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ABSTRACT

Thin-film materials from μm thickness down to single-atomic-layered 2D materials play a central role in many novel electronic and
optical applications. Coherent, nonlinear optical (NLO) μ-spectroscopy offers insight into the local thickness, stacking order, symmetry, or
electronic and vibrational properties. Thin films and 2D materials are usually supported on multi-layered substrates leading to (multi-)
reflections, interference, or phase jumps at interfaces during μ-spectroscopy, which all can make the interpretation of experiments particu-
larly challenging. The disentanglement of the influence parameters can be achieved via rigorous theoretical analysis. In this work, we
compare two self-developed modeling approaches, a semi-analytical and a fully vectorial model, to experiments carried out in thin-film
geometry for two archetypal NLO processes, second-harmonic and third-harmonic generation. In particular, we demonstrate that thin-film
interference and phase matching do heavily influence the signal strength. Furthermore, we work out key differences between three and four
photon processes, such as the role of the Gouy-phase shift and the focal position. Last, we can show that a relatively simple semi-analytical
model, despite its limitations, is able to accurately describe experiments at a significantly lower computational cost as compared to a full
vectorial modeling. This study lays the groundwork for performing quantitative NLO μ-spectroscopy on thin films and 2D materials, as it
identifies and quantifies the impact of the corresponding sample and setup parameters on the NLO signal, in order to distinguish them
from genuine material properties.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0125926

I. INTRODUCTION

Thin films and nanosized materials with dimensions ranging
from a few μm thicknesses down to atomically thin 2D materials
offer various compelling and novel properties for applications in
electronics, optics, and many other fields.1–6 A key task in material
development as well as device fabrication is characterization and
quality control.7,8

In this context, parametric nonlinear optical (NLO) interac-
tions allow for the nondestructive and sensitive analysis of many
relevant material properties. NLO processes scale, as the name says,
nonlinearly as a function of the incident field strength,9,10 for
example, quadratic or cubic, and are generally very weak. However,
they may become very significant, whenever strongly confined light
fields, such as in focused and ultra-short pulsed laser beams, are
involved. Parametric NLO optical interactions are characterized by

the fact that the total energy of in- and outgoing photons match.
Here, simple examples are second- or third-harmonic generation
(SHG, THG), where two or three photons at a fundamental fre-
quency are annihilated and a single photon at twice or triple the
fundamental frequency is created, respectively.11–14 More complex
processes involving photons at different energies are possible as
well, such as sum or difference frequency generation, or four wave
mixing.15–24 A key feature for all these parametric processes is that
they do not require an energy transition, e.g., an electronic or
vibrational excitation, to be involved, but rather depend on the
symmetry and directionality of the material, only. This makes NLO
processes a very elegant tool for probing the symmetry, structure,
and directionality of any material with a high sensitivity.25

For example, SHG microscopy is able to visualize changes in
symmetry,12,16,25–27 such as at ferroelectric domain walls or twin
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boundaries in transition metal dichalcogenides (TMDs),28–32

analyze the direction and symmetry of stacked 2D materials,33,34

quantify phase transitions,35,36 or unravel localized changes in sym-
metry, such as non-Ising-type ferroelectric domain walls.26,27 The
nonlinear scaling of the intensity and the coherent build-up results
in a high sensitivity for small changes, e.g., in material thick-
ness.11,12,26,27 In the case of 2D materials, THG, for example, is
able to determine the number of stacked layers discriminating
between a single layer up to two-digits of layers.37

While NLO methods are independent of existing transitions in
a material, they can be significantly enhanced in the presence of
material resonances, such as electronic or vibrational states.
Therefore, measuring the intensity of the NLO process as a func-
tion of fundamental wavelength allows for decent spectroscopy. For
example, NLO spectroscopy in semiconductors allows us to sensi-
tively probe weak transitions, such as complex excitonic
states.35,36,38 One of the most widely used methods for parametric
NLO spectroscopy is coherent anti-Stokes Raman spectroscopy
(CARS), which addresses the challenge of weak intensity of sponta-
neous Raman scattering by using a resonant four wave mixing
process instead. Recently, this method was successfully translated
to crystalline materials as well.17,18

The large intensity enhancement of a parametric NLO process
compared to their non-coherent counterparts can be explained by
their coherent nature, i.e., the fixed phase relation between in- and
outgoing light fields. However, as the refractive index at the funda-
mental and generated frequency, in general, is not the same due to
material dispersion, this results in a walk-off between the funda-
mental and generated waves, and in destructive or constructive
interference depending on (1) the material thickness, (2) the focus-
ing conditions, and (3) the refractive indices at the involved wave-
lengths. The coherent interaction length lc, the length up to which
the interference is net positive, can range from well below 100 nm
for counterpropagating waves up to infinity, for example, for bire-
fringent materials at certain wavelengths or angles. It should be
noted for spectroscopic applications, that depending on the ana-
lyzed wavelengths, largely different coherent interaction lengths are
present within the same spectrum. This can make quantitative
analysis challenging.

