlanguage

is a OPT2.7B. BLIP-2 proposes a two-stage pre-training process, with the initial stage

involving the pre-training of Θ
V→L

by:

argmin
Θ

V→L

ITC( Θ
V→L

(Evision(I)), Θ
V→L

(t)) + ITM( Θ
V→L

(Evision(I), t)) + ITG( Θ
V→L

(Evision(I), t))

(3.9)

This is followed by a second stage that involves end-to-end training of Equation 3.3.

The terms ITC, ITM, and ITG in Equation 3.9 are utilized to guide the Q-Former

Θ
V→L

in extracting visually relevant features that correspond to the associated captions.

We refer to this two-step process in BLIP-2 – first determining the visual features to

extract and then incorporating the selected visual features into an end-to-end learning

framework – as “forward-decoupled training.”

3.3.3. BLIP-2 forward-decoupled training with pre-trained P-Former

We now describe the full training pipeline when integrating our framework with BLIP-

2. The first stage of training involves pre-training the Q-Former with Equation 3.9

(LBLIP2-stage1 ≡ ITC + ITM + ITG), supplemented with the alignment loss introduced

by the P-Former, as defined in Equation 3.8:

LBLIP2-stage1 + ω1 × Lalignment (3.10)

Subsequently, the second stage of training, in line with our approach, involves

BLIP-2’s stage 2, which is the end-to-end training of Equation 3.3: LBLIP2-stage2 ≡

L(Dlanguage( Θ
V→L

(Evision(I))), t)), again enhanced with the alignment loss imparted by
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Figure 3.3: An overview of our framework with BLIP-2, which employs a two-stage training
process. The green components represent the alignment loss and modules added by us, which
do not require gradients. The blue components are part of the original BLIP-2 structure. P-
Former is solely utilized during training and is not required during the inference
phase. Our proposed framework, with P-Former, can be seamlessly applied to any models
that leverage prompts as the interface for multi-modal-language communications.

P-Former in Equation 3.8:

LBLIP2-stage2 + ω2 × Lalignment (3.11)

Figure 3.3 provides a schematic representation of the proposed integration of our

framework and P-Former with BLIP-2.

3.3.4. Model pre-training

Training dataset We employ a 12M subset of the pseudo-labeled [114] LAION dataset

[170], using only the sentences, for pre-training the P-Former. For VL pre-training,

we widely adapted academic setting (since academic institutions lack the resources

available to industry researchers to use very large datasets) with approximately 4M

image-text pairs. This set comprises the MSCOCO-80K [122], VG-100K [101], CC-3M
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[173], and SBU-1M [142] datasets.

Pre-training models Our method is universally applicable to any vision-to-text

models that utilize prompts as the interface. Owing to its impressive performance and

reproducibility, we chose BLIP-2 as the base model for our primary experiments. Thus,

for VL pre-training, the image encoder Evision is a ViT-g/14 from EVA-CLIP [47], the

LLM decoder Dlanguage is an OPT2.7B [242], and the vision-to-language adaptation

module is a Q-Former [115]. The Q-Former is initialized by BERT-base with 32

learnable queries. Our newly proposed P-Former is a base Transformer initialized by

BERT-base.

Pre-training details The P-Former is trained on a system with 3 × RTX-A6000

(48GB) GPUs, using PyTorch [147]. We trained for five epochs with a linear warm-

up and cosine scheduling, using a batch size of 384 (3 × 128), and AdamW as the

optimizer. The initial learning rate is set to 1e−4, with a minimum learning rate of

1e−5, a warm-up learning rate of 1e−6, and 2000 warm-up steps. The VL pre-training

is performed on a server equipped with 8 × RTX-A6000 (48GB) GPUs, using PyTorch.

We developed the code based on the LAVIS project [112]. Predominantly, we employed

the default configuration files provided by BLIP-2 of LAVIS. Both the stage 1 and

stage 2 training ran for 10 epochs with linear warm-up and cosine scheduling, using

a batch size of 1024 (8 × 128), and AdamW as the optimizer. The weight decay is

set to 0.05, the initial learning rate is 1e−4, the minimum learning rate is 1e−5, and

the warm-up learning rate is 1e−6. The key distinction is that stage 1 and stage 2

incorporate 5000 and 2000 warm-up steps, respectively. We set ω1 = 10 and ω2 = 100

while training BLIP-2 OPT2.7B with our P-Former.

Computational overhead considerations Incorporating Lalignment from Equa-

tion 3.10 and 3.11 introduces only a minimal computational overhead, attributable

to an additional forward pass of the P-Former (Transformer-base) at each iteration.
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To illustrate, in our experimental settings using BLIP-2 OPT2.7B, the training time

for stage 1 saw a modest increase from 2,669 minutes to 2,743 minutes. Similarly, for

stage 2, the training time increased marginally from 1,862 minutes to 1,880 minutes.

Thus, our methodology’s overall computational burden remains manageable despite

its enhancements (the only additional cost is pre-training of the P-Former, which only

needs to be done once for an LLM).

Section 3.4

Experiments

Given the impressive performance and accessibility of the BLIP-2 model, coupled

with its open-source nature, we primarily employ it as our base model. We aim

to demonstrate how our proposed “backward-decoupling” strategy, along with the

learned P-Former, can enhance the baselines across various image-to-text generation

benchmarks. In Section 3.4.5, we further extend the applicability of our framework to

other modalities, utilizing different base models.

3.4.1. Zero-shot image-to-text generation

We assess the performance of our pre-trained models on zero-shot VQA, encompassing

GQA [75], OKVQA [134], and VQAv2 [64], without any task-specific fine-tuning. As

per BLIP-2, we append text prompts to visual prompts prior to their processing by

the frozen LLM. Both for the baseline BLIP-2 and our model, the text prompt used

is “Question: Short answer:”. The results, as detailed in Table 3.1, suggest that our

proposed framework significantly enhances the zero-shot VQA performance of BLIP-2

trained with 4M image-text pairs. Remarkably, the gap between the BLIP-2 trained

with 4M and 129M image-text pairs is largely bridged by our method.
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Models #Pretrain
Image-Text

Pretrain
Uni-Text

VQAv2 OK-VQA GQA
val test-dev test test-dev

FewVLM [87] 9.2M - 47.7 - 16.5 29.3
Frozen [199] 3M - 29.6 - 5.9 -
VLKD [29] 3M - 42.6 44.5 13.3 -
Flamingo3B [3] 1.8B - - 49.2 41.2 -

OPT2.7B BLIP-2 [115] 4M - 46.8 45.6 25.9 30.5
OPT2.7B Ours 4M ✓ 52.6 52.2 30.0 34.0
OPT2.7B BLIP-2† [115] 129M - 53.5 52.3 31.7 34.6

Table 3.1: Comparison with different methods on zero-shot VQA †: numbers taken from Li
et al. [115].

Models #Pretrain
Image-Text

NoCaps Zero-shot (validation set) COCO Fine-tuned
in-domain near-domain out-domain overall Karpathy test
C S C S C S C S B@4 C

OSCAR [121] 4M - - - - - - 80.9 11.3 37.4 127.8
VinVL [241] 5.7M 103.1 14.2 96.1 13.8 88.3 12.1 95.5 13.5 38.2 129.3
BLIP [114] 129M 114.9 15.2 112.1 14.9 115.3 14.4 113.2 14.8 40.4 136.7
OFA [206] 20M - - - - - - - - 43.9 145.3
Flamingo [3] 1.8B - - - - - - - - - 138.1
SimVLM [210] 1.8B 113.7 - 110.9 - 115.2 - 112.2 - 40.6 143.3

OPT2.7B BLIP-2 [115] 4M 115.3 15.0 111.0 14.6 112.5 14.0 111.9 14.5 41.8 140.4
OPT2.7B Ours 4M 118.3 15.3 114.7 14.9 114.1 14.1 115.1 14.8 42.3 141.8
OPT2.7B BLIP-2† [115] 129M 123.0 15.8 117.8 15.4 123.4 15.1 119.7 15.4 43.7 145.8

Table 3.2: Comparison with different captioning methods on NoCaps and COCO. All
methods optimize the cross-entropy loss during fine-tuning. C: CIDEr, S: SPICE, B: BLEU.
†: numbers taken from Li et al. [115].

3.4.2. Fine-tuned image captioning

We further fine-tune our pre-trained model for MSCOCO [122] image captioning,

employing the text prompt “a photo of ”. Following BLIP-2, we fine-tune the model

for 5 epochs using a batch size of 1024 (8× 128), AdamW with an initial learning rate

of 1e−5, minimum learning rate of 0, warm-up learning rate of 1e−8 and 1000 warm-up

steps, with linear warm-up and cosine scheduling. We evaluate our fine-tuned model

on the Karpathy test split of MSCOCO. Also, zero-shot transfer results on the NoCaps

dataset [2] are reported. Shown in Table 3.2, our framework improves BLIP-2 in all

metrics, with greater improvements in CIDEr compared to SPICE.
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Task Pre-training
objectives

Image → Text Text → Image
R@1 R@5 R@1 R@5

Flickr30K LBLIP2-stage1 94.3 99.8 82.9 95.5
LBLIP2-stage1 + Lalignment 93.7 99.7 83.0 95.8

MSCOCO LBLIP2-stage1 78.4 93.8 60.5 83.0
LBLIP2-stage1 + Lalignment 78.7 94.5 60.4 82.8

Table 3.3: Comparison with different image-to-text and text-to-image retrieval methods.

3.4.3. Zero-shot image-text retrieval

While our proposed method primarily focuses on refining visual prompts for a frozen

LLM to generate corresponding text, it may not prove as beneficial for image-text

retrieval tasks (the ITC and ITM losses are principally responsible for these tasks).

Nevertheless, we present results on zero-shot MSCOCO, and zero-shot Flickr30K [152]

image-to-text and text-to-image retrievals. We compare two models trained with

LBLIP2-stage1 (ITC, ITM and ITG) and LBLIP2-stage1 + Lalignment, without any further

task-specific fine-tuning. As expected, Table 3.3 reveals that the newly introduced

Lalignment offers limited benefits for retrieval tasks. However, it does not negatively

impact the performance.

3.4.4. Ablation studies

Impact of alignment loss weights We investigate the influence of ω1 and ω2

in Equation 3.10 and 3.11. ω1 = 0 and ω2 = 0 refers to BLIP-2, and ω1 = 10 and

ω2 = 100 refers to our default configuration of BLIP-2 + P-Former. The alignment

loss introduced by the P-Former proves beneficial in both stages of VL pre-training,

as shown in Table 3.4.

Alternate language model In this section, we substitute the decoder-based

OPT2.7B model with an encoder-decoder-based FLAN-T5XL as the new LLM. The

experiments are conducted with a limited computational budget on 3 × RTX-A6000
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ω1 ω2
VQAv2 OK-VQA GQA

val test test-dev

0 0 46.8 25.9 30.5
10 0 51.4 29.2 32.8
0 100 50.4 28.7 33.0
10 100 52.6 30.0 34.0

Table 3.4: Ablations on ω1 and ω2 of Equation 3.10 and 3.11 (using OPT2.7B as LLMs).

Models #Pretrain
Image-Text

VQAv2 OK-VQA GQA
val test test-dev

Flan-T5XL BLIP-2‡ 4M 48.3 31.5 36.4
Flan-T5XL ours‡ 4M 54.9 35.7 40.3
Flan-T5XL BLIP-2† 129M 62.6 39.4 44.4

Table 3.5: Experiments using Flan-T5XL as LLM. ‡: using much less GPUs/epochs
compared to Sec.3.4.1. †: from Li et al. [115].

and for 5 epochs on both stage 1 and stage 2. The results, displayed in Table 3.5,

verify the effectiveness of our framework with another LLM.

Effect of P-Former’s pre-training sentence datasets In our primary exper-

iments, we utilize a dataset containing 12M sentences for P-Former training. We

investigate the impact of the pre-training sentence dataset for P-Former by re-training

it with 4M sentences from our VL pre-training datasets. We then train BLIP-2 +

P-Former and report zero-shot VQA results in Table 3.6. This examination underscores

that both the implicit decoupling of BLIP-2’s two-stage training into a 3-stage training

(pre-training of P-Former), and the employment of additional unimodal sentences

contribute to the improved outcomes.

3.4.5. Video captioning

Our framework is modality-agnostic with respect to the visual encoder and vision-

to-language adaptor, making it applicable to other modalities, such as video. Conse-

quently, we establish a video learning pipeline, with the vision encoder set as a frozen
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P-Former #Pretrain
Sentences

VQAv2 OK-VQA GQA
val test test-dev

× - 46.8 25.9 30.5
✓ 4M 51.7 28.2 32.3
✓ 12M 52.6 30.0 34.0

Table 3.6: Ablations on sentence datasets used to train P-Former (using OPT2.7B as LLMs).
The first row w/o P-Former is baseline BLIP-2.

BLEU-4 CIDEr ROUGE

NITS-VC [181] 20.0 24.0 42.0
ORG-TRL [244] 32.1 49.7 48.9

LITG 29.3 56.6 48.2
LITG + Lalignment 30.9 60.9 49.1

Table 3.7: VATEX English video captioning. Baseline is a sequential model (I3D →
Transformer → OPT2.7B), training end-to-end with ITG.

I3D [18] video encoder, the vision-to-language adaptor as a Transformer-base, and the

LLM decoder as the OPT2.7B (also frozen). We then train this model on the VATEX

[208] English training set and evaluate it on the validation set. This dataset contains

26K videos for training. The experiments are conducted on an RTX-A6000. Initially,

we train the model solely using Lalignment for 10 epochs with the P-Former, followed

by end-to-end learning with LITG for an additional 10 epochs.

Our baseline, represented in Table 3.7, is competitive with two well-established

video captioning models: MITS-VC [181] and ORG-TRL [244]. It is noteworthy that

the current state-of-the-art on this benchmark, VideoCoCa [221], is trained on 10M

videos, in contrast to our model, which is trained on merely 26K videos. Furthermore,

the integration of P-Former and Lalignment enhances the CIDEr score by 4.3 (from

56.6→ 60.9).

Despite being a smaller-scale experiment without large-scale pre-training, we

demonstrate that our learning framework can be generalized to another modality (i.e.,

video-learning), employing a different vision-language adaptor (i.e., a plain Transformer
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as opposed to a Q-Former).

Section 3.5

Summary

This work introduces a novel optimization framework for enhancing vision-language

models based on large, frozen LLMs. We observe that the end-to-end image-to-text pre-

training can be backwardly decoupled: initially determining the “ideal prompt” that

triggers the LLM to generate the target text (which can be trained in an unsupervised

fashion), followed by the alignment of visual features to the prompt. To this end,

we train a P-Former, which functions similarly to a semantic sentence embedding

model, to predict prompts to which visual features should align. Experimental results

demonstrate that including alignment loss (via P-Former) in the BLIP-2’s framework

significantly narrows the performance gap between models trained with 4M and 129M

image-text pairs.

Section 3.6

Supplementary Information

Intuition and motivation behind P-Former In this section, we summarize the

intuitive explanation and motivation on why learning an ideal language prompt helps

more than using visual ones as in the counterpart models.

• In our experiments with base models like BLIP-2, the architecture consists of three

sequential components: (1) ViT, (2) VL-connector, and (3) LLM decoder. Since we

use a frozen LLM for generation, optimizing closer to the LLM decoder becomes

more pivotal for achieving optimal generation quality.

• The unique design of P-Former mirrors a sentence embedding model. This means

the prompts predicted by the P-Former carry rich semantics. Therefore, during
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evaluations on unfamiliar images, the model boasts an improved generalization

capability.

• BLIP2’s studies indicate that direct end-to-end optimization of the sequential model

can sometimes lead to catastrophic forgetting. Our approach adds an additional

layer of complexity by decomposing the 2-stage BLIP2 training into 3 stages, further

addressing this optimization challenge.

• For BLIP2, optimization of soft prompt is learned only using text from image-text

pair, while our decoupled training allows for leveraging additional unimodal data

for optimizing these soft prompts

Justification for lack of ablation experiments w/ and w/o the P-Former

We purposely omitted experiments with and without the P-Former module (e.g.,

using a randomly initialized prompt p). This omission was driven by the following

considerations:

• Random initialization and learning without P-Former: Our initial approach

was to directly learn from a randomly initialized prompt p without incorporating

the P-Former. But, upon testing, we identified a significant challenge. For a smaller

model variant like opt-2.7b, which possesses a hidden size of 2560, if we employ 32

tokens as soft prompts for an expansive dataset with 4M sentences, the resultant

model would have to accommodate an overwhelming 327B parameters. This would

have computational implications and potentially overfit, as learning from such a

vast parameter space can dilute the essential semantic connections between various

sentences.

• P-Former’s efficiency in parameterization: The P-Former emerged as a solution

to this parameter explosion problem. Instead of requiring a unique prompt for

each data point in the dataset, the P-Former parameterizes the soft prompt p

using a semantically-rich Transformer model. This design ensures that the total
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number of parameters remains fixed at 110M. The major advantage here is scalability.

Whether working with a dataset of 4M, 12M, or even larger (e.g., 129M) or LMs with

varying decoder sizes, the P-Former guarantees a consistent number of parameters,

making the model more computationally efficient and preventing the loss of essential

semantic relationships.

In brief, our experimentation strategy was driven by the dual goals of maintaining

computational efficiency while preserving rich semantics. The challenges posed by

direct learning from a randomly initialized prompt emphasized the need for a more

structured approach, leading to the birth of the P-Former concept.

Qualitative analysis on VQA In this section, we incorporate qualitative compar-

isons for the GQA and OKVQA datasets, allowing us to offer more nuanced insights.

In Figure 3.4, we show several examples comparing our model’s response with BLIP-2

and the ground truth (GT). From these examples, it can be observed that there is

greater agreement with GT by our model.

It should be noted that the abstract semantic reasoning of our model can sometimes

lead to artificially low scores for our model when looking for an exact match. For

instance, asking “What occupation might he have?” with a picture of a person driving

a forklift generates the answer “forklift operator” by our model, whereas the correct

exact answer in the GT is stated as “forklift driver.” Though these two answers are

semantically identical, they will count as a wrong generation by our model.

Additional discussion of the results In this section, we provide more interpreta-

tion of the results. For instance, Table 3.1, in addition to underscoring the potency of

our proposed framework in bolstering the zero-shot VQA performance, particularly

when trained with 4M image-text pairs, shows that our method manages to consider-

ably close the performance gap between the BLIP-2 trained on different scales: 4M
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OKVQAGQA

BLIP-2: Asphalt
Our: Concrete
GT: concrete   
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crosswalk near the 
street lamp made 
of?
BLIP-2: Asphalt
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of?

BLIP-2: both 
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On which side of 
the picture is the 
clean mirror?
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device is 
reflective?

BLIP-2: a computer   
Our: computer 
monitor
GT: monitor

Which kind of 
device is 
reflective?

BLIP-2: yes   
Our: no
GT: no

Is the door white 
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road the same as 
that of the flag?

BLIP-2: yes   
Our: no
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that of the flag?

BLIP-2: both   
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Which room is it?
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Which room is it?
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Is the door white 
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BLIP-2: yes   
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that of the flag?

BLIP-2: both   
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Is the field soft and 
snowy?

BLIP-2: yes   
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Is there a tomato 
in this photo?

BLIP-2: yes   
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Is there a tomato 
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BLIP-2: both    
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GT: new

Does the train that 
looks orange and 
gray look old or 
new?

BLIP-2: both    
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looks orange and 
gray look old or 
new?

BLIP-2: red   
Our: black
GT: black

What color do you 
think the shirt is?

BLIP-2: red   
Our: black
GT: black
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think the shirt is?

BLIP-2: video game 
controllers
Our: a wii controller
GT: wii controller

What does the 
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BLIP-2: video game 
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GT: wii controller
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Our: a computer
GT: router
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Our: a wii controller
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What brand is this 
device?
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GT: samsung
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BLIP-2: me
Our: a plumber
GT: plumber

What type of person 
would you call if this 
happened in your 
house?

