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Phase-field modeling of brittle fracture along the
thickness direction of plates and shells
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shells) are addressed with a phase-field modeling approach. For this purpose,
a new, so called “mixed-dimensional” model is introduced, which combines

shell midsurface with continuum elements describing a crack phase-field in the
three-dimensional solid space. The proposed model uses two separate finite ele-
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turn need to have corresponding geometric locations. The governing equations
of the proposed mixed-dimensional model are deduced in a consistent manner
from a total energy functional with them also being compared to existing stan-
dard models. The resulting model has the advantage of a reduced computational
effort due to the structural elements while still being able to accurately model
arbitrary through-thickness crack evolutions as well as partly along the thick-
ness broken shells due to the continuum elements. Amongst others, the higher
accuracy as well as the numerical efficiency of the proposed model are tested and
validated by comparing simulation results of the new model to those obtained
by standard models using numerous representative examples.
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1 | INTRODUCTION

In the fields of mechanical, marine, aerospace, and civil engineering—especially in the context of lightweight
structures—shells are considered as pivotal construction element. With the demand for increasing efficiency to for
example, reduce the environmental impact, the common objective is to design such structures at their failure limit. This
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FIGURE 1 Crackinitiation and evolution along the thickness direction in a bent plate (deformation exaggerated)

brings forth the need for mechanical models to predict fracture in thin walled structures. A particularly challenging task
in modeling such structures is the correct consideration of the crack behavior along the thickness direction of a shell. This
becomes evident even for an ordinary, moderately thin plate subjected to bending, such as the one shown in Figure 1.
A crack initiates at the bottom of the plate—where the maximum tensile stress predominates—and evolves towards the
top of the plate afterwards, see magnification in Figure 1. This phenomenon of cracks evolving along the thickness direc-
tion and partly through the thickness ranging cracks are of great theoretical and practical interest for shells and plates,
see for instance Reference 1.

Although there are different approaches to model fracture in thin-walled structures, such as the extended finite
element method (XFEM) introduced by Moés et al.2 and applied to shells for instance in References 3-6 or meshfree
methods, as applied to shells in References 7-9, especially the phase-field method has been the subject of extensive
theoretical and computational investigations over the last two decades. Based on the energetic cracking criterion intro-
duced by Griffith'? in 1921, the phase-field approach to brittle fracture is first formulated as a variational problem by
Francfort and Marigo!! in 1998 while the numerical implementation thereof was presented by Bourdin et al.!? in 2000.
The variational formulation within the mathematical theory of quasi-static brittle fracture mechanics revolves around
the minimization problem of an energy functional recasting GRIFFITH’s theory into balancing the energy release rate
during crack propagation with a fictitious surface energy. Motivated by the numerical implementation of this varia-
tional formulation, a phase-field (order) parameter is introduced to approximate the sharp crack discontinuity in a
domain by a smooth transition between the fully broken and the fully intact material without the necessity for assum-
ing any pre-defined cracks. A comprehensive overview of the existing phase-field fracture formulations considering
monotonic loads is presented in Reference 13, see also the references therein. Due to its diffuse modeling approach
which has the advantage that no remeshing at discontinuities is necessary, the phase-field approach to fracture has
been applied to a broad range of problems such as fracture including inelastic deformations,'*!> viscoelastic mate-
rials,'®!7 interface failure,'®'? heterogeneous materials,”?! dynamic loading,??%* fatigue failure,>*?% or fracture with
anisotropy.?’?®

The phase-field approach to fracture has been applied to plates and shells in many different ways, focusing on vari-
ous aspects. The first approach to couple a shell with the phase-field model for fracture was presented by Ulmer et al.?’
in 2012, where a shell is considered as combination of a KIRCHHOFF plate and a standard membrane. Amiri et al.’
in 2014 first coupled the phase-field approach to fracture with KIRCHHOFF-LOVE (KL) shell kinematics. An especially
intriguing challenge for shells and plates comes with an anisotropic phase-field model, wherein only tensile terms are
contributing to the crack evolution while compressive terms do not promote crack growth in order to approximate the
real physical behavior more realistically.’® For general phase-field continuum models, this is done by additively decom-
posing the elastic energy contribution into positive and negative parts for example, by spectral decomposition of the strain
tensor as introduced by Miehe et al..3! While the first two aforementioned contributions for phase-field shell models do
not consider this decomposition correctly with the first only splitting the membrane part and the second performing no
split at all, Kiendl et al.*? in 2016 demonstrated for KL shells that a split of the complete strain tensor involving both
membrane as well as bending action needs to be performed at various points over the shell thickness. Apart from vari-
ous splits into tensile and compressive terms being presented, next to KL shell kinematics, the phase-field approach to
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fracture has also been combined with higher-parametric shell models such as the REISSNER-MINDLIN (RM) shell
theory, see for instance References 33,34. Further approaches to deal with the thinness of the structure in the
context of phase-field modeling exist, such as a formulation with a mixed interpolation of tensorial components
(MITC)4+ RM degenerated shell®> and a solid-shell approach.3®*” Taken together, the phase-field approach to frac-
ture applied to shells has been subject of extensive research in the recent years, focusing mainly on the exten-
sion to specific problems, namely ductile fracture,®® finite strains,® functionally graded materials,** thick shells,*!
dynamic problems*>*3 as well as the isogeometric implementation with adaptive refinement* or multipatch coupling
techniques.*

However, the application of the phase-field approach to model cracks along the thickness direction of shells has
been given very limited attention up until now. To the author’s best knowledge, except two contributions,***” all
of the aforementioned models consider the phase-field to be constant along the thickness direction of shells argued
for with their slenderness. Thereby, these models are exclusively able to represent cracks which do not vary along
the thickness direction. The first exception to this is a contribution by Areias et al.*® where for finite-strain plates
and shells, two independent phase-fields are considered at the very top and very bottom of the shell structure, as
similarly motivated for XFEM in Reference 48. With these two degrees of freedom (DOFs) at the top and bottom
of the shell, the model can differentiate between either the top or bottom being broken and a through-thickness
crack when both of the independent phase-fields indicate broken material. However, no continuous crack evolution
along the thickness direction can be described with this model. The second contribution posing an exception, pre-
sented by Lai et al.*’ —although only considering EULER-BERNOULLI beams with the aim to generalize the approach
to plate and shell problems—introduces a double sigmoid ansatz function to represent phase-field variation along
the thickness direction in the otherwise one-dimensional structure. Thereby, the model is able to depict partly
through the thickness ranging cracks, however restricted to the chosen ansatz without a variable length scale of the
phase-field.