For thin materials, the situation is particularly complex,
because many effects may influence the coherent signal generation
in NLO microscopy, including reflections, thin-film interference,
phase matching, and dispersion, the nonlinear scaling with interac-
tion length,12 as well as the focusing strength.39,40 The latter
includes the focus placement and, in particular, the so-called
Gouy-phase, which introduces a phase jump between signals gener-
ated above and below the focal plane. Therefore, to accurately inter-
pret quantitative results in NLO μ-spectroscopy on thin films, these
effects need to be carefully taken into account, such as by rigorous
modeling. While many 2D materials have thicknesses much shorter
compared to any co- or counterpropagating coherent interaction
lengths, phase(-mis)matching still can play an important role in
quantitative analysis, if (spaced) multi-layers are considered or if
2DM are placed on reflective substrates or even nonlinear crystals,
such as in recent examples of TMDs on nonlinear, ferroelectric
crystals.41–43 In previous work,11 we have developed a model for
SHG microscopy based on a full vectorial description of the

focusing process and performed wavelength dependent experiments
on wedge-shaped samples.11 This allowed us to analyze the influ-
ences of resonances and phase-matching in nano-confined
media.11

In the present work, first, we have extended this full vectorial
modeling and the experiments to THG. Note that due to its nature
as a third-order NLO process, THG is present in all materials.
Hence, third-order processes may be applied per se to study any
material. However, due to this universality, any material above or
below the sample of interest, such as air or substrate, must be taken
into account as well, since they potentially contribute to a coherent
interference with the signal of the sample, resulting in complex
responses. This also applies for other third-order processes such as
CARS. In this regard, THG is an ideal test-bed to gain fruitful
insights into other more complex third-order processes like CARS.

Second, we have applied a recently developed semi-analytical
approach and compare this to both the full vectorial numerical
simulations and the experiments. While the full vectorial simula-
tion is by definition more accurate because it encompasses various
complex effects like focus-induced polarizations39,40 or focal distor-
tions when deeply focusing into media,44 it comes at the cost of
considerable computing resources. In this context, while the semi-
analytical approach, can by definition not describe certain effects
such as focus-induced polarization changes,39 it still allows us to
gain broad insights into many experiments at significantly reduced
computational costs. Therefore, the comparison will allow us to
gain an understanding into the potentials of each modeling
approach in SHG, as well as THG.

This paper is structured as follows: in Sec. II, the experimental
details, the semi-analytical model, and the full vectorial numerical
model will be briefly discussed. Section III will discuss the experi-
mental results, while in Sec. IV, the theoretical models are com-
pared to the experimental findings.

II. METHODOLOGY

A. Experiment

The experiments were performed on a Zeiss LSM980 micro-
scope using a femtosecond, tunable laser source (Spectra Physics
Insight X3, 690-1300 nm, ,100 fs pulse duration, up to 5W). The
pump light was focused via an objective lens with a numerical
aperture of 0.45 onto the sample, while the generated light was col-
lected in backreflection via the same objective. The SHG or THG
light was separated via wavelength appropriate filters and detected
with a photomultiplier tube. Imaging is realized via beam scanning
through a galvo-mirror system integrated into the microscope.
Whenever the scan area is larger than the area determined by the
field of view of the objective lens, the sample can be repositioned
via a scanning stage. This allows for imaging larger scan areas via
accurate stitching.

The sample was fabricated from a piece of z-cut 5%
MgO-doped lithium niobate (LNO) (X � Y � Z: 5 � 6 � 0.2mm3),
which was bonded to a (100) silicon wafer of 500 μm thickness. This
sample was completely immersed in epoxy and polished at a shallow
angle until a LNO wedge is formed. A photograph of the investigated
sample is displayed in Fig. 1(a); Subfigures 1(b) and 1(c) show a prin-
ciple sketch viewed from the top and as a cross section, respectively.
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Please note that a second piece of silicon was bonded to the right
hand side of the LNO crystal to serve as a height reference during
polishing. As the silicon substrate below, the LNO has a larger extent
in y-direction compared to the LNO, a wedge of epoxy on the silicon
substrate is also formed next to the LNO crystal. The LNO wedge
angle was measured with a laser scanning microscope and deter-
mined to be α ¼ (0:45+ 0:01)�. This wedge angle is considered
small enough that the lateral displacements of the beam, which could
lead to a less of contrast in the interference effects, are much less
than 1% of the film thickness and the film interfaces can be consid-
ered parallel in the modeling. The surface roughness of the polished
interface was determined via laser scanning microscopy to be better
than ,25 nmRMS, which is less than a 16th of the involved wave-
length and should not influence the measurements, as it was also
shown in our previous work.11 The lower interface of the LNO
should still retain its factory polish with a roughness better than
,1 nmRMS, because it was only glued to the silicon wafer. More
details on sample fabrication can be found in our previous
publication.11

B. Paraxial modeling

The ansatz to describe nonlinear optical interaction in focused
beams is based on the paraxial solution as presented in Boyd’s

textbook9 and was adapted and discussed by us for thin films and
general NLO interactions in another publication.45 Here, we will
recall the most important steps. In that framework, an incoming
Gaussian fundamental beam is assumed and casted into a conve-
nient form as shown by Eq. (1),

Af (r, z) ¼ af
1þ i2z=b

� exp � r2

w2
0(1þ i2z=b)

� �
: (1)

Here, a is a complex amplitude, b ¼ 2zR is the confocal parameter,
which corresponds to twice the Rayleigh range, w0 is the beam
waist radius, and r and z are the cylindrical coordinates, where the
beam propagation is along the z-direction and no angular depen-
dence is present.