BLIP-2: me
Our: a plumber
GT: plumber
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house?

BLIP-2: a mirror  
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GT: selfie

What type of picture 
is this person 
taking?

BLIP-2: a mirror  
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GT: selfie

What type of picture 
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taking?
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GT: forklift driver

What occupation 
might he have?

BLIP-2: truck driver
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GT: forklift driver
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BLIP-2: cheese
Our: mozzarella
GT: mozzarella

What type of cheese 
is being spread?

BLIP-2: cheese
Our: mozzarella
GT: mozzarella

What type of cheese 
is being spread?

BLIP-2: they are for 
shade
Our: for shade
GT: block sun

What is the purpose 
of those umbrellas?

BLIP-2: they are for 
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Our: for shade
GT: block sun

What is the purpose 
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BLIP-2: sony
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GT: samsung
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device?

BLIP-2: me
Our: a plumber
GT: plumber
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taking?
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Our: mozzarella
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is being spread?

BLIP-2: they are for 
shade
Our: for shade
GT: block sun

What is the purpose 
of those umbrellas?

BLIP-2: black
Our: suit
GT: suit

What type of 
clothing are the 
men wearing?

BLIP-2: black
Our: suit
GT: suit

What type of 
clothing are the 
men wearing?

BLIP-2: middle school
Our: 3rd grade
GT: third

What grade are 
these kids in?

BLIP-2: middle school
Our: 3rd grade
GT: third

What grade are 
these kids in?

BLIP-2: cat     
Our: kitten
GT: kitten

What do you call a 
baby version of 
this animal?

BLIP-2: cat     
Our: kitten
GT: kitten

What do you call a 
baby version of 
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BLIP-2: zebra
Our: herd
GT: herd

A group of these 
animals is called a 
what?

BLIP-2: zebra
Our: herd
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A group of these 
animals is called a 
what?

BLIP-2: at a 
restaurant
Our: outside
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Where is this lady 
having lunch?

BLIP-2: at a 
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having lunch?

BLIP-2: pizza crust
Our: pepperoni
GT: olives

What are the round 
black things called 
that is used as a 
topping for this 
pizza in the photo?
BLIP-2: pizza crust
Our: pepperoni
GT: olives

What are the round 
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Our: suit
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BLIP-2: cat     
Our: kitten
GT: kitten
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baby version of 
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BLIP-2: zebra
Our: herd
GT: herd
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what?

BLIP-2: at a 
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Our: pepperoni
GT: olives

What are the round 
black things called 
that is used as a 
topping for this 
pizza in the photo?

Figure 3.4: Qualitative analysis on success and failure cases of GQA and OKVQA.

and 129M image-text pairs. This suggests that the effectiveness of our model is not

solely a function of the amount of training data but rather the methodology itself.

In essence, this table illustrates how strategic modifications and improvements can

achieve comparable results to models trained on much larger datasets.

Similarly, Table 3.2 provides insights into our model’s adaptability. When we

fine-tune our pre-trained model for a specific task like MSCOCO image captioning, the

results reflect an overall enhancement over BLIP-2 across all metrics. The pronounced

improvement in CIDEr, as opposed to SPICE, indicates that our model is adept at

recognizing and generating more relevant and contextually accurate descriptions of

images. The additional data on zero-shot transfer to the NoCaps dataset further

substantiates the model’s capability to generalize and adapt to newer, unseen data.
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Finally, while our model’s primary design goal is to refine visual prompts for

text generation, Table 3.3 offers a perspective on its performance in the retrieval

domain. Even though the model was not specifically optimized for retrieval tasks, it is

evident that the introduced modifications do not compromise the retrieval performance,

attesting to the model’s robustness.

LLM-dependence of the stage-1 pre-training It should be noted that our

stage-1 pre-training needs to be repeated for each LLM, if ω1 ̸= 0. However, as

evidenced in Table 3.4 (ω1 = 0 and ω2 = 100), our approach achieves competitive

results even without the alignment loss in stage-1, focusing the alignment solely on

stage-2.
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Chapter 4

VLM Pre-training with Less Compute

In this Chapter, we present SimVLG (SimVLG: Simple and Efficient Pretraining of

Visual Language Generative Models [86]). This work has been published in arXiv

pre-print server.

Section 4.1

Overview

In this chapter, we propose “SimVLG”, a streamlined framework for the pre-training

of computationally intensive vision-language generative models, leveraging frozen pre-

trained large language models (LLMs). The prevailing paradigm in vision-language

pre-training (VLP) typically involves a two-stage optimization process: an initial

resource-intensive phase dedicated to general-purpose vision-language representation

learning, aimed at extracting and consolidating pertinent visual features, followed by

a subsequent phase focusing on end-to-end alignment between visual and linguistic

modalities. Our one-stage, single-loss framework circumvents the aforementioned

computationally demanding first stage of training by gradually merging similar visual

tokens during training. This gradual merging process effectively compacts the visual

information while preserving the richness of semantic content, leading to fast conver-
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gence without sacrificing performance. Our experiments show that our approach can

speed up the training of vision-language models by a factor ×5 without noticeable

impact on the overall performance. Additionally, we show that our models can achieve

comparable performance to current vision-language models with only 1/10 of the data.

Section 4.2

Motivation

The landscape of vision-language modeling has undergone significant transformations

in recent years, with CLIP [154] serving as a landmark development. It distinguished

itself through unparalleled zero-shot classification capabilities and efficiency in image-

text retrieval tasks. Successive models like ALBEF [113], X-VLM [231], and VLMo [9]

further broadened the scope, addressing a myriad of tasks such as retrieval, visual

entailment, and closed-set Visual Question Answering (VQA), among others.

Recently, the field has been enriched by the advent of generative models designed

for complex image-to-language tasks. Notable contributions include CoCa [228],

SimVLM [210], Frozen [199], Flamingo [3] and BLIP-2 [115], targeting tasks like image

and video captioning and open-set VQA. Specifically, CoCa demonstrates robust

performance across both uni-modal and multi-modal tasks, leveraging a large-scale

dataset for training from scratch.

The computationally intensive nature of pre-training Vision-Language Models

(VLMs) led to the conceptualization of BLIP-2. This model seeks to alleviate com-

putational costs by employing pre-trained vision encoders (ViT) and language de-

coders (LLM). As illustrated in Figure 4.1a, a central innovation in BLIP-2 is the

Q-former, a vision-language connector outfitted with learnable queries for effective

cross-attention mechanisms. This architectural choice, however, demands an in-

tensive pre-training regimen, referred to as BLIP-2’s Stage 1. The stage involves
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three learning objectives—image-text contrastive, image-text matching, and language

generation—and necessitates multiple forward passes for optimization.

Despite its efficiency gains over CoCa, BLIP-2’s training still imposes considerable

computational costs. This poses challenges for research environments with limited

computational resources, such as university labs. Our experiments indicate that

the Stage-1 training of BLIP-2 took approximately eight days on eight A100-80G

GPUs. This computational burden has consequently restricted research to using the

pre-trained Q-former, hindering the exploration of alternative ViTs in VLMs. This

limitation is evident in subsequent works like InstructBLIP [30], VideoChat [116],

Video-LLaMA [236], X-LLM [21].

The prospect of reducing BLIP-2’s computational cost through end-to-end, single-

stage training is compelling. Such an approach would remove the complexities

associated with resource allocation and hyper-parameter tuning inherent in multi-stage

training. Yet, direct end-to-end training with BLIP-2 poses substantial challenges,

corroborated by both original findings from BLIP-2 and our own empirical analyses.

We hypothesize that these challenges emanate from the intrinsic design of the Q-former.

Specifically, the inclusion of randomly initialized learnable queries and cross-attention

mechanisms complicates the optimization landscape, especially when the aim is to

minimize the representational disparity between visual and linguistic modalities.

In this chapter, we propose an alternative to the Q-former, employing a systematic

token-merging [13] strategy that is both intuitive and effective. Here, token merging

signifies the step-wise aggregation of tokens with analogous features across the layers

of the Transformer model (see Figure 4.1c). We substitute the Q-former in BLIP-2

with a standard Transformer architecture augmented with token merging capabilities,

which we term TomeFormer. Importantly, the TomeFormer is trainable to function

effectively as an efficient vision-language connector. This modification, which we
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Figure 4.1: Overview of the BLIP-2 and SimVLG. (a) The 1st stage of BLIP-2 training
involves a complex and computationally intensive process. It employs learnable queries
(depicted in green) to select 32 tokens (in orange) from an extensive pool of 256 visual
features (shown in grey). This queried output is then utilized to fulfill three distinct learning
objectives, necessitating multiple forward passes within a single optimization step. (b) The
2nd stage of BLIP-2 adopts a conventional end-to-end training approach, mapping images
directly to text. (c) In contrast, SimVLG employs a streamlined, single-stage training
mechanism with a unified loss. Here, visual tokens (in grey) are progressively aggregated
based on their inherent similarities at each layer of the TomeFormer architecture. The final
set of merged tokens (in orange) serves as semantically rich but computationally efficient
soft prompts, guiding the LLM to generate a corresponding caption for the input image.

call Simple Visual Language Generative pre-training model (SimVLG), facilitates a

streamlined, single-stage training process. It requires only a singular learning objective

and a single forward pass per optimization step. This stands in contrast to BLIP-2’s

multi-stage training, laden with multiple objectives and several forward passes.

Further, we introduce a soft attentive temporal token fusion mechanism within

the ViT for effective video-language modeling. This eliminates the need for modality
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realignment, contrasting approaches such as the temporal Q-former [236], or the

addition of new learnable temporal queries [116]. Our strategy simplifies the optimiza-

tion challenges tied to working with relatively smaller video-text datasets, compared

to their image-text counterparts. Remarkably, we demonstrate that even without

video pre-training, our temporal token fusion approach can effectively train robust

video-language models. This differs from recent work in video-language models that

depend on pre-training models using vast million-scale video-text datasets.

Our contributions are summarized as follows:

• We adapt token merging, initially designed to enhance ViT inference speed without

training, to serve as a means for condensing semantically-rich visual features within

the vision language connector. Concurrently, we present a novel temporal token

merging scheme for video modeling.

• Our proposed image-text model featuring TomeFormer competes effectively with

BLIP-2, while requiring just a fraction of the computational resources. Given the

reliance on BLIP-2’s pre-trained model in contemporary studies, our approach

widens the exploratory scope for various ViTs.

• We introduce a straightforward spatial attentive temporal modeling technique that

allows for the seamless adaptation of pre-trained image-text models to video-text

tasks. This approach eliminates the need for complex modality re-alignment, a

common requirement in alternative methods.

Section 4.3

Technical Approach

We begin by presenting our image-text model and then describe the adaptations made

to this pre-trained model for video-related tasks.

Three key models serve as the foundation for generative tasks in the image-text

42



4.3 Technical Approach VLM Pre-training with Less Compute

domain: CoCa, Flamingo, and BLIP-2. The high computational cost of training CoCa

from scratch and the proprietary nature of Flamingo led us to adopt the BLIP-2

framework. BLIP-2 utilizes frozen pre-trained ViT and LLM for vision-language

tasks. Notably, BLIP-2 has gained significant traction in the field due to its open-

source availability, thereby influencing subsequent research in various projects such as

InstructBLIP, VideoChat, Video-LLaMA, X-LLM, Valley, and Video-ChatGPT.

BLIP-2 Framework In BLIP-2, a ViT serves as the vision encoder, ingesting images

and outputting a set of 257 visual tokens. A specialized component, the Q-former,

is then added to the ViT. This Q-former utilizes 32 learnable queries to selectively

extract and transform the 32 most informative tokens from the ViT’s output pool of

257 tokens. These 32 tokens are subsequently used as soft language prompts to guide

the LLM in generating text that describes the image content.

Although it is theoretically possible to train BLIP-2 end-to-end, empirical evidence

suggests that such an approach often yields suboptimal outcomes. Consequently, BLIP-

2 employs a preliminary Stage-1 pre-training phase for both the ViT and Q-former.

During this phase, three learning objectives—Image-Text Contrastive (ITC) loss,

Image-Text Matching (ITM) loss, and Language Modeling (LM) loss—are optimized

simultaneously. This Stage-1 training involves 250,000 steps, each requiring multiple

forward passes due to the multiple learning objectives.

Despite being more efficient than CoCa, our observations reveal that BLIP-2’s

Stage-1 training still demands approximately eight days on a server equipped with

eight A100-80G GPUs. This computational cost poses a constraint for subsequent

research that aims to explore various ViT configurations, as each new configuration

requires a complete restart of the Stage-1 training process.

We introduce SimVLG-Image (abbreviated as SimVLG, and shown in Figure 4.1c),

an optimized vision-language generative pre-training model. Similar to BLIP-2,
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SimVLG utilizes a ViT for visual encoding and an LLM for linguistic decoding. The

key innovation is the incorporation of a standard Transformer, augmented with spatial

Token Merging, to act as the connector between the visual and linguistic modalities.

Formally, our framework includes a vision encoder Evision, which ingests an input

image I and encodes it into a fixed set of visual tokens: [v1, v2, ...vL] = Evision(I).

Here, L denotes the number of image patches. Subsequently, we employ a Trans-

former equipped with token-merging modules, termed as TomeFormer (Tv→t) as the

vision-to-language connector. This module effectively compresses the token count:

[v′1, v
′
2, ...v

′
L′ ] = Tv→t(fproj1([v1, v2, ...vL])). In this equation, L′ is considerably smaller

than the initial token count L1. The LLM decoder then employs these compressed

tokens as soft prompts for text generation: output = DLLM(fproj2([v
′
1, v

′
2, ...v

′
L′ ])). Pro-

jection functions fproj1 and fproj2 are used to ensure dimension compatibility. Three

main advantages of using TomeFormer are:

• Efficient token reduction, facilitating the transformation of loosely-structured visual

data into a more concise yet informative representation.

• Computational efficiency, as the uncompressed ViT output consists of 256 tokens,

plus a [CLS] token. Without compression, the subsequent vision-to-language con-

nector would be computationally expensive in terms of both memory and processing

power.

• Semantic richness of the compressed tokens. Unlike BLIP-2, which requires an

extensive pre-training phase for feature extraction via its Q-former, TomeFormer

naturally merges semantically similar tokens. Our empirical evidence confirms that

TomeFormer-equipped models train more efficiently compared to alternatives like

BLIP-2.
1We merge 19 tokens at each layer of the TomeFormer. Thus, 256 visual tokens are reduced to 28

tokens. Ablation on the number of merged tokens at each layer is studied in Section 4.5
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Section 4.4

Experiments

Our experimental setup is as follows:

• Pre-training Data Our model is pre-trained using the MSCOCO [122] and

CapFilt [114] datasets, which include BLIP’s pseudo-labeled Conceptual Caption-

ing [173], SBU [142], and LAION [170] datasets—similar to the data sources utilized

in BLIP-2. Note that we intentionally exclude the VG [101] dataset from our

pre-training procedure, as it mainly consists of localized captions.

• Models In order to facilitate a direct and fair comparison with BLIP-2, we employ

the same ViT, denoted as eva-vit-g [47]. For the language model decoders, we

explore both opt-2.7b [242] and vicuna-7b [26]. Our TomeFormer is initialized

using bert-base-uncased, ensuring parameter count parity with BLIP-2’s Q-former.

The only difference in parameterization between our model and BLIP-2 lies in the

additional 32 learnable queries present in the latter.

• Pre-training Details Our pre-training setup closely mirrors the configurations of

BLIP-2. We utilize a maximum learning rate of 1× 10−4 and a minimum learning

rate of 1 × 10−5. The learning rate follows a schedule that begins with a linear

warm-up phase of 5000 steps starting from 1× 10−6 and then transitions to a cosine

decay schedule. Weight decay is set at 0.05. The training is conducted with a batch

size of 1600, distributed over either 8× A100-80G or 32× V100-32G.

• Downstream Tasks SimVLG-Image is evaluated without additional fine-tuning

on a variety of tasks, including MSCOCO captioning, VQAv2 [64], GQA [75],

and OK-VQA [134]. For video tasks, SimVLG-Video is evaluated on fine-tuned

MSR-VTT [216] and MSVD [20] captioning tasks.

We conducted comparative evaluations between SimVLG and BLIP-2 on multiple
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image-text benchmarks, including zero-shot VQAv2, GQA, OK-VQA, and MSCOCO

captioning. It is essential to note that BLIP-2 demands an extensive Stage-1 pre-

training phase involving 250,000 optimization steps. This phase incorporates three

distinct loss functions and necessitates multiple forward passes through the model, a

process crucial for BLIP-2 to prevent model divergence.

Table 4.1 summarizes the results of our experiments. Our primary insights can be

distilled into the following key points:

• Utilizing the same training set of 104 million image-text pairs and an equal number

of optimization steps (250,000), SimVLG consistently outperforms BLIP-2 across

nearly all evaluated tasks.

• Remarkably, SimVLG maintains competitive performance even when its training

budget is trimmed to approximately one-third of BLIP-2’s, specifically 150,000

optimization steps.

• Our experiments show that SimVLG can produce satisfactory results with a signifi-

cantly reduced training dataset of 11 million image-text pairs, while still undergoing

150,000 optimization steps.

• SimVLG retains its efficacy even when the training budget is restricted to as few as

90,000 steps, demonstrating the model’s efficiency and robustness.

Training Time In the Stage-1 pre-training phase, BLIP-2 requires considerable

time, necessitating multiple forward passes to optimize three separate loss functions.

We document the training durations for both BLIP-2 and SimVLG when utilizing

eight A100-80G GPUs in Table 4.2.

Although BLIP-2 significantly reduces training time relative to predecessors like

CoCa, it still mandates an extended training duration—approximately ten days. This

extensive time commitment limits the feasibility of researchers to investigate various

ViT configurations. Most subsequent works based on BLIP-2 continue to use the
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Table 4.1: Comparison of methods on zero-shot VQA and MSCOCO captioning tasks
without additional fine-tuning. †: We were able to download approximately 81% of LAION-
115M and 78% of CCS-14M from the CapFilt dataset. ‡: BLIP-2 incorporates an additional
set of 32 learnable queries, each with a dimension of 768.

Models # pre-train
image-text

# trainable
params

# training
steps

VQAv2 GQA OK-VQA MSCOCO
val test-dev test val

O
P

T
-2

.7
b BLIP-2 104M† 110M+‡ 250k + 80k 44.6 30.6 26.0 137.7

SimVLG 104M 110M 250k 48.4 30.9 27.2 139.1
SimVLG 104M 110M 150k 46.9 30.8 24.8 137.0
SimVLG 11M 110M 150k 46.3 30.0 23.0 135.1
SimVLG 104M 55M 90k 45.9 30.6 25.8 134.0

V
ic

un
a-

7b

BLIP-2 104M† 110M+‡ 250k + 80k 57.8 35.7 27.8 138.0
SimVLG 104M 110M 250k 54.8 35.6 30.4 139.1
SimVLG 104M 110M 150k 55.5 36.3 30.6 137.9
SimVLG 11M 110M 150k 54.6 34.0 27.3 138.0
SimVLG 104M 55M 90k 53.4 34.7 30.6 137.8

Table 4.2: Runtime comparison of BLIP-2 and SimVLG when utilizing OPT-2.7b as the
LLM.

Models Stage 1 (5k steps) Stage 2 (5k steps) # steps Clock time MSCOCO

BLIP-2 3 hrs 50 min 2 hrs 40 min 330k 234 hrs 137.7
SimVLG - 2 hrs 45 min 250k 133 hrs 139.1
SimVLG - 2 hrs 45 min 150k 80 hrs 137.0
SimVLG (55M) - 2 hrs 35 min 90k 47 hrs 136.8

pre-trained Q-former in conjunction with the eva-vit-g model, thereby narrowing

the scope of ViT exploration. In contrast, SimVLG significantly trims the training

time while maintaining satisfactory performance levels, thus providing researchers

with the latitude to explore a wider array of advanced ViTs in future investigations.

