
Air Force Institute of Technology Air Force Institute of Technology 

AFIT Scholar AFIT Scholar 

Theses and Dissertations Student Graduate Works 

12-1993 

Using Discovery-Based Learning to Prove the Behavior of an Using Discovery-Based Learning to Prove the Behavior of an 

Autonomous Agent Autonomous Agent 

David N. Mezera 

Follow this and additional works at: https://scholar.afit.edu/etd 

 Part of the Artificial Intelligence and Robotics Commons, and the Computer Engineering Commons 

Recommended Citation Recommended Citation 
Mezera, David N., "Using Discovery-Based Learning to Prove the Behavior of an Autonomous Agent" 
(1993). Theses and Dissertations. 6657. 
https://scholar.afit.edu/etd/6657 

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been 
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more 
information, please contact AFIT.ENWL.Repository@us.af.mil. 

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F6657&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=scholar.afit.edu%2Fetd%2F6657&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=scholar.afit.edu%2Fetd%2F6657&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/6657?utm_source=scholar.afit.edu%2Fetd%2F6657&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil


AD-A274 131
AFIT/GCE/ENG/93D- 10 11111

DTIC
S ELECTE

uL-43 1993

A

USING DISCOVERY-BASED LEARNING TO

IMPROVE THE BEHAVIOR OF AN AUTONOMOUS AGENT

THESIS
David N. Mezera
Captain, USAF

AFIT/GCE/ENG/93D-10

S93-31011

93 12 22 124
Approved for public release; distribution unlimited



AFIT/GCE/ENG/93D-10

USING DISCOVERY-BASED LEARNING TO

IMPROVE THE BEHAVIOR OF AN AUTONOMOUS AGENT

THESIS

Presented to the Faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science (Computer Engineering) ,FNTIS CRAMs
DTIL TAB []
Una-, .rOLunc~td 0.'

Justll-c _ýVon .... ...

David N. Mezera, B.S.E.E. By ........

Captain, USAF Dit. biton

Availability Codes
Avail ar:d i or

Dist Special

December 1993 1A

DTIC QUALITY IWSPECTED 3

Approved for public release; distribution unlimited



Acknowledgements

This work would not have been possible without the the support of several people. I

would first like to thank my advisor, Major Gregg Gunsch, for keeping me on a very long

leash. He gave me enormous freedom in pursuing the research that I thought would be

interesting using the approach of my choosing, but he would gently tug on the leash when

I began to stray from my original objectives. I am also grateful for his timely reassurances

when things seemed darkest. I would also like to thank my committee members, Dr.

Eugene SantoE and Dr. Henry Potoczny, for their contributions to this effort.

I owe much to my family. To my parents, George and Ruth Mezera: Thank you for

nurturing the curiosity within me through the years. I've never forgotten that "the world

is my oyster." I will strive to raise my own children with the same constant support and

love that you both showed me. To my grandfather, George Sr.: You started me on the

electrical engineering road almost sixteen years ago when you mailed me a logic probe kit

and a soldering iron. I hope you can look down from Heaven and see the impact that

small gift had on the course of my life. To my my wife, Stacy, and my children, Alek and

Jonathon: For the last year and a half, you've had to deal with an often absent and crabby

family member. Thanks for your unending patience and support during this very trying

period. Stacy, you truly are the "shining joy and jewel of all my kingdom."

But most of all, I thank God for giving me this opportunity and clearing the rocky

path to AFIT. Your Word gave me immeasurable support and helped me keep everything

in perspective.

When I said, "my foot is slipping," your love, 0 Lord, supported me. When
anxiety was great within me, your consolation brought joy to my soul.

Psalm 95:18-19, NIV

David N. Mezera

ii



Table of Contents

Page

Acknowledgements ........................................... ii

List of Figures ............................................. vii

List of Tables ........ ..................................... x

Abstract .................................................. xi

I. Introduction ........................................... 1-1

1.1 Background ....... ............................ 1-1

1.2 Problem ........ .............................. 1-4

1.3 Research Objectives ...... ....................... 1-4

1.4 Approach ..................................... 1-6

1.5 Scope ........ ............................... 1-6

1.6 Executive Overview ....... ....................... 1-7

II. Literature Review ........ .............................. 2-1

2.1 Background ....... ............................ 2-1

2.2 Architectures for Autonomous Agents .................. 2-1

2.2.1 Reactive Systems .......................... 2-1

2.2.2 Planning Systems ...... ................... 2-3

2.2.3 Deliberative Systems ........................ 2-5

2.2.4 Combined Systems ......................... 2-6

2.3 Machine Learning ............................... 2-7

2.3.1 Learning Perspectives ..... ................. 2-7

2.3.2 Learning Types ........................... 2-8

2.4 Conclusions ................................... 2-13

iii



Page

III. Methodology ................................. 3-1

3.1 Overview ..................................... 3-1

3.2 Domain ...................................... 3-2

3.3 Machine Learning Method ................... 3-2

3.4 Implementation ......................... 3-3

3.5 Factors Affecting Plan Selection ...................... 3-4

3.6 Learning Approach ............................... 3-6

3.7 System Architecture ...... ....................... 3-7

3.8 Summary ..................................... 3-9

IV. NOSTRUM Design and Implementation ......................... 4-1

4.1 Overview ..................................... 4-1

4.2 MAXIM ......... ... ....... .............................. 4-1

4.2.1 Architecture ....... ...................... 4-2

4.2.2 Fly-to Points ............................. 4-3

4.3 MAXIM Modifications ............................. 4-4

4.3.1 Agent Types ............................. 4-5

4.3.2 Dealing With Nondeterminism ................. 4-5

4.3.3 Universal Plan Representation ..... ............ 4-6

4.3.4 Dead Zones ............................. 4-11

4.4 NOSTRUM Components ........................... 4-12

4.4.1 Instrumentation .......................... 4-12

4.4.2 Heuristics ............................... 4-15

4.4.3 The Agenda ............................. 4-21

4.4.4 Response Selection, Evaluation, and Generation . . 4-23

4.5 NOSTRUM Operation ............................. 4-25

4.5.1 Plan Sector Divisions ..... ................. 4-26

4.5.2 Dynamic Scenarios ........................ 4-26

iv



Page

4.5.3 Heuristic Ordering ......................... 4-28

4.5.4 Hill Climbing ............................ 4-29

4.5.5 Plateauing ...... ....................... 4-31

4.5.6 Side-Effects of Learning ...................... 4-32

4.6 Summary ................................... 4-34

V. Results & Issues ....................................... 5-1

5.1 Introduction ................................... 5-1

5.2 Testing the DBL Hypothesis ......................... 5-1

5.2.1 Learning in Pure Plan Sectors ................. 5-1

5.2.2 Learning in Dirty Sectors ..... ............... 5-12

5.2.3 Overall Learning Success .................... 5-16

5.3 Testing the Features Hypothesis ...................... 5-19

5.3.1 Qualitative Effect of Learning ................. 5-20

5.3.2 Quantitative Effect of Learning ................. 5-27

5.4 Summary .................................... 5-29

VI. Summary, Conclusions & Recommendations ...................... 6-1

6.1 Research Summary ............................... 6-1

6.2 Conclusions ................................... 6-2

6.3 Recommendations for Future Research ............. .... 6-7

6.4 Closing Thoughts ............................... 6-8

Appendix A. Terms and Computations .......................... A-1

A.1 Aspect angle .................................. A-2

A.2 Relative Altitude ................................ A-3

A.3 Heading-Crossing Angle ........................... A-4

A.4 Range ....................................... A-4

A.5 Relative Velocity ................................ A-4

A.6 Fly-to Point Adjustments .......................... A-4

v



Page

Appendix B. Engagement Scenarios ...................... B-i

Appendix C. Source Code & Flow Charts ........................ C-1

Bibliography ............................................. BIB-i

Vita .................................................. VITA-1

vi



List of Figures
Figure Page

1.1. An example of inappropriate MAXIM behavior ............... .... 1-2

1.2. A more appropriate MAXIM response .......................... 1-3

3.1. Plan sector divisions ........ ............................ 3-5

3.2. NOSTRUM block diagram .................................. 3-7

4.1. The proportional fly-to strategy used by standard agents ........... 4-3

4.2. The adjustable fly-to point strategy used by flexible agents ....... .... 4-4

4.3. Plan sector range divisions ................................ 4-7

4.4. Plan sector aspect angle divisions ............................ 4-8

4.5. Plan sector altitude divisions .............................. 4-8

4.6. Plan sector combined view ................................ 4-9

4.7. NOSTRUM operational sequence ............................ 4-24

4.8. Graphical depiction of a training scenario ..................... 4-28

4.9. Optimal hill climbing ................................... 4-30

4.10. Realistic hill climbing............................... 4-31

5.1. Graphical depiction of training scenario for pure plan sector 0-0-0-0-0. 5-2

5.2. Default agent behavior in plan sector 0-0-0-0-0 ................... 5-6

5.3. All responses tested for plan sector 0-0-0-0-0 .................... 5-8

5.4. Best response found for plan sector 0-0-0-0-0 .................... 5-8

5.5. Default agent behavior in plan sector 1-0-0-0-0 ................... 5-11

5.6. All responses tested for plan sector 1-0-0-0-0 ................... 5-11

5.7. Best response found for plan sector 1-0-0-0-0 ................... 5-12

5.8. A dirty plan sector ..................................... 5-13

5.9. Sector boundary crossings ................................ 5-16

vii



Figure Page

5.10. Engagement scenarios ............................ 5-21

5.11. Scenario #1, dose range ................................. 5-22

5.12. Scenario #3, standard agent. .......................... 5-23

5.13. Scenario #3, flexible agent ................................ 5-23

5.14. Scenario #2, standard agent ............................... 5-24

5.15. Scenario #2, flexible agent. ............................ 5-24

5.16. Scenario #1, long-distance range ............................ 5-25

5.17. Flat scissors, revisited ................................... 5-26

5.18. Flat scissors, desired behavior .............................. 5-26

A.1. Terms used by NOSTRUM .............. .......................... A-1

A.2. Aspect angle quadrants .................................. A-3

A.3. The local target coordinate system ........................... A-5

B.1. Scenario #1, close range, agent moving slower than target ........ ... B-2

B.2. Scenario #2, close range, agent moving slower than target ........ ... B-3

B.3. Scenario #3, close range, agent moving slower than target ........ ... B-4

B.4. Scenario #4, close range, agent moving slower than target ........ ... B-5

B.5. Scenario #1, close range, agent moving faster than target ........ .... B-6

B.6. Scenario #2, dose range, agent moving faster than target ........ .... B-7

B.7. Scenario #3, close range, agent moving faster than target ........ .... B-8

B.8. Scenario #4, dose range, agent moving faster than target ........ .... B-9

B.9. Scenario #1, long-distance range, agent moving slower than target. B-10

B.10. Scenario #2, long-distance range, agent moving slower than target. B-11

B.11. Scenario #3, long-distance range, agent moving slower than target. B-12

B.12. Scenario #4, long-distance range, agent moving slower than target. B-13

B.13. Scenario #1, long-distance range, agent moving faster than target. B-14

B.14. Scenario #2, long-distance range, agent moving faster than target. B-15

viii



Figure Page

B.15. Scenario #3, long-distance range, agent moving faster than target. B-16

B.16. Scenario #4, long-distance range, agent moving faster than target. B-17

C.1. NOSTRUM main program loop .............................. C-2

C.2. Sequence of events for each response learned .................... C-3

ix



List of Tables

Table Page

4.1. Plan sector divisions ................................... 4-27

4.2. Sample training scenario ................................ 4-27

4.3. Training scenario values .................................. 4-29

5.1. Training scenario created for plan sector 0-0-0-0-0 ................. 5-2

5.2. Sample NOSTRUM output ................................. 5-3

5.3. The complete learning cycle for plan sector 0-0-0-0-0 ........... .... 5-5

5.4. Training scenario created for plan sector 1-0-0-0-0 ............ .... 5-9

5.5. The complete learning cycle for plan sector 1-0-0-0-0 ........... .... 5-10

5.6. Training scenario created for plan sector 0-0-0-0-3 ................. 5-13

5.7. The complete learning cycle for plan sector 0-0-0-0-3 ........... .... 5-14

5.8. The complete learning cycle for plan sector 0-1-0-1-0 ........... .... 5-15

5.9. Results of learning in close range plan sectors ................... 5-17

5.10. Results of learning in distant range plan sectors .............. .... 5-18

5.11. Results of 500 random scenarios ............................ 5-28

x



AFIT/GCE/ENG/93D-10

Abstract

Computer-generated autonomous agents in simulation often behave predictably and

unrealistically. These characteristics make them easy to spot and exploit by human partici-

pants in the simulation, when we would prefer the behavior of the agent to be indistinguish-

able from human behavior. An improvement in behavior might be possible by enlarging

the library of responses, giving the agent a richer assortment of tactics to employ during a

combat scenario. Machine learning offers an exciting alternative to constructing additional

responses by hand by instead allowing the system to improve its own performance with

experience.

This thesis presents NOSTRUM, a discovery-based learning (DBL) system designed

to work in tandem with the MAXIM air combat simulator. Through a process of repeated

experimentation modeled after the scientific method, NOSTRUM was able to discover many

responses that were more appropriate than the single mode of agent control implemented in

the original MAXIM program. NOSTRUM often found responses that dramatically improved

the offensive position of the agent, and it sometimes placed the agent in position for an

extended shot on the target when one was not available before.

xi



USING DISCOVERY-BASED LEARNING TO

IMPROVE THE BEHAVIOR OF AN AUTONOMOUS AGENT

L Introduction

1.1 Background

Combat pilots undergo many intense hours of training to acquire the skill necessary to

effectively control a modern-day fighter aircraft. While some of this training is conducted

in the cockpit, a significant portion of training is conducted outside the aircraft in combat

simulators. The Navy, Air Force, and Army each spend in excess of a half-billion dollars

annually for training, and spending in this area is projected to increase as the military

tries to maintain a quality force with a shrinking budget (14). When standardized and

economical training is the goal, simulators seem to present the ideal training method.

