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4096 AMBATI et al.

fracture has also been combined with higher-parametric shell models such as the Reissner-Mindlin (RM) shell
theory, see for instance References 33,34. Further approaches to deal with the thinness of the structure in the
context of phase-field modeling exist, such as a formulation with a mixed interpolation of tensorial components
(MITC)4+ RM degenerated shell35 and a solid-shell approach.36,37 Taken together, the phase-field approach to frac-
ture applied to shells has been subject of extensive research in the recent years, focusing mainly on the exten-
sion to specific problems, namely ductile fracture,38 finite strains,39 functionally graded materials,40 thick shells,41
dynamic problems42,43 as well as the isogeometric implementation with adaptive refinement44 or multipatch coupling
techniques.45

However, the application of the phase-field approach to model cracks along the thickness direction of shells has
been given very limited attention up until now. To the author’s best knowledge, except two contributions,46,47 all
of the aforementioned models consider the phase-field to be constant along the thickness direction of shells argued
for with their slenderness. Thereby, these models are exclusively able to represent cracks which do not vary along
the thickness direction. The first exception to this is a contribution by Areias et al.46 where for finite-strain plates
and shells, two independent phase-fields are considered at the very top and very bottom of the shell structure, as
similarly motivated for XFEM in Reference 48. With these two degrees of freedom (DOFs) at the top and bottom
of the shell, the model can differentiate between either the top or bottom being broken and a through-thickness
crack when both of the independent phase-fields indicate broken material. However, no continuous crack evolution
along the thickness direction can be described with this model. The second contribution posing an exception, pre-
sented by Lai et al.47—although only considering Euler-Bernoulli beams with the aim to generalize the approach
to plate and shell problems—introduces a double sigmoid ansatz function to represent phase-field variation along
the thickness direction in the otherwise one-dimensional structure. Thereby, the model is able to depict partly
through the thickness ranging cracks, however restricted to the chosen ansatz without a variable length scale of the
phase-field.

This is why the aim of this article is to propose a new phase-field approach for brittle fracture in shell structures which
accurately describes arbitrary through-thickness crack evolutions as well as partly through the thickness broken shells.
To do so, this new model combines

• shell elements representing the displacement field, which is thereby defined in a two-dimensional (2D) curvilin-
ear coordinate system clinging to the structure and

• solid elements representing the phase-field, which is thereby defined in a three-dimensional (3D) curvilinear
coordinate system.

According to the notion of combining elements of different dimensions for the fields of a coupled boundary value
problem (BVP), the suggested model is termed as “mixed-dimensional model.” The shell element in this article is exem-
plarily based on KL shell kinematics in a rotation-free, non-uniform-rational-basis-spline (NURBS)-based isogeometric
formulation49 which is well investigated in literature with respect to many regards such as for example, finite strains,50,51
inelastic deformations,52,53 or coupling of multiple patches.54-57 Regardless of this exemplary chosen shell theory, other,
higher-parametric shell kinematics would be feasible for the proposedmixed-dimensional model as well, see for instance
Reference 58 for isogeometric formulations of various shell models. By coupling this shell model to a fully 3D phase-field
description, the reduced computational effort of a structural element is preserved while refraining from any assumptions
or simplifications in the phase-field. Although the idea of combining solid and structural elements to describe various
parts of a structure, such as done for instance in References 59-63, or even different parts within each other for reinforced
structures as for example, in References 64-66 is not new, the idea to combine solid and structural elements for different
fields of a coupled BVP has not been presented before.

The article is outlined as follows: in Section 2, after introducing the preliminary geometry definitions and the kine-
matics, a total energy functional for the coupled field problem of a 3D solid model and a previous shell model, which
is fully defined in the 2D shell midsurface by introducing a constant phase-field over the thickness is presented. Using
this as a starting point, the governing equations of the proposed mixed-dimensional model are derived. As all of these
models are deduced from the same total energy functional, special attention is paid to their similarities and differences
in a comparison throughout. Implementation aspects of the proposed model including algorithmic and solution aspects
are outlined in Section 3. In Section 4, the results of several benchmark examples obtained by the proposed model are
presented and compared with the standard solid and shell model results to confirm the accuracy and improvement.
Finally, Section 5 gives an summary and outlook on future work.
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4098 AMBATI et al.