Ablation on Visual Encoders One of the limitations of BLIP-2 is that it requires

an extensive stage-1 pre-training for every different vision encoder. This prohibits

practitioners from exploring stronger ViTs when they are available. SimVLG offers

fast training of models, allowing for exploration of different ViTs as visual encoders.

We conduct an ablation experiment on two ViTs (CLIPL and EVA-ViTG) using

8× RTX-A6000 and the CCS-14M dataset for pre-training. The models are trained

for 60,000 steps.

Shown in Table 4.3, SimVLG is robust to different visual encoders, and the stronger
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LLM ViT VQA GQA OK COCO

OPT CLIPL 44.7 30.9 22.7 123.9
EVA-ViTG 45.2 30.6 22.8 130.6

Vicuna CLIPL 49.0 33.0 23.6 125.2
EVA-ViTG 52.5 34.6 27.9 132.4

Table 4.3: Ablation studies on different visual encoders of SimVLG. VQA→VQAv2,
OK→OKVQA, COCO→MSCOCO (CIDEr).

ViT leads to better results. This implies that while SimVLG also requires retraining

for different ViTs, but the single-stage training and quick convergence allow it to

benefit from a future release of the latest ViTs, given its capability of fast adaptation.

Section 4.5

Analysis

Impact of Soft Prompt Length Within the TomeFormer, the vision-to-language

connector in SimVLG, we introduce a hyperparameter r that regulates the number

of spatial tokens merged at each layer. Increasing r substantially reduces the token

count, but runs the risk of eliminating important visual details. On the other hand,

a smaller r produces two main effects: (1) a more diffuse representation of visual

features, complicating the optimization landscape, and (2) elongated soft prompts for

the LLM, leading to increased computational cost during training, such as memory

overflow and extended training durations.

To study the effects of r, we conduct an ablation experiment using 8× RTX-A6000

and the CCS-14M dataset for pre-training. The models are trained for 60,000 steps,

and their performance is evaluated using CIDEr scores on MSCOCO captioning.

In Figure 4.2, we observe that a smaller r (e.g., 10) places a higher computational

load on both TomeFormer and the LLM, extending training time and compromising

optimization, as evidenced by lower CIDEr scores. In contrast, a larger r value (e.g.,
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Figure 4.2: Trade-off between MSCOCO captioning scores (depicted in red) and GPU
training time (depicted in blue) as a function of the number of tokens merged (r) in
TomeFormer. A larger r value leads to shorter soft prompts in the LLM, thereby decreasing
computational time (blue line). However, overly compressed soft prompts may result in the
loss of valuable visual information, while insufficiently compressed features complicate the
optimization process.

25) expedites training but at the expense of model performance, likely due to excessive

feature compression and consequent information loss.

Token Merging Visualization in SimVLG One notable advantage of SimVLG

over BLIP-2 is the absence of a requisite Stage-1 pre-training for the vision-to-language

connector. This simplifies the training pipeline by removing the need to train the

model to extract text-informative visual features. We posit that the token merging

process in TomeFormer naturally aggregates tokens associated with visually similar

elements, thereby yielding concise yet semantically rich visual features from the onset of

training. This inherent capability allows SimVLG to benefit from a more streamlined,

single-stage training regimen with just one learning objective.

Essentially, our token merging strategy serves as an efficient approximation of

QFormer’s functionality, compressing visual features in a semantically meaningful

manner. Figure 4.3 illustrates this, displaying the visual tokens before and after training

with our TomeFormer. The figure shows that the compressed visual features obtained

via token merging are semantically informative and offer basic object segmentation

within the image. Furthermore, the semantic coherence of these merged tokens

improves as training advances.
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Figure 4.3: Pre- and post-training visualization of merged tokens in SimVLG. The visual
features compressed via token merging exhibit semantic informativeness even prior to training.
This inherent characteristic facilitates SimVLG’s ability to converge quickly in an end-to-end
training setup.

Section 4.6

Summary

This chapter introduces SimVLG, an efficient and streamlined pre-training framework

for vision-language generative models. Like BLIP-2, SimVLG employs frozen ViT

and LLM. It further leverages a conventional Transformer architecture with token-

merging capabilities, known as TomeFormer, to act as the vision-to-language connector.

Compared to BLIP-2, SimVLG offers the distinct advantage of one-stage training.

This reduces computational overhead and maintains competitive performance even

with only 1/3 to 1/6 of the computational budget required by BLIP-2.

SimVLG demonstrates the possibility of achieving state-of-the-art performance

in vision-language tasks without the need for complex training regimens or high

computational budgets. This work thus makes a significant contribution to the ongoing

efforts to develop more accessible, efficient, and powerful models for understanding

and generating visual and textual information.
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Section 4.7

Supplementary Information

Technical Details of Token Merging In this section, we briefly summarize the

technical designs of Token Merging (ToMe) [13]. Token Merging was initially proposed

in Bolya et al. [13] for accelerating ViTs without training. Whereas we re-purpose

ToMe to condense the visual features used as language prompts in the LLM. Please

refer to Sections 3 of Bolya et al. [13] for full details.

Strategy. The token merging operations take place in between the attention and

MLP blocks of each Transformer layer. ToMe reduces r tokens per layer. And over

the L layers of a Transformer, it reduces a total of r × L tokens. In our experiments,

we set r = 19 and our TomeFormer has 12 layers.

Token Similarity. The similarities of tokens are defined by the cosine similarity

(dot product) of keys of tokens.

Bipartite Matching. The bipartite soft matching algorithm is summarized as

follows:

• Tokens are randomly partitioned into two sets A and B.

• Each token in set A is linked to the most similar token in set B.

• Keep links with top r similarities.

• Merge tokens with top r links.

• Concatenate set A and B back into a single set.

Details on Our Implementations of BLIP-2 and VideoCoCa Our reported

results of our re-trained BLIP-2 are slightly worse than what was reported in Li et al.

[115]. There are mainly three reasons:
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r VQA GQA OK COCO

10 45.7 31.3 23.6 127.5
13 46.2 31.4 24.5 128.0
16 46.3 30.9 24.3 129.9
19 45.2 30.7 22.8 130.6
22 45.5 31.5 21.8 129.7
25 44.7 31.1 21.5 128.7

Table 4.4: Ablation studies on r in TomeFormer.

Models Stage 1
(MACs)

Stage 1
steps

Stage 2
(MACs)

Stage 2
steps

BLIP-2 36.7G 250k 6.28G 80k
SimVLG - - 11.9G 250k
SimVLG - - 11.9G 150k
SimVLG55M - - 5.6G 90k

Table 4.5: Multiply–accumulate operations (MACs) comparison of Q-Former (of
BLIP-2) and TomeFormer (of SimVLG) when utilizing OPT-2.7b as the LLM.

• We are only able to download 104M image-text pairs from the original 129M CapFlit

dataset.

• We intentionally exclude the VG dataset from our pre-training procedure, as it

mainly consists of localized captions. Thus, our re-trained BLIP-2 is more challenging

when evaluated on GQA, which is built on VG dataset.

• The exact dataset weighting is unknown from the LAVIS project, we use a weighting

that is based on the size of each pre-training dataset, i.e., CSS14M, LAION115M,

MSCOCO.

For video captioning in Table 5.1 and Table 5.2, because VideoCoCa is not open-

sourced, we use a pre-trained model OpenCoCa released by mlfoundations.

Ablations on TomeFormer In this section, we provide experimental results in

VQAv2, GQA, and OKVQA of SimVLG, by varying hyper-parameter r in TomeFormer.

As we can see from Table 4.4, SimVLG is robust to the choice of r.
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Models Stage 1
time /5k

Stage 2
time /5k

Clock
time

BLIP-2 3 hrs 50 min 2 hrs 40 min 234 hrs
SimVLG - 2 hrs 45 min 133 hrs
SimVLG - 2 hrs 45 min 80 hrs
SimVLG55M - 2 hrs 35 min 47 hrs

Table 4.6: Training time comparison of BLIP-2 and SimVLG when utilizing OPT-2.7b
as the LLM.

MACs (FLOPs) in Q-Former and TomeFormer In this section, we compute

multiply–accumulate operations (MACs) in Q-Former and TomeFormer. MACs

performs a← a+ (b× c). Whereas, FLOPs is floating operations which includes

× / + / ÷ ... etc. One MACs has one × and one +. And thus, roughly speaking,

FLOPs is two times as MACs.

In our experiments, BLIP-2 and SimVLG have identical ViTs and LM decoders.

Thus, we only compare the MACs in VL Connector in BLIP-2 and SimVLG (i.e.,

Q-Former and TomeFormer).

There’s a large MACs in BLIP-2 stage-1 due to three forward passes using Q-

Former, where the last forward-pass used for caption loss dominates (27.0G). In

contrast, SimVLG does not require such a representation training stage (stage-1) at

all.

Another reason why BLIP-2 stage-1 is slow is that the computation of Image-Text

Contrasive and Image-Text Matching losses needs concat_all_gather operations

that require GPU communications. Further Image-Text Matching requires binomial

sampling of hard negatives. In comparison, our SimVLG circumvents such computa-

tions/communications.

Details on Training Time In Table 4.6, we provide training times for different

model configurations. For BLIP-2, each training iteration in Stage-1 takes longer
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than Stage-2 due to the three forward-passes to compute the Image-Text Contrast,

Image-Text Match, and Language Modeling learning objectives.
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Chapter 5

Effective Adaptation of Pre-trained

Models

Section 5.1

Effective Adaptation of VLMs

In this Section, we present SimVLG-video from SimVLG paper (SimVLG: Simple

and Efficient Pretraining of Visual Language Generative Models [86]). This work has

been published in arXiv pre-print server. In this work, we delve into the effective

adaptation of VLMs pre-trained on extensive image-text datasets for tasks related to

video language comprehension. Given the inherent challenge of acquiring high-quality

video-text pairs, our investigation bears substantial implications for enhancing the

learning process of video-language models.

5.1.1. Overview and Motivation

we introduce a soft attentive temporal token fusion mechanism within the ViT for

effective video-language modeling. This eliminates the need for modality realignment,

contrasting approaches such as the temporal Q-former [236], or the addition of new
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Figure 5.1: Overview of SimVLG-Video: In addition to TomeFormer’s spatial token merging
capabilities, our design introduces Temporal Attentive Soft Token Merging for nuanced
temporal modeling. Each frame’s output is calculated as a learnable weighted average of
other frames in the video. This approach maintains the integrity of pre-existing, well-trained
image-text models. For instance, when the input consists of static videos with identical frames,
SimVLG-Video operates as if it were an image-text model. Importantly, this architecture
avoids the need for complex model realignment, a requirement in alternative designs that
insert a temporal Q-former between the visual encoder and the language model.

learnable temporal queries [116]. Our strategy simplifies the optimization challenges

tied to working with relatively smaller video-text datasets, compared to their image-

text counterparts. Remarkably, we demonstrate that even without video pre-training,

our temporal token fusion approach can effectively train robust video-language models.

This differs from recent work in video-language models that depend on pre-training

models using vast million-scale video-text datasets.

Although many image-text models can be adapted for video-text tasks with

minor modifications, they often overlook the importance of temporal modeling. For

example, VideoCoCa extends CoCa using an attentive pooler without changing

CoCa’s architecture, while InstructBLIP and BLIP-2 employ a concatenated soft-

prompt approach. This simplicity comes at the cost of inadequate temporal modeling,

which is later addressed by VideoChat and Video-LLaMA through the introduction of
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learnable temporal queries and a temporal Q-former. However, these additions disrupt

the integrity of the aligned VLM and necessitate a re-alignment process requiring

substantial video-text pairs, as shown in VideoChat and Video-LLaMA.

5.1.2. Methods and Experiments

In this chapter, we propose a novel module called Temporal Attentive Soft Token

Merging to enhance the ViT backbone with temporal modeling capabilities. Formally,

let v be a video feature tensor with dimensions [B×N ×L×D], where B is the batch

size, N is the number of frames, L is the sequence length (i.e., the number of patches

in a single video frame), and D is the hidden dimension. Initially, we reshape v into

[(B ×N)× L×D] which is subsequently fed into the self-attention layer of the ViT

for spatial modeling as:

v′ = self-attn(v.reshape(B ×N,L,D)) (5.1)

For temporal modeling, v′ is reshaped to [N, (B × L), D]. We then project this into

key and query matrices k and q and compute v′′ using our Temporal Attentive Soft

Token Merging as follows:

k = Wkey(v
′.reshape(N,B × L,D)) (5.2)

q = Wquery(v
′.reshape(N,B × L,D)) (5.3)

v′′ = v′ + softmax(matmal(q, k)) · v′ (5.4)

The softmax operation models temporal weights and softly merges tokens along

the temporal dimension. This is distinct from spatial token merging, which employs

average pooling and reduces the token count. Here, we use a weighted average pooling

along the temporal dimension, maintaining the original token count.
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Our approach, depicted in Figure 5.1, maintains the integrity of pre-existing,

well-trained image-text models, thus avoiding the need for model realignment, a

requirement in alternative designs that insert a temporal Q-former between the visual

encoder and the language model.

We proceed to evaluate the performance of fine-tuned SimVLG-Video models

in video captioning tasks, utilizing OPT-2.7b as the language model decoder. Our

investigation includes two specific variants of SimVLG-Video: the first is exclusively

pre-trained on image data, while the second is further enhanced by pre-training on a

corpus of 2 million video-text pairs sourced from the WebVid [8] dataset. To provide a

comprehensive evaluation, we benchmark SimVLG-Video against five distinct models,

described as follows:

• Baseline (concat): This model processes each frame of a video individually and

concatenates their visual features to generate a single prompt for the LLM. This

method is analogous to the strategy employed in InstructBLIP.

• Baseline (mean): Similar to the concat baseline, this model processes each video

frame individually but averages the visual features to create a single prompt for the

LLM.

• Video-LLaMA: This variant incorporates the BLIP-2 framework and enhances it

with an additional temporal Q-former layer. For this evaluation, we focus solely on

the vision-language component of Video-LLaMA.

• VideoChat: This model extends BLIP-2 by integrating additional Uniformer

modules within the ViT architecture and also incorporates learnable temporal

queries in its Q-former component.

• VideoCoCa: In this model, we adapt the OpenCoCa framework by mlfoundations

and augment the existing CoCa architecture with a learnable attentional pooler,

resulting in VideoCoCa.
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Table 5.1: Comparison of different models’ performance on MSR-VTT captioning. Models
are pre-trained using 2 million video-text pairs from WebVid dataset, except for image
pre-trained SimVLG.

Models Image
pre-trained

Video
pre-trained CIDEr BLEU-4 METEOR ROUGE

Baseline (concat) ✓ ✓ 65.5 44.4 31.9 64.1
Baseline (mean) ✓ ✓ 67.8 47.3 32.2 65.0
SimVLG-video ✓ 68.4 47.6 32.4 65.3
SimVLG-video ✓ ✓ 69.8 48.3 32.6 65.8
SimVLG-video-scst ✓ ✓ 74.0 49.2 33.0 66.5

Video-LLaMA ✓ ✓ 59.3 47.7 29.6 63.7
VideoChat ✓ ✓ 58.0 46.5 29.5 63.4
VideoCoCa ✓ ✓ 63.0 48.5 31.4 64.8

Evaluation on MSR-VTT As detailed in Table 5.1, SimVLG-Video demonstrates

superior performance relative to the baseline models, even without the aid of video-

text pre-training. This result highlights the effectiveness of our proposed Temporal

Attentive Soft Token Merging in capturing temporal dynamics. Additionally, we

observe an enhancement in performance when incorporating video-text pre-training

along with Self-Critical Sequence Training (SCST) [163].

Temporal Attentive Soft Token Merging has the distinct advantage of maintaining

the integrity of the well-pretrained image-text model (i.e., SimVLG-Image). This

contrasts with models such as Video-LLaMA and VideoChat, where the original BLIP-

2 architecture is altered, necessitating a complex re-alignment process using video-text

pairs. Our empirical analysis indicates that such re-alignment is a non-trivial endeavor.

It is worth noting that our VideoCoCa model is at a disadvantage when benchmarked

against Google’s reported results, which benefit from extensive training on a much

larger dataset of image-text and video-text pairs.

Evaluation on MSVD Similarly, we evaluate SimVLG’s performance against Video-

LLaMA, VideoChat, and VideoCoCa using the MSVD video captioning dataset, which
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Table 5.2: Comparison of different models’ performance on MSVD captioning.
Models CIDEr BLEU-4 METEOR ROUGE

Video-LLaMA 121.2 61.6 40.3 77.8
VideoChat 118.4 64.1 41.0 78.7
VideoCoCa 150.9 67.7 45.3 81.9
SimVLG-video 158.2 68.4 46.8 83.1

is presented in Table 5.2. Our results corroborate that SimVLG consistently surpasses

these competing models, further attesting to its robust performance across different

video captioning tasks.

5.1.3. Summary

In summary, we have also extended SimVLG’s applicability to video captioning tasks by

incorporating the Temporal Attentive Soft Token Merging into its ViT. This enhances

the model’s temporal modeling capabilities, culminating in the creation of SimVLG-

Video. This extension has proven efficacious, delivering commendable performance

even without specialized video-text pre-training. Our investigation underscores that a

temporal module, which does not disrupt the integrity of the well-pretrained image-text

model (e.g., BLIP-2 and SimVLG), is a key factor contributing to this success.

Section 5.2

Effective Adaptation of VMs

In this section, we present Label Hallucination for Few-shot Classification (LabelHalluc)

[77]. The work has been published in AAAI 2022. In this work, we explore a

straightforward yet highly effective approach for adapting pre-trained vision models

when provided with only a limited number of examples.
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5.2.1. Overview and Motivation

Overview Few-shot classification requires adapting knowledge learned from a large

annotated base dataset to recognize novel unseen classes, each represented by few

labeled examples. In such a scenario, pretraining a network with high capacity on the

large dataset and then finetuning it on the few examples causes severe overfitting. At

the same time, training a simple linear classifier on top of “frozen” features learned

from the large labeled dataset fails to adapt the model to the properties of the novel

classes, effectively inducing underfitting. In this chapter we propose an alternative

approach to both of these two popular strategies. First, our method pseudo-labels

the entire large dataset using the linear classifier trained on the novel classes. This

effectively “hallucinates” the novel classes in the large dataset, despite the novel

categories not being present in the base database (novel and base classes are disjoint).

Then, it finetunes the entire model with a distillation loss on the pseudo-labeled base

examples, in addition to the standard cross-entropy loss on the novel dataset. This

step effectively trains the network to recognize contextual and appearance cues that

are useful for the novel-category recognition but using the entire large-scale base

dataset and thus overcoming the inherent data-scarcity problem of few-shot learning.

Despite the simplicity of the approach, we show that that our method outperforms

the state-of-the-art on four well-established few-shot classification benchmarks.

Motivation Deep learning has emerged as the prominent learning paradigm for

large data scenarios and it has achieved impressive results in wide range of application

domains, including computer vision [102], NLP [37] and bioinformatics [172]. However,

it remains difficult to adapt deep learning models to settings where few labeled

examples are available, since large-capacity models are inherently prone to overfitting.

Few-shot learning is usually studied under the episodic learning paradigm, which

simulates the few-shot setting during training by repeatedly sampling few examples
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from a small subset of categories of a large base dataset. Meta-learning algorithms [49,

100, 158, 183, 201] optimized on these training episodes have advanced the field of

few-shot classification. However, recent works [24, 38, 196] have shown that a pure

transfer learning strategy is often more competitive. For example, Tian et al. [196]

proposed to first pretrain a large capacity classification model on the base dataset

and then to simply learn a linear classifier on this pretrained representation using

the few novel examples. The few-shot performance of the transferred model can be

further improved by multiple distillation iterations [52], or by combining several losses

simultaneously, e.g., entropy maximization, rotational self-supervision, and knowledge

distillation [155].