Simulators can provide identical training to multiple student pilots, something that human

opponents cannot do. Each person reacts differently in similar situations, and human

opponents are incapable of repeating a combat simulation exactly the same time and

again.

There are serious inadequacies, however, related to the quality of training that simu-

lations can provide. Simulators are able to generate consistent training scenarios, but often

behave predictably. After several encounters against a simulated opponent, the behavior

of the opponent seems decreasingly realistic to the trainee. Realism could be improved

by making simulated opponents behave more intelligently, transforming them from pre-

dictable, scripted entities into autonomous agents. A well-programmed autonomous agent

would be indistinguishable from other human players, and could be used to populate sim-

ulations with computer-generated opponents or allies. Research is underway at the Air

Force Institute of Technology (AFIT) to explore artificial intelligence (AI) techniques that

can accomplish this objective.

AFIT's research efforts have been in support of the Distributed Interactive Simula-

tion (DIS) and the Computer-Generated Forces (CGF) projects, managed by the Advanced
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Research Projects Agency. The goal of these projects is to connect world-wide military

forces for participation in real-time combat simulations over a high-speed computer net-

work (30). AFIT students have developed a prototype system called MAXIM, a proof of

concept program for autonomous air combat agents, for potential use in the DIS. MAXIM

autonomous agents could be integrated into DIS to act as adversaries or allies, filling

out a simulation with additional players when simulator resources are scarce and human

participants axe few. Unfortunately, MAXIM agents axe not exceedingly realistic.

0~.
10000 01

03

0500 /
0o2o/

8500 00 i /

7500

7000 i

6500
140000 Iao00 1000 0 • 3000 22005 400 30000 26 10000

Figure 1.1 An example of inappropriate MAXIM behavior. In this scenario the
agent overshoots the target and loses the opportunity to achieve a positional
advantage.

MAXIM is capable of limited intelligent behavior. Although MAXIM does produce

autonomous agents that can pursue and destroy enemy targets, only a small number of

strategies are built into the system. Agents pursue each other as fast as possible within the

flight envelope, sometimes turning at velocities that a human pilot could not withstand.

The behavior of a MAXIM agent is also quite predictable and can be beaten by exploiting

inadequacies in its responses. Figure 1.1 illustrates one instance when MAXIM agent behav-

ior is inadequate. In this scenario, the agent and the target were initially traveling along

parallel headings. The agent was traveling at lower velocity than the target aircraft and

consequently had a smaller turning radius, but failed to use this difference to its advantage.
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Figure 1.2 A more appropriate MAXIM response. Using the flat scissors, the agent
could have made use of its shorter turning radius to get behind the target.

A classic maneuver known as the "flat scissors," shown in Figure 1.2, could have been used

to achieve a better end-game position for the agent than is possible with the fixed type of

control used by MAXIM (8, 28).

Additional strategies could be added to MAXIM by manually coding the responses into

the architecture, but this approach is not very attractive for several reasons. One of the

biggest detractors is that a thorough understanding of the combat tactics domain would

be required before knowledge could be incorporated into MAXIM. A human expert would

have to enumerate the tactics that can be used and the preconditions for each. Frequently,

a knowledge engineer is needed to elicit relevant information from the expert and translate

it into a form usable by a computer. Not only is this process labor intensive, but it is

also prone to error because of differences in interpretation. For the combat tactics domain,

acquiring all the requisite knowledge is not a simple matter. For example, the PDPC system,

also developed at AFIT, used a comprehensive knowledge-base of approximately 200 rules

to generate air combat agent behavior (9, 10). A possible way to circumvent the knowledge

bottleneck would be to incorporate a learning capability into the system. While the agent

is engaged against an opponent, or off-line during training scenarios, the agent could find

out for itself, and remember, sets of preconditions and associated tactics based on its own

experience.

Machine learning is an AI technique that can be used to improve the performance of

a system by leveraging knowledge that was useful as a solution to a previously encountered
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problem. Many techniques exist to implement machine learning, but each type of learning

can be described as either being a supervised or unsupervised technique. Supervised learning

requires the assistance of a human teacher to identify positive and negative examples of

a concept, whereas unsupervised learning can proceed without any human involvement.

This type of machine learning has potential for accelerating the skiU acquisition process

since the pace of learning in an unsupervised system is limited only by the processing speed

of the computer.

Discovery-Based Learning (DBL) is one type of unsupervised machine learning. Us-

ing discovery-based learning, the system mimics the scientific method: the area to be

studied is restricted to a manageable domain, data is gathered, and hypotheses are formu-

lated and tested with experiments (13). As this cycle is repeated, the system can build

and refine a knowledge base that captures some of the important features of the domain

in which the experiments are being conducted.

1.2 Problem

The purpose of this thesis was to investigate methods of incorporating a machine

learning component into a flight combat simulator for the purposes of improving agent

behavior. Specifically, I wanted to examine the usefulness of discovery-based learning as

a tool for extending the library of air combat responses available to an autonomous agent

engaged in a dog-fight against another aircraft.

1.3 Research Objectives

The work accomplished as part of this investigation tested the following primary

hypothesis:

Hypothesis:
Discovery-based learning can be used to improve the performance of an agent
in the air combat domain.
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The goal of this research was to determine whether or not discovery-based learning is

suitable for a dynamic domain such as air combat. The suitability of this form of learning

was assessed empirically by measuring agent performance before learning and comparing it

to agent performance after learning had taken place. If the agent learned maneuvers that

placed it in a better position than before, then it may be concluded that discovery was a

useful tool for improving performance of the autonomous agent used during this research.

The primary investigation was decomposed into two smaller, more manageable, sub-

hypotheses. The first sub-hypothesis was the Features Hypothesis:

Features Hypothesis:
Agent behavior can be improved by selecting a response based on a handful
of key features.

The Features Hypothesis stated my belief that a reactive aircraft agent could im-

prove behavior by using a relatively small number of parameters as an index into a table

of responses, rather than always responding in the same manner. To successfully test

this hypothesis, the key features were first singled out from the pool of possible features.

Then, using only these features to select responses, scenarios were conducted to measure

performance. Specifically, the following issues were addressed:

"* During combat, what parameters are critical when selecting a course of action?

"* What granularity in the critical parameters is required to improve agent behavior?

"* How should the behavior of MAXIM agents be represented so that a working learning

component can be integrated into the simulator?

Confirming the Features Hypothesis would contribute to the overall goal of improv-

ing agent performance, but it was completely independent of the learning aspect of this

research. If the features were appropriate, then agent behavior would improve regardless

of whether the responses were learned or manually entered into the system. To complete

the primary investigation, another sub-hypothesis was tested:
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DBL Hypothesis:
Given the division of agent responses by key features, discovery-based learning
can improve behavior by testing various responses within each division and
remembering those that worked best.

The Features Hypothesis proposed a possible representation for agent behavior, and

the DBL Hypothesis suggested that discovery-based learning may be useful for improving

combat tactics using that representation. The addition of the learning component forced

me to address an additional issue:

9 What domain knowledge is required for discovering air combat tactics?

If the Features and DBL Hypotheses are confirmed, then the primary hypothesis will

be simultaneously affirmed.

1.4 Approach

This research built upon the MAXIM air combat simulator previously developed by

AFIT students. The focus of this work was to develop and integrate a mechanism into

MAXIM to select tactics, execute test scenarios, and analyze the effect of variations in the

tactics. Some modifications were required to retrofit the MAXIM simulator for the learning

component since agent behavior was hard-coded into the existing system. During learn-

ing, the system explored alternative responses within the MAXIM air combat world in an

attempt to improve autonomous agent performance. Tactics that resulted in better agent

performance during training were remembered for later application in scenarios against a

more dynamic opponeuL

1.5 Scope

This study was limited to a learning agent competing against a non-jinking target

drone. During learning, the agent did not encounter any external threats, such as surface-

to-air or air-to-air missiles, nor did the agent have any of these weapons at its disposal for
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use against the drone. The agent attempted to achieve an advantage over the opponent

aircraft strictly through the use of maneuvers. I believed that this would permit an accurate

comparison of each of the agent's maneuvers tested during the discovery process.

The research was further limited by narrowing the range of tactics to be learned.

There were a whole host of strategies that the system could attempt to improve: search,

attack and evasion tactics, to name a few. I chose, however, to limit the system to learning

tactics useful during the attack phase. Learning how to skillfully attack an adversary

seemed more interesting, but it was by no means the only area in need of improvement.

Clearly, there will be occasions when an agent may need to evade an adversary better

skilled at attack in order to survive.

1.6 Ezecutive Overview

During this investigation, a DBL system was successfully constructed and integrated

with the MAXIM architecture. The system, referred to throughout this document as NOS-

TRU M, used a variation of the scientific method to explore tactics in the air combat domain.

As a result of repeated experimentation, NOSTRUM was able to discover many responses

that were more appropriate than the single mode of control implemented in the original

MAXIM program. NOSTRUM often found responses that dramatically improved the offensive

position of the agent, and it sometimes placed the agent in position for an extended shot

on the target when one was not available before.

The remainder of this document presents a detailed discussion of my research, begin-

ning in Chapter 2 with the literature review. Chapter 3 provides insight into many of the

high-level system design considerations, followed by a detailed discussion of the NOSTRUM

architecture in Chapter 4. Chapter 5 presents data from my experience running NOSTRUM

as a learning system, as well as comparisons of agent behavior before and after learning.

Finally, in Chapter 6, I present my conclusion that DBL was a useful technique in the air

combat domain for improving agent behavior.
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II. Literature Review

2.1 Background

The following literature review examines some of the recent research in two areas

related to this work. The first section reviews several of the current approaches being used

to develop realistic autonomous agent behavior. Special focus has been given to reactive,

planning, and deliberative systems, followed by a short discussion on combined systems.

The second section takes a look at machine learning techniques of the past, with emphasis

on the differences between supervised and unsupervised learning.

2.2 Architectures for Autonomous Agents

There have been many approaches for the generation of realistic autonomous agent

behavior. They span the spectrum from reactive systems, the fastest of the architectures,

to completely deliberative systems which carefully calculate the best course of action us-

ing domain knowledge and sophisticated problem solving. Several of these systems are

examined in this section.

2.2.1 Reactive Systems. Many behaviors that emerge during an aerial engage-

ment are instinctive: the pilot recognizes a particular situation from training experience

and reacts to counter the situation. This seemingly unconscious behavior is the basis of

reactive systems, which operate using the following simple scheme:

perception --+ action

Reactive systems select responses based entirely on the situation at the moment.

Pre-planned actions are selected rather than generated from scratch each time the envi-

ronment changes, making reactive systems less computationally intensive than other types

of autonomous agent architectures. This characteristic makes reactive systems suitable for

use in real-time environments where surplus time is scarce and unpredictable.
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2.2.1.1 Universal Plans. Another representation of reactive behavior is

possible using a universal plan, a concept introduced by Schoppers for use in reactive

robots (26). Universal plans convey highly conditional advice in the following form:

If a situation satisfying condition P should ever arise while you are trying to
achieve goal G, then the appropriate response is action A.

A universal plan is organized into sets of possible situations based on the reaction

desired in each situation. During execution, the system classifies the current situation and

uses it as an index into the universal plan. The response assigned to that class of situations

is performed, and the cycle repeats with an updated description of the environment. The

behavior produced by agents executing a universal plan depends primarily on the state of

the world at execution time.

An interesting feature of a system employing a universal plan is that it avoids the

over-commitment problems associated with traditional planners. Agents using this method

do not create a sequence of actions to achieve a future goal, but instead respond only to

the current situation. Universal plan responses are geared to produce short-term gains,

and a response is always available, so these systems cannot be trapped in a non-monotonic

problem space. One system applying the universal plan approach is MAXIM, a prototype

air combat simulator developed at the Air Force Institute of Technology (6). MAXIM was

designed to produce realistic aircraft and missile agents for combat training in support of

ARPA's Distributed Interactive Simulation (DIS) program.

The behavior of aircraft and missile agents in MAXIM is partitioned into various

phases along with corresponding sets of actions. Missile agents operate within a single

attack phase, but aircraft agents operate within search, attack, and evade phases. During

simulation execution, MAXIM determines which phase of operation is appropriate for each

agent using case statements: if a certain condition exists, then the phase is set to the state

best suited to handle that condition. For example, when an agent detects an enemy aircraft

in its vicinity it goes into attack phase. During attack, MAXIM implements a proportional

control strategy to direct the agent toward the target and put the agent in position to

fire on the enemy aircraft. Meanwhile, the agent continually checks for the presence of
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threatening enemy missiles; if any are detected, the agent immediately transitions out of

attack phase and into evade phase. While evading, the agent abandons proportionally

controlled flight towards the target and instead maneuvers to escape the incoming missile.

Using a universal plan, MAXIM creates dynamic agent behavior meeting the real-time

requirements of the DIS protocol. The system suffers, however, from predictability; since

the universal plan is a static structure, agent behavior can be anticipated and exploited.

The behaviors produced during each phase are hard-coded into the program and only take

into account the most general cases. Unexpected variations in enemy behavior, such as

the appearance of a missile using a proportional-derivative guidance algorithm, will not be

countered well by an agent using tactics suited for a proportionally guided missile.