This is why the aim of this article is to propose a new phase-field approach for brittle fracture in shell structures which
accurately describes arbitrary through-thickness crack evolutions as well as partly through the thickness broken shells.
To do so, this new model combines

« shell elements representing the displacement field, which is thereby defined in a two-dimensional (2D) curvilin-
ear coordinate system clinging to the structure and

« solid elements representing the phase-field, which is thereby defined in a three-dimensional (3D) curvilinear
coordinate system.

According to the notion of combining elements of different dimensions for the fields of a coupled boundary value
problem (BVP), the suggested model is termed as “mixed-dimensional model.” The shell element in this article is exem-
plarily based on KL shell kinematics in a rotation-free, non-uniform-rational-basis-spline (NURBS)-based isogeometric
formulation® which is well investigated in literature with respect to many regards such as for example, finite strains,’®>!
inelastic deformations,>>* or coupling of multiple patches.>*>” Regardless of this exemplary chosen shell theory, other,
higher-parametric shell kinematics would be feasible for the proposed mixed-dimensional model as well, see for instance
Reference 58 for isogeometric formulations of various shell models. By coupling this shell model to a fully 3D phase-field
description, the reduced computational effort of a structural element is preserved while refraining from any assumptions
or simplifications in the phase-field. Although the idea of combining solid and structural elements to describe various
parts of a structure, such as done for instance in References 59-63, or even different parts within each other for reinforced
structures as for example, in References 64-66 is not new, the idea to combine solid and structural elements for different
fields of a coupled BVP has not been presented before.

The article is outlined as follows: in Section 2, after introducing the preliminary geometry definitions and the kine-
matics, a total energy functional for the coupled field problem of a 3D solid model and a previous shell model, which
is fully defined in the 2D shell midsurface by introducing a constant phase-field over the thickness is presented. Using
this as a starting point, the governing equations of the proposed mixed-dimensional model are derived. As all of these
models are deduced from the same total energy functional, special attention is paid to their similarities and differences
in a comparison throughout. Implementation aspects of the proposed model including algorithmic and solution aspects
are outlined in Section 3. In Section 4, the results of several benchmark examples obtained by the proposed model are
presented and compared with the standard solid and shell model results to confirm the accuracy and improvement.
Finally, Section 5 gives an summary and outlook on future work.
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2 | FORMULATION

This section is devoted to the detailed presentation of the proposed mixed-dimensional model. Beforehand, the
required geometric and kinematic quantities are briefly reviewed. Afterwards, the standard phase-field model for
three-dimensional solids is presented first as a starting point and for comparison purposes. For the same reasons, the pre-
vious fracture model for shells is provided subsequently. Finally, the proposed mixed-dimensional phase-field fracture
formulation of plates and shells is derived. All formulations are limited to linear elasticity as well as small displacements
and rotations in this article.

2.1 | Kinematics

For the general description in 3D EucLIDian space R?3, a curvilinear coordinate system clinging to the structure with the
coordinates ®' = {®',®% @} is considered. Necessary for the subsequently presented models, two different geometric
spaces are introduced as illustrated in Figure 2:

« First, the 3D solid space V € R? is introduced. For a description of a point belonging to this solid space, all three
coordinates (@)1,82, 83) are needed. The third coordinate ©® describes the thickness direction of the structure, while
the coordinate system is defined such that ©* = 0 is always exactly in the middle of the thickness f of the structure,
that is, ®° € [—r/ 2,+tf 2] . In the solid space, the position vector of any material point of the undeformed structure is
given by X = Xe, + Ye, + Ze, with respect to the global CARTESian basis system.

+ Second, the 2D shell midsurface A c V. is introduced. It is constituted by all points of the solid space with ®* =0
such that R = {X € V | ®® = 0} € A holds for the position vector of any given material point of the undeformed shell
midsurface with respect to the global CARTESian basis system.

It is important to emphasize that both—the solid space and shell midsurface—share the coordinate pair (81, @)2),
with the 2D coordinate system of the shell midsurface missing the thickness coordinate ©>. For a clear notation in
this article and to distinguish between both geometric spaces, Latin indices (i,j, k, ... ) = (1,2, 3) are used to refer the
coordinate tupel @' for the solid space V, while Greek indices (a,f,y, ... ) = (1,2) are adopted to denote the coordi-
nate pair © for the shell midsurface A. Furthermore, superscripts (-)' refer to contravariant components of a vector
while subscripts (-); refer to covariant components. Following this, spatial derivatives in the solid space with respect
to ©' are abbreviated by ();=9()/ 90" while (-)a =9 (-) /00" indicates the spatial derivatives in the shell midsur-
face with respect to ©“. Index notation and EINSTEIN’s summation convention are adopted in this manner, except for
upright sub- and superscripts which instead are used to distinguish i.a. between the displacement field (-), and the
phase-field (-)..

3D solid space V 2D shell midsurface A

FIGURE 2 Geometric definitions of the three-dimensional solid space and the two-dimensional shell midsurface
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Starting with the geometry and kinematics for 3D solids, the covariant basis vectors G; of the initial, undeformed 3D
solid space V are given by

0X (0',0%,0°%)

G (6) = ——

=X, ey

while the covariant components of the metric tensor G are computed as

Gj=G;-G;. 2)

With the mere restriction being small displacements and small deformations, the components of the geometrically
linearized strain tensor €y, for a general 3D solid are given by

e == (g + i) » ©)

DN | =

where u is the displacement vector and (-)i; denotes the covariant derivative in curvilinear coordinate systems.
Moving on to the 2D shell midsurface A with the position vector R (@"’), the covariant base vectors A, therein are
obtained as

_JR(0',0°)

Aa (®a ) a@{l

=R,. 4

The normal base vector perpendicular to the shell midsurface is computed by

A1 XAZ

= ©)
[|[A1 X Asl|

with A, - N = 0. With these base vectors being defined, the first and second fundamental form of the shell midsurface are
then obtained as

Ay =A, - Ay, (6a)
p p
Bup =Aup- N, (6b)

where A,y represent the covariant components of the metric tensor and B,y denote the components of the curvature
tensor of the shell midsurface. Furthermore, the mixed variant components of the curvature tensor are calculated as
Bf, = A" By.