In this chapter, we follow the transfer learning approach. However, instead of

freezing the representation to the features learned from the base classes [155, 165, 196],

we finetune the entire model. Since finetuning the network using only the few examples

would result in severe overfitting (as evidenced by our ablations), we propose to

optimize the model by re-using the entire base dataset but only after having swapped

the original labels with pseudo-labels corresponding to the novel classes. This is

achieved by running on the base dataset a simple linear classifier trained on the few

examples of the novel categories. The classifier effectively “hallucinates” the presence

of the novel classes in the base images. Although we empirically evaluate our approach

in scenarios where the classes of the base dataset are completely disjoint from the novel

categories, we demonstrate that this large-scale pseudo-labeled data enables effective

finetuning of the entire model for recognition of the novel classes. The optimization is

carried out using a combination of distillation over the pseudo-labeled base dataset

and cross-entropy minimization over the few-shot examples. The intuition is that

although the novel classes are not properly represented in the base images, many base

examples may include objects that resemble those of the novel classes as encoded by
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the soft pseudo-labels that define the probabilities of belonging to the novel classes.

For example, the pseudo-labeling may assign a probability of 0.6 for a base image of a

tiger to belong to the novel class “domestic cat” given their appearance similarities.

Or it may assign large novel-class pseudo-label probability to a base images because

its true base category shares similar contextual background with the novel class, such

in the case of “cars” and “pedestrians” which are both likely to appear in street scenes.

Fine-tuning the entire model on these soft pseudo-labels using a distillation objective

(combined with the cross-entropy loss on the few novel image examples) trains the

network to recognize these similar or contextual cues on the base dataset, thus steering

the representation towards features that are useful for the recognition of the novel

classes. Furthermore, because the base dataset is large-scale, these examples serve the

role of massive non-parametric data augmentation yielding a representation that is

quite general and does not overfit, thus overcoming the data scarcity problem inherent

in few-shot learning. An overview of our proposed approach is provided in Fig. 5.2.

We note that pseudo-labeling has been widely used before for semi-supervised

learning where the unlabeled examples belong to the same classes as the labeled

ones [23, 150, 184]. Pseudo-labeling has also been adapted to the few-shot setting [106,

209] but still under the empirical setting where novel classes are contained in the

unlabeled dataset. The novelty of our work lies in showing that the advantages of

pseudo-labeling extend even to the extreme setting where the set of base classes and

the set of novel classes are completely disjoint. We also note that our work differs from

transductive few-shot learning [38, 209] which requires the testing set of unlabeled

examples used during the training. Instead, our method operates in a pure inductive

setting where within each episode only the small set of novel labeled examples and

the base dataset are used for finetuning.
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Figure 5.2: Overview of our proposed approach in an illustrative setting involving
1-shot classification of 5 novel classes. Pretraining learns the backbone model Θ
and a classification head ϕ0 from a labeled base dataset. The backbone is used
to compute embeddings for the subsequent stages, while the classification head is
discarded. During Episode training, step 1) learns a linear classifier ϕ1 in the novel
domain using the support set and the fixed embedding Θ. Step 2) pseudo-labels
the base dataset with respect to the label space of the novel domain using the fixed
embedding Θ and the classifier ϕ1. Step 3) re-learns both the embedding and the
classifier with the support set and the pseudo-labeled base dataset using a combination
of distillation and cross-entropy maximization. Note that the base dataset and the
support set do not share any classes.

5.2.2. Methods and Experiments

Problem statement We now formally define the few-shot classification problem

considered in this work. We adopt the common setup which assumes the existence

of a large scale labeled base dataset used to discriminatively learn a representation

useful for the subsequent novel-class recognition. Let Dbase = {xbase
t , ybaset }Nbase

t=1 be

the base dataset, with label ybaset ∈ Cbase. It is assumed that both the number of

classes (|Cbase|) and the number of examples (N base) are large in order to enable

good representation learning. We denote with Dnovel = {xnovel
t , ynovelt }Nnovel

t=1 the novel
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dataset, with ynovelt ∈ Cnovel. The base classes and novel classes are disjoint, i.e.,

Cbase ∩ Cnovel = ∅. We assume the training and testing of the few-shot classification

model to be organized in episodes. At each episode i, the few-shot learner is given a

support set Dsupport
i = {xsupport

i,t , ysupporti,t }NK
t=1 involving K novel classes and N examples

per class sampled from Dnovel (with N being very small, typically ranging from 1 to

10). The learner is then evaluated on the query set Dquery
i = {xquery

i,t , yqueryi,t }N ′K
t=1 , which

contains examples of the same K classes as those in Dsupport
i . Thus, the query/support

sets serve as few-shot training/testing sets, respectively. At each episode i, the few-shot

learner adapts the representation/model learned from the large-scale Dbase to recognize

the novel classes given the few training examples in Dsupport
i .

Learning the embedding representation on the base dataset We first aim at

learning from the base dataset an embedding model that will transfer and generalize

well to the downstream few-shot problems. We follow the approach of Tian et al. [196]

(denoted as RFS) and train discriminatively a convolutional neural network consisting

of a backbone fΘ and a final classification layer gϕ. The parameters {Θ, ϕ} are

optimized jointly for the
∣∣Cbase∣∣-way base classification problem using the dataset

Dbase:

Θbase, ϕbase = argminΘ,ϕE{x,y}∈DbaseLCE(gϕ(fΘ(x)), y) (5.5)

where LCE is the cross-entropy loss.

Prior work has shown the quality of the embedding representation encoded by

parameters Θbase can be further improved by knowledge distillation [196], rotational

self-supervision [155] or by enforcing representations equivalent and invariant to sets of

image transformations [165]. In the experiements presented in this section, we follow

the embedding learning strategies of SKD [155] and IER [165]. However, note that
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our approach is independent of the specific method used for embedding learning.

Hallucinating the presence of novel classes in the base dataset In order to

pseudo-label the base dataset according to the novel classes, we first train a classifier

on the support set. For each episode i in the meta-learning phase, we learn a linear

classifier ϕi on top of the fixed feature embedding model Θbase using the few-shot

support set Dsupport
i = {xsupport

i,t , ysupporti,t }NK
t=1 .

ϕi = argminϕE{x,y}∈Dsupport
i

LCE(gϕ(fΘbase(x)), y) (5.6)

Note that in previous works [155, 165, 196], ϕi is directly evaluated on query set

Dquery
i to produce the final few-shot classification results. Instead here we use the

resulting model gϕi
(fΘbase(x)) to re-label the base dataset according to the ontology of

the novel classes in episode i. We denote with ŷbasei,t the vector of logits (the outputs

before the softmax) generated by applying the learned classifier to example xbase
t , i.e.,

ŷbasei,t = gϕi
(fΘbase(xt)) for t = 1, . . . , N base. These soft pseudo-labels are used to retrain

the full model via knowledge distillation, as discussed next.

Finetuning the whole model to recognize novel classes We finally finetune

the whole model (i.e., the backbone and the classifier) using mini-batches containing

an equal proportion of support and base examples. The loss function for the base

examples is knowledge distillation [70], while the objective minimized for the support

examples is the cross-entropy (CE). In other words, we optimize the parameters of

the model on a mixing of the two losses:

Θ′
i, ϕ

′
i = argminΘ,ϕλKLE{x,y}∈DbaseLKL(gϕ(fΘ(x)), ŷ)+

λCEE{x,y}∈Dsupport
i

LCE(gϕ(fΘ(x)), y) . (5.7)
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where ŷ denotes the hallucinated pseudo-label, LKL is the KL divergence between

the predictions of the model and the pseudo-labels scaled by temperature T , and

{λKL, λCE} are hyper-parameters trading off the importance of the two losses. Since

the support set is quite small (under certain experimental settings in each episode

we have five novel classes and only one example for each novel class), we use data

augmentation to generate multiple views of each support image, so as to obtain enough

examples to fill half of the mini-batch.

Finally, the resulting model gϕ′
i
(fΘ′

i
(x)) is evaluated on the query set Dquery

i =

{xnovel
t , ynovelt }N ′K

t=1 . The final results are reported by averaging the accuracies of all

episodes.

We note that although the operations of pseudo-labeling and finetuning are pre-

sented as separate and in sequence, in practice for certain datasets we found more

efficient to generate the target pseudo-labels on the fly for the base examples loaded

in the mini-batch without having to store them on disk.

Datasets We evaluate our method on four widely used few-shot recognition bench-

marks: miniImageNet [201], tieredImageNet [161], CIFAR-FS [12], and FC100 [143].

miniImageNet [201] is one of the most commonly used benchmark for few-shot

classification. It is a subset of ImageNet [36] containing images downsampled to a

resolution of 84× 84 pixels. It includes 100 classes, each class with 600 examples. It

is further divided into 64 classes for meta-training, 16 classes for meta-validation and

20 classes for meta-testing. tieredImageNet [161] is another subset of ImageNet. It

contains a total of 608 classes, with 351 classes used for meta-training, 97 classes for

meta-validation and the remaining 160 classes for meta-testing. CIFAR-FS [12] is

derived from CIFAR-100 dataset. The original 100 classes are split into 64 classes

for meta-training, 16 classes for meta-validation and 20 classes for meta-testing. FC-

100 [143] is also obtained from CIFAR-100. It has 60 classes for meta-training, 20

67



5.2 Effective Adaptation of VMs Effective Adaptation of Pre-trained Models

classes for meta-validation and 20 classes for meta-testing.

Experimental setup Network Architecture. To make fair comparison to recent

works, we adopt the popular ResNet-12 [68] as our backbone. The network has 4

residual blocks, each containing 3 convolutional layers with 3 × 3 convolution. A

2 × 2 max-pooling is applied at the end of each of the first three blocks and an

average-pooling is used in the last one. Our ResNet-12 is identical to those used in

RFS [196], SKD [155] and IER [165]. Thus the number of channels for 4 residual block

is set to (64,160,320,640).

Optimization details. For the embedding training, we use the public code

implementations of SKD [155] and IER [165]. For the training of the linear classifiers

on top of frozen features, we use LogisticRegression with the LBFGS optimizer from

scikit-learn package [16], as in RFS [196]. When finetuning, we use the SGD optimizer

with a momentum of 0.9 and a weight decay of 5e−4 across all experiments in the four

benchmarks. The learning rate for the network up to the penultimate layer is set to

0.025 while the final classification layer uses a learning rate of 0.05.

We use mini-batches of 250 examples. For the 5-way 5-shot classification in

miniImageNet, CIFAR-FS and FC100, we generate 5 views from each of the 25

novel images in the support in order to obtain 125 examples. We use the same data

augmentation transformations employed in prior works [155, 165, 196]). We fill the

remaining half the mini-batch by sampling 125 distinct examples from the base dataset

with associated pseudo labels. The finetuning runs for 1 epoch in order to complete

a pass over the entire base dataset for each episode. This amount to ∼300 steps.

Similarly in 5-way 1-shot classification, each mini-batch has a support set of 125

novel examples (5 distinct images augmented 25 times) and 125 pseudo-labeled base

examples.

The tieredImageNet dataset is much larger than the other three datasets and
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miniImageNet 5-way tieredImageNet 5-way

model backbone 1-shot 5-shot 1-shot 5-shot

ProtoNet [183] ResNet-12 60.37 ± 0.83 78.02 ± 0.57 65.65 ± 0.92 83.40 ± 0.65
TADAM [143] ResNet-12 58.50 ± 0.30 76.70 ± 0.30 - -
TapNet [227] ResNet-12 61.65 ± 0.15 76.36 ± 0.10 63.08 ± 0.15 80.26 ± 0.12
MetaOptNet [109] ResNet-12 62.64 ± 0.61 78.63 ± 0.46 65.99 ± 0.72 81.56 ± 0.53
MTL [191] ResNet-12 61.20 ± 1.80 75.50 ± 0.80 65.62 ± 1.80 80.61 ± 0.90
Shot-Free [159] ResNet-12 59.04 ± 0.43 77.64 ± 0.39 66.87 ± 0.43 82.64 ± 0.43
DSN-MR [180] ResNet-12 64.60 ± 0.72 79.51 ± 0.50 67.39 ± 0.83 82.85 ± 0.56
DeepEMD [235] ResNet-12 65.91 ± 0.82 82.41 ± 0.56 71.16 ± 0.87 86.03 ± 0.58
FEAT [226] ResNet-12 66.78 ± 0.20 82.05 ± 0.14 70.80 ± 0.23 84.79 ± 0.16
Neg-Cosine [124] ResNet-12 63.85 ± 0.81 81.57 ± 0.56 - -
RFS-simple [196] ResNet-12 62.02 ± 0.63 79.64 ± 0.44 69.74 ± 0.72 84.41 ± 0.55
RFS-distill [196] ResNet-12 64.82 ± 0.82 82.41 ± 0.43 71.52 ± 0.69 86.03 ± 0.49
AssoAlign [1] ResNet-18† 59.88 ± 0.67 80.35 ± 0.73 69.29 ± 0.56 85.97 ± 0.49
AssoAlign [1] WRN-28-10‡ 65.92 ± 0.60 82.85 ± 0.55 74.40 ± 0.68 86.61 ± 0.59
SKD-GEN1 [155] ResNet-12 66.54± 0.97§ 83.18± 0.54§ 72.35± 1.23§ 85.97± 0.63§

P-Transfer [176] ResNet-12 64.21 ± 0.77 80.38 ± 0.59 - -
InfoPatch [57] ResNet-12 67.67 ± 0.45 82.44 ± 0.31 71.51 ± 0.52 85.44 ± 0.35
MELR [48] ResNet-12 67.40 ± 0.43 83.40 ± 0.28 72.14 ± 0.51 87.01 ± 0.35
IEPT [239] ResNet-12 67.05 ± 0.44 82.90 ± 0.30 72.24 ± 0.50 86.73 ± 0.34
IER-distill [165] ResNet-12 66.85± 0.76§ 84.50± 0.53§ 72.74± 1.25§ 86.57± 0.81§

Ours w/ SKD ResNet-12 67.50 ± 1.01 85.60 ± 0.52 72.80 ± 1.20 86.93 ± 0.60
Ours w/ IER ResNet-12 68.28 ± 0.77 86.54 ± 0.46 73.34 ± 1.25 87.68 ± 0.83

Table 5.3: Comparison of our method (Label-Halluc) against the state-of-the-art
on miniImageNet and tieredImageNet. We report our results with 95% confidence
intervals on meta-testing split of miniImageNet and tieredImageNet. Training is done
on the training split only. † indicates using a higher resolution of training images.
‡ indicates a larger model than ResNet-12. § indicates our implementations. This
makes the fairest comparisons to ours by allowing that those methods are evaluated
on exact same episodes.

the images have much higher resolution. Thus, a finetuning procedure that iterates

through the whole base dataset for each episode is intractable. Thus, we finetune for

200 steps for both the 1-shot and the 5-shot settings.

Each of these four benchmarks includes a meta-training set (the base dataset),

a meta-validation set and a meta-testing set (the novel-class dataset) organized in

episodes. The meta-validation set is only used for searching hyper-parameters.

The experiments are carried out on a desktop server with Intel i9-9960X CPU and

four NVIDIA RTX-2080Ti GPUs.

Results on ImageNet-based few-shot benchmarks Table 5.3 provides a com-

parison between our approach and the state-of-the-art in few-show classification on the
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CIFAR-FS 5-way FC-100 5-way

model backbone 1-shot 5-shot 1-shot 5-shot

ProtoNet [183] (NIPS’17) ResNet-12 72.2 ± 0.7 83.5 ± 0.5 37.5 ± 0.6 52.5 ± 0.6
TADAM [143] (NIPS’18) ResNet-12 - - 40.1 ± 0.4 56.1 ± 0.4
MetaOptNet [109] (CVPR’19) ResNet-12 72.6 ± 0.7 84.3 ± 0.5 41.1 ± 0.6 55.5 ± 0.6
MTL [191] (CVPR’19) ResNet-12 - - 45.1 ± 1.8 57.6 ± 0.9
Shot-Free [159] (ICCV’19) ResNet-12 69.2 ± n/a 84.7 ± n/a - -
DSN-MR [180] (CVPR’20) ResNet-12 75.6 ± 0.9 86.2 ± 0.6 - -
DeepEMD [235] (CVPR’20) ResNet-12 - - 46.5 ± 0.8 63.2 ± 0.7
RFS-simple [196] (ECCV’20) ResNet-12 71.5 ± 0.8 86.0 ± 0.5 42.6 ± 0.7 59.1 ± 0.6
RFS-distill [196] (ECCV’20) ResNet-12 73.9 ± 0.8 86.9 ± 0.5 44.6 ± 0.7 60.9 ± 0.6
AssoAlign [1] (ECCV’20) ResNet-18‡ - - 45.8 ± 0.5 59.7 ± 0.6
SKD-GEN1 [155] (Arxiv’20) ResNet-12 76.6± 0.9§ 88.6± 0.5§ 46.5± 0.8§ 64.2± 0.8§

InfoPatch [57] (AAAI’21) ResNet-12 - - 43.8 ± 0.4 58.0 ± 0.4
IER-distill [165] (CVPR’21) ResNet-12 77.6± 1.0§ 89.7± 0.6§ 48.1± 0.8§ 65.0± 0.7§

Label-Halluc (pretrained w/ SKD) ResNet-12 77.3 ± 0.9 89.5 ± 0.5 47.3 ± 0.8 67.2 ± 0.8
Label-Halluc (pretrained w/ IER) ResNet-12 78.0 ± 1.0 90.5 ± 0.6 49.1 ± 0.8 68.0 ± 0.7

Table 5.4: Comparison of Label-Halluc (ours) to prior works on CIFAR-FS and FC-100.
We report our results with 95% confidence intervals on meta-testing split of CIFAR-FS
and FC-100. Training is done on the training split only. ‡ indicates a different model.
§ indicates our implementations.

two ImageNet-based few-shot benchmarks. Our method is denoted as Label-Halluc.

On miniImageNet, our method using the SKD pretraining of the backbone yields an

absolute improvement of 0.96% over SKD-GEN1 in the one-shot setting. The improve-

ment become more substantial under the 5-shot setting, with our method producing

a gain of 2.42% over SKD-GEN1. When pretrained with IER [165], our approach

achieves one-shot classification accuracy of 68.28 ± 0.77, which is over 1.4% better

than all reported results. Under the 5-shot setting, our method improves by 2.04%

over IER-distill which had the best reported number, yielding a new state-of-the-art

accuracy of 86.54%. On the tieredImageNet benchmark, our method pretrained

with SKD performs on par with concurrent works [48, 239] and outperforms SKD [155]

by 0.45% under the 1-shot setting and by 0.96% under the 5-shot setting. When

pretrained with IER, our approach improves over IER-distill by 0.60% and 1.11%

under the 1-shot and 5-shot settings, respectively, yielding a new state-of-the-art even

for this benchmark.
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Results on CIFAR-based few-shot benchmarks Table 5.4 compares our method,

Label-Halluc, against the state-of-the-art on the two CIFAR-based few-shot bench-

marks. On CIFAR-FS, the improvements over SKD-GEN1 (our implementation)

for 1-shot and 5-shot are 0.7% and 0.9%, respectively. Note that these gains derive

exclusively from the addition of the distillation over pseudo-labeled base examples.

When using IER-distill as embedding learning, our method improves the baseline by

0.4% and 0.8% in the 1-shot and the 5-shot settings, respectively. On FC100, our

method achieves improves over the best reported numbers by 0.8% and 3.0% in the

1-shot and 5-shot setting, respectively, when pretrained with SKD. The improvements

are 1.0% and 3.0% when pretrained with IER.

5.2.3. Summary

We propose the simple strategy of label hallucination to enable effective finetuning of

large-capacity models from few-shot examples of the novel classes. We demonstrate

that even in the extreme scenario where the labels of the base dataset and the labels

of the novel examples are completely disjoint, this simple procedure improves over the

popular strategies of transfer learning via finetuning on the novel examples or via linear

classification on top of a frozen representation. Results on four well-established few-shot

classification benchmarks show that our method outperforms the state-of-the-art.