Pilot Decision Phases in CLIPS (PDPC) is an example of a rule-based universal plan

system for intelligent air combat adversaries (9, 10). implemented in COOL, the CLIPS

Object-Oriented Language, PDPC uses a rich collection of air combat domain knowledge to

control agent behavior. The knowledge base contains a number of maneuvers, represented

as production system rules with preconditions and postconditions, that agents may access

as they try to achieve higher-level goals. The preconditions ensure that the maneuver is

appropriate for the current situation, and the postconditions produce changes in the agent

state, such as deltas in agent velocity, acceleration, or orientation. When the preconditions

for a particular maneuver have been satisfied the rule fires, causing the aircraft to execute

the selected maneuver until another more appropriate rule fires and supersedes it.

A serious drawback of PDPC is the sizable amount of domain knowledge required to

implement the system. Every maneuver in the knowledge base must be explicitly stated

as a set of preconditions and resultant postconditions. The developers of PDPC hand-

coded approximately 200 rules specifying agent behavior. Incorporating complex domain

knowledge on this scale can be an arduous process that creates an opportunity for errors to

creep into the rule base during both translation and interpretation of the expert knowledge.

2.2.2 Planning Systems. The purpose of a planner is to create a suitable course

of action before taking a single step (2). This is generally done by searching a state space

for some sequence of operators defining a path from an initial state to a desired goal state.
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Searching the entire state space is often an intractable problem, however, because the

number of possible intermediate states gives rise to a combinatoric explosion. Instead,

some planners search a limited number of levels in the search tree and select the plan with

the best chance for success at that deepest level examined during the search. This is the

technique used by Intelligent Player, a program for creating autonomous agent behavior.

Intelligent Player (iP) is a computer generated fighting helicopter that employs a

chess-type look-ahead for its decision logic (12). As it generates a plan, iP constructs a

decision tree of alternating agent and target response nodes. With the exception of the

root node, representing the agent's current situation, each node in the tree represents a

possible future position of one of the two helicopters. Nodes are computed alternately

for each helicopter so that a path from the root to a terminal node defines a sequence of

alternating helicopter actions, as well as the projected state of the world if those actions

are taken. ip develops the tree to a tractable depth, well short of the game duration,

computing heuristic scores along the way at each level. When the tree is completed, the

path from the root node (identifying the current situation) to the highest scoring node at

the deepest level is selected as the course of action.

Although ip was capable of generating the look-ahead tree real-time, several sim-

plifying assumptions had to be made. Decision points for the agents were staggered so

that only a single helicopter could perform an action at each branch between nodes. This

is clearly not the case in actual combat, when opposing pilots will not be so polite as

to take turns but will constantly maneuver to out-position the other. Helicopter action-

were also discretely partitioned into a relatively small number of possible responses, sig-

nificantly curtailing the potential explosion of nodes representing future world situations.

In practice, there will be a range of actions possible by each helicopter. Furthermore, the

look-ahead strategy will not behave well as the number of agents involved increases beyond

the one-on-one scenario because of the resulting increase in the number of tree nodes.

In general, real-time planners are difficult to construct. Planning requires a great

deal of information up front, is computationally intensive, and delays the arrival of suitable

actions (26). Plans are also brittle in the sense that they can become instantly obsolete

by external events not anticipated during plan generation.
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2.2.3 Deliberative Systems. To generate an appropriate plan that can transform

an initial state to a desired goal state, the planner must have access to operators that

can make this transformation happen. Occasionally, however, planners are unable to find

a suitable sequence of operators because of holes in the knowledge base. For example,

suppose a planner has been programmed to search for a sequence of operators to satisfy the

goal get-airborne for an aircraft agent in a starting position on the runway. Furthermore,

suppose that the planner only has knowledge of the operators extend-flaps, rotate, retract-

landing-gear and climb. In this scenario, the planner would be unable to find a path from

the initial state to the goal because it lacks knowledge of an operator critical to the task,

engine-throttle-up. When the knowledge available to a planner is insufficient or conflicting,

a deliberative system may be able to find a solution to the problem.

The SOAR architecture is a deliberative system capable of resolving these types of

impasses. More than just a generative planner, SOAR is a proposed model of human cog-

nition capable of solving problems using first principles (25). First principles establish the

basic concepts of a particular problem domain and act as building blocks from which more

complex concepts can be constructed. In the previous example, a standard planner would

fail because it would be unable to satisfy the goal get-airborne without the presence of the

engine-throttle-up operator in the knowledge base. SOAR, on the other hand, can identify

the missing knowledge and leverage first principles about flight to create a new operator

to throttle the engine up. Finally, through a process called chunking, SOAR "remembers"

the newly created knowledge in long-term memory as a solution to the impasse in case it

is ever asked to get the plane airborne again.

SOAR has been used as the host architecture for the IFOR/SOAR system modeling

combat behavior of autonomous aircraft agents (11). The system uses first principles of

aerial combat and flight dynamics to control an agent in a one-on-one combat scenario.

Behavior is modeled in IFOR/SOAR as a hierarchy of problem spaces, each allowing the

agent to reason about particular types of goals. The highest-level problem space is the

mission, and subsequent problem spaces are decomposed into finer levels of granularity,

such as intercept and fire-medium-range-missile. When the agent is unable to achieve the

current goal, an impasse occurs that establishes a lower-level goal of resolving that impasse.
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A new problem space is created, and all the knowledge available to the agent is brought

to bear as SOAR searches for a way around the impasse. Assuming that the first principles

available to the system regarding flight and combat are sufficient, SOAR will eventually

resolve the impasse and remember the solution for future problem solving.

Using only first principles, SOAR agents initially do not have enough knowledge to

perform complex tasks without impasses occurring frequently. As impasses are resolved,

more complex operators are added to long-term memory for future reference. It is inter-

esting to note that selecting a course of action for IFOR/SOAR agents would be initially

computationally intensive, but after a period of time a sufficient quantity of new operators

will have been chunked such that SOAR agents actually become increasingly reactive. This

raises questions about the necessity of carrying around the excess baggage of the entire

SOAR problem solving architecture, considering that it would be exercised only when a

reactive response wasn't already in place.

2.2.4 Combined Systems. Adhering to a single autonomous agent architecture

has its disadvantages. Reactive systems are fast, but sometimes respond inappropriately

or, worse yet, are unable to respond at all to unanticipated situations. Planning systems

select the best course of action prior to acting, but are computationally intensive and can

be brittle in an unpredictable world. Systems which are purely deliberative can also be

computationally intensive, but they can generate solutions to unforeseen problems. Com-

bined, these factors are the impetus for hybrid systems which integrate reactive, planning,

and deliberative components into a single architecture.

One such combined system is RPD, an architecture that integrates reactive, plan-

ning and deliberative system components for a multi-agent environment (1). The reactive

component of RPD accommodates routine situations that the system can deal with on an

"instinctive" level. When non-routine situations are identified, RPD passes the task to a

planner that can employ both generative planning and case-based methods to construct

a plan. Anytime during this process, however, RPD may not be able to disambiguate the

situation or find a suitable plan to deal with the situation. In these instances, a decision

making module is called to resolve the problem.
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In a sense, the IFOR/SOAR architecture can also be considered a combined system,

although the boundaries between the individual components are not as clearly defined as

they are within the RPD system. IFOR/SOAR begins as a completely deliberative system

as it solves higher-level goals with low-level first principles, but eventually evolves into a

reactive system as new operators are chunked. In time, an IFOR/SOAR agent will familiarize

itself with many situations and will have a corresponding action already present in long-

term memory for each. When it encounters unfamiliar territory, IFOR/SOAR can fall back

upon its sophisticated problem solving architecture to find a solution to new problems.

2.3 Machine Learning

No matter which architecture is chosen to implement an autonomous agent, each

encounters the difficult problem of knowledge acquisition, a major bottleneck in the con-

struction of many AI systems (24). Typically, domain knowledge is gathered by a knowl-

edge engineer. The knowledge engineer must determine the types of knowledge needed by

the system to perform the task, as well as the level of detail required. Once these have

been decided, an expert is usually consulted to identify and explain all of the information

that is relevant to the problem solving that will be performed by the system. Finally, the

knowledge engineer must translate the knowledge into a usable form and enter it manually

into the system.

Machine learning is an AI technique that can be a useful in circumventing the knowl-

edge acquisition bottleneck by allowing the system to build a domain knowledge base

through experience. The remainder of this literature review will focus on the topic of

machine learning, with emphasis on those types that appear suited for learning tactics in

the air combat domain.

2.3.1 Learning Perspectives. There are many viewpoints in AI literature enu-

merating the purposes and benefits of learning. While these definitions are directed at

learning in general, they have had a direct impact on the learning mechanisms integrated

with AI syst.?ms that model the human problem solving process. Most definitions agree

that learning is the acquisition of experiential knowledge. The definitions diverge, however,
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when examined at the following levels: what is the expected payoff of learning, and how

must new knowledge be represented?

Simon deflies machine learning as changes in the system that are adaptive in the

sense that they enable the system to do the same task or tasks drawn from the same

population more efficiently and effectively the next time (29). Adaptation of the system is

possible through the refinement of existing knowledge or the addition of new knowledge.

As improvements are made to the knowledge base, system performance should improve and

become more robust. In many ways, defining learning as performance improvement is sim-

ilar to another view that learning is the process of skill acquisition. This definition clearly

distinguishes having the knowledge to perform a task from being able to perform that

task well. The skill acquisition perspective draws heavily upon recent research in cognitive

psychology, where the effects of the power-law of practice have been identified (25).

On the other hand, Dietterich states tha't learning can be defined simply as an in-

crease in knowledge (5), regardless of the impact the new knowledge has on system per-

formance. His definition of learning includes not only facts explicitly known to the system

but implicit facts as well, using the following axiom of knowledge closure:

If an agent knows a body of facts, F, then the agent also knows any facts that
are deductive consequences of F. In other words, an agent knows the deductive
closure of his knowledge. (4)

Since the goal of this research is to produce more robust autonomous aircraft agents,

capable of improving performance with experience, Simon's definition of machine learning

is more appropriate and will be implied throughout the remainder of this review unless

stated otherwise.

2.3.2 Learning Types. Research in machine learning can, in general, be separated

into two classes: systems that require the assistance of a human teacher to learn new con-

cepts (supervised learning), and systems that can learn new concepts without any teacher

involvement (unsupervised learning). Supervised learning requires a teacher to collect and

present positive and negative examples of a concept. From the examples, the system is

able to identify the important attributes of a concept while filtering out those that are
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irrelevant. Unsupervised systems, however, can acquire knowledge by modeling the pro-

cess of scientific experimentation, learning from the results produced when a hypothesis is

tested. Because experiments can be conducted in a simulated world, little or no teacher

involvement is required. Within these two categories there are a variety of techniques that

can be leveraged, so a closer examination is warranted.

2.3.2.1 Supervised Learning. Rote learning is the most basic of the machine

learning methods (24). In its simplest form, rote learning is nothing more than knowledge

manually programmed into the system or entered into a database. This definition is rather

trivial because it encompasses virtually every keystroke of program code or data that can

be entered into a computer. A more useful form of rote learning was employed by Samuel's

checker program (2). In that system, rote learning was used to memorize checker board

positions and the point value assigned to each board by an evaluation function. The

program recalled previously memorized boards during later play when look-ahead search

was used to select the next move. Using this approach, Samuel's program was able to look

deeper into the search tree than would have otherwise been possible in a reasonable period

of time, improving its performance with experience.

More commonly, supervised learning systems use induction to reduce the burden on

the human instructor and to speedup the learning process. Inductive systems attempt to

learn general concepts from a set of training examples. Mitchell introduced version spaces

as an inductive method that learn concepts from positive and negative examples presented

by a teacher (27) Initially, the version space is as large as the entire concept space. As

concepts are presented, the system updates a set of general and specific descriptions of the

concept. The general and specific sets converge to define a narrower version space as addi-

tional examples are presented to the system. The advantage of inductive learning methods

is that the teacher does not get bogged down in the problem of knowledge representation

since the system makes the necessary transformations, although the teacher must select

and order the training examples.

Explanation-based learning (EBL) is a deductive form of learning that can reduce

some of the burden normally placed on a teacher using an inductive system. EBL systems
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can generalize a concept through the examination of a single positive example. The system

relies heavily on domain knowledge to identify the relevant attributes of a concept. To begin

learning, an explanation-based system is presented with four inputs (3):

"* A training example: A positive example demonstrating the concept to be learned.

"* A goal concept: A high-level description of what the program is supposed to

learn.

"* Operationality criteria: Specifications for concept definition that will allow

efficient concept recognition in the future.

"* Domain theory: Domain specific knowledge that can be applied towards the

generalization.

Once presented with these inputs, the explanation-based learning system eliminates

the unimportant aspects of the training example and generalizes those that appear to be

relevant. The advantage of EBL is that only a single example is required to generalize the

important characteristics of a concept, unlike most inductive systems which require several

training examples. However, the domain knowledge used by EBL must be accurate and

complete for a proper generalization to be made.

The chunking mechanism built into SOAR is very much akin to the type of learning

performed by an EBL system. When SOAR discovers an impasse during problem solving, it

reaches into long-term memory for every piece of domain knowledge that may help resolve

the impasse. When a solution to the impasse is found at this lower level, SOAR generalizes

as much of the solution as possible so that knowledge learned during the resolution of a

single impasse might be put to use during similar, but not exactly identical, situations (16).

In this way, a single problem-solving episode serves as the training example from which

future problem-solving solutions are created and remembered.

2.3.2.2 Unsupervised Learning. Unsupervised learning systems offer an

exciting alternative to the concept collection and presentation required by the inductive

and deductive learning systems discussed in the previous section. One form of unsupervised

learning, known as discovery, has been developed to model the process of the scientific
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method: "constrain attention to a manageable domain, gather data, perceive regularly in

it, formulate hypotheses, conduct experiments to test them, then use the results as new

data with which to begin the cycle again" (21). Two such discovery system, BACON and

AM, will be examined in this section.