The well-known coupled wave equation for nonlinear phe-
nomena, including the slowly varying envelope approximation, will
be used here in cylindrical coordinates [cf. Eq. (2)],

2ikq
@Aq

@z
þ ∇2

TAq ¼ � ω2
q

ϵ0c2
Pqe

iΔkz: (2)

Here,

Δk ¼ qkωnω � kqωnqω (3)

is commonly identified as the phase mismatch, where q represents
the order of the harmonic process or the number of involved fun-
damental photons, respectively, e.g., q ¼ 2 for SHG and q ¼ 3 for
THG. Note that the refractive index n ¼ n(λ) is a quantity that
depends on the wavelength of the light. Thus, as in almost every
material, the refractive index is not constant, and, therefore, a
certain phase mismatch is always present. Usually, one defines the
distance up to which the waves are partially positively interfering
with the harmonic signal growing, as the coherent interaction
length [cf. Eq. (4)]. For plane waves, Δk is the only contribution to
the signal oscillations,

lc ¼ π

Δk
¼ λω

2q
1

nω � nqω
with

q ¼ 2, SHG
q ¼ 3, THG

� � �

0
@

1
A: (4)

This changes, however, for focused beams with more general and
realistic descriptions. The inclusion of the beam character, e.g.,
with a Gaussian beam ansatz, introduces more contributions to the
walk-off of fundamental and harmonic waves, which are mostly
caused by the additional phase evolution in focused beams, the
Gouy-phase. Focused light will experience a phase change of π
when crossing the focal plane as ΦGouy / arctan ( z

zR
). For paramet-

ric processes, this has important consequences. Due to the expo-
nential nature of the phase, parametric light generated at different
positions will acquire additional different phase contributions,
resulting in a position-dependent additional phase-mismatch. For
many scenarios with phase mismatch, this prominently results in
zero SHG and THG intensity from focused beams in bulk (infi-
nitely extending) materials and signals stemming from interfaces9,45

FIG. 1. (a) Photograph of the studied z-cut 5% MgO-doped lithium niobate
(LNO) sample glued to a silicon wafer, immersed in epoxy resin, and polished
into a wedge with α ¼ 0:45� inclination. Principle sketch of the sample (a)
viewed (b) from the top and (c) as a cross section.
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as well as vanishing THG intensity, even if there is complete phase-
matching from the refractive index point of view.

If we now consider SHG and THG processes, where three or
four light fields interact, respectively, i.e., two or three pump fields,
and one generated “out” field, one or two Gouy-phase shifts of
exp(�iΦGouy) are added to the harmonic, resulting in a total addi-
tional shift of exp[�(q� 1) � iΦGouy]. This may have a significant
impact even for thin films, as the phase ΦGouy ¼ � arctan ( z

zR
)

� � z
zR
þ 1

3
z
zR

� �3
can be seen as a sort of additional phase mis-

match, which can be annihilated by the positive phase mismatch of
anomalous dispersion.46 Furthermore, as the shift is non-linear, the
distance between maxima and minima of the SHG/THG signals
depends on the location with respect to the focal plane and oscilla-
tion order, i.e., the thickness. For normal dispersion, the coherence
length will be lowest for a material placed in the focal region, due
to the influence of the Gouy-phase.11,45

In Ref. 45, we, therefore, suggest to incorporate the
Gouy-phase evolution [cf. Eq. (5)] and, therefore, also the phase
reference point l0, i.e., the coordinate relative to the focal plane
where the interaction begins, into the coherence length computa-
tion. This delivers a more exact description as it accounts for all
phase-contributions with Eq. (7),

f(z) ¼ Δkz þ (q� 1) arctan (�2z=b) (5)

� Δkz � (q� 1)2z=b: (6)

From that, it follows that the distance for a specific phase change
can be calculated via the phase difference shown in Eq. (7),

f(lΔΦ)� f(l0)¼! ΔΦ: (7)

Using the linear approximation of Eq. (6) and considering a situa-
tion where entry point and the focus coincide (l0 ¼ 0), we obtain a
simple extension to the classical formula for lc.

) lc � π

Δk� (q� 1)2=b

����
����: (8)

Note that the approximation is only valid for L � b. One can well
observe how the coherence length decreases in scenarios with nega-
tive phase-mismatch11,45 and in principle due to its nonlinear
content also depends on the focal position and the total acquired
phase ΔΦ, i.e., l(2π) = 2 � l(π). The latter relation is only fulfilled
for plane waves. As a result, instead of calculating lc ¼ l(π), we
have calculated the oscillation period l(2π), as the distance between
two minima. As the distance between minima is easier to deter-
mine in the data, due to the small amplitude of resonant oscilla-
tions present at the point of minima, compared to calculating the
distance from a minimum to a maximum, i.e., lc, this process intro-
duces the least uncertainty.