As already mentioned in the introduction, the KL shell theory is adopted in this work for the definition of the shell
kinematics. On the prerequisite that the shell thickness ¢ is comparably small and the main curvature radii p, is compara-
bly large in relation to the lateral dimensions of the shell, the KL theory postulates that cross lines initially perpendicular
to the shell midsurface remain straight and perpendicular during deformation (normal hypothesis), resulting in vanish-
ing components of the strain tensor in the thickness direction, that s, £,3 = €3, = 0. Furthermore, any changes of the shell
thickness ¢ are neglected which means that the initial geometry has a constant thickness (¢, = 0) and that the deforma-
tion has no influence on the thickness direction (£33 = 0). With these assumptions, in a geometrically linearized setting,
the strain tensor of the shell midsurface is given by

N | =

Eay = (u/u” + u,,u) , (7)
which can be rewritten as
1
w3 (w; A +u,-Ay). 8)

These KL kinematics feature an ansatz for the displacement which is distributed linearly along the thickness direction >

u (0%,0%) = 1(©7) + O (0%, 9)

2sud0IT suowo)) dAnear) sjqesrjdde ayy £q pauraroS aie sa[onIe Yy asn Jo sa[ni 10j AIeIqr aurjuQ A3[IA\ UO (SUOTIPUOD-PUB-SULIA}WOI K[ 1m " AIRIqI[auI[uo//:sd)y) Suonipuo) pue suLd ], o) 238 ‘[€707/11/£Z] uo Kreiqry aurjuQ Ad[Ip\ “JoYy101[qiqsapue ] YasIsyS Aq [0 dWu/Z00 0 /10p/wod Kafim Areiqijaurjuo//:sdny woiy papeofumo( ‘L1 ‘720T ‘LOTOL60T



AMBATI ET AL. W l L EY 4099

0 1
comprising a constant part u and a linear part u. Substituting for example, (9) into (8) yields with further kinematic
quantities the final strain components ¢,y of the shell midsurface

Eap = Nap + ®3Kaﬂv (10)

which entails the constant membrane action n along the thickness direction and the linear bending action x along the
thickness direction.

2.2 | Standard three-dimensional phase-field fracture formulation of solids

Now, the derivation of standard phase-field brittle fracture model, which acts as part of the basis and as benchmark
for the proposed model later on, is presented first. Following the formulation introduced in Reference 67, the standard
phase-field model is based on the minimization problem of the total energy functional £ given by

E(en, 1) = /‘Pu(fkl)dV+/chF, (11)
T

v

where W, is the elastic strain energy density, G. is the material specific fracture toughness and I' is the set of crack surfaces
inside V. Using the smeared crack approach of the phase-field method,*""%” the fracture energy density ¥.—originally
computed with the integral of G. over the crack surface I'—can be regularized as

/ Codl" ~ / Wo(c,cn)dV = / Ce [%(1 _o 4+ lc,nc,n] dv, (12)
I |4 |4

where ¢ € [0,1] is the phase-field variable with ¢ =1 representing fully intact material and ¢ = 0 representing fully
cracked material. This scalar field variable distributes the crack over a finite length which is proportional to the internal
length scale I. To couple the phase-field variable to the displacement field, the elastic energy density is degraded with the
degradation function g(c) = (1 — go)c? + go featuring the residual stiffness go to avoid numerical difficulties. Moreover, to
differentiate between the fracture behavior for tensional and compressional loading, the elastic strain energy density ¥,
is decomposed into a tensile ¥;; and a compressive contribution W, while only the positive part is degraded. Such an
additive decomposition can be made based on strains or stress, several strategies exist for this purpose.>-%¢° The final
regularized form of the functional is given by

&= /g(C)‘PIT (&) + ¥y (e) + Wele, ) dV. (13)
174

The governing equations of the problem are obtained by minimizing this free energy functional using variational princi-
ples. According to these, the first variation of the free energy functional (13) with respect to the phase-field variable &
results in the phase-field evolution equation

9
5E, = / ( Syt 4 6T°> sc+ <ZT°> sc,dV. (14)
14

ac oc Cn

Using integration by parts and applying GAUSS’ theorem with the normal vector n on the boundary S, (14) can be rewritten
as

8E. = / [2(1 — go)c ¥ — %(1 -0 — (2gclc,n)|n] sedV + }1{ n" (2G.lcméc) ds. 15)
oV
|4

Considering that the first variation must vanish for arbitrary éc, the strong form and the NEUMANN boundary condition
of the standard 3D phase-field model ultimately read as
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[4l(1 - g)H ‘1

G ] c— 4P (C~")|n =1 VXevV, (16a)
C

n"c, =0 VXedV . (16b)

Herein, a damage-like irreversibility constraint is incorporated to ensure that the phase-field variable only grows larger
using a local history variable H defined as

H(t) = max [¥3(7)] . 17)

Likewise, requiring a geometrically linear setting and exploiting GAUSS’ theorem, the first variation of (13) with respect
to the displacement 6&, results in the strong form and the NEUMANN boundary condition of the displacement field

ci+pff=0 vXevV, (18a)
ol =1 VX eV (18b)
with o representing CAUCHY'’s stress tensor
ov:  o¥;
oM =glo)=—L + —L =g(c)otM + 671 (19)
0£k1 06k1

In (18), fis the vector of body forces acting in V which is of density p and t is the surface traction vector acting on the
boundary S. For brevity, the model defined by (16) and (18)—both fully referring to the 3D space—is called “solid model”
in the following.

2.3 | Previous two-dimensional phase-field fracture formulation of plates and shells

To adapt the solid model previously presented in Section 2.2 to plates and shells, various concepts exist.”->*3%34 In this
article, the seminal model presented in Reference 32 is adopted. To do so, the functional given in (13) is modified to

£ = / 8(0) ¥/ (£ap) + ¥ (€ap) + 1t Pe(c,ca) dA, (20)
A

wherein ¥, denotes the strain energy surface density. This modification of the energy functional is based on the reduction
of the 3D solid space V to the 2D shell midsurface A by integrating over the thickness ¢ of the thin-walled structure.
Naturally, the chosen shell kinematics play the key role in this for the displacement field; for the phase-field however, the
adopted model is based on the postulation that the phase-field variable is constant over the thickness such that it only
depends on the position on the shell midsurface ¢ = ¢ (©%); that is, ¢ # ¢ (®*) which is argued for by the slenderness
of plates and shells. Such a non-existent dependence of ¢ on the thickness coordinate ®* allows to pre-integrate (12)
analytically