Starting with the geometry and kinematics for 3D solids, the covariant basis vectors Gi of the initial, undeformed 3D
solid space V are given by

Gi
(
Θi) =

𝜕X
(
Θ1

,Θ2
,Θ3)

𝜕Θi = X
,i, (1)

while the covariant components of the metric tensor Gij are computed as

Gij = Gi ⋅ Gj. (2)

With the mere restriction being small displacements and small deformations, the components of the geometrically
linearized strain tensor 𝜀kl for a general 3D solid are given by

𝜀kl =
1
2
(
uk|l + ul|k

)
, (3)

where u is the displacement vector and (⋅)k|l denotes the covariant derivative in curvilinear coordinate systems.
Moving on to the 2D shell midsurface A with the position vector R

(
Θ𝛼

)
, the covariant base vectors A

𝛼
therein are

obtained as

A
𝛼

(
Θ𝛼

)
=

𝜕R
(
Θ1

,Θ2)

𝜕Θ𝛼

= R
,𝛼
. (4)

The normal base vector perpendicular to the shell midsurface is computed by

N = A1 × A2

||A1 × A2||
(5)

withA
𝛼
⋅N = 0. With these base vectors being defined, the first and second fundamental form of the shell midsurface are

then obtained as

A
𝛼𝛽

= A
𝛼
⋅ A

𝛽
, (6a)

B
𝛼𝛽

= A
𝛼,𝛽

⋅N, (6b)

where A
𝛼𝛽
represent the covariant components of the metric tensor and B

𝛼𝛽
denote the components of the curvature

tensor of the shell midsurface. Furthermore, the mixed variant components of the curvature tensor are calculated as
B𝛼

𝛽

= A𝛼𝛾B
𝛾𝛽
.

As already mentioned in the introduction, the KL shell theory is adopted in this work for the definition of the shell
kinematics. On the prerequisite that the shell thickness t is comparably small and themain curvature radii 𝜌

𝛼
is compara-

bly large in relation to the lateral dimensions of the shell, the KL theory postulates that cross lines initially perpendicular
to the shell midsurface remain straight and perpendicular during deformation (normal hypothesis), resulting in vanish-
ing components of the strain tensor in the thickness direction, that is, 𝜀

𝛼3 = 𝜀3𝛼 ≡ 0. Furthermore, any changes of the shell
thickness t are neglected which means that the initial geometry has a constant thickness (t

,𝛼
≡ 0) and that the deforma-

tion has no influence on the thickness direction (𝜀33 ≡ 0). With these assumptions, in a geometrically linearized setting,
the strain tensor of the shell midsurface is given by

𝜀
𝜆𝜇

= 1
2
(
u
𝜆|𝜇 + u

𝜇|𝜆
)
, (7)

which can be rewritten as

𝜀
𝜆𝜇

≈ 1
2
(
u
,𝜆
⋅ A

𝜇
+ u

,𝜇
⋅ A

𝜆

)
. (8)

These KL kinematics feature an ansatz for the displacement which is distributed linearly along the thickness directionΘ3

uk
(
Θ𝛼

,Θ3) =
0
uk(Θ𝛼) + Θ3 1uk(Θ𝛼), (9)
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AMBATI et al. 4099

comprising a constant part
0
u and a linear part

1
u. Substituting for example, (9) into (8) yields with further kinematic

quantities the final strain components 𝜀
𝛼𝛽
of the shell midsurface

𝜀
𝛼𝛽

= 𝜂
𝛼𝛽

+ Θ3
𝜅
𝛼𝛽
, (10)

which entails the constant membrane action 𝜼 along the thickness direction and the linear bending action 𝜿 along the
thickness direction.