BACON was a system that used empirical methods for discovering numeric laws. Six

different versions of BACON, each of increased sophistication than its predecessor, used a va-

riety of heuristics and discovery techniques to find a mathematical function that described

the relationship between two numeric terms. By examining pairs of data, BACON was able

to discover Kepler's third law of planetary motion, Galileo's laws for the pendulum and

constant acceleration, and Ohm's law (18).

Initial versions of BACON used four simple heuristics to uncover useful relationships in

observed two-variable data. The first two heuristics were used by BACON to conjecture that

if a particular relationship was identified in a number of cases then it could well be true for

all cases. The remaining heuristics were used to recursively create additional numeric terms

from the product and ratio other pairs of terms. Guided by the heuristics, BACON worked

its way through the search space until the application of the product or ratio operator

produced a constant term throughout the data set; at that point, the correct relationship

had been identified. The practice used by BACON to create new terms from existing ones

is reminiscent of constructive induction learning. This technique can be used when the

data presented to the system contain no directly relevant descriptors, but combining the

data in some fashion had potential for producing something more useful to the learning

task (23).

For this discussion pertaining to BACON, Dietterich's definition of learning as defined

in section 2.3.1 may be more appropriate. If the system is not viewed from this perspective,

it is difficult to identify what learning is actually being accomplished by BACON. The

inductive process used to extract a mathematical equation from empirical data can be

equated to making implicit knowledge explicit. Although Dietterich's definition specifically

refers to the deductive closure of knowledge, Simon's definition of machine learning is

certainly not adequate since the system is not refining its ability to perform a task.
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Another approach, known as discovery-based learning (DBL), has been used to

demonstrate knowledge acquisition by performing and analyzing experiments. One of

the most well known DBL systems was Lenat's AM, a program for the discovery of new

mathematical concepts and the relationships between concepts (19). By performing ex-

periments in a mathematical world, AM discovered scores of well known concepts, such as

addition, multiplication, prime numbers, and DeMorgan's theorems.

Unlike explanation-based learning, there is no domain knowledge requirement in a

DBL system. Instead, DBL systems rely upon a set of heuristics. Heuristics give the

system a way to represent rules-of-thumb that produce positive results most of the time,

but are not always guaranteed to work. For example, a heuristic used by AM during its

discovery process was "if a function is found to produce an interesting result, then look at

its inverse." Once AM had discovered the concept of multiplication, this heuristic lead it

quickly to the concept of division.

The experimentation process was controlled in AM through an agenda. The agenda

rank-ordered all of the tasks to be carried out based on an interestingness value assigned

to each task. The heuristics built into AM were used to determine which experiments were

more interesting than others, and to make suggestions about future experimentation. At

the start of each cycle, AM would remove the first task from the agenda and conduct an

experiment to carry out that task. Based on how interesting AM determined the results to

be, new tasks might be added to the agenda, and the cycle would repeat.

DBL was also used by a researcher at AFIT to develop threat avoidance maneuvers

in the MAVERICK learning system. MAVERICK demonstrated the ability to autonomously

create a set of robust maneuver templates for reactive route re-planning around unfore-

seen ground-based threats (13). Through repeated experimentation, MAVERICK developed

maneuver sequences to safely traverse an area populated with surface-to-air missile sites.

Each maneuver sequen',_, was scored based on the trip time across the area and positive

radar contact time. Ma&zuvers that minimized both were considered more interesting and,

consequently, generated new responses that were explored first.
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By the very nature of their operation, DBL systems require a world in which to

perform experimentation. Experiments could be accomplished in the real world, with

humans or robots performing the tasks and reporting back the results. Another approach

is to allow a DBL system to experiment in a computer simulated world. This method

allows experimentation to proceed at the processing speed of the computer, instead of the

much slower rate to be expected from human experimenters. It is important to realize that

the scope and quality of knowledge learned by a DBL system conducting experiments in a

simulated world is limited by the fidelity of the simulator.

2.4 Conclusions

This chapter provided an overview of some of the research related to this thesis from

two areas, autonomous agent architectures and machine learning.

A variety of autonomous agent architectures have been tried. Reactive systems are

suitable for real-time applications because they are fast, but they are sometimes limited

in the range of behaviors they can produce. Planners in a real-time environment can be

troublesome because it takes time and computing power to produce a good plan, and even

a good plan is brittle when unforeseen events occur. Deliberative systems, such as SOAR,

offer much potential as models of human cognition but may also require more time and

computing power than is available in a real-time environment. Combining components

from each type of architecture is an attempt to make use of the best features of each

component without suffering the overall disadvantage of a single architecture.

The field of machine learning has developed a great deal since rote learning was first

implemented in Samuel's checker program. Other supervised learning techniques, such as

concept induction and explanation-based learning, are less labor intensive on the part of a

human teacher than rote learning but still require the assistance of a teacher to collect and

present concept examples. An explanation-based learning system is able to learn from a

single positive example, but draws heavily on its domain knowledge to identify attributes

of the example that match the goal concept. BACON, an unsupervised learning system,

explored a data set for useful relationships without teacher assistance by modeling the
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process of scientific discovery. Likewise, AM can explore a simulated world in much the

same way as it uses heuristic search to discover useful concept in that world.

NOSTRUM, the system produced as a result of this research, borrowed heavily from

concepts employed by the discovery systems AM and MAVERICK to improve the universal

plan responses of air combat agents. A high-level discussion of the NOSTRUM architecture

follows in Chapter 3.
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III. Methodology

3.1 Overview

The previous chapter summarized some of the current research thrusts for generating

realistic autonomous agent behavior. MAXIM, a prototypical system for autonomous air-

craft agents, uses a reactive planning strategy to simulate behavior during air combat that

is often predictable and unrealistic. For this thesis, I chose to investigate a strategy for

integrating machine learning into MAXIM to extend its range of behaviors with the intent

of producing more robust behavior.

This chapter describes the considerations made during the design process of NOS-

TRUM, the system developed as part of this work for enlarging MAXIM'S universal plan'.

The finer details of NOSTRUM's architecture will be addressed in Chapter 4; this chapter is

dedicated to a higher-level discussion for the purpose of answering the following questions:

"* What tactics could be learned that would be the most interesting and have the

greatest impact on improving overall agent behavior?

"* Of the various machine learning methods, which was best suited for learning in the

chosen domain?

"* Which language or platform was the best for implementing NOSTRUM?

"* What factors identify the key parameters used by a pilot to select different tactics

during an engagement? What information does a pilot use to select one maneuver

over another?

"* Given the domain, the structure of MAXIM, and the method of learning chosen, what

approach could be taken to expand the universal plan?

"* What is the basic structure of a system capable of learning air combat tactics?

'Henceforth, references to MAxiA refer to the simtdator portion of the system, whereas NOSTRUM is the

learning component of the system.
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3.2 Domain

Since MAXIM is an air combat simulator, the domain chosen for this research was

confined to the air combat world. Within the world created by MAXIM, however, there

were several types of tactics that a machine learning system could explore.

As mentioned in Section 2.2.1.1, the current version of MAXIM operates in one of

three phases and performs actions which are applicable to that phase. Depending on

the presence of a target aircraft or threatening missile, an agent's phase will be search,

attack, or evade (6). MAXIM agents always fly directly towards the target aircraft using

proportional control, firing a missile at the target as soon as minimum range and track

angle constraints have been met, While this type of control is sometimes used by pilots,

there are many other behaviors that are appropriate in other situations. A pilot may launch

a missile at a target as soon as the aircraft is within range, but might then maneuver for

position behind in case the missile doesn't destroy the target. An agent that relies solely

on proportional control would not always be able to achieve a positional advantage, and

would rarely be victorious against a skilled opponent.

The behavior for each of the three MAXIM phases was hard-coded into the program

when this research began. The code was therefore limited in the range of behaviors that

it could produce, making each phase a candidate for expansion through machine learning.

I chose to concentrate my effort towards improving agent behavior in the attack phase

because it seemed the most interesting and could have an impact on improving the overall

agent behavior: a skilled agent that can acquire and destroy a target better than its

opponent may not rely on evasion tactics as frequently as an unskilled agent.

3.3 Machine Learning Method

Of all the machine learning methods that could be leveraged by a system to improve

agent behavior, discovery-based learning stood out as the most appealing technique. My

personal experience in the air combat domain was limited to skill acquired during play

with toy ffight simulators, and there was precious little expert knowledge readily available.

Other autonomous agent systems, such as the IFOIR/SOAIR project that uses an explanation-
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based learning approach to chunk solutions as impasses are encountered, or the rule-based

approach of PDPC, require a substantial amount of domain knowledge to be hand-coded

into the program before reasonable agent behavior is possible.

DBL systems, on the other hand, do not require human interaction and learning can

begin with very little domain knowledge. Instead, a DBL system uses a set of heuristics to

propose, select, and perform experiments in a simulated world as the system attempts to

learn characteristics of that world. As mentioned in Section 2.3.2.2, a researcher at AFIT

successfully used DBL in the MAVERICK system to develop maneuvers around ground-

based missile threats. The knowledge built into MAVERICK was limited, requiring only

fourteen heuristics tuned to the route-planning domain. Previous success with DBL in the

MAVERICK system, combined with the fact that MAXIM provides an interesting dynamic

world in which to experiment with minimal requisite domain knowledge, motivated me to

select DBL as the learning mechanism for enlarging MAXIM'S universal plan.

3.4 Implementation

MAXIM is written in CLOS, the Common Lisp Object System. Common Lisp is an

interpreted language, making it a relatively flexible environment that eliminates the time-

consuming compilation step during development. Lisp implementations that adhere to the

ANSI standard have an integrated compiler as well, so optimized run-time binaries can

be created after program development. Given the inherent flexibility of Common Lisp,

combined with the fact that it would be easier to integrate code controlling the discovery

process in the language native to MAXIM, CLOS was chosen as NOSTRUM'S implementation

language.

Early in my research, I considered using SOAR as the host architecture for the dis-

covery portion of the system. SOAR is a proposed general model of human cognition that

attempts to satisfy goals using the problem space hypothesis. This hypothesis states that

all problem solving can be accomplished by selecting a sequence of operators that defines

a path from some initial state to a goal state (15). There is a great deal of similarity in the

problem solving method implemented in SOAR and models of the human process of die-

covery (17). The experimentation process can be seen as repeated problem solving within
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problem spaces for generating, selecting, conducting, and assessing the outcome of exper-

iments. Problem solving within some top-level problem space, such as ezperiment-world,

could repeat until a desired experimental outcome has been reached.

Connecting SOAR to the world provided by MAXIM, however, would not have been

a trivial matter. Passing data back and forth between SOAR and an external program is

done through working-memory augmentations to the state (15), which proved with further

investigation to be too clumsy for the amount of communication necessary between MAXIM

and the DBL system. There was little to be gained from the notion of integrating SOAR

into the MAXIM architecture, other than the novelty of using SOAR for this purpose.

3.5 Factors Affecting Plan Selection

To make MAXIM a more effective opponent during the attack phase, it war necessary

to examine the domain and identify the parameters which are important to a pilot during

combat. A skilled pilot will be able to take into account many different parameters before

choosing his next response, but tLere might only be a handful of especially critical variables.

Reducing the number of these parameters would be helpful during the learning phase, at

which time the system must determine what effect each experiment has had on their

resultant values.

In the case of MAXIM, I decided that an improvement in performance might be

achieved if responses were selected from the universal plan based on the following five

parameters: angle between fighter's line-of-sight and the the target's direction of travel

(aspect angle), fighter to target separation (range), relative altitude, relative velocity, and

relative heading. As shown in Figure 3.1, every 30 degree increment in aspect angle defines

a plan sector for which there can be several possible universal plan responses. Within

sectors, plan selection was further broken down based on range to the target (rangel or

range2), relative altitude from the target (above, nearly equal, or below), velocity relative

to the target (faster or slower), and approximate heading relative to the target (parallel

or opposing), for a grand total of 288 plan responses. After examining flight training

documents and discussing the problem with an F-4 pilot, I believed that a universal plan
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Figure 3.1 Plan sector divisions. The attack response chosen by an agent depends
primarily on which plan sector the agent is in. Responses are further refined
on the basis of relative velocity, range, relative altitude, and relative heading.
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divided into segments by these features, and at this resolution, might be less predictable

and more robust than one that used the same tactic under all circumstances (31, 22).

3.6 Learning Approach

To extend MAXIM's universal plan during the attack phase, I decided to train an agent

in a 1-v-1 combat scenario against a level-flying, non-jinking bogey moving at constant

velocity. MAXIM agents are normally quite aggressive, hurtling straight toward an opponent

and firing a missile as soon as minimum range constraints are met. During learning,

however, the ability to fire these all-aspect missiles was disabled. The learning goal of the

agent was to achieve a positional advantage over the target, placing itself at the proper

range and track angle for a missile shot at the target. Once learning had been completed,

the all-aspect weapons capability was restored, but training with this capability off gave

NOSTRUM an opportunity to learn contingency plans. My hope was that a response learned

during a specific training scenario against a non-jinking target would be applicable against

dynamic targets as well.

NOSTRUM was set up to test possible responses for variations in aspect angle, rela-

tive velocity, range, relative altitude, and relative headings. The number of plan sectors

to explore was reduced by using the symmetry of fighter-target geometry to mirror the

responses on the right- and left-hand sides of the sphere surrounding the target aircraft.

This cut the number of unique responses to be learned in half; responses needed when the

agent approached from the other side of the target were mirrored by changing the sign of

appropriate terms in the corresponding known response.