In order to solve the differential equation, we use a trial
solution,9 which is similar to a Gaussian beam, but shows a

z-dependent amplitude [cf. Eq. (9)],

Aq(r, z) ¼ aq(z)

1þ i2z=b
� exp � qr2

w2
0(1þ i2z=b)

� �
: (9)

Inserting Eq. (9) into the differential equation (2), one obtains in
good approximation9 a solution for the amplitude in the form of
an ordinary differential equation,

aq(z) ¼ clayer

ðz
z0

aq1 � eiΔkz
0

(1þ i2z0=b)q 1 dz
0: (10)

Here, clayer ¼ iqω
2nc χ

(q)
layer depends on the material, specifically its

refractive index n, and the nonlinear susceptibility χ(q)layer at order q
of the respective layer, whereas z, z0 are the entry and exit points of
the fundamental beam of that layer, so that d ¼ z � z0 is the thick-
ness of the layer.

The integral has to be solved numerically for finite boundaries.
Furthermore, especially when the sample sits on a strongly reflect-
ing substrate like silicon, one cannot neglect reflection and trans-
mission. In principle, in our case, the interface of LN and air does
have a high transmission of T?(0:85 μm) � 85%, and it is sufficient
to take into account only a small number of reflections. It can be
shown45 that one has to compute two integrals, one for forward
propagating waves and one for backward propagating waves, which
interfere after reflection, where multi-reflections are accounted for
by multiplying the integrand with a geometric series to the qth
power. In an analog way, the multi-reflections of the harmonic
light can be implemented with a second geometric series as shown
in Eq. (11),

X1
0

qn ¼ 1
1� q

, for q , 1, (11)

with q ¼ rx � ei2kxnxd: (12)

Here, kx represents the modulus of the fundamental or the har-
monic k-vector, nx the corresponding refractive index, and rx sum-
marizes the Fresnel-coefficients for the reflections at the interfaces
for the specific situation, meaning if it is co- or counterpropagating
and fundamental or harmonic, respectively. These series result in
oscillations much faster than that of the phase mismatch; they are
directly correlated to the fundamental and harmonic wavelength.
Therefore, these fast oscillations are easily damped by incoherence
of the source, especially due to the spectral width of the pulsed
laser, but also by the effects of the optical components such as
lenses. Furthermore, with respect to the coherence length, oscilla-
tions originating from thin-film interferences are more of cosmetic
nature and can be analyzed and filtered out via a Fourier analysis,
as we will see in Sec. III.

It should be noted here, that for SHG the calculation is in that
sense simpler, as only the lithium niobate slab contributes to the
second-harmonic signal due to the vanishing of the χ(2) in all other
materials (air, silicon) at hand. Therefore the parameter c of
Eq. (10) is not important and we end up with an according
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integration of the first incoming and reflected beam, contributing
to a signal which is further modulated by the reflections of the
harmonics.

For THG, however, one needs to take also into account the
signal produced in air and finally sum over both, so that a more
complex interference pattern is possible. Here, the exact relation
(and phase) of the nonlinear optical susceptibility of air and
lithium niobate gets very important45 as it defines the strength and
phase of the respective contribution, as will be shown in Sec. III.

In general, solving these one-dimensional integrals does not
need much computing resources, allowing for fast calculations. For
example, simulating a signal evolution for a thin wedged crystal
means solving integrals of the type of Eq. (10) for a number of dif-
ferent thicknesses up to a maximum thickness of, e.g., t � 10 μm.
Taking Δt ¼ 5 nm as the step size and, therefore, N1 ¼ 2000, while
doing, e.g., N2 ¼ 300 different total thicknesses which correspond
to Δx � 33 nm and Nλ ¼ 6 different wavelengths, the computation
takes approximately 1 min. Should it be necessary to simulate the
air-layer, computation time rises significantly, as the field, depend-
ing on the parametric process, drops relatively slowly; to acquire
good results z � b, which may be the case for 100 μm. For a 5 nm
step size, this would result in N1 ¼ 2000 ! N1 ¼ 22 000, i.e.,
approximately tenfold computation time of ⪆ 10 min. However, as
the fastest oscillation is the harmonic �400 nm, and the important
phase-change of Δk is even on a larger scale, a step size of
10� 20 nm is viable. In particular, the air layer where only the
arctan(z) contributes can be simulated with larger step sizes of
50 nm without changing the result and brings computation time
down to two minutes. In sum, the average computation time is
quite short and a full description of thin films spanning ranges of
several μm can be done in a minute or for single line-scans even
below that. The calculation of the coherent interaction length alone
is even faster, which can be acquired independently from a full
signal simulation by solving the transcendental equation (7) with a
root finding algorithm, which takes seconds for a set Nλ ¼ 6 differ-
ent wavelengths.

C. Numerical simulation

To complement both our experiments and the semi-analytical
paraxial approach, numerical calculations in a full vectorial
approach of the focusing and detection process is performed here.
The calculation is executed in terms of the angular spectrum repre-
sentation, e.g., as found in Novotny and Hecht,10 which was modi-
fied by Sandkuijl et al.47 to include reflections from an arbitrary
amount of interfaces. The original code used here is based on the
works by Sandkuijl et al.47 and was modified for our
purpose.11,12,48 The calculation is structured as follows:

1. The input electric field distribution is calculated in the focal
plane. For this work, we always assume a fully filled pupil.