2.2 Standard three-dimensional phase-field fracture formulation of solids

Now, the derivation of standard phase-field brittle fracture model, which acts as part of the basis and as benchmark
for the proposed model later on, is presented first. Following the formulation introduced in Reference 67, the standard
phase-field model is based on the minimization problem of the total energy functional  given by

(𝜀kl,Γ) =
∫

V

Ψu(𝜀kl) dV +
∫

Γ

cdΓ, (11)

whereΨu is the elastic strain energy density, c is thematerial specific fracture toughness and Γ is the set of crack surfaces
inside V . Using the smeared crack approach of the phase-field method,31,67 the fracture energy density Ψc—originally
computed with the integral of c over the crack surface Γ—can be regularized as

∫

Γ

cdΓ ≈
∫

V

Ψc(c, c,n) dV =
∫

V

c

[ 1
4l
(1 − c)2 + lc

,nc,n
]
dV , (12)

where c ∈ [0, 1] is the phase-field variable with c = 1 representing fully intact material and c = 0 representing fully
cracked material. This scalar field variable distributes the crack over a finite length which is proportional to the internal
length scale l. To couple the phase-field variable to the displacement field, the elastic energy density is degraded with the
degradation function g(c) = (1 − g0)c2 + g0 featuring the residual stiffness g0 to avoid numerical difficulties. Moreover, to
differentiate between the fracture behavior for tensional and compressional loading, the elastic strain energy density Ψu
is decomposed into a tensile Ψ+

u and a compressive contribution Ψ−
u while only the positive part is degraded. Such an

additive decomposition can be made based on strains or stress, several strategies exist for this purpose.31,68,69 The final
regularized form of the functional is given by

 =
∫

V

g(c)Ψ+
u (𝜀kl) + Ψ−

u (𝜀kl) + Ψc(c, c,n) dV. (13)

The governing equations of the problem are obtained by minimizing this free energy functional using variational princi-
ples. According to these, the first variation of the free energy functional (13) with respect to the phase-field variable 𝛿c
results in the phase-field evolution equation

𝛿c =
∫

V

(
𝜕g
𝜕c

Ψ+
u + 𝜕Ψc

𝜕c

)
𝛿c +

(
𝜕Ψc

𝜕c
,n

)
𝛿c

,n dV. (14)

Using integration by parts and applyingGauss’ theoremwith the normal vectorn on the boundary S, (14) can be rewritten
as

𝛿c =
∫

V

[
2(1 − g0)c Ψ+

u − c

2l
(1 − c) −

(
2clc,n

)
|n

]
𝛿c dV +

∮
𝜕V
nm

(
2clc,m𝛿c

)
dS. (15)

Considering that the first variation must vanish for arbitrary 𝛿c, the strong form and the Neumann boundary condition
of the standard 3D phase-field model ultimately read as
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4100 AMBATI et al.

[
4l(1 − g0)

c
+ 1

]
c − 4l2

(
c
,n
)
|n = 1 ∀X ∈ V , (16a)

nmc
,m = 0 ∀X ∈ 𝜕V . (16b)

Herein, a damage-like irreversibility constraint is incorporated to ensure that the phase-field variable only grows larger
using a local history variable defined as

(t) = max
𝜏<t

[
Ψ+
u (𝜏)

]
. (17)

Likewise, requiring a geometrically linear setting and exploiting Gauss’ theorem, the first variation of (13) with respect
to the displacement 𝛿u results in the strong form and the Neumann boundary condition of the displacement field

𝜎

kl
|l + 𝜌f k = 0 ∀X ∈ V , (18a)

𝜎

klnk = tl ∀X ∈ 𝜕V (18b)

with 𝝈 representing Cauchy’s stress tensor

𝜎

kl = g(c)
𝜕Ψ+

u

𝜕𝜀kl
+ 𝜕Ψ−

u

𝜕𝜀kl
= g(c)𝜎+kl + 𝜎

−kl. (19)

In (18), f is the vector of body forces acting in V which is of density 𝜌 and t is the surface traction vector acting on the
boundary S. For brevity, the model defined by (16) and (18)—both fully referring to the 3D space—is called “solid model”
in the following.