Before learning began, each of the 144 plan responses was initialized so that MAXIM

would fly directly towards the target. This was done so that the default behavior of NOS-

TRUM was at least as good as that of a standard MAXIM agent. During learning, however,

scenarios were executed so that NOSTRUM could experiment with alternatives for each re-

sponse. Alternative responses were suggestions for repositioning the fly-to point of the

agent which, in the case of proportional control, was exactly equal to the current location

of the target. Responses could also be modified by suggesting changes in the magnitude of

the agent's acceleration vector. By moving the fly-to point to some other position relative
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to the target, and adjusting aircraft power settings, I believed that NOSTRUM would learn

other types of pursuit such as lead and lag, and when these types of behaviors were appro-

priate. In addition, I expected that the agent would learn energy management maneuvers

by selecting fly-to points that were above and below the target aircraft. Fly-to points are

discussed in greater detail in Section 4.2.2.

3.7 System Architecture

asen& uivrsa <gditions

air combat worid

heuristics

interestingess
simulation

-- BIN respo'ns~e'results

new resoonses I

Figure 3.2 NOSTRUM block diagram. An architecture for discovering air combat
maneuvers in MAXIM.

Figure 3.2 illustrates the architecture developed for NOSTRUM, which resembles the

design of both AM and MAVERICK. An important structure in a DBL system is the agenda,

a priority queue of experiments to try next, rank ordered according to their interestingness.

Interestingness is simply a measure of a particular experiment's worth based on a set of

scoring heuristics. Experiments that have received the highest scores spawn additional
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experiments that are explored first. This allows experimentation to continue along paths

that appear to have the highest probability for success.

The success or failure of responses was measured using heuristics appropriate for the

flight combat domain. Since the desired goal was to let NOSTRUM find ways to achieve an

advantageous end-game position, maximizing shot time at the target while reducing the

target's shot time on the agent, two sets of the heuristics were required to guide experi-

mentation along these lines. The first set of heuristics, known as interestingness heuristics,

were used to assess the quality of a response following a simulation run. Interestingness was

calculated using not only by the quality of the response itself, but by predicting improve-

ments that might result if the system explored modifications to that response. Predicting

progress towards a better solution was attempted by looking for improvements in a better

end-game position, even if the change did not immediately result in an increase in shot

time or a reduction in danger time.

A second set of heuristics known as re.;ponse heuristics was then used to suggest

transformations to each response explored by the system. The MAVERICK system used

a technique similar to this to improve the flight time and decrease radar coverage of an

aircraft flying through an area populated with SAM sites. NOSTRUM's response heuristics

could suggest adjustments to the fly-to point relative to the target aircraft, or suggest an

increase or decrease in the power setting. An indefinite number of response heuristics could

trigger during the generation phase, suggesting zero or several new child responses to try

next. The list of child responses was inserted into the queue of pending responses, with the

parent that produced them, at a position fixed by the interestingness of th Ž parent. The

system then selected what appeared to be the most promising response from the queue,

and the cycle repeated.

Theoretically, experimentation could continue indefinitely, but for practicality learn-

ing had to be stopped after some number of responses had been explored. At that point,

the best response tested so far became the response for that portion of the universal plan.

The system was reset and learning began for the next universal plan response.
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3.8 Summary

This chapter presented a high-level discussion of the approach chosen for this thesic.

Effort was concentrated on improving tactics used by a MAXIM agent during the attack

phase because it seemed to be the most interesting and had promise for improving overall

agent behavior. While in the attack phase, the MAXIM program was altered to select the

most appropriate response for the autonomous agent based on five key features that capture

important aspects of the engagement. Manually determining what is an "appropriate"

response for each of the 144 distinct plan sectors would have been a laborious project.

The potential speed up in knowledge acquisition offered by the integration of a machine

learning technique is an exciting prospect.

There are many flavors of machine learning, but discovery-based learning was se-

lected as the method of choice for two reasons. First, DBL systems typically have only

a small domain knowledge requirement to begin learning. This was appealing because I

was not an expert in the air combat domain. Second, discovery-based learning is a form of

unsupervised learning. By conducting experiments within each plan sector, the system can

automatically modify and test a number of responses, and remember the one that appears

to work best.
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IV. NOSTRUM Design and Implementation

4.1 Overview

Two programs, MAXIM and NOSTRUM, were integrated to produce the learning sys-

tem constructed during this research. MAXIM created a simulated world for competing

autonomous aircraft agents, and NOSTRUM was plugged in to this world so it could test

and measure the performance of variations in air combat tactics. This chapter highlights

many of the detailed design decisions made while integrating the two systems. Also in-

cluded is an in-depth discussion of NOSTRUM'S operational cycle and the expected system

behavior.

4.2 MAXIM

MAXIM is a simulated air combat system developed by students at the Air Force

Institute of Technology. Originally developed as a class project in support of ARPA's

Distributed Interactive Simulation program, MAXIM has also been used to demonstrate the

initial success of purely reactive agent behavior in the air combat domain (7). A serious

criticism of reactive planning in general is that it is impossible to anticipate and include

the most appropriate plan for every situation the agent might encounter. Therefore, there

will be situations where the reactive response falls short and the resultant behavior exposes

deficiencies in the universal plan.

Being a reactive system, this criticism applies to MAXIM as well. The behavior of

a MAXIM agent is hard-coded into the system and plan response selection is based on

the presence of external threats such as enemy aircraft and missiles. The first mode of

agent operation is search, during which the agent flies straight and level for the most part,

occasionally turning right as it scans for enemy aircraft. Once an enemy is identified, the

agent immediately transitions to attack mode. During attack, the agent relies exclusively

on a proportional control strategy to engage and, ideally, destroy the target with a missile.

If the agent is threatened by a missile launched by the enemy aircraft, the agent abandons

attack for the moment and switches to evade mode. While evading, the agent flies a course

perpendicular to the direction of missile flight as it tries to turn inside the missile moving
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at a much greater velocity. If the evasion is successful, the agent then resumes its attack

on the nearest enemy aircraft.

MAXIM agent behavior during search, while rather monotonous, is not as critical to

the survival of an actual pilot as are the attack and evade strategies. The availability of

on-board radar systems and AWACS simplifies and accelerates the process of identifying

enemy aircraft, reducing the requirement for this type of behavior in the cockpit. In

practice, however, MAXIM agent behavior during the attack and evade phases is inadequate

because simplifying assumptions were made during program development. For example,

the proportional control strategy used by MAXIM during the attack phase will work well

when the age is directly behind the enemy aircraft and traveling at the same velocity,

but it is not as appropriate when the agent is traveling faster than the enemy; using only

proportional control, the agent could overshoot the enemy and make itself vulnerable by

giving the enemy a missile launch opportunity. A different response, directing the agent to

prevent an overshoot by bleeding off airspeed through a climb, might work better in this

scenario.

4.2.1 Architecture. MAXIM makes extensive use of the object-oriented features

of its implementation language, CLOS. There are object classes defined for aircraft and

missile agents, and additional classes define simulation and Ethernet manager objects.

MAXIM works quite nicely as a stand-alone air combat simulator, but the Ethernet manager

object gives MAXIM an interface to the outside world for combat against other simulators.

Simulations are controlled in MAXIM by alternating friendly and enemy object up-

dates. Each "side" of the simulation has its own simulation manager that maintains a

list of all objects known to be participating in the simulation. During the first half of the

update cycle, the manager requests updated enemy object information and inserts each

packet received in a history list. When all new information has been received, the simula-

tion manager updates each friendly object by sending it an update message tagged with the

current simulation time. During the update, friendly objects select an appropriate phase

and, if appropriate, a target aircraft selected from the history list to fly towards. Agents

then use the delta in time since the previous update to compute new position, velocity,
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acceleration, and orientation information, which is then passed to the Ethernet manager

for network transmission.

4.2.2 Fly-to Points. Agent control in MAXIM is implemented through the selec-

tion of an appropriate fly-to point. The fly-to point is simply a three-dimensional iden-

tification of a point in space that the agent should attempt to reach. For flying straight

and level, as an agent does in the search phase, the fly-to point is always directly in front

of the agent; during the attack phase, as shown in Figure 4.1, the fly-to point becomes

the coordinates of the enemy aircraft; when evading, MAXIM computes a fly-to point that

is perpendicular to the missile velocity vector. Once selected, MAXIM determines the ma-

neuvers necessary to move the agent in the direction of the fly-to point and implements

them.

z
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Figure 4.1 The proportional fly-to strategy used by standard agents.

Using fly-to points to control agent maneuvering can result in extremely flexible

behavior. Adding an offset to the target position in the direction of target flight will force

a MAXIM agent into lead pursuit, while adding the same offset in the opposite direction

causes a lag pursuit. Further adjustments can be made to the fly-to point by adding offsets
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above and below as well as to the left and right of the target aircraft, as shown in Figure

4.2. In effect, the target aircraft position becomes the origin of a local coordinate system

rotated in the direction of the target aircraft's velocity vector. Offsets from the target

nose, wing, and tail specify a local (X Y Z) coordinate, which is then rotated onto the

fixed world coordinate system to produce the actual fly-to point.
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Figure 4.2 The adjustable fly-to point strategy used by flexible agents.

An additional feature was incorporated into MAXIM to support several levels of accel-

eration and deceleration in the form of a power setting. Before this enhancement, MAXIM

agents either accelerated or decelerated at the maximum possible rate, toggling between

full after-burner and engines fully cut-off. Pilots seldom operate their aircraft in this man-

ner. The power setting allowed gradations between full acceleration and deceleration in

the form of a percentage to be applied.

4.3 MAXIM Modifications

During program development, I decided to retain the majority of the original MAXIM

architecture and modify only those parts of the code necessary to support the NOSTRUM

discovery process and testing. This section describes some of the more significant changes

that had to be made while integrating the two systems.
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4.3.1 Agent 7"pes. Rather than strip functionality from the original MAXIM

program I thought it would be best to instead add new functionality. This approach made

it possible to compare and contrast the behavior of a standard MAXIM agent with that of

a learning NOSTRUM agent. The first step was to create standard agents that exhibited

the default proportional control behavior common to all MAXIM agents and augment the

program with flexible agents. Flexible agents select adjustments to the fly-to point and

power setting from a table learned through discovery, maintained internally as a five-

dimensional array.

4.3.2 Dealing With Nondeterminism. I initially considered using standard MAXIM

agents as the target aircraft while experimenting with the attack responses of the flexible

agent but decided against it because of the non-deterministic characteristic of MAXIM:

running the simulation multiple times with identical inputs often produces different results.

MAXIM behaves differently from run to run for two reasons. First, the program uses a real

time clock to determine time deltas between agent updates, and it is highly unlikely that

the deltas will be identical because of variations in system loading. Second, agents enter

into the program in search mode and randomly turn right with a probability of 79% during

the initial moments of a sirm lation. During one test run, an ill-fated right turn made at

the beginning of a simulation put the agent at a disadvantage and finally resulted in its

destruction, when it would have otherwise emerged unscathed.

Measuring progress during discovery is simplified when the experimental results can

be attributed directly to the hypothesis being tested and not to external influences that

cannot be controlled. I attempted to minimize the nondeterministic quality of MAXIM by

first creating a third type of agent, specifically for use during discovery, known as the

drone. Drones fly straight and level at a constant velocity from an initial position at a

fixed heading, thereby preventing a random right turn during the first few moments of the

simulation. Since its behavior never changed, the drone also provided a stable platform

against which competing responses could be compared. Nondeterminism was further min-

imized by changing the way the simulation dealt with time. Instead of using unpredictable

deltas from a real-time clock, I added the ability to switch to pseudo-time. When using
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pseudo-time, the program automatically increments the time base by a fixed amount so

that random fluctuations in time deltas between updates is no longer a possibility.

The drone agent type was not permitted to make a random turn during search, but

there was still a possibility that the agent being tested might make such a turn. To prevent

this from happening, a third MAXIM modification was added to disallow random turns

during search when learning was enabled. I made the assumption that the agent would

already "know" that it was engaged against an enemy aircraft, and therefore searching for

the target would be unnecessary.

Together, these three modifications completely removed nondeterminism from the

simulation. The net effect was that response performance was more accurately compared

against other responses and not against unpredictable aircraft behavior.

4.S.3 Universal Plan Representation. The proportional control behavior of stan-

dard agents was hard-coded into the original MAXIM program. Flexible agents, however,

required a look-up table so that the most appropriate attack response could be chosen

real-time based on the current situation. A multi-dimensional array was used to represent

the table, and each element in the array was indexed by the five parameters used to assess

the current situation:

"* Relative velocity The difference in the agent and target velocities: if positive, the

agent is moving faster than the target. The agent's relative velocity was represented

as being either faster than or slower than the target, for a total of two possible values.

"* Heading crossing angle Represented the angle between the target and agent

velocity vectors: if less than 90 degrees, a portion of the agent's velocity was in

the same direction as the target's velocity vector. The heading crossing angle was

represented as being either parallel or opposing, for a total of two possible values.

"* Range The magnitude of the line of sight vector from the agent to the target.

Range was represented as being either close-in or far-away, for a total of two possible

values.
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"* Relative altitude The difference in the agent and target altitudes: if positive,

the agent is above the target. Altitude was represented as being above, nearly-equal,

or below, for a total of three possible values.

"* Aspect angle The angle measured from the target aircraft tail to the agent. The

aspect angle was represented in 30 degree increments surrounding the target, for a

total of twelve possible values.