1 2 _ Ta_o2 3 14 74O Lo _o
/QC [ﬂ(l -0) +lc,nc,n] dv = //gc [41(1 ) +lc,nc,n] de’dA = t/gc [4l(1 c) +lc,ac,a] dA. (21)
%4 At A

Furthermore, as pointed out in Reference 32, the way to perform the split into tensile and compressive elastic energy
contributions poses another challenge due to the definition of the strain tensor (10) for plates and shells: to model the
material response for tension and compression correctly, the spectral decomposition of the strain tensor as a whole is
necessary

3
giﬂ = (”aﬁ + @31(0,ﬁ)i = <£}L>in,1 QR n, ?é naiﬂ + ®3Kaiﬂ’ (22)
A=1

2sud0IT suowo)) dAnear) sjqesrjdde ayy £q pauraroS aie sa[onIe Yy asn Jo sa[ni 10j AIeIqr aurjuQ A3[IA\ UO (SUOTIPUOD-PUB-SULIA}WOI K[ 1m " AIRIqI[auI[uo//:sd)y) Suonipuo) pue suLd ], o) 238 ‘[€707/11/£Z] uo Kreiqry aurjuQ Ad[Ip\ “JoYy101[qiqsapue ] YasIsyS Aq [0 dWu/Z00 0 /10p/wod Kafim Areiqijaurjuo//:sdny woiy papeofumo( ‘L1 ‘720T ‘LOTOL60T



AMBATI ET AL. W l L EY 4101

where ¢, are the eigenvalues, n, are the eigenvectors and (-)* = (- = | - |)/2 holds. Using (22), the earlier introduced strain
energy density per unit area of the midsurface can finally be obtained as

P = / ¥ (0°) de’ (23)

with W, referring back to the strain energy density at arbitrary points in the 3D solid space. As shown in Reference 32,
such a split results in a non-linear distribution of 6,5 and ¥;" over the shell thickness, which is why the displacement parts
in the energy functional cannot be integrated over the thickness analytically anymore. Instead, numerical integration is
necessary. Finally, the first variation of the energy functional adopted to shells with respect to the phase-field variable—in

comparison to (14)—leads to
c=c(0“ 0
©) / < Byt 4 — ) s+ <t‘3‘PC> s, dA. 24)

Coa
Ultimately, the strong form and the NEUMANN boundary condition of the phase-field then read as

[41(1 — 8o)H:

2 —
. + 1] c—4l (c,,,)la =1 VREA, (25a)
“c,=0 VREOIA (25b)

with v as the normal vector on the boundary of the shell midsurface and the modified history variable H; = max [‘I‘f(r)]
referring to the thickness-integrated strain energy density contribution.

For the displacement field of the previous phase-field model for shells, the first variation of the functional in (13) with
respect to the displacement is

66y = / / o™ (81ap + ©’6Kqp) dO°dA, (26)
while 6 now is given by
ih L O
6" =gle)—2 + —2L =g(c)os™ + 67 . 27)
0eqy 0€qp

With the introduction of membrane forces n and bending moments m as stress resultants

nh = / (8ot +67F) d©*  m*f = / ©’ (g(o**? + 67%) d©’ , (28)

t t

the first variation of the modified energy functional (26) can be rewritten as

sEL = / nP 51,5 + mPéx,pdA (29)

A

Using this—omitting the detailed derivation for conciseness in this article—the strong form of the KL shell can eventually
be determined as
—n"%5 + mB 5+ 2m*? 4B, = p' — 0B’y VR € A, (30a)

—n"’Byy + m**B" By, —m* 5, =p* + 0", VR EA, (30b)

while the corresponding NEUMANN boundary conditions result from the boundary terms
n'Pv, —2m*PB vy =q — ¢’B’; VR € 0A, (31a)
m“ﬁwva + 0%, =q¢° VR €A, (31b)
Py, =¢* VR € A, (31¢c)
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displacement field (2D) phase-field (3D)

FIGURE 3 Basic idea of the new mixed-dimensional model

wherein p is force per midsurface area, @ is momentum per midsurface area, q is the force per length of the midsurface
boundary and ¢ is the momentum per length of the midsurface boundary. For brevity, this model defined by (25), (30),
and (31) is called “shell model” in the following. Note that in comparison to the strong form of the 3D displacement field
(18a), the strong form of the shell model now refers to all points of the shell midsurface R € A instead of the solid space
X € V. Also, as mentioned beforehand, this phase-field approach to fracture in plates and shells is not able to describe
non-constant behavior of the crack along their thickness direction since ¢ # ¢ (©*), which inspires the underlying concept
and the model presented in the next section.

2.4 | Proposed mixed-dimensional phase-field fracture formulation of plates and shells

To overcome this drawback while still exploiting the reduced computational effort of a shell model, the new model is
proposed now. The key idea of this model is to combine a shell, that is, a midsurface representation of the displacement
field with a 3D representation of the phase-field taken from a solid model, such as illustrated in Figure 3. It is called
“mixed-dimensional” model in the following as both of the geometric spaces are a prerequisite of the model. Specifically,
the 3D solid space V is considered for the phase-field representation, which means the phase-field variable is dependent
on all three coordinates @, that is, ¢ = ¢ {@)",83) whereas the 2D shell midsurface A is used for the displacement field
representation.

The starting point once again is the energy functional (13), however in a slightly altered way, so that the basic idea of
the mixed-dimensional model manifests itselfin a consistent manner. The elastic strain energy contribution is integrated
over the thickness to reduce the 3D field to the 2D shell midsurface while the phase-field part is still kept in its 3D form

E= /g(c) V! (eap) + 7 (£qp) dA + /‘I’C(C, cp)dV . (32)
A V
from sh:II model from 50;1:1 model

This functional can thereby be understood as combination of the displacement field description of the shell model with
the phase-field description of the solid model. From (32), the strong form of the displacement field is obtained analogously
to the shell model as

—n? 5+ mPB 5 +2m* y B, = p' — B’y VR €A, (33a)
—n*B,s + m*¥B By, —m* g, = p* + 0",  VREA, (33b)

while the strong form of the phase-field—obtained in the same way as for the solid model—takes the form

[41(1 —8)H

o " 1] c—4 (lcn),, =1 VXeEV . (34)
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The corresponding NEUMANN boundary conditions of the displacement field (31) and the phase-field (16b) apply for this
case. Clearly, the strong forms of the mixed-dimensional model can also be identified as a combination of displacement
part of the shell model (30) with the phase-field part of the solid model (16a). In order to couple both of these fields—now
remarkably referring to different geometric entities—with each other, R={X eV | ©* =0} has to hold to enable the
translation between each material point of the shell midsurface and the corresponding material point of the solid. Given
(33) and (34), the following coupling quantities can be identified:

o The phase-field variable ¢ (@3) involved in the degradation function g is needed for the computation of the stress
resultants when solving for the displacement field (33).