2.3 Previous two-dimensional phase-field fracture formulation of plates and shells

To adapt the solid model previously presented in Section 2.2 to plates and shells, various concepts exist.7,29,32,34 In this
article, the seminal model presented in Reference 32 is adopted. To do so, the functional given in (13) is modified to

 =
∫

A

g(c) Ψ+
t
(
𝜀
𝛼𝛽

)
+ Ψ−

t
(
𝜀
𝛼𝛽

)
+ t Ψc(c, c,𝛼) dA, (20)

whereinΨt denotes the strain energy surface density. This modification of the energy functional is based on the reduction
of the 3D solid space V to the 2D shell midsurface A by integrating over the thickness t of the thin-walled structure.
Naturally, the chosen shell kinematics play the key role in this for the displacement field; for the phase-field however, the
adopted model is based on the postulation that the phase-field variable is constant over the thickness such that it only
depends on the position on the shell midsurface c = c

(
Θ𝛼

)
; that is, c ≠ c

(
Θ3) which is argued for by the slenderness

of plates and shells. Such a non-existent dependence of c on the thickness coordinate Θ3 allows to pre-integrate (12)
analytically

∫

V

c

[ 1
4l
(1 − c)2 + lc

,nc,n
]
dV =

∫

A
∫

t

c

[ 1
4l
(1 − c)2 + lc

,nc,n
]
dΘ3 dA

c≠c(Θ3)
= t

∫

A

c

[ 1
4l
(1 − c)2 + lc

,𝛼
c
,𝛼

]
dA. (21)

Furthermore, as pointed out in Reference 32, the way to perform the split into tensile and compressive elastic energy
contributions poses another challenge due to the definition of the strain tensor (10) for plates and shells: to model the
material response for tension and compression correctly, the spectral decomposition of the strain tensor as a whole is
necessary

𝜀

±
𝛼𝛽

=
(
𝜂
𝛼𝛽

+ Θ3
𝜅
𝛼𝛽

)± =
3∑

𝜆=1
⟨𝜀

𝜆
⟩±n

𝜆
⊗ n

𝜆
≠ 𝜂

±
𝛼𝛽

+ Θ3
𝜅

±
𝛼𝛽

, (22)
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AMBATI et al. 4101

where 𝜀
𝜆
are the eigenvalues,n

𝜆
are the eigenvectors and ⟨⋅⟩± = (⋅ ± | ⋅ |)∕2 holds. Using (22), the earlier introduced strain

energy density per unit area of the midsurface can finally be obtained as

Ψ±
t =

∫

t

Ψ±
u
(
Θ3) dΘ3 (23)

with Ψu referring back to the strain energy density at arbitrary points in the 3D solid space. As shown in Reference 32,
such a split results in a non-linear distribution of 𝜎

𝛼𝛽
andΨ±

t over the shell thickness, which is why the displacement parts
in the energy functional cannot be integrated over the thickness analytically anymore. Instead, numerical integration is
necessary. Finally, the first variation of the energy functional adopted to shells with respect to the phase-field variable—in
comparison to (14)—leads to

𝛿c
c=c(Θ𝛼)
=

∫

A

(
𝜕g
𝜕c

Ψ+
t + t𝜕Ψc

𝜕c

)
𝛿c +

(
t𝜕Ψc

𝜕c
,𝛼

)
𝛿c

,𝛼
dA. (24)

Ultimately, the strong form and the Neumann boundary condition of the phase-field then read as
[
4l(1 − g0)t

tc
+ 1

]
c − 4l2

(
c
,𝛼

)
|𝛼 = 1 ∀R ∈ A, (25a)

𝜈

𝛼c
,𝛼
= 0 ∀R ∈ 𝜕A (25b)

with 𝝂 as the normal vector on the boundary of the shell midsurface and the modified history variablet = max
𝜏<t

[
Ψ+
t (𝜏)

]

referring to the thickness-integrated strain energy density contribution.
For the displacement field of the previous phase-field model for shells, the first variation of the functional in (13) with

respect to the displacement is

𝛿u =
∫

A
∫

t

𝜎

𝛼𝛽

(
𝛿𝜂

𝛼𝛽
+ Θ3

𝛿𝜅
𝛼𝛽

)
dΘ3 dA, (26)

while 𝝈 now is given by

𝜎

𝛼𝛽 = g(c)
𝜕Ψ+

u

𝜕𝜀
𝛼𝛽

+ 𝜕Ψ−
u

𝜕𝜀
𝛼𝛽

= g(c)𝜎+𝛼𝛽 + 𝜎

−𝛼𝛽 . (27)