Figures 4.3 through 4.6 illustrate graphically how four of the five key parameters were

used to create a sphere of plan sectors surrounding the target aircraft. The fifth parameter,

difference in agent and target velocities, is not shown because it is a measurement used to

indicate if the agent is moving faster or slower than the target, and is computed simply by

subtracting target velocity magnitude from agent velocity magnitude.

dcmwin

% %

Figure 4.3 Plan sector range divisions. Two concentric spheres surround the target
to select responses when the agent is close to or far away from the target.
The outer range boundary shown does not actually exist: anything that is
not close-in is far-away by default.
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Figure 4.4 Plan sector aspect angle divisions. Viewed from the top, the sphere
surrounding the target is divided into twelve equal slices of 30 degrees each.
NOSTR•UM learns the responses in on the right side of the target, and mirrors
these responses when the agent is on the left side.

below

Figure 4.5 Plan sector altitude divisions. Viewed from the side, there are three
altitude divisions identifying when the agent is above, below, or at nearly
equal altitude as the target.
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Figure 4.6 Plan sector combined view.
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Code was added to MAXIM to compute the values of the array indices using these five

parameters. The element located at the array position specified by the computed indices

represented the best response uncovered during the discovery process for that particular

plan sector. A response for any given sector is a list of the following format:

((nose-offset wing-offset tail-offset) percent-power)

The nose, wing, and tail offsets identified a point in space relative to the local target

coordinate system with the origin centered on the current target aircraft position. The X

axis of the local coordinate system was aligned with the vector resulting from the X and

Y components of the target velocity vector. The local Z axis was parallel to the Z axis of

the world coordinate system, and the direction of the local Y axis was computed by taking

the cross product of the local X and Z axes. Once the local coordinate system had been

established, the offsets in the selected response became the X, Y, and Z coordinates in the

local system identifying the desired fly-to point. Finally, the local fly-to point was rotated

back onto the world coordinate system to become the goal position for the flexible agent.

The final response term, percent-power, was a real number in the range -1 to +1 which

specified the percentage of the maximum deceleration or acceleration to be applied to the

agent's velocity vector.

Using a local coordinate system rotated onto a portion of the target aircraft's velocity

vecto: allowed the fly-to point to be positioned relative to the heading of the target aircraft.

The rotation did not entirely account for target heading, however, since only two of the

three target vector components were combined to form the nose-offset axis. The underlying

reason for this approach was to preserve the intended effects of each of the offsets: the

nose offset specifies how much to lead or lag the target, the wing offset specifies how far

off the left or right target wing to fly, and the tail offset specifies how much above or below

the target the agent is to fly. If the local offset coordinate system were allowed to rotate

freely with the target aircraft velocity, wing, and tail axes then it would be possible for

the offsets to have an opposite effect than was intended. For example, if the target drone

were inverted, then a positive tail offset would result in a fly-to point beneath, instead of

above, the target.
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Although each 30 degree increment in aspect angle could have been used to select

a response tuned for that sector, I instead decided to cut the number of sectors to be

learned in half through mirroring. NOSTRUM was programmed to test candidate responses

in the sectors contained within aspect angles 0 to 180 degrees; responses for aspect angles

greater than 180 degrees were transformed by simply changing the sign of the wing offset,

effectively flipping the fly-to point from one side of the target to the other. In total, there

were 144 responses for NOSTRUM to learn during the discovery process, but 288 responses

are available for a flexible agent to draw upon during an engagement.

4.3.4 Dead Zones. It became apparent during the initial testing of NOSTRUM that

my scheme of adjustable fly-to points had some serious side effects. On several occasions,

NOSTRUM would explore responses that placed the fly-to point behind the target by some

amount when the agent advanced on the target from the rear. At some point during these

simulations, the agent would actually reach and fly beyond the fly-to point. The moment

the agent flew slightly beyond the fly-to point it would begin turning back towards the

fly-to point, which was still behind the target, in spite of the fact that the target aircraft

was directly in front of the agent. Other times, the agent would oscillate back and forth

or up and down after it had passed the fly-to point as it tried to return to that position in

the airspace.

This behavior forced me to change my perspective of the fly-to point. Instead of

viewing it as a point in space that the agent wanted to reach and remain at, I decided to

treat each new fly-to point as a goaL. When the agent moves into a new plan sector, the

fly-to point is assigned and becomes the goal of the agent as long as it stays within that

sector. Once the agent flies within a certain distance of the fly-to point, which I called

the dead zone, the system considers that goal to be achieved. At that point, and until

the agent moves into a different plan sector when a more appropriate fly-to point can be

selected, the agent flies totally dead-stick. During dead-stick flight, the agent moves at

constant velocity in the heading it was traveling when it entered the dead zone.
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4.4 NOSTRUM Components

The learning portion of the system developed during this research, NOSTRUM, was

written entirely in the CLOS. Although NOSTRUM uses only a single object class for its

processing, MAXIM uses objects and methods frequently. Staying within the constructs of

a single language simplified the integration of the two systems.

Code integral to NOSTRUM can be cleanly divided into the following functional areas:

instrumentation, heuristics, and the agenda. This section describes the major features of

each functional area.

4.4.1 Instrumentation. A substantial amount of code was written to collect data

during each simulation for later analysis by NOSTRUM. During each flexible agent update

cycle, various features of the simulation are checked and flags may be set to indicate that

a particular event has occurred. The instrumentation software tallies the amount of time

that each aircraft could fire a missile upon the other, and NOSTRUM examines several

other data points that can provide an indication that progress is being made developing

a response. By the end of a scenario, NOSTRUM has the following data available to assess

the worth of the response just tested:

* within-front-hemisphere If set to True, the agent was within the front hemi-

sphere of the target aircraft sometime during the simulation.

* within-rear-hemisphere If set to True, the agent was within the rear hemisphere

of the target aircraft sometime during the simulation.

e shot-possible If set to True, the agent was simultaneously within range and

at the proper nose angle to take a shot on the target aircraft sometime during the

simulation.

* in-danger If set to True, the target was simultaneously within range and at the

proper nose angle to take a shot on the agent aircraft sometime during the simulation.

e fly-by If set to True, the agent was in the target rear hemisphere at some point

during the simulation but flew past the target and into its front hemisphere.
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"* end-game-shot-possible If set to True, the agent was simultaneously within

range and at the proper nose angle to take a shot on the target aircraft in the end-

game position.

"* end-game-aspect-angle The aspect angle of the agent relative to the target in

the end-game position.

"* end-game-nose-angle The angle between the agent's nose vector and line-of-site

vector to the target in the end-game position.

"* end-game-velocity-delta The difference in magnitudes of the agent and target

velocity vectors in the end-game position.

"* end-game-range The distance between agent and target in the end-game position.

"* time-while-shot-possible The total amount of time that the agent was able to

fire upon the target during the simulation.

"* estimated-shot-time An estimated amount of remaining shot time if the simu-

lation were allowed to continue.

"* time-in-danger The total amount of time that the target was able to fire upon

the agent during the simulation.

The definition of each instrumentation data point is fairly obvious, with the exception

of estimated-shot-time. During testing, I realized that NOSTRUM was avoiding responses

that placed the agent in an excellent end-game position because the actual response time-

while-shot-possible was less than the shot time experienced using a different response. Had

the simulation continued, however, these responses would have accumulated additional

shot time because the agent was directly behind the target at nearly the same velocity.

Estimating the shot time was a mechanism that forced NOSTRUM to explore responses in

this category.

The shot time estimation function took into account four possible scenarios. The

agent coald have been in position for a final shot and moving faster than the target, in

position for a final shot and moving slower than the target, too far away for a shot but

moving faster than the target, or too close for a shot but moving moving slower than the
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target. In each case the velocity was assumed to be constant, although in all likelihood it

would probably change as a result of a non-zero power setting. It was also assumed that

the agent would remain in position for a shot until it either got too close or too far away

from the target. Using these assumptions, calculating estimated shot time was simply a

matter of dividing the remaining distance before the agent was not within range for a

missile shot by agent velocity. Since there are a number of unknowns that could adversely

impact the estimation, NOSTRUM is conservative and applies only 50% of the estimated

shot time. The total shot time associated with each response then is the sum of its actual

and estimated shot times.

NOSTRUM uses the instrumentation data to compare the effectiveness of each re-

sponse tested during the discovery process. To do this, NOSTRUM recalls the best features

encountered during experimentation and compares them against values collected from the

parent response and the response that is currently best. The determination of "best" is

heuristically determined by examining the data: it is desirable to maximize some charac-

teristics of a simulation while simultaneously minimizing others. For example, NOSTRUM

tries to discover responses that increase the shot time of the flexible agent on the target,

but it also tries to decrease the shot time of the target on the agent. NOSTRUM maintains

a record of the following best features:

"* best-time-while-shot-possible The greatest time experienced that the agent

could fire upon the target while exploring possible responses for the current plan

sector.

"* best-time-in-danger The least time experienced that the target could fire upon

the agent while exploring possible responses for the current plan sector.

"* best-end-game-aspect-angle The smallest aspect angle experienced while ex-

ploring possible responses for the current plan sector.

"* best-end-game-nose-angle The smallest nose angle experienced while exploring

possible responses for the current plan sector.
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* best-end-game-velocity-delta The smallest absolute difference between agent

and target velocities experienced while exploring possible responses for the current

plan sector.

4.4.2 Heuristics. Within NOSTRUM there were heuristics to assess the quality of a

response, spawn new responses, and determine when exploration for a particular response

should stop. The heuristics were grouped by function into interestingness, response, and

termination heuristics. Although the heuristics contributed only a tiny fraction to the

program code size, minor changes in any one of the heuristic sets often had a profound

impact on the quality of the response discovered by NOSTRUM.

4.4.2.1 Interestingness Heuristics. The purpose of NOSTRUM's interesting-

ness heuristics is to examine the results of a simulation using a particular response and

assign a numeric measure of worth to the response. Interestingness is based not only on the

actual results produced by a response but also on some expectation of success if exploration

is continued from that response. The determination of what is good using these heuristics

is not guaranteed to be always accurate, but this is precisely why they are called "rules

of thumb." Most of the time the heuristics will work and can make the discovery process

more efficient by leading the system towards responses that appear more promising and

away from search paths that tend to be fruitless.

Constructing NOSTRUM's interestingness heuristics was a difficult task. The purpose

of the system was to find responses that improved the offensive position of the agent while

at the same time improving its defensive position. Some attributes, such as increasing shot

time or decreasing time in danger, clearly stood out as an indication that one response was

better than another. The greater problem was identifying responses that had potential

but were not very good in and of themselves. In NOSTRUM, the best way for the agent to

maximize shot time against the target aircraft is to get in position behind the target, in

range and at the proper track angle for a missile shot, with the agent flying at nearly the

same velocity as the target aircraft. This analysis generated three additional parameters

for NOSTRUM to use when it assessed the potential of a response: end-game aspect angle,

nose angle, and the delta between agent and target velocities.
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The end-game aspect angle establishes the final position of the agent with respect to

target heading. A smaller aspect angle indicates that the agent is more to the rear of the

target, but it gives no indication of agent heading relative to the target. This information

is provided by the end-game nose angle, which measures the angle between the agent's

velocity vector and the line-of-sight vector from agent to target. A small aspect angle

combined with a small nose angle is a desirable end-game position, because it means that

the agent was behind and heading towards the target. An end-game position is further

improved by reducing the delta separating agent and target velocities. When the two

velocities are the same and neither aircraft is accelerating (or decelerating), a good end-

game position can be maintained indefinitely.

In NOSTRUM, interestingness is a positive quantity calculated by summing up bonus

points assigned for certain quantitative and qualitative characteristics observed while test-

ing a response. The bonus points are then added to the interestingness of the parent

response so that the measurement always increases or remains constant from parent to

child. The format of each NOSTRUM interestingness heuristic is an if-then type statement

of one of the two following forms:

IF <some event occurred> THEN <add a bonus>

IF <an improvement occurred> THEN <add a bonus>

NOSTRUM uses eleven heuristics to calculate the increase in a response's interesting-

ness over that of its parent. The complete set is shown below, in pseudo-code format:

"* IH1 If the agent was able to take a shot sometime during the simulation add 5

bonus points.

"* IH2 If the agent was able to take a shot in the end-game position add 10 bonus

points.

"• IH3 If the agent was never in danger during the simulation add 2 bonus points.

"* IH4 If the time the agent is able to take a shot is greater than the parent response

shot time add 25 bonus points.
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"* IH5 If the time the agent is in danger is less than the parent response danger time

add 10 bonus points.

"* IH6 If the end-game aspect angle is less than the parent response aspect angle

and the agent did not fly by the target add 2 bonus points.

"• IH7 If the end-game nose angle is less than the parent response nose angle and

the agent did not fly by the target add 2 bonus points.

"• IH8 If the end-game velocity delta is less than the parent response velocity delta

add 2 bonus points.

"* IH9 If the time the agent is able to take a shot is greater than the parent response

shot time, and the time the agent is in danger is less than the parent response danger

time, add 15 bonus points.

"* IH10 If the end-game position improved over the parent in aspect angle, nose

angle, and velocity delta add 5 bonus points.

"* IHI1 If the response is the best response so far add 10 bonus points.

Bonus values were assigned based on my impressions of factors that might indicate

increasing response quality. For example, the greatest bonuses went to responses that

improved total shot time (25 points), or both total shot time and danger time (15 points),

over that of the parent response. Reducing the time in danger was also worthy of a bonus

(10 points), but it was not as interesting as an improvement in shot time. The disparity in

bonuses was a deliberate attempt on my part to force flexible agents to give a higher priority

to the mission than to their own survival. A number of the interestingness heuristics looked

for gradual improvements in the response (decreasing angles, decreasing velocity deltas)

that might not provide an immediate increase in shot time, but had the potential for

producing a better child response. These improvements were de-emphasized, as indicated

by the marginal bonuses associated with them, but the bonuses were enough to force

NOSTRUM to continue exploring response evolution along that path. If a bonus was not

awarded for these minor improvements, NOSTRUM would have inserted the child responses

into the agenda behind all responses with the same interestingness. These branches in the
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search tree might never get explored because the system discontinued exploration before

reaching them.

4.4.2.2 Response Heuristics. A set of response heuristics, operating inde-

pendently of the interestingness heuristics, was used to suggest modifications to a response.

The intent is to modify a response in such a way that it improves the behavior of the agent.