2. In the second step, at each grid point, the local NLO dipole
moment is calculated for SHG or THG, respectively. In a simpli-
fication, only a single tensor element (d22 or d222, respectively)
is assumed to be non-zero. As shown in our previous work,11,12

such an assumption is justified, because we assume the funda-
mental light to be polarized parallel to the y axis of the LNO
crystal, only, and contributions from off-diagonal elements or

from focus induced polarizations are negligible especially for a
low numerical aperture of 0.45 as used in the experiment.

3. In the third step, the NLO polarization at each grid point acts as
an emitting dipole, which emits light at the SHG or THG fre-
quency, which then propagates into the far field. Here, again,
reflections and interference from an arbitrary number of inter-
faces is accounted for. The light may interfere in the far field
according to the respective phase between the dipoles, which
accounts for NLO phase matching.

4. In the last step, the respective light fields at SHG or THG at the
back of the focusing objective is calculated via the reverse
process of step (1). The light at the back focal plane is integrated
to describe the pointwise detection. The refractive indices for
the respective materials are calculated based on the Sellmeier
equations from Refs. 49 and 50, respectively. Further details on
the simulation, its accuracy and convergence tests, as well as a
theoretical discussion of various influence factors, such as small
deviations in refractive index or wavelength, can be found in the
previous work.11

In the work here, we have chosen a simulation volume in the
lateral direction of 2� 2 μm2 and up to 15 μm in axial direction to
account for the coherent interaction length of the SHG signal at the
chosen wavelength. The grid spacing was 16 nm in all spatial
dimensions. As shown in previous work, this will yield accurate,
convergent results.11 In this work, the SHG and THG responses for
scans of the wedge-shaped sample, i.e., for different total layer
thicknesses, were calculated using increments of 100 nm of total
layer thickness. Such a calculation typically takes several minutes of
computational time for each increment. Hence, simulating a full
scan from a 0 to 15 μm thickness at a single wavelength may take
more than .10 h in total calculation time. While the simulation
code likely can be further optimized, we can see from this simple
example that the semi-analytical model offers significant speed
advantages for cases, where the physical accuracy of a full vectorial
description is not required. It should be noted that due to the com-
putational limitations in our numerical simulations of the THG
process, only a χ(3) in the LNO layer was accounted for, but not in
the air or substrate, in contrast to the semi-analytical model.
Accounting for the χ(3) above the focal plane requires a signifi-
cantly increased computational and memory demand, as the calcu-
lation is performed on a 3D grid.

III. RESULTS

To analyze the thickness-dependent response of the SHG and
THG signal, we imaged along the wedge varying both the sample
thickness and the fundamental wavelength from 1250 to 1300 nm
of excitation Z(X, � )Z . In order to separate the SHG and THG
signal from the fundamental, we used wavelength appropriate
filters (bandpass filters: 420 480 and 610 670 nm). Figure 2 dis-
plays large scale SHG [Fig. 2(a)] and THG [Fig. 2(b)] overview
images taken at a 1280 nm fundamental wavelength. In both
images [Figs. 2(a) and 2(b)], the wedge thickness gradually
increases from left to right, as seen in the sketch at the bottom of
each figure. In both images, we can clearly see the characteristic
long-period oscillations stemming from the phase matching
process, producing wavefronts aligned orthogonally to the thickness
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increase (i.e., the wedge slope). As we have shown previously, they
belong to the co-propagating phase matching process rather than
the counterpropagating process and are visible through reflections
at the back interface.11

When analyzing these images in detail, several observations
can be made. First, we notice that these oscillations are visible over
the entire length of the wedge. As the angle (0.45�) and approxi-
mate length (6 mm) of the wedge is known, we can calculate the
thickness of the wedge at the right edge, to measure approximately
50 μm, where reflections of co-propagating phase-matched light
obviously influence the overall SHG as well as THG intensity. This
value is more than 2 times larger as compared to the axial optical
resolution Δz in LN, which is more than 20 μm for the given wave-
length and numerical aperture.

Second, apart from the long-period oscillation associated with
the co-propagating phase-matching process, short-range oscilla-
tions are visible. Most noticeably, they have wavelengths of approxi-
mately 30 40 μm for both the SHG and THG signal. Normalizing
with respect to the inclination angle (0.45�) yields thickness differ-
ences between neighboring intensity maxima in the range of
200 300 nm. These oscillations are associated with thin-film inter-
ference effects of the fundamental and the respective SHG or THG
signal as will be discussed below. As it is apparent from these

images here, the overall SHG or THG signal is being significantly
altered by the thin-film resonance over thickness variations that
measure less than 100 nm. Moreover, these oscillations are visible
up to thicknesses of at least several ten μm. This means that, in par-
ticular, for quantitative measurements of SHG or THG intensities,
reflections, and the co-propagating process need to be carefully
evaluated even up to a 50 μm crystal thickness and likely beyond.
Furthermore, the interface reflectivity, thin-film interference, and
the coherent interaction length all are governed by the dispersion
of the refractive index. Hence, the responses will also be affected
when inspecting crystals of a constant thickness while varying the
incident wavelength. These findings are excellently supported
through our simulations and for SHG have been documented in
our previous work in more detail.11