« The positive strain energy density contribution ¥; (@3) is required as an energetic crack driving force that is, for
updating the local history variable H when solving for the phase-field (34).

Allowing the interchange of these coupling quantities between the two different geometric spaces in the first place
is the circumstance that the underlying and substituted structure of the shell is still a 3D solid which is reduced to the
shell midsurface by integrating over the thickness. This thickness integration in fact is exactly what enables the combi-
nation of 2D and 3D fields in the first place, since the strains and stresses are still dependent on the thickness coordinate.
Consequently, this manifests itself in a slightly altered definition of the stress resultants

n? (@) = / (g]c(0%.0%)] 0* + o~} dO°, (35)

m* (%) = / 0’ {g[c(0%,0%)] 6"’ + 67} dO°, (35b)

t

due to the now thickness-dependent degradation function, whereas the strain energy per unit area of the midsurface
pE [gaﬂ (@3)] can be directly obtained at various points of the shell thickness.

In contrast to previous phase-field fracture models of plates and shells, the mixed-dimensional model is able to fully
represent an arbitrary through-thickness behavior of the phase-field, which entails not only the phase-field variable ¢
itself but also the gradient Vc thereof, while still keeping the simplified shell model. Only exemplary, the KL shell theory
is utilized in this article due to its suitableness to isogeometric analysis (IGA), while it is important to note that other
shell models with a higher count of parameters (e.g., RM shell kinematics) are equally feasible for the mixed-dimensional
model as well.

3 | IMPLEMENTATIONAL ASPECTS
The coupling of shell elements to solid elements naturally raises the question of the actual finite element (FE) implemen-

tation. Thus, this section is devoted to give a brief overview of the most important implementational aspects regarding
the mixed-dimensional model.

3.1 | Numerical solution scheme
The set of coupled partial differential equations given by the strong forms in (33) and (34) are solved using

NURBS-based IGA since it allows a rotationless FE formulation.*” For that purpose, the weak forms with appropriate test
functions—here indicated by (-)—are introduced: the weak form of the phase-field evolution equation of the solid part is

given by

411 — go)H

/a<(g—g°)+1> ch+/412V?:-Vch=/EdV. (36)
174 ¢ 174 174

For the displacement field, the weak form of the shell part reads as

/n:ﬁ+m:§dA=/r-ﬁdA (37)

A A
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with all external forces being consolidated into the vector r. A staggered solution scheme including convergence crite-
ria is adopted to solve the coupled equations (36) and (37). Combined with that, the mixed-dimensional model enables
an extremely efficient and robust simulation. With both of the fields being solved for separately while the respec-
tive other field is frozen, this also enables the independent treatment of the displacement field and the phase-field.
This is why for the mixed-dimensional model, the standard procedures for isogeometric discretization and lineariza-
tion of the weak forms can be employed which in turn is omitted here. A continuous storing and updating of all
coupling quantities between the coupled fields is of prominent importance during the solution procedure, which is
presented next.

3.2 | Transfer of coupling quantities between geometric spaces

As the descriptions of the phase-field and the displacement field refer to different geometric entities, two separate FE
discretizations for the 3D phase-field as well as the 2D shell are needed. For the FE code, this implies that the actual
structure has to be discretized once with shell elements and once with solid elements.

For an understanding of the coupling of these with each other, two key facts need to be explained foremost. First, the
computation of the stress resultants (35b) is performed by numerical integration along the thickness direction of the shell
element. The emanating thickness integration loop is necessary due to non-linear integrands which in turn are due to the
thickness-varying tension-compression split of the stress tensor 6* (@3) as well as the phase-field degradation of the stress
tensor which is also varying over the thickness with g [c (@3)] . It is worth mentioning that for the case that an isotropic
phase-field model is applied, meaning that no tension-compression split is performed, the thickness-integration of the
strain energy density and the stress resultants could be done analytically without the need for numerical integration along
the thickness direction. This however would still raise the question of how to incorporate the thickness-varying degrada-
tion due to the underlying thickness-varying phase-field variable. Nevertheless, the herein adopted shell model together
with the phase-field model entailing the tension-compression split is still 2D since the necessary thickness integration
loop does include neither a discretization in the thickness direction nor the evaluation of additional shape functions.
This means that for this integration loop, multiple quadrature points (QPs) are necessary along the thickness direction
of the shell. The second key point for an understanding of the mixed-dimensional coupling is the fact that the exchange of
the coupling quantities (to recall, these are ¢ and ¥}) takes place at the QP level during the element-wise computation of
the stiffness matrices and force vectors, as illustrated in Figure 4.

With these two facts established, only now it is reasonable that the QPs of the shell thickness integration loop can be
allocated with the regular QPs of the solid element, see Figure 4, to allow the exchange of the coupling quantities between
the structural elements and the continuum elements. The exchange of the coupling quantities can also be seen in the
pseudo-code Algorithm 1, together with all other relevant sequences of the procedure.

Algorithm 1. Pseudo-code with the sequences relevant for the coupling of the elements

(a) Shell element routine (b) Volume element routine
for shell_element in shell_elements

for area_QP in area_QPs
for thickness_QP in thickness_QPs for volume_element in volume_elements
get ¢(©°) from solid element for volume_QP in volume_QPs
stress computation get W (©?) from shell element
spectral decomposition: 6+ (@3) history variable: H (@3) = max [‘*‘: (@3, T)]
degradation: 6(©°) = g [¢ (8°)] 67 (©°%) + 67(©%) interpolate ¢¢ from nodes to QP
strain energy density computation: ¥ (©?3) save ¢(®?) for shell element
save W+ (©?) for solid element end for
end for end for
end for
end for

Ultimately, this coupling exhibits itself in one crucial requirement for the two separate discretizations of the structure
with shell and solid elements: for each QP of a solid element, there has to be a corresponding QP of the thickness inte-
gration loop allocated to the shell element at exactly the same geometrical location. Therewith, it is conceivable to use an
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shell element (displacement field): solid element (phase-field):
— thickness integraton loop — element quadrature points