Section 5.3

Effective Adaptation of LMs

In this section, we present “Contrastive Learning for Prompt-based Few-shot Language

Learners” (LM-SupCon) [80]. The work has been published in NAACL 2022. This work

proposed a simple yet effective method for fine-tuning LLMs given a few in-context

examples.
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5.3.1. Overview and Motivation

Overview The impressive performance of GPT-3 using natural language prompts

and in-context learning has inspired work on better fine-tuning of moderately-sized

models under this paradigm. Following this line of work, we present a contrastive

learning framework that clusters inputs from the same class for better generality of

models trained with only limited examples. Specifically, we propose a supervised con-

trastive framework that clusters inputs from the same class under different augmented

“views” and repel the ones from different classes. We create different “views” of an

example by appending it with different language prompts and contextual demonstra-

tions. Combining a contrastive loss with the standard masked language modeling

(MLM) loss in prompt-based few-shot learners, the experimental results show that our

method can improve over the state-of-the-art methods in a diverse set of 15 language

tasks. Our framework makes minimal assumptions on the task or the base model, and

can be applied to many recent methods with little modification.

Motivation The prompt-based fine-tuning method reduces the gap between pre-

training and fine-tuning by forming the fine-tuning task into a masking language

problem. A language prompt is a piece of text appended to the query input enabling

the model to come up with better predictions [169, 194]. For instance, by feeding a

language model with "The story is not worth reading, a truly one.", the model

assigns a higher probability for the blank to be filled with "terrible" than "great".

Here, "a truly one." is called the template of the prompt and "terrible" or "great"

is the label word. Recently, LM-BFF [55] shows that appending demonstrations

(e.g."This is an amazing movie, a truly great one") to inputs can help the model to

better understand the label word, leading to further improved results.

In this work, we show that Supervised Contrastive Learning (SupCon) [97] at

the feature space can be beneficial during the fine-tuning of prompt-based few-shot
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Figure 5.3: Overview of our proposed method. Besides the standard prompt-base
MLM loss on label words "great" and "terrible", we introduce a SupCon loss on
multi-views of input text. The positive pair is sentences (with sampled templates
and/or demonstrations) in the same class, e.g. sent1 and sent3, or itself with a different
template and demonstrations, e.g. sent1 and sent2. The negative sentence pair is
input sentences (with sampled templates and/or demonstrations) in different classes,
e.g. sent1 and sent0.

language learners, with proper data augmentation.

Data augmentation is the key component of SupCon. While there exists many

augmentation techniques like Cutmix [230], Mixup [238] in computer vision and EDA

[214], AEDA [95] for text, data augmentation remains challenging.

However, prompt-based few-shot learners with demonstrations actually provide us

with a natural way to create multiple "views" (augmentations) of a single example,

i.e., for a fixed set of label words, we can sample different templates and different

demonstrations to append to the input text (shown in Figure 5.3). This allows us to

construct diverse input texts that are consistent and complete. By applying SupCon

to cluster the above two example inputs with very different contents but the same

label, our method is able to obtain an additional supervision at the feature space

which is crucial if we are only given a few labeled examples.

The main contributions of ours are: (1) A Supervised Contrastive Learning frame-

work for prompt-based few-shot learners. (2) An effective data augmentation method

using prompts for contrastive learning with prompt-based learners.
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5.3.2. Methods and Experiments

Problem formulation. Following the few-shot setting in LM-BFF, we assume to

have access to a pre-trained language modelM, datasets Dtrain and Dtest with label

space Y . There are only K = 16 examples per class in Dtrain.

Fine-tuning with prompts and demonstrations. Prompt-based methods

treat a classification problem as a masked language modeling (MLM) problem. They

take as input a sentence (sent) and a masked template (temp) (i.e., xprompt =

sent, temp([mask])), and find the best token to fill in the [mask]. This leads to

a MLM loss LMLM = MLM(xprompt, y), where y is the label word corresponding to

xprompt. LM-BFF [55] further appends demonstrations of label words to improve the

results: xprompt+demo = sent0, temp0([mask]), senti, temp0(wordi) , where wordi is the

label word for senti, and senti is sampled from the training set. Then the classification

loss becomes:

LMLM = MLM(xprompt+demo, y) (5.8)

Language-based Supervised Contrastive Loss. For applying SupCon on

multi-views of an input text, we need to first obtain two views of a text:

x1 =sent0, temp0([mask]), senti, temp0(wordi)

x2 =sent0, tempj([mask]), sentk, tempj(wordk)

where x1 is identical to xprompt+demo in LM-BFF. We sample a new template (tempj),

demonstration (sentk) and the corresponding label word (wordk) to replace those in

x1, to create a second view of input x2. With x1 and x2, we can compute SupCon loss.
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Task LM-BFF LM-BFF PET PET
+ ours + ours

SST-2 (acc) 89.2 (1.3) 90.6 (0.1) 88.4 (1.0) 89.9 (0.6)
Subj (acc) 88.6 (3.3) 90.4 (1.1) 89.2 (1.5) 90.6 (1.6)
SST-5 (acc) 47.9 (0.8) 49.5 (1.1) 46.0 (0.9) 48.8 (1.2)
CoLA (Matt.) 6.1 (5.3) 10.2 (5.8) 3.5 (3.4) 5.9 (3.3)
TREC (acc) 82.8 (3.1) 83.3 (1.5) 77.8 (9.1) 82.3 (4.6)
MNLI (acc) 61.0 (2.1) 64.0 (2.0) 58.2 (1.1) 58.9 (3.1)
MNLI-mm (acc) 62.5 (2.1) 65.5 (2.7) 59.8 (1.2) 61.0 (3.3)
SNLI (acc) 66.9 (2.4) 69.9 (2.4) 63.1 (2.5) 65.7 (3.9)
QNLI (acc) 60.7 (1.7) 66.4 (3.5) 61.5 (3.3) 63.5 (3.7)
QQP (acc) 62.5 (2.6) 68.8 (3.8) 61.9 (3.5) 65.7 (4.3)
RTE (acc) 64.3 (2.7) 65.1 (3.5) 60.9 (4.7) 65.1 (3.5)
MRPC (F1) 75.5 (5.2) 78.2 (3.1) 70.6 (6.0) 75.7 (6.1)
MR (acc) 83.3 (1.4) 85.8 (0.6) 85.0 (0.6) 85.2 (0.9)
MPQA (acc) 83.6 (1.8) 84.6 (1.5) 81.3 (2.6) 81.8 (2.4)
CR (acc) 88.9 (1.0) 89.4 (1.0) 89.3 (1.0) 90.5 (0.5)

Table 5.5: Few-shot experiments of baseline methods and ours. LM-BFF is a prompt-
based method with demonstrations of label words and PET is one without demon-
strations. The experimental results show the means and standard deviations from 5
different train-test splits.

The total loss is then

Ltotal = LMLM + LSupCon (5.9)

Computational overhead. Because LSupCon requires one additional forward and

backward pass in each tuning iteration, we observe that the training cost is raised by

a factor 1.5 compared to the baselines.

Evaluation datasets and protocol. We evaluate our method on 15 classification

tasks studied in LM-BFF and follow the same setup as them to allow fair comparisons.

Contrastive learning algorithms benefit from large batch training. Thus, we report

baselines with the same large batch size as ours.

Our method uses a single prompt/template (primary prompt) for the prediction
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of each task, and a set of prompts (auxiliary prompts) for generating multi-views of

inputs for contrastive learning. The auxiliary prompts can be either manually designed

or generated by a searching algorithm. In this work, we use the top-20 generated

prompts from LM-BFF’s project page and we randomly sample templates in these

20 prompts to produce second views of our inputs. Unless otherwise noted, we apply

both random templates and random demonstrations to create second views of inputs

for the contrastive learning.

Main results on 15 tasks We use RoBERTa-base. We compare ours with LM-BFF

(a method w/ demonstrations) and PET [169] (a method w/o demonstration).

Table 5.5 shows that our SupCon loss can consistently boost the performance of

baseline prompt-based fine-tuning method LM-BFF. The introduction of SupCon loss

has a maximum improvement of 6.3% in QQP and an average improvement of 2.5%

across 15 tasks, likely due to the more generalized representations learned by SupCon.

On average, the greater improvements by our model can be seen on the more difficult

tasks

We want to emphasize that the input for baseline LM-BFF already appends different

randomly sampled demonstrations at each tuning iteration. Thus, the improvement

of our method can not be attributed to the diversity of inputs when learning from

LMLM of Equation 5.7, but to the LSupCon.

Table 5.5 also shows that our method works well even for prompt-based methods

without demonstrations. PET, which is a method without demonstrations, works

consistently worse than LM-BFF. However, with the additional SupCon loss, the

few-shot performances of PET can be increased by an average of 2.3%. And the gap

between having and not having demonstrations can be largely closed (see LM-BFF

vs. PET+ours in Table 5.5). In some tasks, e.g., SST-2, SST-5, QNLI, QQP, RTE

MRPC, MR, and CR, the contribution of our SupCon loss can be even larger than
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the sole use of the demonstrations for label words.

Task LM-BFF LM-BFF LM-BFF LM-BFF LM-BFF
+Dec +Dec +Lab +ConCal +ours

SST-2 89.2 (1.3) 90.1 (0.6) 90.6 (0.5) 88.5 (2.0) 90.6 (0.1)
Subj 88.6 (3.3) 87.3 (3.6) 88.4 (4.9) 83.8 (7.3) 90.4 (1.1)
SST-5 47.9 (0.8) 47.2 (1.0) 46.5 (0.7) 47.9 (1.1) 49.5 (1.1)
CoLA 6.1 (5.3) 9.8 (6.5) 7.2 (5.2) 6.7 (4.6) 10.2 (5.8)
TREC 82.8 (3.1) 81.9 (3.0) 82.3 (3.0) 71.1 (7.0) 83.3 (1.5)
MNLI 61.0 (2.1) 61.3 (2.1) 59.4 (1.3) 61.0 (0.8) 64.0 (2.0)
-mm 62.5 (2.1) 63.2 (2.1) 61.4 (1.6) 62.5 (0.8) 65.5 (2.7)
SNLI 66.9 (2.4) 67.0 (3.1) 65.8 (2.1) 67.0 (2.9) 69.9 (2.4)
QNLI 60.7 (1.7) 60.0 (2.5) 60.2 (2.0) 60.9 (2.0) 66.4 (3.5)
QQP 62.5 (2.6) 69.0 (1.7) 65.4 (1.2) 62.2 (2.7) 68.8 (3.8)
RTE 64.3 (2.7) 65.6 (1.5) 65.3 (2.4) 60.2 (1.9) 65.1 (3.5)
MRPC 75.5 (5.2) 69.4 (7.0) 66.5 (7.0) 78.3 (3.1) 78.2† (3.1)
MR 83.3 (1.4) 85.0 (1.0) 84.6 (1.2) 84.0 (1.4) 85.8 (0.6)
MPQA 83.6 (1.8) 82.3 (1.9) 84.3 (1.4) 72.3 (13.4) 84.6 (1.5)
CR 88.9 (1.0) 89.3 (0.6) 89.6 (0.7) 87.7 (1.1) 89.4 (1.0)

Table 5.6: Comparing our SupCon loss with Decoupling Label Loss (Dec), Label
Condition Loss (Lab), and Contextual Calibration (ConCal). †We can achieve stronger
performance 80.0± 1.8 by fixing templates/demonstrations when creating the second
view of the input.

SupCon vs. other losses We further show that our method outperforms two latest

methods that are designed to improve prompt-based language models. In ADAPET

[194], the authors replace the traditional CrossEntropy loss with Decoupling Label

Loss and Label Condition Loss in the prompt-based fine-tuning method PET, without

demonstrations. Contextual Calibration [245] calibrates the output probabilities by

considering context-free inputs, i.e., “ ” or “N/A”.

From Table 5.6 we observe that on 12 tasks our LSupCon outperforms the other

losses, while performs on-par in other tasks. Contextual Calibration does not achieve

good results overall. We speculate two reasons for this. First, Contextual Calibration

is designed for large models without fine-tuning like GPT (zero-shot setting). Sec-

ond, the form of in-context learning in Contextual Calibration is different from the
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Task LM-BFF LM-BFF
+ours ensemble

SST-5 (acc) 49.5 (1.1) 48.0 (0.8)
CoLA (Matt.) 10.2 (5.8) 7.5 (4,7)
MNLI (acc) 63.3 (2.4) 62.2 (1.8)
MNLI-mm (acc) 65.1 (2.4) 64.0 (1.8)
QNLI (acc) 66.4 (3.5) 63.8 (2.7)
MR (acc) 85.8 (0.6) 85.7 (0.7)

Table 5.7: Comparing our single model trained with SupCon loss to an ensemble of 20
models.

demonstrations we study here.

Ensemble vs. our single model Our method uses 20 generated templates (auxil-

iary prompts) to construct multi-views of input sentences. But only a single prompt

(primary prompt) and one set of label words are used for main predictions. Thus,

there is only a single model from our method. Here, we compare our model to an

ensemble comprised of 20 models trained separately with the 20 prompts. From Table

5.7, we find that our method even outperforms the ensemble with 20× more number

of parameters, showing that it is a more efficient way to make use of the generated

prompts. We speculate that because of the over-fitting nature of few-shot learners,

members in the ensemble fail to produce substantial diverse prediction distributions.

Ablations: Input augmentation The success of contrastive learning heavily relies

on the data augmentation. Our method takes advantage of prompt-based language

learners and naturally creates multi-views of a single input by appending it with

different templates and/or demonstrations. Compared to EDA which includes synonym

replacement (SR), random insertion (RI), random swap (RS) and random deletion

(RD), our strategy for augmentation does not lead to incomplete and inconsistent

sentences, while introducing adequate variations for effective learning.
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Task LM-BFF SR RI RS RD EDA ours
SST-2 89.2 90.7 90.8 90.7 90.7 90.5 90.6
Subj 88.6 90.6 90.8 91.0 90.5 89.1 90.4
SST-5 47.9 47.7 49.2 48.2 47.9 46.7 49.5
CoLA 6.1 5.8 6.5 4.9 4.0 3.9 10.2
TREC 82.8 78.1 80.7 79.0 80.7 80.6 83.3
MNLI 61.0 61.8 62.4 61.0 58.1 58.9 64.0
-mm 62.5 63.6 64.8 62.7 60.3 60.9 65.5
SNLI 66.9 63.1 66.4 67.2 65.2 62.2 69.9
QNLI 60.7 65.3 65.3 67.4 64.8 62.5 66.4†

QQP 62.5 64.5 65.8 68.0 63.2 61.0 68.8
RTE 64.3 61.4 61.4 61.3 62.1 61.1 65.1
MRPC 75.5 77.6 77.7 79.3 78.7 79.1 78.2†

MR 83.3 85.5 85.5 85.5 85.3 85.6 85.8
MPQA 83.6 82.2 84.4 84.4 83.9 82.8 84.6
CR 88.9 88.9 88.2 88.3 88.5 87.1 89.4

Table 5.8: Comparing our random templates/demonstrations as data augmentation to
SR, RI, RS, RD and EDA. Numbers are average of 5 train-test splits.

The results in Table 5.8 are obtained by applying SR, RI, RS, RD, EDA for 10% of

input tokens. In contrast to ours, EDA, etc., for SupCon lead to worse performances

than the baseline method in many tasks.

Ablations: Variable templates, demonstrations So far, we have shown the

results by our method generating multi-views of inputs by appending both random

templates and demonstrations. However, we find that in some tasks fixed templates

with random demonstrations or random templates with fixed demonstration lead to

even stronger performances (see Table 5.9). For example, sampling demonstrations

with fixed templates for MRPC achieves a very strong result (80.0), outperforming all

other methods in Table 5.8.
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Task LM-BFF - demo + demo + demo
+ temp - temp + temp

SST-2 (acc) 89.2 (1.3) 90.8 (0.3) 90.5 (0.4) 90.6 (0.1)
Subj (acc) 88.6 (3.3) 90.8 (0.8) 90.6 (1.2) 90.4 (1.1)
SST-5 (acc) 47.9 (0.8) 49.3 (1.7) 48.9 (1.8) 49.5 (1.1)
CoLA (Matt.) 6.1 (5.3) 9.9 (7.5) 8.5 (5.6) 10.2 (5.8)
TREC (acc) 82.8 (3.1) 83.4 (0.5) 86.7 (1.0) 83.3 (1.5)
MNLI (acc) 61.0 (2.1) 63.4 (3.3) 63.0 (3.2) 64.0 (2.0)
MNLI-mm (acc) 62.5 (2.1) 65.5 (3.1) 64.9 (3.4) 65.5 (2.7)
SNLI (acc) 66.9 (2.4) 69.8 (2.4) 68.5 (1.9) 69.9 (2.4)
QNLI (acc) 60.7 (1.7) 65.4 (3.1) 67.0 (3.6) 66.4 (3.5)
QQP (acc) 62.5 (2.6) 68.9 (3.2) 67.8 (1.4) 68.8 (3.8)
RTE (acc) 64.3 (2.7) 64.9 (3.8) 62.6 (2.8) 65.1 (3.5)
MRPC (F1) 75.5 (5.2) 79.0 (1.8) 80.0 (1.8) 78.2 (3.1)
MR (acc) 83.3 (1.4) 85.8 (0.7) 85.4 (0.3) 85.8 (0.6)
MPQA (acc) 83.6 (1.8) 84.0 (1.9) 84.1 (2.0) 84.6 (1.5)
CR (acc) 88.9 (1.0) 88.6 (0.6) 88.2 (1.0) 89.4 (1.0)

Table 5.9: Different strategies to construct multi-views of input sentences. Fixed
demonstrations and sampling templates (- demo + temp), sampling demonstrations
and fixed templates (+ demo - temp) and sampling both demonstrations and templates
(+ demo + temp).

5.3.3. Summary

Limitations: Since SupCon clusters examples on class level, our framework applies

only to classification tasks. Also, our framework requires large GPU memory, as

SupCon is an in-batch contrastive loss that needs a large batch size.

Conclusion: We proposed a novel supervised contrastive learning framework and

an effective augmentation method using prompts that can boost the performance of

prompt-based language learners and outperform recent work on 15 few-shot tasks.

Our effective fine-tuning methods for Language Models also provide insights into

VLM fine-tuning. Given that many VLMs employ frozen LLMs as language decoders

conditioned on soft-prompts, our approach can be readily adapted to VLM fine-tuning

with minimal modifications.

80



Chapter 6

LMMs in Bionformatics

Section 6.1

T-Cell Receptor-Peptide Interaction Prediction

In this section, we present “T-Cell Receptor-Peptide Interaction Prediction with

Physical Model Augmented Pseudo-Labeling” [83]. The work has been published in

KDD 2022.

6.1.1. Overview

Predicting the interactions between T-cell receptors (TCRs) and peptides is crucial

for the development of personalized medicine and targeted vaccine in immunotherapy.

Current datasets for training deep learning models of this purpose remain constrained

without diverse TCRs and peptides. To combat the data scarcity issue presented in

the current datasets, we propose to extend the training dataset by physical modeling

of TCR-peptide pairs. Specifically, we compute the docking energies between auxiliary

unknown TCR-peptide pairs as surrogate training labels. Then, we use these extended

example-label pairs to train our model in a supervised fashion. Finally, we find that the

AUC score for the prediction of the model can be further improved by pseudo-labeling
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TCR

MHCpeptide

Tumor cell 
or virus-infected cell

Figure 6.1: Illustration of T-cell receptors (TCR) and peptide binding: The TCR lies
on the surface of the T-cell for recognition of foreign peptides. Peptides are presented
by major histocompatibility complex (MHC) found on the surface of tumor cells or
virus-infected cells. Common datasets for studying TCR-peptide interactions contain
sequences of peptides and sequences of β chain of CDR3 of TCRs.

of such unknown TCR-peptide pairs (by a trained teacher model), and re-training the

model with those pseudo-labeled TCR-peptide pairs. Our proposed method that trains

the deep neural network with physical modeling and data-augmented pseudo-labeling

improves over baselines in the available two datasets. We also introduce a new dataset

that contains over 80,000 unknown TCR-peptide pairs with docking energy scores.