Third, we notice that in the image for SHG [Fig. 2(a)] only
the part with the LN wedge produces a significant signal, whereas
in the image based on the THG signal [Fig. 2(b)] every part of the
image is showing a response. This stems from the fact that every
material possesses a third-order non-linear optical susceptibility
(χ(3)), including silicon as well as the epoxy resin at the top and
bottom of the image. As a result, we observe THG signal from the
surrounding epoxy wedge and the bare silicon substrate to the left.
For the wedge formed out of epoxy resin, also characteristic

FIG. 2. Large scale images of the Z-cut wedge obtained using a numerical aperture of 0.45 under the conditions for (a) SHG and (b) THG, respectively. Long range oscil-
lations associated with the coherent interaction length are visible for both processes. Here, the thickness increases from left to right. The insets present the areas that
were selected for high-resolution scanning at different wavelengths. Intensity profiles for further analysis were extracted at different wavelengths for the broad (yellow) high-
lighted areas.
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oscillations are visible at the bottom of Fig. 2(b), but with a much
larger coherent interaction length due to the lower dispersion of
the refractive index in the polymer.

To analyze the characteristic oscillation length l2π for SHG
and THG as a function of wavelength, we performed detailed scans
at the thinner left end of each wedge. Scanning at this location also
avoids the larger areas of largely uneven glue distribution at the
bottom interface of the sample, which can be seen at the center of
the sample in both the SHG and THG images. To avoid any ambi-
guity or error through stitching or rendering, we only used single
frames here that at least contained the first full oscillation, as
shown by the insets in Figs. 2(a) and 2(b). Here, the focus was
placed approximately at a depth of the center of the film at the thin
edge of the wedge. As discussed in our previous work,11 the first
oscillation period is least subjective to variations in focus position-
ing. If the images are inspected closely, a granular noise can be
observed in both the SHG and THG images. As discussed above,
the top and bottom interface roughness, respectively, are consid-
ered optically flat. We believe this is an effect of small scale varia-
tions in the thickness of the glue of much less than 100 nm. As
shown in the previous work by simulations,11 such small variations
only influence the absolute level of the intensity but not the phase
matching and interference effects. To reduce the effects of local var-
iations in reflectivity or laser noise, lateral binning was applied in
order to obtain averaged intensity profiles over the (yellow) shaded
areas in the insets in Fig. 2.

For both cases, the fundamental wavelength was swept from
1250 to 1300 nm in increments of 10 nm, via the microscope
control software while the sample was kept at a constant location.
The location dependent data were converted to thickness via the
known wedge angle (0.45�) and is displayed in Figs. 3(a) and 3(b)
as a function of thickness for SHG and THG, respectively. What
becomes crucial is to exactly define the origin for both cases, i.e.,
the exact position of zero thickness for each SHG/THG profile as
this will influence the measured coherent interaction length. Here,
we calculated the origin for both SHG and THG, using the SHG
data, by first identifying the location of the first significant SHG
intensity (.0:1% of the maximum intensity as shown in our previ-
ous work11). Based on profilometer scans of the wedge edge, we
determine the initial step height of the LN wedge, i.e., the
minimum thickness of homogeneous LN still attached to the
wedge, to be in the range of approximately 50 100 nm depending
on the exact location. Therefore, we added to each position of sig-
nificant first SHG intensity an offset of 100 nm thickness and con-
servatively assume a confidence interval for the converted thickness
of +100 nm. As before, the assumption of an initial step of
100 nm also fits well with observations from the numerical simula-
tions. It should be noted that a confidence interval of +100 nm
corresponds to less than 2% (5%) of the total value of l(2π) for
SHG (THG), which is larger than 7.5 μm (2 μm) for SHG (THG).
Therefore, any further uncertainty in the measured data, e.g.,
imposed by the uncertainty in the measured wedge angle of
+0:01, is negligible for wedge thicknesses of ,15 μm, which are at
most considered for analysis here. This artificial origin, i.e., point of
zero thickness, was then applied to the THG data as well, as both
measurements were performed exactly at the same location while
only switching the filters in the detector path.

FIG. 3. (a) and (b) Measured intensity profiles at a fundamental wavelength
range from 1250 to 1300 nm for SHG and THG, respectively. (c) and (d)
Simulation results based on the semi-analytical, paraxial model at the same
wavelength range as the experiment. (e) and (f ) Simulation results based on
the numerical model at the same wavelength range as the experiment. In all
datasets, a systematic increase in the l2π with wavelength can be observed due
to dispersion.
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For optimal comparability, all datasets are normalized in their
magnitude by dividing each data set by its maximum value and dis-
playing it with an artificial offset. Below the experimental data, the
data obtained by the semi-analytical paraxial model and the
numerical simulation are displayed. Both datasets were normalized
and plotted the same way as the experimental data and are dis-
played in Figs. 3(c) 3(f ), respectively.