Improvements are gauged by the impact a modification has had on the time-while-shot-

possible and time-in-danger, as well as the end-game-aspect-angle, end-game-nose-angle,

and end-game-velocity-delta.

Care had to be taken while crafting the response heuristics. A criticism of some DBL

systems has been that the system was well coached, lead by the heuristics to "discover"

exactly what the programmer intended. Avoiding this problem with NOSTRUM was not

entirely difficult, however, since my understanding of the domain was limited. In addition,

the behavior resulting from interaction in the various responses as the agent passed through

multiple plan sectors was not known during program development, further reducing the

effect of personal bias in the heuristics.

NOSTRUM's response heuristics are similar in form to the interestingness heuristics.

Each heuristic is an IF-THEN type construct checking for the existence of a certain condi-

tion, but instead of returning a bonus a response heuristic suggests a modification to the

current response. The form of a response heuristic is shown below:

IF <condition> THEN <response modification>

Response modifications can change the location of the fly-to point by adding or sub-

tracting an amount from the nose, wing, or tail offsets, or they can increase or decrease

the power setting applied in that plan sector. Finally, through a process known as spawn-

ing, response heuristics that have their preconditions satisfied are recorded in a list and

placed, along with the parent response, onto the agenda. Later, during response heuristic

application, NOSTRUM will select a previously recorded response heuristic from the agenda

and use it to generate a new child response.
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NOSTRUM used nine heuristics to spawn new responses. The complete set is shown

below, in pseudo-code format:

" RH1 If the agent didn't fly past the target and a shot was possible in the end-game

position, then try moving the fly-to point beneath the target aircraft. Rationale:

Trade altitude for airspeed and try to get as close to the target as possible, but within

range for a missile shot.

"* R.H2 If the agent didn't fly past the target and a shot was possible in the end-game

position, then try moving the fly-to point ahead of the target aircraft. Rationale:

Use lead pursuit to reduce the agent to target separation, but stay within range for a

missile shot.

"* RH3 If the agent didn't fly past the target and a shot was possible in the end-game

position, then try increasing the power setting. Rational: Increasing acceleration will

increase velocity and reduce agent to target separation, but don't get so close that a

missile shot is prohibited in the end game position.

" RH4 If the agent did fly past the target or a shot wasn't possible in the end-game

position, then try moving the fly-to point above the target aircraft. Rationale: Trade

airspeed for altitude and try to increase agent to target separation.

" RH5 If the agent did fly past the target or a shot wasn't possible in the end-game

position, then try moving the fly-to point behind the target aircraft. Rationale: Use

lag pursuit to increase agent to target separation.

" RHO If the agent did fly past the target or a shot wasn't possible in the end-game

position, then try decreasing the power setting. Rationale: Increasing deceleration

will decrease velocity and increase agent to target separation.

" RH7 If the agent was in the front hemisphere of the target aircraft, then try

moving the fly-to point off the right wing of the target. Rationale: Instead of flying

at the target try to fly a more parallel course. This might place the agent in a better

position to swing back around and close in on the target from the rear.

4-19



"* RHS If the agent was in the front hemisphere of the target aircraft, then try

moving the fly-to point behind the target. Rationale: Get out of the line-of-sight of

the target as soon as possible.

"* RH9 If the agent was in the front hemisphere of the target aircraft, then try

moving the fly-to point off the left wing of the target. Rational: Instead of flying at

the target try to fly a more parallel course. This might place the agent in a better

position to swing back around and close in on the target from the rear.

4.4.2.3 Termination Heuristics. A third set of heuristics was used by

NOSTRUM to determine when to halt a simulation in progress. Each simulation was run

to test the quality of a potential plan sector response, but for obvious practical reasons a

simulation could not go on indefinitely. A mechanism was needed to stop the simulation

at some point during the test.

One way to cap simulation run time is to set a maximum time and stop the simulation

when it runs beyond this limit. Care must be taken when setting the maximum time to

ensure that it will allow a good measure of response performance. If the time span is too

short, responses that are potentially good may go unnoticed because the agent did not

have enough time to move into its end-game position. On the other hand, a poorer quality

response can degrade the agent's position well before the maximum simulation time has

elapsed.

Detecting degrading agent position is accomplished in NOSTRUM with the fly-by flag.

When the fly-by flag is set, it indicates that the agent was previously in the rear hemisphere

of the target but flew beyond and into the target's front hemisphere. At this point the

agent's position can only get worse, and the agent will probably not have enough time left

in the simulation to come back around for a second shot on the target. Once a fly-by occurs

it is also likely that the simulation will no longer be judging the quality of the response the

system was supposed to test, but will instead be exercising a number of other responses.

NOSTRUM uses both a maximum cap on run time and fly-by detection to determine

when a simulation should stop. The maximum run time prevents the system from testing
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a response indefinitely, and fly-by detection stops the simulation when it appears that the

agent's position will worsen instead of improve.

4.4.3 The Agenda. The agenda is a critical component of a DBL system. In

NOSTRUM, the agenda is used to maintain a list of responses to try next, rank-ordered by

interestingness. Responses which seem to have the greatest potential will be at the head

of the agenda, while responses that are expected to produce poorer quality results move

towards the end of the agenda. Each response tested by NOSTRUM is represented as a

response object.

4.4.3.1 Response Objects. The response-object is the only object class used

within NOSTRUM. A response-object is created for each response evaluated by NOSTRUM,

and it encapsulates the important details of a potential response using the following slots:

"* response A list representing the response tested by NOSTRUM for the plan sector.

"* interestingness After a response has been tested, its interestingness is calculated

and stored in this slot.

"* time-while-shot-possible

"* estimated-shot-time

"* time-in-danger

"* fly-by

"* end-game-aspect-angle

"• end-game-nose-angle

"* end-game-velocity-delta

"* end-game-shot-possible

"* sectors-used This slot contains a list of all the sectors that the agent passed

through during the course of the entire simulation.

"* evolution This slot lists the evolutionary path of the response, identifying the

sequence of response heuristics that produced it (This was not needed by NOSTRUM,
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but was used during program development to track the evolutionary history of a

response).

* ancestors This slot lists all of the response objects that are ancestors of the

response.

When a response-object is created, the response slot is set to the response to be

tested, and the evolution and ancestors slots are updated to reflect the origins of the new

response. The remaining slot values are undefined until after the response has been selected

from the agenda and tested in an actual simulation. Following testing, instrumentation

data collected during the simulation is used to fill in the appropriate slots.

4.4.3.2 Agenda Structure. Since only a single agenda is used by NOSTRUM,

I chose not to implement the agenda as a CLOS object. There did not appear to be much

utility in creating a separate class and methods for an agenda object when there was no

possibility for multiple instantiations. Instead, the agenda is a simple list structure. Items

with the greatest interestingness are at the head of the list, while the lowest interestingness

items are sorted to the tail of the list.

Each element in the agenda is a list of the following form:

((interestingness parent-object (RHa Rb ... RHZ)))

The interestingness is used to place items in the agenda list in order of increasing

interestingness. This value is actually the interestingness calculated for the response con-

tained in the parent object. Each parent is a reaponse-object that has been selected from

the agenda and tested in a simulation. Following the simulation, it is possible that the

performance of the parent response satisfied the preconditions of one or more response

heuristics, which will result in a set of child responses. Child responses are not actually

generated until the moment before they are tested in a-simulation, so a list of all response

heuristics found to be applicable is maintained in a list associated with the parent and

parent's interestingness.
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4.4.3.S Preventing Repeat Ezperiments. A characteristic of NOSTRUM's

discovery process is that multiple search paths can generate the same response. Since each

response heuristic modifies the parent response by adding or subtracting an offset, it makes

no difference which order a set of response heuristics has been applied; offset application

is totally commutative. For example, the heuristic evolution (RH1 RHI RHS) will produce

exactly the same response as the heuristic evolution (RH1 RH5 ,HI).

To prevent the system from re-exploring previously tested responses, NOSTRUM main-

tains a record of responses-already-tried. When NOSTRUM selects a new response to explore

from the agenda, it first verifies that the response doesn't already appear in the response-

already-tried list. If it does, the response is skipped and another selection is made.

4.4.4 Response Selection, Evaluation, and Generation. Figure 4.7 illustrates

the process of selecting a response from the agenda, evaluating the performance of that

response, and generating new responses using a hypothetical set of agenda items. This

figure will be referred to frequently in the following discussion.

The first step in the cycle was to select the next task from the agenda, indicated in the

figure as Step 1. NOSTRUM examined the list of remaining response heuristics associated

with the most interesting parent which, in this case, was the list (RHI RH3 RHS). When

parent1 was previously explored by the system, the preconditions of response heuristics

RH1, RH2 and RH3 were satisfied, and the three heuristics were recorded then for later

application. At Step 2, the response heuristics were dynamically arranged so that the

heuristic that was working best was applied first. In the figure, RH3 was producing the

best results, so it was selected at Step 3.

At Step 4, RH3 was applied to the parent 1 to produce the next response. Application

of a response heuristic entailed adding a positive or negative delta to one of the four values

in the response, ((nose-offset wing-offset tail-offset) percent-power). In the

case of RH3, the response was modified by adding a positive delta to the power setting.

A child response object, childi, was created, and the modified response was inserted

into the corresponding object slot, and into the universal plan response table. NOSTRUM
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Figure 4.7 NOSTRUM operational sequenced An illustration of the cycle repeated
while NOSTRUM explores responses for a plan sector using a hypothetical set
of agenda items.

dynamically created u scenario to exercise the response, and control was passed to MAXIM
at Step 5 to measure performance using the scenario.

At Step 6, the MAXtM simulation ended and NOSTRUM resumed control to evaluate
performance. Evaluation was accomplished by calling each of the interestingness heuristics

in turn and summing up the values returned by each. The final sum was added to the

interestingness of the parent to become the total measure of response interestingness.

Evaluation measurements were stored in the slots of the childl response object, and

NOSTRUM moved on to the task of gathering response heuristics at Step 7.

Child responses are not actually created until Step 4 in a subsequent cycle, one

step prior to response testing. However, NOSTRtUM still had to determine which response

heuristics might be able to improve a response and record them for later application.

The preconditions of each response heuristic were tested, and those that were satisfied
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were stored by name in a list. At Step 7, childi itself became a parent object, parent6.

NOSTRUM created a parant6 agenda item from the response and interestingness of childi,

and the list of applicable response heuristics. Finally, at Step 8, the agenda item was

inserted into the agenda at the proper location based on its interestingness.

When a child response had the same interestingness as the parent it was an indication

that the child did not improve the overall performance of the agent. Rather than investigate

this child immediately, it was inserted into the agenda behind the parent. Adding items

to the agenda in this manner ensured that each response heuristic applicable to the parent

had a chance to be selected as the next task before moving on to the tasks beneath it.

Only when the interestingness of the child was greater than the parent did exploration of

the parent's offspring temporarily halt.

4.5 NOSTRUM Operation

NOSTRUM operates in a continuing cycle of selecting, testing, evaluating, and gener-

ating responses. This cycle repeats until NOSTRUM determines that progress is no longer

being made, at which point exploration stops.

The learning loop is set up to explore responses for all 144 plan sectors individually.

NOSTRUM first tries to improve upon all the plan sectors in the close-in range before moving

out to the long-distance range, since scenarios with the agent positioned initially at the

long-distance range will eventually activate the dose-in plan sectors. Within each range

division NOSTRUM then explores responses starting from the rear of the target aircraft and

working towards the front. This is done for the same reason as starting from close-in ranges

and working outward: since the goal of the agent is to get in position behind the target

and maintain missile lock, plan sectors to the rear of the target will probably be activated

when learning the frontal plan sectors. Within each plan sector, NOSTRUM refines responses

further by first modifying agent velocity, followed by heading-crossing angle, and finally

agent altitude relative to the target. Working from the outer learning loop in, responses

are then explored in the following order:
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ranges -- aspects -* altitudes -- heading-crossing-angles -- velocities

When NOSTRUM begins learning, the agenda is completely empty and the table of

attack responses is filled with the default for every plan sector, the default response being

((0 0 0) 0). Counters for each of the five attack response table indices are reset to zero,

and learning begins for the first plan sector. The default response is the first response

tested in every plan sector because the agenda will always be empty when the system

starts learning a new response. Once the first experiment is run, however, additional

responses will be spawned and added to the agenda for selection in future experiments.

NOSTRUM experiments with various response for the plan sector, and eventually returns

the best response it could find. The response is "learned" by inserting it into the attack

response table at the proper location, and then the entire table is written to a disk file.

The inner-most index counter is incremented and the process repeats for the next plan

sector, until all 144 responses have been learned.

4.5.1 Plan Sector Divisions. As mentioned in Section 4.3.3, the response selected

by a flexible agent during the attack phase is based on five key parameters identified during

domain analysis. During implementation, it became necessary to specify the range of values

that would correspond to a value suitable for indexing into the array of responses. Table 4.1

shows the various values for each of the parameters and the corresponding index into the

table of attack responses.

Although the process of selecting values for the plan sector divisions was not a rigor-

ous one, values were selected with the desired agent behavior in mind and my perception

of the divisions that might make this behavior possible.