6.1.2. Motivation

T cells play an important role in the human immune response system by recognizing

anomalous peptides through T-cell receptors (TCRs), which are protein complexes on

the surface of T cells [34, 103]. Foreign peptides are presented by major histocompati-

bility complex (MHC) of tumor cells or virus-infected cells (shown in Figure 6.1). The

binding between the TCR and peptide-MHC triggers further immune responses [61].

Thus, successfully predicting the interactions between TCRs and peptides is a key
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step for the development of personalized medicine and vaccines, which is called the

holy grail of immunology [28].

The TCR is a dimer with two chains: an α chain and a β chain. Each chain has

three loops as complementarity-determining regions (CDR), denoted as CDR1, CDR2

and CDR3. CDR1 and CDR2 are primarily responsible for interactions with MHC

and CDR3 interacts with peptides [166]. It is believed that the β chain of CDR3 has

higher variations and is mainly responsible for the recognition of different peptides

[105]. Thus, commonly widely used datasets (e.g., VDJdb [179] and McPAS [197]) for

studying TCR-peptide interactions contain mainly sequences of β chain of CDR3 of

TCRs and sequences of peptides.

Following the recent advancement of deep learning, several computational methods

[88, 92, 137, 186, 187, 200, 212] for predictions of TCR-peptide interactions have been

proposed. However, these methods mostly rely on the available labeled TCR-peptide

pairs, despite that there are large public available TCR (without known associated

peptides) sequences presented in the database.

In this study, to fully leverage the computational capability of a powerful neural

network, we propose to learn our model with the external unlabeled TCRs in two

ways: (1) data-augmented pseudo-labeling of TCR-peptide pairs by a model first

trained on the labeled dataset (then re-train the model), and (2) physical modeling

between TCRs and peptides by docking [222]. We find in experiments that these

two approaches effectively improve the performance of models in two widely studied

datasets.

6.1.3. Related Work

Conventional methods for predicting TCR-peptide interactions include nearest neighbor

(SwarmTCR [44]), distance-based minimization (TCRdist [32]), PCA with decision

tree [198], and Random Forest [35, 58].
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Recently, several deep learning approaches have been proposed to predict the

interactions between TCRs and peptides. ERGO [186] uses dual encoders for sequences

of TCRs and peptides to predict the interactions based on β chain of CDR3. The

second version of ERGO [187] further takes other information into considerations

(e.g., α chain of CDR3, V and J gene, MHC type, T-cell type, etc.) to improve the

predictions. TCRGP [88] makes predictions by Gaussian Process for some certain

epitopes. NetTCR 1.0 [92] uses stacked convolutional neural network (CNN) for

TCR-peptide predictions and further, NetTCR 2.0 [137] considers both α and β chain

of CDR3. Besides the LSTM and CNN based models used in the aforementioned

methods, TITAN [212] studies this problem by an attention-based [200] network.

Our method is also based on a deep learning approach. However, instead of focusing

on designing the architecture of the model, we emphasize on computing the physical

properties of TCR-peptide pairs (by leveraging a large available TCR database without

known associated peptides) to extend the training dataset. Our method applies to

any deep learning approaches that encode TCR and peptide sequences for predictions.

The framework is also generalizable to study other protein-protein interactions.

Physical Modeling by Docking Docking [65, 151, 168] is a computational method

for predicting the structures of protein complex (e.g., dimer of two molecules) given

the structure of each monomer. It searches the configuration of the complex by

minimizing an energy scoring function. In this study, we use the final docking energy

(of the optimal structure of the complex) between a TCR and peptide as the surrogate

binding label for the TCR-peptide pair.

Specifically in this study, we use HDOCK [222] as our docking algorithm. For a

TCR/peptide sequence without known structure, HDOCK first uses a fast protein

sequence searching algorithm [148, 160] to find the multiple-sequence-alignment (MSA)

of the target sequence, and the corresponding structures in Protein Data Bank (PDB)
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[10]. Then, it predicts the structures of the target sequence from the MSA and the

known structures of homologous sequences. Finally, HDOCK optimizes the energy

scores between the TCR and peptide, based on the predicted structures.

Our learning algorithm leverages the final docking energy score as a surrogate

label for a TCR-peptide pair. We use a threshold to partition TCR-peptide pairs into

negative pairs, positive pairs, and others.

Pseudo-labeling and Self-training Pseudo-labeling or self-training corresponds to

first learning a model (teacher model) on the labeled dataset, and use the learned model

(teacher model) to pseudo-label the unlabeled dataset. Finally, a new model is learned

from the joint dataset of original labeled dataset and the extended pseudo-labeled

dataset. Pseudo-labeling is a well-established method in semi-supervised learning

including image classification [77, 149, 164, 184, 234], semantic segmentation [22, 66,

76, 144, 240], and many language tasks [6, 67, 81, 203].

Fixmatch [184] learns from unlabeled examples by matching the predictions of the

model on weakly-augmented examples and heavily-augmented examples, which has

impressive performances in several semi-supervised benchmarks.

Pham et al. [149] learn pseudo-labels by gradient-based meta-learning, i.e., the

pseudo-labels are optimized for minimizing the validation loss of the target task. This

Meta-Pseudo-Label approach achieves the best top-1 accuracy on ImageNet benchmark

by leveraging a private weakly-labeled dataset with over 300M images.

Our method can be viewed as a semi-supervised problem by using a large database

of TCR sequences without known associated peptides. Our study combines two

approaches for assigning pseudo-scores to unknown pairs, i.e., one by a teacher model

which is similar to Pham et al. [149], Rizve et al. [164], Sohn et al. [184], Zhang et al.

[234], and another approach by assigning pseudo-labels from properties of the physical

modeling of the TCR-peptide pairs.
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ERGO

TCR pep TCR

Figure 6.2: Overview of our method. Our method learns a TCR-peptide interaction
model (based on ERGO) by three losses: a standard cross-entropy loss from examples
of labeled dataset, a KL-divergence loss from pseudo-labeled examples (by a teacher
model), and finally a cross-entropy loss based on the physical properties (i.e., docking
energies) between TCRs and peptides.

6.1.4. Methods

Problem Setup. Let us denote t for a TCR sequence, p for a peptide sequence, and

x = (t, p) is a TCR-peptide pair. We have a TCR-peptide dataset D : {(xi, yi)} where

i = 1, 2, ..., n and n is the size of the dataset D. xi represents a TCR-peptide pair and

yi is either 1 indicating a positive pair, or 0 indicating a negative pair. Our goal is to

learn a model from Dtrain that performs well on the testing dataset Dtest, where Dtrain

and Dtest are a split of dataset D.

The data scarcity issue presented in Dtrain limits the model’s generalization on

Dtest. Thus, to improve the performance, we leverage a TCR database which has no

associated peptides DTCRdb : {tj}, where j = 1, 2, ..., N and N is the number of TCRs

in DTCRdb. The number of TCRs in DTCRdb is much larger than the number of TCRs

in Dtrain, i.e., N ≫ n. Note that the TCR in DTCRdb has no known interaction with
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peptides in Dtrain.

Overview. Our method trains a deep learning model for predicting TCR-peptide

interactions from 3 losses: a supervised cross-entropy loss from the given known

TCR-peptide pairs (illustrated in Section 6.1.4), a supervised cross-entropy loss based

on docking energies of unknown TCR-peptide pairs (illustrated in Section 6.1.4),

and a KL-divergence loss from the pseudo-labeled (by a teacher model) unknown

TCR-peptide pairs (illustrated in Section 6.1.4).

Base Model. In our study, we use ERGO-I [186] as our base models for all ex-

periments. ERGO-II [187] improves over ERGO-I by further considering auxiliary

information, i.e., α chain of CDR3, V and J gene, MHC types and T-cell types. We

choose ERGO-I over ERGO-II for the following reasons: Our goal is to show that a

machine learning model for predicting the interaction of two molecules can be improved

by further physical modeling between them. ERGO-I is a general framework that

can be adapted to study any protein-protein interactions. Whereas, ERGO-II is only

applicable to TCR-peptide interaction predictions. We expect that our framework to

work beyond the TCR-peptide predictions, though our experiments are focused on

this specific interaction.

Learning from Known pairs. ERGO [186] has two separate encoders: fθTCR

and fθpep for TCRs and peptides respectively. The encoder for TCRs is a stacked

MLPs and pre-trained by an auto-encoding loss, whereas the encoder for peptides

is parameterized by a LSTM [71] (In another variant of ERGO, both encoders for

TCRs and peptides are LSTMs, see Springer et al. [186] for more details). For a pair
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x = (t, p) ∈ Dtrain, the embedding of TCR and peptide can be computed by

eTCR = fθTCR(t) (6.1)

epeptide = fθpep(p) (6.2)

A fully connected MLP fθclf is then attached to the concatenated embeddings of TCRs

and peptides to perform the final classification:

pred = fθclf(concat(eTCR, epeptide)) (6.3)

For simplicity, in the following part of the section, we will denote

pred = fΘ(t, p) (6.4)

= fθclf,θTCR,θpep(t, p) (6.5)

where fΘ is the full model that contains fθclf , fθTCR , fθpep . The final classification

loss is the binary-cross-entropy between the prediction pred and the label y for this

TCR-peptide pair x = (t, p).

Llabeled = BinaryCrossEntropy(pred, y) (6.6)

Learning from Physical Modeling. Due to lacking of diverse TCR and peptide

pairs in the supervised training dataset Dtrain, we propose to leverage the existing

large amount of TCR sequences without associated peptides, by modeling the physical

properties between these TCRs and peptides (from the training set Dtrain) to extend

our training dataset Dtrain.

More accurate physical modeling can be achieved by running molecular dynamic
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Figure 6.3: Models used in our study. The model is borrowed from ERGO [186] for fair
comparisons. The model has two separate encoders for TCR and peptide. Following
Springer et al. [186], we experiment with both LSTM and AE model for TCR encoder
and only LSTM for peptides. A MLP is attached on top of concatenated representation
of the TCR and peptide to perform the final classification. The classification loss is a
Binary Cross Entropy (BCE) loss.

(MD) simulations which are computationally heavy (It can take 20 hours for a single

TCR-peptide pair [4]). We choose to use the docking energy between a TCR and

peptide as an indication of interaction, due to its simplicity so that we can apply it to

large-scale unlabeled TCRs (i.e., computing docking energy takes around 2 minutes

for each TCR-peptide pair, running on Intel I7-7700K with 64GB RAM). Docking

energy reflects the binding affinity between molecules by treating molecules as rigid

bodies [145]. Docking of a peptide onto a TCR finds the optimal configuration of two

rigid bodies with the minimal energy by moving the peptide around the surface of the

TCR. Thus, the smaller docking energy indicates a likely positive pair of the given

TCR and peptide.

Docking is a physics-based modeling that first requires the known structures of

TCRs and peptides. Given a TCR sequence t′ sample from DTCRdb, and a peptide

sequence p′ from Dtrain, we first build structures of the TCR t′ and the peptide p′

by using blastp [17] to find homologous sequences with known structures. Then,

we call MODELLER [211] for building structures for TCRs and peptides. Once we
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Figure 6.4: Overview of docking using HDOCK. For a given sequence of TCR/peptide,
we first use blastp to find the multiple-sequence alignment (MSA) for the sequence.
MSA and the corresponding structures from PDB are then used by MODELLER for
building the structures of the TCR/peptide. Finally, we call HDOCK with the given
structures of the TCR and peptide for computing docking energies.

have structures of TCRs and peptides, we use HDOCK [222] for docking TCRs and

peptides. In this way, we build 80K TCR-peptide pairs with docking energy scores

(see also Figure 6.4). We then pseudo-label these pairs with the bottom 25% energy

scores to be positive pairs and those with top 25% energy scores to be negative pairs.

Thus, we end up with a dataset pseudo-labeled by docking energies: Dauxiliary. For

((t′, p′), y′) ∈ Dauxiliary, where y′ is the pseudo-label by docking, the learning objective

is then:

pred′ = fΘ(t
′, p′) (6.7)

Lphysical = BinaryCrossEntropy(pred′, y′) (6.8)
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Learning from Pseudo-labeled Pairs. The introduction of Dauxiliary makes our

learning problem equivalently into a semi-supervised setting. Besides the pseudo-

labeling by physical modeling described in Section 6.1.4, we can also leverage well-

established semi-supervised methods to further improve the results. Pseudo-labeling by

a teacher model is proven to be a successful technique in semi-supervised learning [185].

The algorithm first labels unlabeled examples with a model (teacher model) first trained

on the labeled dataset. Then it re-trains the model with labeled training dataset,

combining with the extended pseudo-labeled examples (see also Figure 6.5).

Following Section 6.1.4, first training with Dtrain with only loss Llabel leads to a

model Θteacher. For a pair (t′, p′) sampled from Dauxiliary,

prob′ = fΘteacher(t
′, p′) (6.9)

where prob′ is the output probability of the teacher model that we use as the pseudo-

label for this TCR-peptide pair (t′, p′). The learning objective function for the

pseudo-labeled examples by the teacher model is then:

pred′ = fΘ(t
′, p′) (6.10)

Lpseudo-labeled = KL-div(pred′, prob′) (6.11)

Here, we use KL-divergence (KL-div) for matching the model’s predictions to the

teacher’s output probabilities. The final total training loss is the combination of the

three losses:

Ltotal = αLlabeled + βLphysical + γLpseudo-labeled (6.12)

In our experiments, we set α, β, γ to be 1. However, we expect better performances
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Figure 6.5: Overview of learning from data-augmented pseudo-labeling. An ERGO
model is first learned with TCRs and peptides sample from Dtrain, and this model
is used as the teacher model. Then, this teacher model is used for pseudo-labeling
TCR-peptide pairs from auxiliary dataset. Finally, we re-train an ERGO model with
the original dataset and the extended pseudo-labeled dataset.

by further tuning these hyper-parameters.

Look Ahead Meta-update. While learning from physical modeling effectively ex-

tends the training dataset, the success of the learning also relies on the quality of the

physical modeling. We want to learn the model such that the auxiliary learning from

the physical modeling is optimized for the primary learning objective (the loss on the

test set). This is usually done by meta-learning that minimizes a validation loss. The

meta-learning algorithm introduces a gradient-on-gradient learning procedure that

is time-consuming [50]. Thus, we borrow the idea of meta-learning, but instead of

minimizing a validation loss, we approximate it with minimizing the training loss of

current batch, i.e., we optimize the gradients from learning with physical modeling
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such that gradients from this auxiliary objective only reduce the training loss (Llabel)

on the current batch.

Look Ahead Meta-update: For each training iteration, we first sample a batch

(x, y) from Dtrain, and a batch (x′, y′) from Dauxiliary. Then, we compute the loss Llabeled

using (x, y) (see details in Section 6.1.4) and Lpseudo-labeled using x′ and a teacher model

(described in Section 6.1.4). Next, we update the parameters of the model using

gradients from their two losses accordingly and denote the parameters as Θt−1. Lastly,

we compute the loss Lphysical using (x′, y′) (described in Section 6.1.4) and update the

model one step further to be Θt. if

CrossEntropy(fΘt−1(x), y) ≤ CrossEntropy(fΘt(x), y) (6.13)

i.e., learning the current batch with physical modeling leads to larger training error,

we then switch the model back to Θt−1.

Θt ← Θt−1 (6.14)

In other words, we do not update the parameters of the model if gradients of learning

from physical modeling do not help the training process. To compensate the reducing

number of training examples, we double the learning rate for Lphysical when applying

this meta-update.

6.1.5. Experiments

Datasets. We evaluate our method on two datasets, i.e., McPAS [197] and VD-

Jdb [179]. McPAS is a manually curated dataset with more than 20,000 TCRs with

matching over 300 peptides. Similarly, VDJdb dataset has over 40,000 TCRs paring

with around 200 peptides. We follow the TCR-Peptide Paring studied in Springer et al.
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[186] and split the dataset into 80% for training and 20% for testing, i.e., Dtrain and

Dtest. Because McPAS and VDJdb have only known positive pairs between TCRs and

peptides, we follow Springer et al. [186] that samples a random TCR and a random

peptide to form a negative pair, and samples 4× more negative pairs than the positive

pairs. In experiments, we investigate with different sizes of Dtrain, i.e, 6K, 10K and

20K. Our DTCRdb has TCRs from benny chain TCR memory data of Springer et al.

[186] (which was only used for unsupervised pre-training of a TCR autoencoder model).

We compute the docking energies for 80K pairs and thus |Dauxiliary| = 40K (Because

we only use pairs with top and bottom 25% energy scores, see details in Section 6.1.4).

We will make the original Dauxiliary (full) which has computed docking scores for

over 80,000 TCR-peptide pairs available. 1

Models and Training Details. We use the same model architecture (ERGO,

see also Figure 6.3) from Springer et al. [186]. ERGO has two encoders: one for

TCRs which encodes the one-hot representation of a TCR sequence with amino acid

embeddings of dimension 10, followed by MLPs with hidden sizes 300, 100, 30. The

other encoder for peptides is parameterized by a LSTM, which has two layers, each

with dimension of 100. The last hidden states of LSTM are used as the representation

for peptides. We denote this model as AE-LSTM model.

All models are trained with Adam optimizer [99] with fixed learning rate of 5e−4,

batch size of 50, epochs of 100, and with 5 different random seeds.

We also experiment with another variant of ERGO that has both LSTM encoders

for TCRs and peptides. We denote this model as double-LSTM model. The two

LSTMs are symmetric, each with two layers and hidden dimension of 100.
1https://github.com/yiren-jian/Tcell-Peptide-PhyAugmentation
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Results on McPAS. We show in Table 6.1 and 6.2 for investigating McPAS with 2

different variants of ERGO (following Springer et al. [186]), i.e., one with AE encoder

for TCRs and one with LSTM for TCRs. Both models have the same LSTM encoder

for peptides.

AE-LSTM model: We see that in Table 6.1 data-augmented pseudo-labeling

improves the AUC score by 4.1 and 6.4 with |Dtrain| of 6K and 10K. Docking (physical

modeling) further increases the AUC score by 2.9 and 2.1. The overall better results by

docking is likely due to the fact the physical properties of molecule complex introduces

learning signals from another modality, whereas data-augmented pseudo-labeling still

relies on the teacher model which is only trained on the original dataset Dtrain. The

overall better performances by physical modeling emphasizes the better pseudo-labels

based on docking, comparing to a teacher model learned from original limited training

set. We also notice that the improvements reduce when the training dataset grows

larger.

These improved performances emphasize the importance of having more diverse

TCR-peptide pairs during the training with data-augmented pseudo-labeling and phys-

ical modeling. The meta-update introduced in Section 6.1.4 updates the parameters of

the model by only learning from useful signals from physical modeling, that achieves

the best results by increasing an average of 0.9 over the vanilla sum of the three losses.

double-LSTM model: Our method generalizes to different base models. Here we

show that our framework is able to improve over the baselines using a double-LSTM as

ERGO base models in Table 6.2. In this case, data-augmented pseudo-labeling works

about equally well to physical modeling. The best models of our method outperform

vanilla ERGO by 3.9, 2.8 and 1.8 with |Dtrain| of 6K, 10K and 20K.

Results on VDJdb. AE-LSTM model: In Table 6.2, we see a similar trend in

VDJdb dataset. ERGO + docking improves over the baseline by 1.5, 3.6 and 4.7 with
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Data size 6K 10K 20K
ERGO 54.4 ± 0.5 56.3 ± 0.5 71.2± 0.3
+ Pseudo 58.5 ± 0.5 62.7 ± 0.4 72.7± 0.3
+ Docking 61.4 ± 0.4 64.8 ± 0.4 72.4± 0.4
ours (3 losses) 62.1 ± 0.4 66.0 ± 0.4 73.2± 0.3
ours + meta-update 63.4± 0.4 66.5± 0.4 74.2± 0.3

Table 6.1: Experimental results on McPAS using base model of ERGO-AE. ERGO:
Baseline method, ERGO + Pseudo: ERGO with data-augmented pseudo-labeling,
ERGO + Docking: ERGO with physical modeling, ours (3 losses): ERGO with
data-augmented pseudo-labeling and physical modeling, ours+ meta-update: ours (3
losses) with meta-update described in Section 6.1.4. Data size denotes the different
sizes of Dtrain. Results are collected from 5 different independent experimental runs.