Overall, for SHG or THG, as well as for experiment and
theory, a distinct oscillation period is observed, which increases
with larger wavelength as expected from the decreasing dispersion.
In detail, for the experimental values for SHG, one can see an
increase in the position of the first minimum from l2π � 7725 nm
to l2π � 8582 nm [Fig. 3(a)], whereas the expected values from
plane wave theory [using Eq. (4)] are l2π � 9460 nm to
l2π � 10 540 nm. For THG, a shorter period is observed [Fig. 3(b)]
with the position of the first minimum shifting from
l2π � 1930 nm to l2π � 2315 nm. The expected values from plane
wave theory [using Eq. (4)] are l2π � 2270 nm to l2π � 2410 nm.
The values of plane wave description are larger compared to the
experimental data as well as the adapted theory, because it does not
account for the effects of numerical aperture, focus positioning,
and the Gouy-phase.

A very remarkable thing that we observe in the case of THG
[Fig. 3(b)] is the presence of a non-zero signal at the origin, i.e., the
point of zero thickness of the LN wedge. The signal starts with a
value comparable to the value in the next maximum and then
decreases until it reaches a minimum. From here on, the usual
oscillations of the signal similar to the SHG experiment are
observed.

This can be readily explained in terms of the universality of
the χ(3)-process, which is present for any material including air
above the LNO or substrate.45 Due to the coherence of the process,
this light can interfere with light generated within the LN wedge
being analyzed. For example, if the focal plane lies on the top inter-
face, and, therefore, half the beam interacts with the air layer, the
total amount of additionally accumulated phase can be analytically
calculated45 via computing the amplitude (and its phase) for the
phase matched signal in the air to be f ¼ π

2. We see that the wave-
front has not propagated (q� 1) π2, as the total phase comprises of
different wavelets originating from different positions, each wavelet
contributes different phase, making the total phase smaller than
expected. In this case, as we see in Fig. 3(b), the signal first
decreases down to a minimum, as the additional phase gained in
LNO is negative due to the negative phase-mismatch and, therefore,
raises the difference continuously to π. Subsequently, the signal
increases again.

Figures 3(c) 3(f) show the simulated results based on the
semi-analytical paraxial model and the numerical simulation,
respectively. For the case of SHG [cf. Fig. 3(c)], we see for both
models a very good agreement with the experiment. The l2π
changes similar to the experiment as a function of wavelength from
l2π � 7825 nm at 1250 nm fundamental wavelength to
l2π � 8698 nm at 1300 nm. We see a less than 5% difference in the
values of the coherence length, with the simulated values being
larger. Similarly, in the case of the numerical simulation in
Fig. 3(e), we see an increase in the position of the first minimum
from l2π � 7897 nm to l2π � 8752 nm at 1300 nm wavelength. The

difference between the values of the coherence length for the exper-
iment and simulation is less than 2%, with the value from simula-
tion being slightly larger than in the experiment, as well.
Furthermore, due to the small step size, the paraxial simulation
reproduces the short wavelength oscillations due to thin-film inter-
ference very well. In contrast, the 100 nm step width in the numeri-
cal simulation is not enough to reproduce the oscillations due to
thin-film interference.

For the THG case, similar observations are made. Again, both
simulations predict the coherent length l2π very well, with less than
5% deviations from the experiment in the paraxial case, and less
than 7% for the numerical model. Here, the deviations are some-
what larger, which may be explained due to larger uncertainties in
accurately determining the minimum, as the short-range thin-film
interference effects partly overlap the minima in both experiment
and simulations. If one looks closely at the data, there is one key
deviation between the paraxial model and the numerical model.
For the paraxial model, we assumed as it is also the case in the
experiment a non-zero nonlinear susceptibility χ(3) for the air
above the sample. In terms of magnitude, we have chosen a value
of 1/2 of the susceptibility of the LNO in the semi-analytical calcu-
lation. As discussed above, this results in the observed pattern,
where the intensity first drops from zero thickness to a minimum
and the approximately half period shift of the oscillations. In con-
trast, in the numerical simulation due to computational limitations,
the nonlinear susceptibility of air was not accounted for. Therefore,
these data show a very similar behavior to SHG, i.e., first showing
an increase in THG signal with the coherent length oscillations fol-
lowing accordingly. However, as one can see, this does not affect
the characteristic oscillation length l2π .

IV. COMPARISON OF EXPERIMENT AND THEORY

To compare the experimental values with the predictions from
the numerical and semi-analytical model, we have determined l2π
based on all graphs in Fig. 3. As discussed above, lc is not necessar-
ily equal to half the distance between two minima, i.e.,
lπ ¼ 1=2 � l2π . However, as the minima are easier to determine, here
for simplicity, we have evaluated l2π for the following analysis. To
be consistent with data analysis throughout the SHG and THG
datasets, respectively, we evaluated the oscillation period l2π for the
SHG data by determining the position of the first minimum, while
for the THG datasets, we evaluated the difference between the first
and second minimum positions, respectively.