With the introduction of membrane forces n and bending momentsm as stress resultants

n𝛼𝛽 =
∫

t

(
g(c)𝜎+𝛼𝛽 + 𝜎

−𝛼𝛽) dΘ3 m𝛼𝛽 =
∫

t

Θ3 (g(c)𝜎+𝛼𝛽 + 𝜎

−𝛼𝛽) dΘ3 , (28)

the first variation of the modified energy functional (26) can be rewritten as

𝛿
l
u =

∫

A

n𝛼𝛽𝛿𝜂
𝛼𝛽

+m𝛼𝛽

𝛿𝜅
𝛼𝛽
dA . (29)

Using this—omitting the detailed derivation for conciseness in this article—the strong form of the KL shell can eventually
be determined as

−n𝛾𝛿 |𝛿 +m𝛼𝛽B𝛾

𝛼|𝛽 + 2m𝛼𝛽

|𝛽B𝛾

𝛼
= p𝛾 − 𝜔

𝛽B𝛾

𝛽
∀R ∈ A, (30a)

−n𝛼𝛽B
𝛼𝛽

+m𝛼𝛽B𝛾

𝛼
B
𝛽𝛾

−m𝛼𝛽

|𝛽𝛼 = p3 + 𝜔

𝛼

|𝛼 ∀R ∈ A, (30b)

while the corresponding Neumann boundary conditions result from the boundary terms

n𝛾𝛽𝜈
𝛽
− 2m𝛼𝛽B𝛾

𝛼
𝜈
𝛽
= q𝛾 − 𝜙

𝛽B𝛾

𝛽
∀R ∈ 𝜕A, (31a)

m𝛼𝛽

|𝛽𝜈𝛼 + 𝜔

𝛼

𝜈
𝛼
= q3 ∀R ∈ 𝜕A, (31b)

m𝛼𝛽

𝜈
𝛽
= 𝜙

𝛼 ∀R ∈ 𝜕A, (31c)
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AMBATI et al. 4103

The corresponding Neumann boundary conditions of the displacement field (31) and the phase-field (16b) apply for this
case. Clearly, the strong forms of the mixed-dimensional model can also be identified as a combination of displacement
part of the shell model (30) with the phase-field part of the solid model (16a). In order to couple both of these fields—now
remarkably referring to different geometric entities—with each other, R = {X ∈ V | Θ3 = 0} has to hold to enable the
translation between each material point of the shell midsurface and the corresponding material point of the solid. Given
(33) and (34), the following coupling quantities can be identified:

• The phase-field variable c
(
Θ3) involved in the degradation function g is needed for the computation of the stress

resultants when solving for the displacement field (33).
• The positive strain energy density contribution Ψ+

u
(
Θ3) is required as an energetic crack driving force that is, for

updating the local history variable when solving for the phase-field (34).

Allowing the interchange of these coupling quantities between the two different geometric spaces in the first place
is the circumstance that the underlying and substituted structure of the shell is still a 3D solid which is reduced to the
shell midsurface by integrating over the thickness. This thickness integration in fact is exactly what enables the combi-
nation of 2D and 3D fields in the first place, since the strains and stresses are still dependent on the thickness coordinate.
Consequently, this manifests itself in a slightly altered definition of the stress resultants

n𝛼𝛽
(
Θ𝛼

)
=
∫

t

{
g
[
c
(
Θ𝛼

,Θ3)]
𝜎

+𝛼𝛽 + 𝜎

−𝛼𝛽} dΘ3
, (35a)

m𝛼𝛽

(
Θ𝛼

)
=
∫

t

Θ3 {g
[
c
(
Θ𝛼

,Θ3)]
𝜎

+𝛼𝛽 + 𝜎

−𝛼𝛽} dΘ3
, (35b)

due to the now thickness-dependent degradation function, whereas the strain energy per unit area of the midsurface
Ψ±
u
[
𝜀
𝛼𝛽

(
Θ3)] can be directly obtained at various points of the shell thickness.

In contrast to previous phase-field fracture models of plates and shells, the mixed-dimensional model is able to fully
represent an arbitrary through-thickness behavior of the phase-field, which entails not only the phase-field variable c
itself but also the gradient 𝛁c thereof, while still keeping the simplified shell model. Only exemplary, the KL shell theory
is utilized in this article due to its suitableness to isogeometric analysis (IGA), while it is important to note that other
shell models with a higher count of parameters (e.g., RM shell kinematics) are equally feasible for themixed-dimensional
model as well.