Data size 6K 10K 20K
ERGO 67.6 ± 0.4 71.9 ± 0.4 76.6 ± 0.3
+ Pseudo 69.3 ± 0.4 73.6 ± 0.3 77.6 ± 0.3
+ Docking 69.4 ± 0.4 73.3 ± 0.3 77.9 ± 0.2
ours (3 losses) 70.4 ± 0.3 73.7 ± 0.3 77.6 ± 0.2
ours + meta-update 71.5 ± 0.3 74.7 ± 0.3 78.4±0.2

Table 6.2: Experimental results on McPAS using base model of ERGO-LSTM. Results
are collected from 5 different independent experimental runs. In these experiments,
ERGO+Psudo and ERGO+Docking perform roughly equally well.

Data size 6K 10K 20K
ERGO 60.7 ± 0.5 61.0 ± 0.5 66.8 ± 0.4
+ Pseudo 61.0 ± 0.5 63.9 ± 0.4 69.8± 0.3
+ Docking 62.2 ± 0.5 64.6 ± 0.5 71.5 ± 0.3
ours (3 losses) 63.4 ± 0.5 66.4 ± 0.4 72.2 ± 0.3
ours + meta-update 64.6 ± 0.5 67.6 ± 0.4 72.9 ± 0.3

Table 6.3: Experimental results on VDJdb using base model of ERGO-AE. Results
are collected from 5 different independent experimental runs.

|Dtrain| of 6K, 10K and 20K. Our method with three losses achieves best results in all

3 tasks.

double-LSTM model: In Table 6.4, we find that data-augmented pseudo-labeling

only outperforms the baseline marginally in 3 tasks (0.3, 0.4, and 0.3). This is possibly
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Data size 6K 10K 20K
ERGO 68.1± 0.4 72.0 ± 0.3 73.6 ± 0.4
+ Pseudo 68.4 ± 0.3 72.4 ± 0.3 73.9 ± 0.3
+ Docking 69.5 ± 0.4 73.4± 0.3 74.6± 0.3
ours (3 losses) 70.4± 0.3 72.9± 0.3 74.6± 0.3
ours + meta-update 71.5 ± 0.3 73.8± 0.3 75.2± 0.3

Table 6.4: Experimental results on VDJdb using base model of ERGO-LSTM. Results
are collected from 5 different independent experimental runs. In these experiments,
ERGO+Pseudo only improves over the baseline marginally, while physical modeling
by docking still increase the AUC by significant margins.

due to the fact that the teacher model by double-LSTM model fails to generate

useful pseudo-labels for extended TCRs for re-training the model. However, physical

modeling by docking consistently improves over the baseline by considerable margins

in all 3 tasks.

The results indicate that while data-augmentation may fail sometimes, physical

modeling can always provide the pseudo-labels for unlabeled TCRs for effective

training.

6.1.6. Discussion

There’s a long tail distribution of peptides presented in McPAS and VDJdb datasets.

For example in McPAS, peptide LPRRSGAAGA has over 2000 known TCR pairs

while many others are only paired with less than 10 TCRs. The baseline models

learning directly from such unbalanced dataset fails to generalize well on the testing set

for those rare peptides. For example using AE-LSTM model with 6K labeled training

examples in McPAS, we find that baseline method for prediction of a rare peptide

KRWIILGLNK has only AUC score of 52.8, while our method achieves 68.1. Note

that the average AUC for all peptides is 54.4. The results indicate that our method

significantly improves the results for rare peptides, where the baseline is struggling.

We show more examples in Table 6.5.
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rare peptides baseline average ours
KRWIILGLNK 52.8 54.4 68.1
KMVAVFYTT 48.9 54.4 65.8
FPRPWLHGL 50.2 54.4 58.5

Table 6.5: Experiments with AE-LSTM model with McPAS dataset of 6K labeled
examples (from Dtrain). "average" denotes the average AUC for all peptides in this
experimental setup.

6.1.7. Conclusion

In this work, we investigate several techniques to improve the prediction of TCR-

peptide interactions. Specifically, we find that pseudo-labeling of unknown TCR-

peptide pairs from auxiliary dataset and re-training the model with the mixture of

original dataset and extended pseudo-labeled dataset can improve the results. Further,

docking energies as the physical properties between TCR-peptide pairs can be used as

surrogate pseudo-labels for training the deep learning model. And pseudo-labels by

physical modeling is generally better than pseudo-labels by a teacher model trained

from the original training set. At last, we propose a meta-update technique that

further updates the parameters of the model by selecting only positive gradients

of learning from physical modeling. Experiments on two widely studied datasets

demonstrate the effectiveness of our proposed approaches.

Section 6.2

Learning RNA tasks from Protein LLMs

In this section, we present “Knowledge from Large-Scale Protein Contact Prediction

Models Can be Transferred to the Data-Scarce RNA Contact Prediction Task” [85].

The work is published in arXiv pre-print server in 2023.
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6.2.1. Overview

RNA, whose functionality is largely determined by its structure, plays an important role

in many biological activities. The prediction of pairwise structural proximity between

each nucleotide of an RNA sequence can characterize the structural information of

the RNA. Historically, this problem has been tackled by machine learning models

using expert-engineered features and trained on scarce labeled datasets. Here, we

find that the knowledge learned by a protein-coevolution Transformer-based language

model can be transferred to the RNA contact prediction task. As protein datasets are

orders of magnitude larger than those for RNA contact prediction, our findings and

the subsequent framework greatly reduce the data scarcity bottleneck. Experiments

confirm that RNA contact prediction through transfer learning using a publicly

available protein language-model is greatly improved. Our findings indicate that

the learned structural patterns of proteins can be transferred to RNAs, opening up

potential new avenues for research.

6.2.2. Motivation

Proteins and RNAs are critical to many biological processes such as coding, regula-

tion, and expression [46, 51, 63, 174, 177]. Understanding their structures is key to

deciphering their functionalities. While experimental methods like X-ray diffraction

[188], nuclear magnetic resonance (NMR) [19], and Cryogenic electron microscopy

(Cryo-EM) [60] can determine 3D structures, it remains challenging for structurally

flexible molecules, e.g., RNAs [133]. Consequently, the Protein Data Bank has limited

RNA structures cataloged [10].

In response, many computational tools for 3D structure prediction of biological

molecules have been developed in the last decade [93, 107, 223, 224]. Recently, deep

neural networks such as AlphaFold [91], ProteinMPNN [33], RoseTTAFold [7], and

Metagenomics [123] have revolutionized 3D protein structure prediction, partly due to
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Figure 6.6: Our study is focused on RNA contact prediction, i.e., predicting the
contact map matrix for an RNA sequence. The contact map indicates the proximity
between each nucleotide, with those closer than a threshold (10 Å) being deemed in
contact. Correct predictions of the contact map can benefit downstream tasks, e.g.,
by acting as constraints for filtering 3D RNA structure predictions.

their large size and training datasets. However, this progress has not been paralleled

for RNAs, mainly due to the scarcity of RNA datasets. Current RNA datasets are

significantly smaller than protein datasets, with well-curated datasets containing

less than 100 RNAs [233] and models trained on fewer than 300 RNA structures

[193, 243]. These small datasets are insufficient for training large deep neural networks,

leading to RNA 3D prediction tools based on simulations (SimRNA, Rosetta FARFAR,

iFoldRNA, NAST) [14, 31, 90, 104, 178] or fragment assembly (ModeRNA, Vfold,

RNAComposer, 3dRNA) [153, 167, 205, 219, 246].

In the absence of powerful 3D structure prediction models, certain structural

properties of RNAs can be determined through RNA Contact Prediction [78]. The

contact predictions can be used as an intermediary step to facilitate the prediction of

3D structures or directly for downstream tasks that rely on RNA structural information.

For an RNA sequence of length L, this task aims at predicting a L × L symmetric

binary matrix (called contact map) where a value of 1 at position (i, j) indicates that
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the ith and jth nucleotides are in contact2 with each other to each other in 3D space.

The predicted contact maps capture structural constraints, which can be used for

downstream tasks, such as refining RNA 3D prediction tools [205] (see Figure 6.6

for an overview of the task). Note that for a target RNA sequence, the input for an

RNA contact prediction model is an RNA multiple sequence alignment (MSA), which

corresponds to the target RNA sequence stacked with known homologous sequences.

The first RNA Contact Prediction attempt was Direct Coupling Analysis (DCA),

with variants like mfDCA [138], mpDCA [215], plmDCA [45], bmDCA [140], and

PSICOV [89]. These self-supervised methods infer contact maps using maximum

likelihood estimation without labeled datasets. Recently, supervised methods have

been explored to improve RNA contact prediction. Due to the small number of

available RNA-contact map pairs, these methods rely on feature engineering, such as

in RNAcontact [193], which uses covariance matrices from Infernal [141], PETfold-

predicted secondary structures [171], and RNAsol solvent accessible surface areas [192]

to train a deep ResNet model [69]. Zerihun et al. [233] found that simple DCA outputs

re-weighted by a convolutional layer (CoCoNet) achieve comparable RNA contact

prediction precision [233].

Supervised RNA contact prediction methods leverage additional knowledge from

RNA analytic tools for more informative features. These small models are necessitated

by limited training examples. In contrast, abundant protein data allowed for training

a large Transformer-based deep neural network, Co-evolution Transformer (CoT), for

protein contact prediction [237]. CoT was trained on 90K curated protein structures,

compared to 0.1K RNA structures.

Since we lack the data to train such a model for RNA contact prediction from

scratch, we investigate the possibility of re-using and tuning the learned parameters of a
2Contact is defined as distances smaller than a specific threshold. Following prior works, this is

set by a hard distance threshold of 10 Å.
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Figure 6.7: Overview of our three-stage method (from top to bottom). Adapted
Feature Extraction: First, a projection layer is used to translate the RNA MSA
sequences into protein language (e.g., from nucleotide “AUCG” to amino acids “HETL”).
Then, we leverage a fixed large-scale pre-trained protein contact prediction transformer
model (called Co-evolution Transformer model (CoT)) to extract attentive (i.e., contri-
bution) features at different layers. Feature Fusion: Features from different layers are
processed by separate convolution blocks before being concatenated. Classification:
The aggregated features are sent into a standard Convolutional Network (ConvNet)
classifier with three layers of convolution.

pre-trained protein language-model (such as CoT) to create an RNA contact prediction

model, a process referred to as transfer learning. Inspired by recent breakthroughs in

unified vision-language models [9, 113, 204] and transfer learning across text and visual
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domains [79, 131], which have demonstrated the effectiveness of transferring knowledge

between related modalities, such as leveraging the structural abilities learned from code

and music to enhance language models [146], we propose that bio-molecule contact

patterns learned by the CoT protein Transformer network could be transferred to

improve RNA contact prediction performance.

Similar to RNA contact prediction models, CoT takes protein MSAs as input.

The input to CoT is represented using English characters, with each amino acid

represented by a unique English character. CoT then utilizes the attention mechanism

of Transformers [200] to learn the contacts, analogous to how Transformer-based

language models, such as GPT-3 [15], learn dependencies between words in a given

text. Though at the surface level, RNA and protein sequence data are comprised

of different building blocks (nucleotides for RNAs and amino acids for proteins),

we speculate that they share deeper similarities concerning their contact patterns,

analogous to two languages with different lexicons but a similar syntax. Hence, it

may be possible to transfer knowledge about contact patterns from one to another,

analogous to cross-lingual transfer in Transformer-based language models [62].

We investigate our hypothesis by adapting the pre-trained CoT to our RNA dataset

and using the adapted representations to train a convolutional network (ConvNet)

for RNA contact prediction (see Figure 6.7 for an overview of our method). Our

explorations show that this simple method, which does not rely on any additional

pre-processing or feature engineering and can detect true contacts missed by prior

works. In addition to improving RNA contact prediction by using knowledge from a

pre-trained protein language-model, our study serves as a strong proof of concept for

the possibility of transfer learning between the proteins and RNAs.
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6.2.3. Background and Related Works

Unsupervised Contact Prediction Based on the Co-Evolution Hypothesis

The co-evolution hypothesis is the basis of many contact prediction methods (for both

proteins and RNA). The hypothesis suggests that spatially proximate pairs of amino

acids or nucleotides tend to co-evolve to maintain their structure and function [215].

In practice, this is used for RNA (and protein) contact prediction as follows: to

predict the contacts of a target RNA sequence, first, a sequence database is used

to find similar sequences. These sequences are likely homologs of the target, with

differences due to mutations during evolution. These sequences are then aligned,

creating what is called a multiple sequence alignment (a.k.a MSA). Based on the

co-evolution hypothesis, the contact prediction for the target sequence can then be

reformulated as detecting the co-evolution nucleotide pairs in the MSA. For example,

Morcos et al. [138] calculate the covariance between each pair of nucleotides, thus

creating a covariance matrix as an approximation of the co-evolution. The direct

coupling score (DCA score) between each pair can then be computed through different

approximation methods. While Morcos et al. [138] use mean-field approximation

(mfDCA), other DCA variants (e.g., [45]) use different tricks for the approximation.

DCA methods are all purely unsupervised, based on the counting frequency of the

residues in MSA, and can be applied to proteins and RNA sequences. Recently, it has

been shown that transformer-based protein language-models can also be unsupervised

protein contact learners [156, 157], though these methods are not necessarily based on

the co-evolution hypothesis.

Supervised Contact Prediction Given ∼ 180K known protein structures in PDB,

Zhang et al. [237] train a 20M-parameters attention-based Transformer model for

end-to-end prediction of protein contacts based on MSA. The attention mechanism

of the model, called the Co-evolution Transformer (CoT), is specifically designed to
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model co-evolution by considering the outer product of representations of two positions.

Such a model is only successful given a large labeled dataset of known MSA to contact

mappings.

Training such a large model for RNA is unfortunately not practical as there are

currently no such large datasets available. The largest of such data is at least 2-3 orders

of magnitude smaller than what is available for proteins. To overcome this bottleneck,

most resort to feature engineering to train smaller models. For instance, recent works

[193, 243] combine DCA outputs (or similarly, covariance matrices) with other features

(such as predicted secondary structures, solvent surface areas, etc.) extracted from

different RNA analysis tools to train relatively small convolution networks, using

only hundreds of labeled data point. Finally, Zerihun et al. [233] propose CoCoNet,

showing that the output of DCA by itself is sufficient for training such models and

that oftentimes expensive additional feature extraction is not needed.

Transfer Learning We show in this chapter that the learned knowledge of a pre-

trained protein contact prediction model can be effectively used for RNA contact

prediction, not only removing the need for additional feature engineering and extraction

but also vastly outperforming CoCoNet. Our proposed method is built upon the

concept of “Transfer Learning” [39], which assumes that knowledge learned from one

task is beneficial to other related tasks. Transfer learning has enabled the adaption of

large pre-trained deep neural networks to new tasks with a limited number of labeled

examples. This is typically done by training newly initialized layers at the end of

the pre-trained network (which tends to be task-specific) using the small dataset

while keeping the other layers frozen (which preserves the learned knowledge from the

previous task). Only the relatively small set of parameters in the final layers will be

updated, which will adapt the network to the new task.

Transfer Learning has been shown to be effective for class-level transfer in a single
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domain [202] and for different domains (e.g., an image classification model adapted

for semantic segmentation [129]). There is also research that shows that seemingly

unrelated tasks can also help each other [135]. Even models for different modalities

can be transferred. For instance, Mokady et al. [136] and Lu et al. [131] show that

semantic knowledge can be transferred between language and visual models.

A key challenge of RNA contact prediction is the small dataset size, which prohibits

us from learning a deep model from scratch. We hypothesize (and later verify)

that knowledge could be effectively transferred from a pre-trained protein contact

Transformer to RNA contact prediction, enabling us to train high-performing RNA

contact prediction models without the need for additional labeled or feature engineering,

both of which can be prohibitively expensive. Analogies can be drawn between our

approach and research done on the cross-lingual transfer of language models [62] that

adapt a pre-trained model to a new language by learning its syntax while retaining

the semantic knowledge in the pre-trained model; here we are adapting a biological

model pre-trained on the “language of proteins” to the “language of RNAs”.

6.2.4. Backgrounds

Unsupervised Contact Prediction Based on the Co-Evolution Hypothesis

The co-evolution hypothesis is the basis of many contact prediction methods (for both

proteins and RNA). The hypothesis suggests that spatially proximate pairs of amino

acids or nucleotides tend to co-evolve to maintain their structure and function [215].

In practice, this is used for RNA (and protein) contact prediction as follows: to

predict the contacts of a target RNA sequence, first, a sequence database is used

to find similar sequences. These sequences are likely homologs of the target, with

differences due to mutations during evolution. These sequences are then aligned,

creating what is called a multiple sequence alignment (a.k.a MSA). Based on the

co-evolution hypothesis, the contact prediction for the target sequence can then be
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reformulated as detecting the co-evolution nucleotide pairs in the MSA. For example,

Morcos et al. [138] calculate the covariance between each pair of nucleotides, thus

creating a covariance matrix as an approximation of the co-evolution. The direct

coupling score (DCA score) between each pair can then be computed through different

approximation methods. While Morcos et al. [138] use mean-field approximation

(mfDCA), other DCA variants (e.g., [45]) use different tricks for the approximation.

DCA methods are all purely unsupervised, based on the counting frequency of the

residues in MSA, and can be applied to proteins and RNA sequences. Recently, it has

been shown that transformer-based protein language-models can also be unsupervised

protein contact learners [156, 157], though these methods are not necessarily based on

the co-evolution hypothesis.

Supervised Contact Prediction Given ∼ 180K known protein structures in PDB,

Zhang et al. [237] train a 20M-parameters attention-based Transformer model for

end-to-end prediction of protein contacts based on MSA. The attention mechanism

of the model, called the Co-evolution Transformer (CoT), is specifically designed to

model co-evolution by considering the outer product of representations of two positions.

Such a model is only successful given a large labeled dataset of known MSA to contact

mappings.

Training such a large model for RNA is unfortunately not practical as there are

currently no such large datasets available. The largest of such data is at least 2-3 orders

of magnitude smaller than what is available for proteins. To overcome this bottleneck,

most resort to feature engineering to train smaller models. For instance, recent works

[193, 243] combine DCA outputs (or similarly, covariance matrices) with other features

(such as predicted secondary structures, solvent surface areas, etc.) extracted from

different RNA analysis tools to train relatively small convolution networks, using

only hundreds of labeled data point. Finally, Zerihun et al. [233] propose CoCoNet,

107



6.2 Learning RNA tasks from Protein LLMs LMMs in Bionformatics

showing that the output of DCA by itself is sufficient for training such models and

that oftentimes expensive additional feature extraction is not needed.

Transfer Learning We show in this chapter that the learned knowledge of a pre-

trained protein contact prediction model can be effectively used for RNA contact

prediction, not only removing the need for additional feature engineering and extraction

but also vastly outperforming CoCoNet. Our proposed method is built upon the

concept of “Transfer Learning” [39], which assumes that knowledge learned from one

task is beneficial to other related tasks. Transfer learning has enabled the adaption of

large pre-trained deep neural networks to new tasks with a limited number of labeled

examples. This is typically done by training newly initialized layers at the end of

the pre-trained network (which tends to be task-specific) using the small dataset

while keeping the other layers frozen (which preserves the learned knowledge from the

previous task). Only the relatively small set of parameters in the final layers will be

updated, which will adapt the network to the new task.

Transfer Learning has been shown to be effective for class-level transfer in a single

domain [202] and for different domains (e.g., an image classification model adapted

for semantic segmentation [129]). There is also research that shows that seemingly

unrelated tasks can also help each other [135]. Even models for different modalities

can be transferred. For instance, Mokady et al. [136] and Lu et al. [131] show that

semantic knowledge can be transferred between language and visual models.