The obtained datasets are plotted in Fig. 4 as a function of
fundamental wavelength. Additionally, the graphs contain the pre-
dicted analytical behavior for the plane wave case as described by
Eq. (4) (continuous black line). As expected, the plane wave
description always yields a larger coherent interaction length as
compared to the experiment and both simulation approaches. As
discussed above, this is an effect of using focused beams as Eq. (4)
is valid for plane waves, only. For the case of SHG as seen in
Fig. 4(a), we see that datasets of paraxial model and numerical sim-
ulation overlap. This could be a result of using the same Sellmeier
equation for the refractive indices in the calculations.49 This further
shows the excellent agreement of the paraxial model and numerical
simulations. In the case of THG as seen in Fig. 4(b), the overlap is
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worse as compared to the SHG results. This is due to the larger
error resulting from determining the minima because of the over-
lapping thin-film interference patterns. Nevertheless, the trends
and slopes are very well reproduced.

Moreover, the experiment and both simulation datasets also
contain short-period oscillation patterns. These short-period oscil-
lations [cf. Fig. 3] are due to thin-film interference at the funda-
mental, SHG, or THG wavelength, respectively. A resonant
thickness d or multiples m of it can be described by the well-known
relation

d ¼ m
λω
2nω

, (13)

where λω is the wavelength at the fundamental, SHG, or THG fre-
quency, and 2nω is its respective refractive index. To investigate
these oscillations, we performed a FFT analysis of the experimental
datasets for SHG and THG. The results for the 1280 nm funda-
mental wavelength are displayed in Figs. 5(a) and 5(b), respectively.
Both fit exemplarily well to the expected resonance periods for the
fundamental and SHG/THG light, respectively.

Figures 5(c) and 5(d) show the extracted thin-film resonance
periods as a function of wavelength, together with the analytical

calculation based on Eq. (13). In contrast to the analysis of the
coherence length, here the use of a focused beam plays no promi-
nent role for the thin-film resonance periods, which we have also
seen in previous work.11 It should be noted that for THG, the oscil-
lation periods only up to 1280 nm could be analyzed. If one

FIG. 5. FFT analysis of the datasets for (a) SHG and (b) THG at a 1280 nm
fundamental wavelength. Both show two distinct peaks identified as the interfer-
ence length for the fundamental, SHG, and THG wavelengths, respectively.
Based on the FFT analysis, the oscillation periods for (c) SHG and (d) THG
were evaluated as a function of fundamental wavelength from the experimental
and analytical data, the latter based on the high-resolution numerical data. It
should be noted that for THG only a range of 1250–1300 nm is displayed,
which was limited by the used filters, while a wider range from 1200 to 1300 nm
could be analyzed for the SHG experiments.

FIG. 4. Overview of the acquired oscillation period (l2π ) parameters for the
SHG (a) and the THG (b) case. In addition to the experimental values, the
values of the semi-analytical approach (paraxial model) and the vectorial three-
dimensional numerical simulation, we added predictions acquired via the plane
wave approximation (analytical).
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inspects the FFT spectrum in Fig. 5(b) carefully, it can be seen that
the amplitude of the THG associated peak at approximately 12 μ 1

is already weak compared to the noise level. For the fundamental
wavelengths of 1290 nm and 1300 nm, respectively, the amplitudes
were below the noise level and could not be identified with
certainty.

The experimental data show the same slope and behavior as
the numerical; however, it is systematically shifted to slightly
smaller periods for fundamental and SHG/THG wavelengths. A
potential explanation might be a slightly different refractive index
of the used 5% MgO-doped LN as compared to literature values.
Please note that a difference in the absolute value of the refractive
index will not affect the calculated coherent length as much, as the
latter is dependent on dispersion, i.e., differences between the
refractive index at the fundamental and SHG/THG wavelength,
that are similar even when the absolute refractive index is shifted
due to variations in ambient conditions, doping, defects, or
fabrication.51,52

V. CONCLUSION

In this work, we demonstrate that rigorous theoretical analysis
allows us to disentangle the parameters that influence the paramet-
ric NLO process in focused beams on thin-film materials. For dem-
onstration, we used SHG and THG as two archetypal NLO
processes. We compared the experimental finding to two models, a
semi-analytical paraxial model and a numerical simulation in the
full vectorial approach. As demonstrated before, the numerical sim-
ulation in the full vectorial approach is a strong tool for any quanti-
tative analysis, as it encompasses a wide range of physical
effects,39,40 but it may be limited by computing resources. In con-
trast, the semi-analytical paraxial model can describe most effects
in the model system at considerably lower computational costs and
at the same time provides a reasonable insight into the physics
behind the NLO process.

In our experiment as well as the two simulation approaches,
we demonstrate how thin-film interference, reflection, and phase
matching strongly affect the signal strength in SHG or THG
microscopy. For both processes, we find that due to the presence of
reflections at the back interface, the co-propagating forward signal
overpowers the counterpropagating signal, which one may naively
expect in a backreflection geometry. The most surprising result is
that due to the omnipresence of χ(3) for any material and the
Gouy-phase shift in the focus, THG from thin films first may start
to vanish with increasing thickness instead of increasing. This
means, for THG experiments on thin films, that for a certain film
thickness or wavelength, a much lowered signal may be observed,
which has to be taken carefully into account when performing
experiments.53
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