FIGURE 4 Transfer of the coupling quantities between shell and solid element (points: nodes; crosses: quadrature points)
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FIGURE 5 Comparison of the total number of degrees of freedom for one element

arbitrarily high element order or even multiple elements in the thickness direction for the phase-field solid element as
long as the mentioned condition of spatially coinciding QPs is satisfied. However, in order to narrow down the scope of
this article which is intended to be the initial presentation of the proposed model, only one element is used to discretize
the thickness direction of the plates and shells in the following numerical examples. Not only that the implementation
thereof is most convenient in regards to the coupling of the QPs, additionally this also provides a better comparability to
other approaches. Furthermore, NURBS basis functions of third order are used in this article for the elements resulting
in 9 area- respectively 27 volume-QPs. As it will also be pointed out later, further research on the proposed model should
involve the investigation on multiple element orders in combination with various numbers of elements to discretize the
thickness direction.

The comparison of the resulting number of nodal DOFs for one element of the mixed-dimensional model when com-
pared to the shell model and the solid model is depicted in Figure 5 for this explained setup. It can be seen that an element
of the mixed-dimensional model has only half of the total DOFs when compared to an element of the solid model and only
50% more total DOFs when compared to an element of the shell model. Comparing the number of QPs for the mentioned
setup with third order basis functions, the solid, the mixed-dimensional as well as the shell model all require a total of
27 QPs. As explained previously, this is what allows to transfer the variables between the QPs for the mixed-dimensional
model, while the fact that no additional QPs need to be introduced also represents one main strength of the
new model.

4 | NUMERICAL EXAMPLES

In the Section 4, various numerical examples are presented to prove the mixed-dimensional models’ advantages and to
compare it to the solid and shell model. In the comparisons, the results of the solid model act as reference for all the simu-
lations. The key focus of this section is to illustrate the evolution of cracks along the thickness direction of plates and shells.
Furthermore, special attention is paid to the influence of the ratio of the length scale parameter to the shell thickness I/t
during the investigations on fracture along the thickness direction, because it emphasizes the differences between the
compared models. The combinations I/t € {1/1,1/2,1/3,1/4,1/8,1/10,1/20} are chosen for the simulations ranging
from a length scale which is hardly able to show a thickness-varying behavior to a very fine length scale.
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4.1 | Simply supported beam

‘With this first example being a simply supported beam whose setup is taken from Reference 32, the aim is to gain detailed
insight into the evolution of cracks through the thickness of structural elements. The setup features a rectangular, plane
specimen of length [; = 10 mm and width of [, = 2 mm without any initial cracks. The ¢t = 0.025 mm thin plate is sub-
jected to a constant, normal surface load p acting on the complete plate; the geometric properties and boundary conditions
of the specimen are shown in Figure 6. In this example, the material parameters are G, = 3N/mm, E = 10 x 10° N/mm?
and v = 0.0 while the latter justifies to refer to the example as beam because the results are constant along the width direc-
tion. For the numerical solution, a mesh comprising 18,117 elements initially refined in the region of the expected crack
is employed while the simulation is performed with an arc-length control method. At the node located in the middle of
the beam, the transverse displacement u; is traced.

For various length scale parameters, Figure 7 presents the load-displacement curves obtained with the solid, the
shell and the mixed-dimensional model. Clearly, the curves depict that with smaller ratios for I/, the differences
between the three compared models become more distinctive. While with I/t — 1, all of the models produce similar
force-displacement curves, with I/t — 1/10, the mixed-dimensional and solid model show very good agreement while
the shell model shows larger deviations from the reference results. The deviations of the shell model are due to the fact
that it is not capable to reproduce the thickness-varying behavior of the phase-field which—as stated in the introduction
and in Figure 1—starts to evolve from the bottom of the plate. This behavior, together with the influence of the length
scale parameter can be seen in Figure 8. Furthermore, while the simulation with I/t = 1 virtually shows no variation of
the phase-field over the thickness, the smaller length scale parameters show an increasing angle of the damage transi-
tioning zone. Moreover, the results of the simulations featuring a very small ratio I/t clearly show the effect of the adopted
strain energy density split in the phase-field model. On the bottom, where tension is predominant, the crack driving force
leads to the evolution of the phase-field whereas on the top, where compression occurs, the beam stays intact when the
influence of the bottom is not “smeared” towards the top with a small length scale parameter. This case of a beam bro-
ken only partly along the thickness direction raises the question of how the system establishes its equilibrium state when
considering the linear ansatz for the strain and stress. The numerical results show that the system achieves this by featur-
ing membrane action which in turn results in non-vanishing membrane stress terms despite of the load case comprising
bending exclusively. A more detailed explanation of this phenomenon as well as an analytical derivation proving this
aspect is presented in Appendix A.

To further illustrate the pivotal thickness-varying behavior of the phase-field and to underscore the initially stated
necessity of a more complex phase-field model for shells in the first place, the phase-field variable ¢ (Bj) is plotted against
the width as well as the thickness direction of the plate in Figure 9. The phase-field variable as obtained with the shell
and solid model is plotted therein as well for comparison purposes. Again, the simulations with [/t — 1 show almost
no variation along the z-direction whereas the simulations with I/t — 1/10 clearly show one. The mixed-dimensional
model produces results which are almost identical to those of the solid model which emphasizes the big advantage of

FIGURE 6 Simply supported beam, setup
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FIGURE 7 Simply supported beam, force-displacement curves
c

FIGURE 8 Simply supported beam, final phase-field as obtained with the mixed-dimensional model (side view). (A) I/t = 1/1;
®/t=1/2;C)1l/t=1/3;(D)I/t=1/4,(E) I/t =1/8;(F) I/t =1/10

the proposed model since it is still able to accurately depict the through-thickness crack evolution whilst entailing sig-
nificantly reduced computational cost in terms of required DOFs compared to solid elements. All in all, these plots
clearly underscore the ability of the mixed-dimensional model to reproduce the thickness-varying phase-field of the
reference.

The observed agreement of mixed-dimensional and solid model is further reinforced when comparing the evolution
of the phase-field variable over the transverse displacement u,, as Figure 10A shows representatively for [/t = 1/4. The
plot once again emphasizes that the mixed-dimensional model is able to precisely reproduce the phase-field evolution
of the solid model at various points along the thickness direction (top, middle, and bottom of the beam). Furthermore,
Figure 10B-E illustrates the phase-field variable as obtained with the mixed-dimensional model for I/t = 1/4 at various
evolution stages around the peak loading point to proof a further advantage of the new model over the shell model.