A key challenge of RNA contact prediction is the small dataset size, which prohibits

us from learning a deep model from scratch. We hypothesize (and later verify)

that knowledge could be effectively transferred from a pre-trained protein contact

Transformer to RNA contact prediction, enabling us to train high-performing RNA

contact prediction models without the need for additional labeled or feature engineering,

both of which can be prohibitively expensive. Analogies can be drawn between our

108



6.2 Learning RNA tasks from Protein LLMs LMMs in Bionformatics

approach and research done on the cross-lingual transfer of language models [62] that

adapt a pre-trained model to a new language by learning its syntax while retaining

the semantic knowledge in the pre-trained model; here we are adapting a biological

model pre-trained on the “language of proteins” to the “language of RNAs”.

6.2.5. Methods and Setups

Protein-to-RNA Transferred Contact Prediction Model. In this section, we

provide details of our model’s architecture, input, and output. An overview of our

approach is visualized in Figure 6.7.

MSA as Input. Our RNA contact prediction model relies on the CoT model, which

takes protein MSA as the input. Thus, we need to adapt or map the RNA language,

which is comprised of nucleotides, to the protein language, which is comprised of

amino acids. Specifically, suppose our target RNA MSA has M aligned sequences,

each with the length of L nucleotides. Then, the RNA MSA can be represented as a

M ×L matrix, with each element being “A”, “U”, “C” ’, “G”, “-”, where “-” denotes a gap

in the alignment. As the CoT embedding layer recognizes only symbols corresponding

to amino acids and not nucleotides, we assign each type of nucleotide in the RNA

MSA to an amino acid symbol. For example, we could take a random translation from

“A”, “U”, “C” ’, “G” to “H”, “E”, “T” ’, “L”, to get the following translation:

“A” ( Adenine)→ “H” (Histdine)

“U” (Uracil)→ “E” (Glutamic Acid)

“C” (Cytosine)→ “T” (Threonine)

“G” (Guanine)→ “L” (Leucine)

As we show in our experiments, a random translation between nucleotide and
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amino acid symbols would be sufficient for adapting the protein contact prediction

model, CoT, to RNA contact prediction.

The Learnable Model. The CoT model has six consecutive attention blocks and

one refinement block, each outputting a L× L× C attentive feature map, where C

is a hyper-parameter corresponding to the number of features being learned by the

model. In the original implementation of the protein CoT, C is set to 96, and the

output of each attention block (i.e., the feature map for that block) is fed into the

next block (see the “Adapted Feature Extraction” row in Figure 6.7).

For our RNA contact prediction, we further attach four layers of 2D convolution

(Conv2d) modules to the intermediate feature map outputs for each of the seven

attention blocks described above (see the “Feature Fusion” row in Figure 6.7). We

concatenate the output of the Conv2d modules for each of the seven attention blocks

into one L×L× (C×7) tensor and finally pass it to a classifier module with 3 Conv2d

layers for contact prediction (see the “classification” row in Figure 6.7). The output

of our model has shape L× L× 37, i.e., the distance between pairs of nucleotides is

divided into 37 bins. Our model is trained using standard cross-entropy loss with the

bins as labels. The summed probability value of the bins for a distance less than 10Å

is used as the final contact prediction.

Dataset. We use a publicly-available well-curated RNA dataset used by Zerihun

et al. [233]. We use the provided data split for training, validation, and testing3. In

total, we have 56 RNAs for training and validation and 23 RNAs for testing, all from

different RNA families. We set the maximum number of homology sequences in MSA

to be 200, based on the limits of our GPU memory. This constraint can be alleviated

if large GPUs are available.
3We removed 3 RNAs (RF02540, RF01998, and RF02012) whose sequences are too long for CoT.
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Baseline Methods. We compare our method to several representative MSA-based

methods: (1) Unsupervised methods: mfDCA and plmDCA, using the implementations

from pydca [232], and PSICOV [89], and PLMC [72] (2) Supervised method: CoCoNet.

Note that all these baselines are variants of DCA or are based on DCA (the current

trend in studying RNA contacts). Our proposed method does not rely on DCA and

approaches the problem from a different angle through the transfer learning of learned

knowledge from a pre-trained protein contact prediction model.

Training Details. We use the Adam optimizer [99] and cosine anneal learning rate

scheduler with an initial learning rate of 1e−3. We train on an RTX-A6000 GPU using

PyTorch-1.8 and CUDA-11 and search the hyper-parameters for the total training

epochs among {100, 300, 500} and batch sizes among {4, 8, 12, 16}.

We randomly divide the 56 RNAs reserved for training into 47 RNAs for training

and 9 RNAs for validation and use the given 23 RNAs in the test dataset for testing.

The best-validated model during the training is used for testing.

Evaluation Metrics. Following the standard protocol of prior works [78, 182,

193, 243], we evaluate the precision on each RNA sequence of length L with top-L

predictions of each method (PPVL); i.e., for an RNA with a sequence of length L, we

use our model to make L predictions (for all different (i, j) pairs). Among these L

predictions, if K pairs are true contacts, then PPVL = K
L

. We also report results for

PPV0.5L and PPV0.3L.

6.2.6. Experiments

Unless specified otherwise, the results presented in this manuscript employ translation

nucleotides to amino acids (AUCG → HETL) as detailed in Sec. 6.2.5.
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Method PPVL PPV0.5L PPV0.3L

mfDCA 34.1 46.7 57.4
plmDCA 30.6 43.2 57.8
PSICOV 32.1 43.8 57.8
PLMC 33.5 45.9 57.4
CoCoNet§ (3× 3) 61.6 67.7 69.1
CoCoNet§ (5× 5) 61.8 65.2 67.8
CoCoNet§ (7× 7) 62.4 66.6 69.2
CoCoNet§¶ (3× 3)× 2 67.1 71.6 72.3
CoCoNet§¶ (5× 5)× 2 67.5 71.9 75.0
CoCoNet§¶ (7× 7)× 2 68.5 73.2 75.2
CoT-RNA† (Ours) 73.5 80.6 83.0
CoT-RNA‡ (average) 72.1 ±1.1 79.2 ±1.7 81.9 ±2.2

Table 6.6: Comparison of different RNA contact prediction methods based on MSA.
§: Using the publicly released parameters by Zerihun et al. [233], which are trained
using our training and validation sets. ¶: Using prior knowledge of Watson-Crick
pairs is used. †: Our models trained using only the training set, selected based on the
best validation and evaluated on the testing set. ‡: We repeat the experiments four
times using different random training and validation splits and report the mean and
standard deviation of the results on the test dataset.

Main Results. We first compare our method to those only using MSA as input

to evaluate the contribution of the pre-trained protein Transformer to RNA contact

prediction. Unsupervised algorithms like mfDCA, plmDCA, PSICOV, and PLMC

are based on covariance analysis. CoCoNet uses DCA output as input and ground

truth contact maps to train a supervised ConvNet classifier. We compare six CoCoNet

configurations from Zerihun et al. [233].

Table 6.6 shows supervised models significantly outperform unsupervised baselines.

Our transfer learning-based model outperforms the best CoCoNet configuration by an

absolute of 5.0, 7.4, and 7.8 for PPVL, PPV0.5L, and PPV0.3L, respectively.

CoCoNet is designed to be shallow, with a few parameters to learn, given the very

limited number of available RNA contact prediction training data and features (from

DCA). In contrast, by transfer learning of CoT, a large pre-trained protein contact

prediction model, our model is much larger and deeper and can learn more diverse
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features through the multi-layer attentions of CoT contain. To investigate whether

the improvement of our model over CoCoNet is mainly based on its capacity or the

learned knowledge of the pre-trained protein language-model, we also implement a

Deep-CoCoNet, which takes the same inputs as CoCoNet but replaces the CoCoNet’s

original shallow ConvNet with a deep model similar to ours (with the same number

of layers and each layer with the same number of channels, except for the first input

layer). We find that Deep-CoCoNet performs much worse than the original shallow

CoCoNet, possibly due to the hardness of fitting a large model that uses features with

limited expressiveness (this may also explain why Zerihun et al. [233] use a shallow

convolution network over deeper ones in their implementation).

While CoCoNet takes DCA as input which is a tensor of 1× L× L (L being the

RNA sequence length), our method, leveraging multi-layer CoT, has diverse attentive

features of shape (7×96)×L×L (There are 7 layers in CoT and each layer outputs 96

channels/features). These diverse features allow us to learn deeper and larger models

that can better generalize.

Common Transfer Learning Strategies. We investigate three common transfer

learning strategies (see Figure 6.8 for an overview) and show that they are not

well-suited for this task:

• Using CoT directly (CoT directly). By adapting the embedding to map

RNA nucleotides to protein amino acids, the pre-trained CoT can directly output

a prediction of a distance map for RNA contact prediction without any model

modifications.

• Fine-tuning the classification block of CoT (CoT cls fine-tuned). A

typical approach in transfer learning is to fine-tune the last few layers of a model.

CoT has six attention blocks followed by a final ResNet block for prediction.
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Figure 6.8: Common baselines for transferring protein CoT to RNA contact prediction.

We attach a new classification block while keeping others fixed.

• Fine-tuning the entire CoT end-to-end (CoT end-to-end). Another

common protocol for transfer learning is to fine-tune the entire pre-trained model

end-to-end. We update all parameters in the pre-trained protein CoT by the

RNA training set.

Table 6.7 shows the performance of these methods on our dataset. With a PPVL

of 30.4, the direct use of CoT (CoT directly) without any learning is shown to

be inefficient. This suggests that learned protein knowledge by itself cannot be

successfully transferred to RNA tasks without some fine-tuning. The results for

transfer learning through fine-tuning the classification block of CoT (CoT cls fine-

tuned) are considerably better, being competitive with the mfDCA baseline. These

results suggest that tuning the attention features in the last layer of CoT enables the
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Method PPVL PPV0.5L PPV0.3L

mfDCA (baseline) 34.1 46.7 57.4
CoT directly 30.4 33.1 34.0
CoT cls fine-tuned 38.3 41.6 41.2
CoT end-to-end 36.2 43.2 46.6
Ours 73.5 80.6 83.0

Table 6.7: Common transfer learning strategies applied to CoT.

transfer of knowledge to the RNA tasks to some extent. However, as this configuration

ignores the attention features from the other layers, it performs significantly worse

than our method, suggesting that these features also play an important role in contact

prediction and need to be tuned for RNA contact prediction. Finally, the end-to-end

model, which updates all the parameters in CoT (CoT end-to-end), performs similarly

to the last variant. Though this model does not ignore any part of the CoT, it requires

the tuning of ∼20M parameters. With only 56 RNA training points, the model is

likely to over-fit.

From these experiments, we can conclude that the effective transfer of protein CoT

to the RNA contact prediction task requires (1) adapting some of the parameters of

CoT to the new task, (2) leveraging the multi-layer attention features from CoT, and

(3) making the number of learnable parameters “small” and proportional to the size

of the training set for the new task. These findings lead to our final model design

described in Section 6.2.5 that leverages multi-layer attention features from CoT and

learns an appropriate number of parameters for our small training set.

Feature Fusion Design Choices. We examine various strategies for combining

attention features from different CoT layers/blocks. Our model, as shown in Figure 6.7,

employs multi-branch networks (each with 4 ConvNet layers) followed by a shared

3-layer ConvNet classification block. Each branch network separately processes the

attention features of CoT at each layer, before being fused and passed into the
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Figure 6.9: Different feature fusion strategies. Our final model uses the mid-fusion
design.

Method PPVL PPV0.5L PPV0.3L

early-fusion 71.8 79.5 82.4
mid-fusion (Ours) 73.5 80.6 83.0
late-fusion 72.0 77.7 79.4

Table 6.8: Comparison of different feature fusion designs. We modify the number of
channels in each layer so that all three models have a similar number of parameters
for fair comparison.

classification block (termed mid-fusion design). Other designs include early-fusion

and late-fusion. Early-fusion concatenates all CoT features from different layers

and processes them using a single shared network. Late-fusion has separate branch

networks for each CoT layer’s features before being merged at the very end, followed

by a single classification layer. Figure 6.9 provides a schematic diagram of these three

fusion strategies.

To make the comparison of these three designs fair, we modify the number of

channels in each layer so that the three models have a similar number of parameters.

As shown in Table 6.8, while all design choices work well, mid-fusion has the best
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Method PPVL PPV0.5L PPV0.3L

Ours (small) 71.1 76.0 79.0
Ours 73.5 80.6 83.0
Ours (large) 78.3 82.3 86.1

Table 6.9: Comparison of our model with different sizes. While maintaining the
network structures, we vary the number of channels in each layer so that we end up
with models with different numbers of parameters.

performance. It is possible that features from different layers contain different types of

information that may need to be processed by different “expert” models (i.e., ConvNet

branches in our model), making an early-fusion model inefficient. In both mid-fusion

and late-fusion, each branch network will process the attention features of each layer

separately, with late-fusion having a relatively smaller classification head. The overall

better performance of mid-fusion suggests that a good design choice is to have a

balanced distribution of parameters into the branch networks and the classification

head.

Different Model Sizes. As discussed in Section 6.2.6, the deep-CoCoNet variant

of CoCoNet under-performs compared to the shallower original CoCoNet, likely due

to the limited expressiveness of input DCA features which are single channel with a

shape of [1×L×L]. In contrast, here we demonstrate that our transferred CoT model

allows for learning deeper networks, with its performance improving as we increase

the parameters in the transfer modules.

We create larger and smaller versions of our model by increasing and decreasing

the number of channels in each layer, respectively. As shown in Table 6.9, the larger

models outperform smaller ones, possibly due to the expressiveness of the CoT features

from the 7 different attention blocks.
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Method PPVL PPV0.5L PPV0.3L

AUCG → ACDE 68.6 76.9 82.5
AUCG → HETL 73.5 80.6 83.0
AUCG → RDSY 76.1 81.4 83.4
AUCG → KDNY 77.3 84.5 88.6

Table 6.10: Results of different translations/translations from nucleotides to amino
acids of our transferred CoT. Bold corresponds to the best-performing translation;
underline corresponds to the main translation used in the experiments.

Protein to RNA Translation Variations. We have used a random translation

from RNA nucleotides to protein amino acids (e.g., “AUCG” to “HETL”) in our

experiments. Here, we study the effects of different translations on our model’s

performance.

The 20 amino acids can be categorized into four groups: (1) electrically charged,

(2) polar uncharged, (3) hydrophobic, and (4) special cases. Randomly selecting one

from each group generally works well (e.g., “AUCG” → “RDSY” and “AUCG” →

“KDNY” in Table 6.10), indicating our framework’s robustness to translation choices.

We also test possibly one of the worst translations, “AUCG” → ACDE”, as it may

generate unlikely amino acid chains (e.g., a string of negatively charged residues, as

“D” and “E” are negatively charged) and hence CoT will have had limited exposure to

such sequences during its pre-training. Though we see a relative performance drop,

the results are still comparable to CoCoNet.

A learnable 4× 20 nucleotide-to-amino acid embedding could yield better results

but faces implementation challenges, such as requiring powerful GPUs and adapting

the original CoT model’s separate binary executable embedding layer to the PyTorch

framework.
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6.2.7. Summary

We demonstrate the effectiveness of transferring CoT, a pre-trained protein Transformer

model for contact prediction, to the RNA contact prediction task using a small curated

RNA dataset. Unlike hybrid methods, our approach does not use additional features

extracted by RNA analysis tools (e.g., RNAcontact). Incorporating CoT features and

RNA features (extracted by tools like RNAcontact) could potentially improve our

method’s performance.

Our findings shed light on a compelling representation transfer problem in compu-

tational structural biology; specifically, we investigate if structural patterns learned

from large-scale protein datasets can be transferred to data-scarce RNA problems,

particularly for structural contact predictions. Our results indicate that protein-to-

RNA transfer learning can improve RNA model performance, suggesting that other

pre-trained protein Transformers, such as MSA-Transformer [157] and ESM [156],

could potentially be transferred to RNA for other downstream tasks.
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Chapter 7

Conclusions and Discussion

The learning process for large multi-modal models typically comprises two stages:

a computationally and data-intensive pre-training stage, followed by a fine-tuning

stage that demands careful design for effective adaptation. Throughout this thesis,

we present comprehensive solutions to facilitate the efficient and effective learning of

models in both these crucial stages.

In Chapter 3, We introduce a novel optimization framework designed to enhance

vision-language models through the utilization of large, pre-trained LLMs with fixed

parameters. A key observation guiding our approach is that the end-to-end image-

to-text pre-training process can be effectively decoupled in a backward manner.

Initially, our focus lies in determining the “ideal prompt” capable of eliciting the

desired target text from the LLM, a task that can be addressed through unsupervised

learning. Subsequently, we align visual features with the identified prompt. To

realize this decoupling, we introduce the P-Former, a model that operates analogously

to a semantic sentence embedding model. The primary function of the P-Former

is to predict prompts to which visual features should align. Experimental results

substantiate the effectiveness of incorporating alignment loss, facilitated by the P-

Former, into the framework of BLIP-2. Notably, this inclusion significantly diminishes
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the performance gap observed between models trained with 4 million and 129 million

image-text pairs.

In Chapter 4 introduces SimVLG, a highly efficient and streamlined pre-training

framework designed for vision-language generative models. Similar to BLIP-2, SimVLG

employs frozen ViT and LLM. Additionally, it incorporates a conventional Transformer

architecture with token-merging capabilities, referred to as TomeFormer, serving as

the crucial connector between vision and language. A notable advantage of SimVLG

over BLIP-2 lies in its one-stage training approach, effectively reducing computational

overhead. Even with only 1/3 to 1/10 of the computational budget required by BLIP-2,

SimVLG maintains competitive performance. SimVLG serves as a testament to the

possibility of achieving state-of-the-art performance in vision-language tasks without

the necessity of intricate training regimens or high computational budgets. This work

contributes significantly to the ongoing endeavor to develop more accessible, efficient,

and potent models for comprehending and generating visual and textual information.

In Chapter 5:

• We have expanded the applicability of SimVLG to video captioning tasks by

integrating the Temporal Attentive Soft Token Merging into its ViT. This

enhancement bolsters the model’s temporal modeling capabilities, resulting

in a model called SimVLG-Video. Notably, this extension has proven to be

effective, achieving commendable performance even in the absence of specialized

video-text pre-training. Our investigation underscores the significance of a

temporal module that seamlessly integrates with the well-pretrained image-text

model (e.g., BLIP-2 and SimVLG), emphasizing its crucial role in contributing

to this success.

• We introduce a straightforward strategy termed label hallucination, designed

to streamline the efficient fine-tuning of large-capacity models using few-shot
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examples from novel classes. Our approach demonstrates its effectiveness even

in extreme scenarios where the labels of the base dataset and those of the novel

examples are entirely disjoint. This uncomplicated procedure proves superior to

prevalent strategies, such as transfer learning via fine-tuning on novel examples

or linear classification atop a frozen representation. Across four well-established

few-shot classification benchmarks, our method consistently outperforms current

state-of-the-art approaches. Moreover, this learning paradigm of reusing pre-

trained examples through pseudo-labeling is shown to be universal and applicable

to VLMs, as demonstrated in BLIP [114].

• We propose a novel framework for supervised contrastive learning, complemented

by an effective augmentation method utilizing prompts. This novel approach

markedly boosts the performance of prompt-based language learners, outper-

forming recent advancements in the domain across 15 few-shot tasks. This

discovery holds implications for VLMs fine-tuning, particularly as numerous

VLMs employ LLMs as decoders, conditioning on visual soft-prompts. Our

findings in LLMs can potentially extend to enhance results in VLM fine-tuning.

Through Chapter 3, Chapter 4, and Chapter 5, we have introduced methods for

the efficient and effective training of VLMs from the pre-training stage to the fine-

tuning stage. In Chapter 6, we extend our multi-modal research into bioinformatics.

Drawing an analogy between image-text pairs and T-cell peptide pairs, we construct a

T-cell-peptide interaction model, holding significant implications for human immunity

recognition. Furthermore, we demonstrate that the acquired structural patterns in a

protein Transformer can be transferred to RNA-related tasks. Given the scarcity of

available RNA data in comparison to proteins, our research opens avenues for future

investigations into RNA modeling.
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