3 IMPLEMENTATIONAL ASPECTS

The coupling of shell elements to solid elements naturally raises the question of the actual finite element (FE) implemen-
tation. Thus, this section is devoted to give a brief overview of the most important implementational aspects regarding
the mixed-dimensional model.

3.1 Numerical solution scheme

The set of coupled partial differential equations given by the strong forms in (33) and (34) are solved using
NURBS-based IGA since it allows a rotationless FE formulation.49 For that purpose, the weak forms with appropriate test
functions—here indicated by ̃(⋅)—are introduced: the weak form of the phase-field evolution equation of the solid part is
given by

∫

V

c̃
(
4l(1 − g0)

c
+ 1

)
c dV +

∫

V

4l2𝛁c̃ ⋅ 𝛁c dV =
∫

V

c̃ dV . (36)

For the displacement field, the weak form of the shell part reads as

∫

A

n ∶ 𝜼̃ +m ∶ 𝜿 dA =
∫

A

r ⋅ ũ dA (37)
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with all external forces being consolidated into the vector r. A staggered solution scheme including convergence crite-
ria is adopted to solve the coupled equations (36) and (37). Combined with that, the mixed-dimensional model enables
an extremely efficient and robust simulation. With both of the fields being solved for separately while the respec-
tive other field is frozen, this also enables the independent treatment of the displacement field and the phase-field.
This is why for the mixed-dimensional model, the standard procedures for isogeometric discretization and lineariza-
tion of the weak forms can be employed which in turn is omitted here. A continuous storing and updating of all
coupling quantities between the coupled fields is of prominent importance during the solution procedure, which is
presented next.

3.2 Transfer of coupling quantities between geometric spaces

As the descriptions of the phase-field and the displacement field refer to different geometric entities, two separate FE
discretizations for the 3D phase-field as well as the 2D shell are needed. For the FE code, this implies that the actual
structure has to be discretized once with shell elements and once with solid elements.

For an understanding of the coupling of these with each other, two key facts need to be explained foremost. First, the
computation of the stress resultants (35b) is performed by numerical integration along the thickness direction of the shell
element. The emanating thickness integration loop is necessary due to non-linear integrands which in turn are due to the
thickness-varying tension-compression split of the stress tensor𝝈± (Θ3) aswell as the phase-field degradation of the stress
tensor which is also varying over the thickness with g

[
c
(
Θ3)]. It is worth mentioning that for the case that an isotropic

phase-field model is applied, meaning that no tension-compression split is performed, the thickness-integration of the
strain energy density and the stress resultants could be done analytically without the need for numerical integration along
the thickness direction. This however would still raise the question of how to incorporate the thickness-varying degrada-
tion due to the underlying thickness-varying phase-field variable. Nevertheless, the herein adopted shell model together
with the phase-field model entailing the tension-compression split is still 2D since the necessary thickness integration
loop does include neither a discretization in the thickness direction nor the evaluation of additional shape functions.
This means that for this integration loop, multiple quadrature points (QPs) are necessary along the thickness direction
of the shell. The second key point for an understanding of themixed-dimensional coupling is the fact that the exchange of
the coupling quantities (to recall, these are c andΨ+

u ) takes place at the QP level during the element-wise computation of
the stiffness matrices and force vectors, as illustrated in Figure 4.

With these two facts established, only now it is reasonable that the QPs of the shell thickness integration loop can be
allocated with the regular QPs of the solid element, see Figure 4, to allow the exchange of the coupling quantities between
the structural elements and the continuum elements. The exchange of the coupling quantities can also be seen in the
pseudo-code Algorithm 1, together with all other relevant sequences of the procedure.