The new model now also comes with the possibility to model shells that feature an initial crack which is ranging
only partly through the thickness of the shell. For this purpose, the same setup as before—only with the slight modi-
fication that the bottom side features the initial crack, which is induced as shown in Reference 70—is considered for
the mixed-dimensional and the solid model. As the shell model cannot depict such a crack, it will not serve as object
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FIGURE 9 Simply supported beam, final phase-field variable c plotted against the length direction x and the thickness direction z at
widthy=0mm. (A)I/t=1/1;(B) I/t =1/2; (C)l/t=1/3;(D) I/t = 1/4;(E) I/t =1/8; (F) I/t = 1/10
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FIGURE 10 Simply supported beam, phase-field evolution over the thickness for I/t = 1/4. (A) Phase-field variable over the max.
displacement; (B) Phase-field at u, = 0.121 69 mm, f = 192.87 N; (C) phase-field at u; = 0.122 61 mm, f = 192.73 N; (D) phase-field at u, =
0.124 27 mm, f = 169.45 N; (E) phase-field at u; = 0.133 46 mm, f = 30.723 N; The stages (B)~(E) refer to the + marks in (A) and Figure 7
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FIGURE 11 [Initially partly broken beam, force-displacement curves

of comparison here. For this simulation with an initial crack, a length scale parameter to thickness ratio I/t =1/4
is used.

The force-displacement curves, showing the influence of the initial crack width w, (as evoked by an initial history
variable distribution, see the approach presented in Reference 29) for the ratios wy/t = {1, 2, 3,4} are given in Figure 11.
It can clearly be observed that the beams with a wider initial crack need less external loading to fully crack along the
thickness direction than the ones with a tighter initial crack. Evidently, the mixed-dimensional model is again able to
resemble the results obtained with the solid model, with a smaller initial crack width the differences between the models
become more evident however. The initial as well as the final phase-field distributions are shown for the various ratios
Wy /t in Figure 12. Therein, it can be seen that the crack keeps its width as well as the angle of the phase-field transition
zone as the crack evolves along the thickness direction.
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FIGURE 12 Initially partly broken beam, initial and final phase-field as obtained with the mixed-dimensional model (side view).
(A)wo/t=1; (B) wo/t=2; (C) wo/t=3; (D) wy /1=4

(A)

FIGURE 13 Plate setup. (A) Simply supported edges; (B) clamped edges

4.2 | Simply supported and clamped plate

In the next example, an quadratic plate under a constant transverse surface load p is considered. The aim with this example
is to investigate the impact of the through-thickness crack evolution on the crack path. To do so, two test cases with simply
supported and clamped edges around the plate are employed to examine the crack paths predicted by the models.

The plate has the dimensions [, =1, = 1 mm and a thickness of t = 0.02 mm, the resulting setups including the
boundary conditions are illustrated in Figure 13. As material parameters, E = 190 x 10°* N/mm?, v = 0.29 and G, =
0.295 N/mm are used. Since the resulting fields are symmetric to the x- as well as the y-axis, only a quarter of the plate
with respective symmetry boundary conditions is simulated with an uniform mesh comprising 22,801 elements. For
coherent comparison purposes, the EUCLIDian norm of the displacement field divided by the number of control points
||u||/ncp is monitored in each step. The normalization with ncp serves the comparability between the models of various
dimensionality.

The resulting force-displacement curves obtained with both setups, for the different models as well as the various ratios
1/t are given in Figure 14. Figure 15 shows the resulting, final phase-field as obtained with the mixed-dimensional model
with I/t = 1/4 not only from a top view, but also in side views respectively in a diagonal cut. The latter really show the
phase-field evolution along the thickness direction and thereby again emphasizes the necessity to consider the phase-field
variable as not constant through the thickness. The results confirm the same observations of the first numerical example.
A comparison of the crack paths underscores that the proposed mixed-dimensional model is not only able to accurately
reproduce the crack path with respect to the shell midsurface, but in contrast to the shell model is additionally able to
accurately reproduce the phase-field evolution in the thickness direction of the reference model, for example, where the
crack initiates with respect to the thickness coordinate.

VAT W) S5 0SB J0J ANEIYIT SUNUC) AS[L AL W0 (SU00IPU00-JAr-SIL ) W0y K] Ari || sl uoy:sdis ) suonipuoy pue swes L s 595 [£202/1 1/£2] uo Anqr] suug SB[ AHpoqqassput] sipSIsgs A | oL SR T00 10 1/10Hm00 A1) m AR oy sdis] won papeoqumo ‘L1 ‘TT0T LOT0L601

o) Ag p

0 sanEar) sqesdd

sz



AMBATI ET AL. W I L EY 4111

shell
solid

—— mixed

5 0.5
[y
/ l/mm
00 0.05 0.1 % t/ mm
' : 0.15 0.2
: 0.25 0.3
: 0.35 1
Hul\/mm 1
ncp
(A)
shell
solid
—— mixed
Z
~
[y

0.06 0.07 0.08 0.09 0.1

1
0.117

(B)

FIGURE 14 Simply supported and clamped plate, force-displacement curves. (A) Simply supported edges; (B) clamped edges

4.3 | Notched hemisphere

For the final example, the aim is to extend the precedent investigations and insights to a shell with a curved geometry. This
curved geometry additionally features an initial crack which is ranging only partly over the thickness. For this purpose,
a hemisphere of radius r = 10 mm and thickness ¢t = 0.5 mm under uniform internal pressure as illustrated in Figure 16
is considered whereas the material parameters are E = 2.1 X 10° N/mm?2, v = 0.25 and G, = 2.7 N/mm. Again, taking
advantage of the symmetry of the problem, only an eighth of the hemisphere with respective boundary conditions is
simulated. Two initial cracks only partly through the thickness running of length ap = 1 mm are situated under an angle
of 90° ultimately forming a cross pattern at the upper inside of the hemisphere. These initial cracks range from one side
to only the first third of the shell thickness, analogously to the initially partly broken beam. Since the shell model is not
able to represent any initial cracks ranging only partly through the thickness, it will not be considered in this numerical
example.
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FIGURE 15 Simply supported and clamped plate, final phase-field as obtained with the mixed-dimensional model for I/t = 1/4.