Algorithm 1. Pseudo-code with the sequences relevant for the coupling of the elements

Ultimately, this coupling exhibits itself in one crucial requirement for the two separate discretizations of the structure
with shell and solid elements: for each QP of a solid element, there has to be a corresponding QP of the thickness inte-
gration loop allocated to the shell element at exactly the same geometrical location. Therewith, it is conceivable to use an
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F I GURE 7 Simply supported beam, force-displacement curves

(A)

(B)

(C)

(D)

(E)

(F)

F IGURE 8 Simply supported beam, final phase-field as obtained with the mixed-dimensional model (side view). (A) l∕t = 1∕1;
(B) l∕t = 1∕2; (C) l∕t = 1∕3; (D) l∕t = 1∕4; (E) l∕t = 1∕8; (F) l∕t = 1∕10

the proposed model since it is still able to accurately depict the through-thickness crack evolution whilst entailing sig-
nificantly reduced computational cost in terms of required DOFs compared to solid elements. All in all, these plots
clearly underscore the ability of the mixed-dimensional model to reproduce the thickness-varying phase-field of the
reference.

The observed agreement of mixed-dimensional and solid model is further reinforced when comparing the evolution
of the phase-field variable over the transverse displacement uz, as Figure 10A shows representatively for l∕t = 1∕4. The
plot once again emphasizes that the mixed-dimensional model is able to precisely reproduce the phase-field evolution
of the solid model at various points along the thickness direction (top, middle, and bottom of the beam). Furthermore,
Figure 10B–E illustrates the phase-field variable as obtained with the mixed-dimensional model for l∕t = 1∕4 at various
evolution stages around the peak loading point to proof a further advantage of the new model over the shell model.

The new model now also comes with the possibility to model shells that feature an initial crack which is ranging
only partly through the thickness of the shell. For this purpose, the same setup as before—only with the slight modi-
fication that the bottom side features the initial crack, which is induced as shown in Reference 70—is considered for
the mixed-dimensional and the solid model. As the shell model cannot depict such a crack, it will not serve as object
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(A)

(B)

F IGURE 14 Simply supported and clamped plate, force-displacement curves. (A) Simply supported edges; (B) clamped edges

4.3 Notched hemisphere

For the final example, the aim is to extend the precedent investigations and insights to a shell with a curved geometry. This
curved geometry additionally features an initial crack which is ranging only partly over the thickness. For this purpose,
a hemisphere of radius r = 10 mm and thickness t = 0.5 mm under uniform internal pressure as illustrated in Figure 16
is considered whereas the material parameters are E = 2.1 × 105 N∕mm2, 𝜈 = 0.25 and c = 2.7 N∕mm. Again, taking
advantage of the symmetry of the problem, only an eighth of the hemisphere with respective boundary conditions is
simulated. Two initial cracks only partly through the thickness running of length a0 = 1 mm are situated under an angle
of 90◦ ultimately forming a cross pattern at the upper inside of the hemisphere. These initial cracks range from one side
to only the first third of the shell thickness, analogously to the initially partly broken beam. Since the shell model is not
able to represent any initial cracks ranging only partly through the thickness, it will not be considered in this numerical
example.
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F IGURE 17 Notched hemisphere, force-displacement curves

F IGURE 18 Notched hemisphere, phase-field as obtained with the mixed-dimensional model for l∕t = 1∕10. (A) Three-quarter, final
state with elements c ≤ 0, 25 hidden; (B) quarter, initial state; (C) quarter, final state
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F IGURE A1 Partly broken beam with stress resultants, stresses, and the phase-field

function. By comparing the stress resultants as computedwith the beam theory incorporating the stress ansatz to the ones
obtained from the equilibrium

0 = l2

0

∫

−t∕2

g [c(z)]
⏟⏟⏟

=0

𝜎xx(z) dz + l2

t∕2

∫

0

g [c(z)]
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=1

𝜎xx(z) dz, (A3a)

p
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8
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𝜎xx(z)z dz +
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∫

0
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and solving the arising equation system,

𝜎

m =
12l21p
l2t3

, (A4a)

𝜎

b = −
3l21p
l2t2

= − t
4
𝜎

m
, (A4b)

can be found. The resulting 𝜎m ≠ 0 in fact shows that membrane action is necessary to establish an equilibrium state in
a partly broken structural part, as it was stated at the beginning of this proof. Thereby, this phenomenon ultimately also
renders the individual parts of the strain and stress to not be directly interpretable in the sense of membrane and bending
action anymore. The same circumstances to achieve equilibrium in a partly over the thickness broken beam is not limited
to this special case but holds true for more complex loading cases and geometries as well.
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