(A) Simply supported edges (half, top view); (B) clamped edges (half, top view); (C) simply supported edges (half, bottom view); (D) clamped
edges (half, bottom view); (E) simply supported edges (diagonal cut perpendicular to one of the crack paths); (F) clamped edges (side view
normal to one of the crack paths); (G) clamped edges (side view perpendicular to one of the cracks paths)

FIGURE 16 Notched hemisphere, setup

Both of the models show a very similar behavior of the force-displacement curve for the investigated ratios [/t =
{1/4,1/8,1/10,1/20}, see Figure 17: the first critical point is hit when the initial, only partly through the thickness
ranging cracks advanced along the thickness direction such that they reach the opposite side of the shell. The evolution
along the thickness direction takes place before the cracks evolve along the shell midsurface. From this point on, the
cracks grow towards the equator of the hemisphere keeping the initial cross-pattern while the phase-field crack on the
outside henceforth stays marginally ahead of the phase-field crack on the inside. The simulation is stopped at the shown
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FIGURE 17 Notched hemisphere, force-displacement curves

B) ©)

FIGURE 18 Notched hemisphere, phase-field as obtained with the mixed-dimensional model for I/t = 1/10. (A) Three-quarter, final
state with elements ¢ < 0, 25 hidden; (B) quarter, initial state; (C) quarter, final state
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points in Figure 17 due to the first distinctive points in the force-displacement curves already met as well as the limit of
the small deformation prerequisite being hit. The phase-field can be seen in Figure 18 in various stages and views.

5 | CONCLUSIONS

In this article, a new model is introduced to deal with phase-field brittle fracture along the thickness direction of thin
plates and shells in a computationally efficient manner.

This new mixed-dimensional model combines a 2D representation of the displacement field (in this article exem-
plary formulated with KL shell kinematics), with a 3D phase-field description. For the implementation, which is based
on IGA due to the thereby possible rotation-free shell formulation in this article, the mixed-dimensional model neces-
sitates in two separate FE discretizations. One of them features shell elements with the displacement DOFs as well as
a thickness integration loop while the other one entails volume elements with the phase-field DOFs. Both of them are
coupled by an exchange of the coupling quantities at the QP which hence need to have corresponding geometric loca-
tions. With this proposed mixed-dimensional model, arbitrary phase-field behavior along the thickness direction can be
approximated without any assumptions or simplifications for the phase-field being necessary. This clearly lets the pro-
posed model stand out from previous approaches to phase-field fracture of plates and shells which usually consider the
phase-field variable to be constant along the thickness direction. All this is while the newly introduced model has signif-
icantly reduced computational cost when compared to the 3D model while also featuring additional capabilities such as
the capability to model initial cracks which are ranging only partly over the shell thickness or phase-field gradients in the
thickness direction. The results of various numerical examples show that the mixed-dimensional model in fact is capa-
ble of accurately reproducing the results of a standard (fully 3D) solid model while also indicating that the consideration
of the phase-field as varying over the thickness is in fact necessary. Furthermore, the simulations in this article illustrate
the tremendous impact of the ratio of the length scale parameter to the shell thickness on the phase-field behavior in the
thickness direction.

With this first paper only acting as initial presentation of the mixed-dimensional model, there are many feasi-
ble extensions to it which are yet to be investigated, such as: the extension to large strains and plasticity or other
shell kinematics, the application of the model to other coupled field problems and the combination with local refine-
ment techniques such as applied in Reference 71. An investigation on the phase-field behavior with more than
three thickness integration points or more than one thickness element also promises valuable insights in future
work.
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APPENDIX A. EQUILIBRIUM OF PARTLY BROKEN STRUCTURES

As already mentioned in the discussion of the simply supported beam, the results of the mixed-dimensional model show
that the partly broken shell features membrane action and membrane stress resultants despite of the load case comprising
pure bending which, at first glance, is contradictory. It is in the following that this is actually necessary to establish an
equilibrium state in the structure: This is done with an one-dimensional (1D) beam subjected to a line load p similar to
the one shown in the first numerical example, see Figure Al: this 1D beam shall be partly broken with the crack ranging
from the bottom to exactly the middle of the thickness, that is, a = t/2. Furthermore, the crack shall be exactly in line with
the thickness direction of the beam to simplify the deliberations. For the analytical proof, on the one hand, the cutting
forces at the position x = I, /2 are computed by establishing an equilibrium between them and the external loads and
bearing forces (as illustrated in Figure A1). On the other hand, the definitions of the BERNOULLI beam theory (to which
the KL shell theory reduces in this case) are used to condense the stresses in the beam cross section C to the same cutting
forces

Fy = /aHdC= L[ogdz = o, (Ala)
t
FT=/6,de=I2 o dz = FA—§%=0, (A1b)
t
My= [ondCml [onzdz + Eel-phl_zi (Alc)
2 24 8
C t N ~ J
~ ~ - from equilibrium

from BERNOULLI beam theory
Next, the previously described ansatz for the here relevant stress components is adopted for the 1D beam
O = 6™ + 707, (A2a)
— (A2b)
entailing a constant membrane part o™ and a linear bending part ¢® over the height. To ease the evaluation of the

equations, the phase-field over the thickness is simplified by substituting the continuous distribution with a HEAVISIDE
step function as also shown in Figure A1. The phase-field is again coupled to the displacement field with the degradation
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FIGURE Al Partly broken beam with stress resultants, stresses, and the phase-field

function. By comparing the stress resultants as computed with the beam theory incorporating the stress ansatz to the ones
obtained from the equilibrium

0 t/2
0=10h / gle(@)]ox(z) dz + 1 / glc(@)]ox(2) dz, (A3a)
—t)2 Y 0 v
=0 =1
—p 0 t/2
Pi- / gle@]on(@yz dz + / gle@lon@z dz . (A3b)
2 —-tj2 0 v
=0 =1
and solving the arising equation system,
. 12Bp
c = 127, (A4a)
3%p ¢
b 1 m
=——=—-0", A4b
T e T’ (A4b)

can be found. The resulting 6™ # 0 in fact shows that membrane action is necessary to establish an equilibrium state in
a partly broken structural part, as it was stated at the beginning of this proof. Thereby, this phenomenon ultimately also
renders the individual parts of the strain and stress to not be directly interpretable in the sense of membrane and bending
action any more. The same circumstances to achieve equilibrium in a partly over the thickness broken beam is not limited
to this special case but holds true for more complex loading cases and geometries as well.
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