4.5.2 Dynamic Scenarios. A necessary element of the NOSTRUM learning ap-

proach is dynamic scenario creation. Learning a response for each plan sector requires

the system to set up a situation that guarantees that the sector under scrutiny will be

activated. The easiest way to do this is to initialize the simulation with the agent in a

position relative to the target that places it in the desired plan sector. The target aircraft

always has the same initial position, bearing, and velocity, but the position, heading and
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Plan Sector Divisions

Parameter Array Index Minimum Maximum
Range 0 0 6000

1 6000 BIGGEST-NUM
Aspect 0 0 30
angle 1 30 60

2 60 90
3 90 120
4 120 150
5 150 180

Altitude 0 -2000 2000
delta 1 2000 BIGGEST-NUM

2 SMALLEST-NUM -2000
Heading 0 0 90
crossing angle 1 90 180
Velocity 0 0 BIGGEST-NUM
delta 1 SMALLEST-NUM 0

Table 4.1 Plan sector divisions. This table illustrates how NOSTRUM computes the
index into the attack response table based on the five key parameters.

velocity of the agent relative to the target are adjusted to match the plan sector. For ex-

ample, if the system is learning a response for close-in range, aspect angle between 30 and

60 degrees, altitudes relatively equal, a heading crossing angle indicating agent and target

heading in nearly the same direction, and an agent velocity greater than the target, then

NOSTRUM creates the following scenario dynamically (This training scenario is depicted

graphically in Figure 4.8):

Range to target: 5000 m
Aspect angle: 45 degrees
Altitude difference: 0 m
Heading crossing angle: 0 degrees
Velocity difference: 150 m/s

Table 4.2 Sample training scenario. A training scenario dynamically created for
learning the response accessed by range index 0, aspect index 0, altitude index
0, heading crossing angle index 0, and velocity index 0.
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Figure 4.8 Graphical depiction of a training scenario.

To prepare the dynamic scenarios, NOSTRUM uses several lists containing training

scenario settings. These settings define the initial values of each of the five key parameters

used to index the table of attack response. The program then uses these values to compute

actual (X Y Z) coordinates for the agent start position and vectors that occupy the MAXIM

F15 object slots. Table 4.3 lists the values used to generate each of the training scenarios.

Because responses were tuned for specific situations, I expected there to be a certain

amount of brittleness in the responses learned by NOSTRUM. This issue is addressed in

Cbapter 5.

4.5.3 Heuristic Ordering. Responses are spawned in the order in which the

heuristics are called, and this can have a marked impact on both search efficiency and

quality of solution produced by the system. For example, if a particular heuristic contin-

ually produces child responses of higher quality than the parent response, then it would

be desirable to have responses resulting from this heuristic tested first. Similarly, those

heuristics that have been producing lower quality children should only be used as a last

resort since they have a history of worsening the situation. Without a mechanism to allow

this, heuristics would instead be applied in the order in which they were coded. Response
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Training Scenario Values
Parameter Array Index Training Value
Range 0 5000

1 15000
Aspect 0 15
angle 1 45

2 75
3 105
4 135
5 165

Altitude 0 0
delta 1 0.5 * Range

2 -0.5 * Range
Heading 0 0
crossing angle 1 180
Velocity 0 150
delta 1 -150

Table 4.3 Training scenario values. This table lists the initial settings for the training
scenarios based on variation in each of the five key parameters.

heuristics that generated terrible results would always be explored first if they appeared at

the head of the list, wasting time and possibly leading the system down a dead-end path.

The DBL system MAVERICK experienced the same effect of heuristic ordering. The

solution to minimize the effects of heuristic ordering was to dynamically sort heuristics

to give precedence to those that had been improving solution quality recently. The same

scheme was implemented in NOSTRUM to sort the set of response heuristics prior to their

application. Each time a heuristic produced a response with a higher interestingness than

the parent response, that heuristic received a bonus equal to the difference in interestingness

from child to parent. The scores associated with each response heuristic were used as keys

to a sort routine, which arranged the heuristics in order of decreasing scores.

4.5.4 Hill Climbing. A characteristic of many AI systems is the use of a hill

climbing algorithm to search a solution space. The phrase "hill climbing" captures the

tendency of a system to constrain its search around a local maximum when a better

solution might be found elsewhere. Using the hill climbing strategy, a system generates
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and tests possible solutions; when the system finds a generated solution that is better than

the current one, then this solution becomes the current solution, and the cycle repeats.

Eventually, the system will either find a solution that is the goal state, or it will reach

a peak in solution quality that cannot be improved upon without first exploring poorer

solutions. In both circumstances, the final solution is not guaranteed to be optimal unless

each point in the search space is on a positive quality gradient leading the system towards

a single maximum. Figure 4.9 illustrates an ideal hill climbing scenario where the global

maximum could easily be found.

opdwna Solution

increasing
solution
quality

solution space

Figure 4.9 Optimal hill climbing. A scenario where hill climbing is guaranteed to
find the global maximum.

NOSTRUM's discovery process can also be characterized as an exercise in hill-climbing,

although the optimal solutions are much more difficult to find. Figure 4.10 presents a

hypothetical scenario marked by several local maxima and a plateau, a more likely situation

encountered by NOSTRUM as it explores possible maneuver responses. Should NOSTRUM

begin exploration at the left side of the graph, it would first encounter the local maximum

at Point 1. To get to the best solution at Point 3, NOSTRUM would first have to explore
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poorer quality solutions to the right of Point 1. If exploration continued, solution quality

would level out for a time near Point 2 before finally reaching its maximum value at Point 3.

Figure 4.10 actually over-simplifies the events that occur while NOSTRUM is exploring

potential responses. NOSTRUM measures improvements in solution quality as an increase

in shot-time or a decrease in time-in-danger, but additional measurements are used to help

determine when progress is being made. As mentioned in Section 4.4.2.1, the interesting-

ness heuristics take many other features into account when the interestingness of a response

is computed. Responses are selected and tested on the basis of their interestingness, so

exploration rarely proceeds along a series of adjacent solutions in the search space. Instead,

NOSTRUM is more likely to hop from point to point, investigating lower quality solutions

when nothing better is available and abandoning them (at least temporarily) when a better

solution comes along.

globl maximum

3

increasing local maxima
solution
quality

solution space

Figure 4.10 Realistic hill climbing. A more probable scenario encountered by NOS-

TRUM, marked by several local maxima and a plateau.

4.5.5 Plateauing. In the initial stages of development, NOSTRUM used a simple

counter to halt exploration when a preset number of responses had been tested. Another

strategy I used was to stop exploration after a preset amount of time had elapsed. The
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problem with both approaches, however, is that they do not take into account the quality

of responses being explored. The system may uncover the best response it could possibly

find in the first cycle, but would instead be forced to continue exploration for some ad-

ditional number of cycles or period of time. Likewise, NOSTRUM might be in the process

of significantly improving a response but could be cut off when either of these arbitrary

boundaries was crossed, a phenomena known as the horizon effect. Using a learning cycle

counter or timer does not allow the system to decide for itself when a point of diminishing

returns has been reached.

Instead, NOSTRUM uses a plateau counter. The plateau counter is reset to zero every

time a response is found that has the best shot (ST) and danger times (DT). This counter

is incremented for each response tested that does not improve shot or danger times. After

the plateau counter reaches some preset value (set in the current version of NOSTRUM to

20), exploration for that response terminates and the system goes on to learn the next

response.

It is understood that using a plateau counter to halt learning has its disadvantages.

There is the possibility that NOSTRUM would discover an improved response at plateau

count 21, but the system was prevented from finding it because it was stopped at plateau

count 20. This situation could arise no matter what value n was assigned to the maximum

number of plateaus because there would always be the possibility of a better solution

existing at count (n + 1). However, as with all heuristics, it is expected to work most of

the time.

4.5.6 Side-Effects of Learning. As NOSTRUM explored possible responses for

each plan sector, it was necessary to run a scenario to evaluate the performance of each

response. As each scenario executed, there were several undesirable side-effects that could

occur, impacting the quality of the learned response.

When the system was initialized just prior to learning, NOSTRUM set each plan sector

response to its default value, ((0 0 0) 0.0). Since the fly-to point offset in the default

response was zero, the flexible agent was programmed to behave like a standard MAXIM

agent using proportional control. NOSTRUM then began the process of improving the
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responses for each sector, one by one, until alternative responses for all 144 plan sectors had

been explored. As NOSTRUM explored responses for an individual plan sector it sometimes

flew into and activated the default response in sectors where learning had not yet taken

place. NOSTRUM eventually learned more appropriate responses for these plan sectors, but

the default response may have already had an impact on the results in other plan sectors.

There was no way to eliminate the incidental activation of default responses, but

its impact could have been minimized by repeating the learning process for a number of

cycles. The greatest impact of incidental activations should occur during the first learning

cycle because default responses will be used instead of another, more appropriate response.

Subsequent learning cycles may continue to activate plan sectors that have not yet been

refined, but the impact of each should decrease as the the responses begin to settle to

their steady-state values. At some point, additional learning cycles should produce such

insignificant changes that the system can be considered in equilibrium. Although this

approach was considered it was not investigated.

Learning responses for plan sectors that were not to the immediate rear of the target

resulted in another unpleasant consequence: the difficulty of assigning credit where credit

is due. When NOSTRUM first began exploring candidate responses for plan sectors at the

rear of the target aircraft, most of the simulation time was spent in one or two plan sectors.

As the aspect angle increased, however, more and more plan sector boundaries were crossed

as the agent maneuvered around the target, making it increasingly difficult to determine

which plan sector response contributed most to the overall agent performance. NOSTRUM

was not equipped to deal with the credit assignmert problem effectively because it explored

responses for each plan sector individually. After learning a plan sector response, NOSTRUM

did not review it later on to suggest changes that could improve the performance of other

responses. Instead, NOSTRUM was coded using the assumption that credit for success or

failure of a response being tested belongs entirely to that response, and that previously

learned responses activated along the way provide the correct behavior. This is a heuristic

used in everyday life. When we learned to drive a car, we probably first practiced starting

the engine in the driveway and tested the effect of pressing on the accelerator. Later, a

parent took us out for a drive around the neighborhood, and soon we were driving on busy
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city streets. Each period of learning built on previously learned knowledge. Of course, there

are times when previously learned knowledge proves to be incomplete, such as knowing to

steer into a turn while skidding, or resisting the temptation to lock the brakes on an icy

street. A universal plan to drive a car could perform well most of the time, even if we

failed to train for these specialized conditions.

Assigning success and failure completely to the current response was made more

palatable by a slight shift in perspective. Responses learned by NOSTRUM for plan sectors

to the rear of the target aircraft will be the most immune to credit assignment difficulties

because they will seldom activate other responses. These responses are likely to be the

highest quality responses discovered by NOSTRUM. As NOSTRUM moves out and begins

learning other responses, incidental activations will be more common and will have a greater

impact on the responses finally learned. Rather than focusing in on them individually,

discovery in these plan sectors can then be viewed as exploration for a response that puts

the agent in a position to utilize the higher quality responses found towards the rear of the

target. Plan sectors with the best responses will be referred to in later sections as pure

plan sectors.

4.6 Summary

This chapter presented a detailed description of the NOSTRUM architecture, a pro-

gram for improving reactive aircraft agent combat tactics through discovery-based learning.

A necessary component of any DBL system is a world to explore. NOSTRUM'S world was

provided by MAXIM, an air combat simulator developed at AFIT for reactive autonomous

air agents. Behavior of a MAXIM agent is generated by a static universal plan that is pre-

dictable and sometimes inappropriate. The first step towards enlarging the universal plan

was to devise a suitable representation for additional responses, providing the motivation

for a sphere of plan sectors surrounding the target aircraft. NOSTRUM tested variations in

the agent's response for each plan sector and remembered those that work best.

NOSTRUM's discovery process was managed by an agenda and three sets of heuristics.

The agenda maintained a list of responses sorted by their interestingness, a value computed

to indicate the worth or a potential increase in worth of a plan sector response using
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the first set of heuristics. Associated with each response in the agenda was a list of

applicable response heuristics that were used to modify a response and guide the system

towards a better solution. Discovery was characterized by a repeating cycle of selecting

and generating a child response from the most interesting parent on the agenda, running a

scenario to collect data, evaluating the response using interestingness heuristics, collecting

response heuristics for later application, and inserting the new parent back into the agenda.

When NOSTRU M sensed that additional exploration was no longer improving a response, it

remembered the best response tested and moved on to the next plan sector.
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V. Results & Issues

5.1 Introduction

This chapter presents an analysis of data collected during testing and evaluation

of the NOSTRUM learning system. During testing, I collected data to evaluate the two

sub-hypotheses presented as research objectives in Chapter 1. The results for each sub-

hypothesis will be presented individually, starting with the DBL Hypothesis.

5.2 Testing the DBL Hypothesis

The DBL Hypothesis in Section 1.3 stated my belief that discovery-based learning

could be used to incrementally improve the behavior of an autonomous agent. A system

was proposed that could test and refine individual responses in each of the 144 plan sectors

using discovery and remember those that appear to work best. This section presents and

evaluates data collected while testing the DBL Hypothesis.

One disadvantage of the plan sector approach is that it is impractical to present the

results from all 144 plan sectors. Instead, the analysis begins with a presentation of data

collected while learning within a few interesting plan sectors, starting with the one that

places the agent almost directly behind the aircraft. In Section 4.5.6 this was referred to

as a pure plan sector.

5.2.1 Learning in Pure Plan Sectors. A pure plan sector identifies a starting

position of the agent relative to the target where the agent is behind and to the rear of

the target. These sectors are pure in the sense that an agent starting in this position will

rarely cross a plan sector boundary as it tries to lock in position behind the target, if a

boundary is crossed at all. Figure 5.1 depicts graphically the first training scenario to be

discussed during this analysis. The scenario placed the agent almost directly behind, at

close range, parallel heading, and at the same altitude as the target aircraft.

NOSTRUM internally identifies each plan sector with a string constructed from the five

key feature indices into the attack response table. The plan sector shown being activated in

Figure 5.1 is referred to by NOSTRUM with the identifier "0-0-0-0-0". Referring to Table 4.3
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Figure 5.1 Graphical depiction of training scenario for pure plan sector 0-0-0-
0-0.

for dynamic scenario specifications, NOSTRUM generated the dynamic scenario shown in

Table 5.1 for exploring responses in plan sector 0-0-0-0-0.

[ -Training Scenario for Sector 0-0-0-0-0

Identifier Value Meaning
Digit Position

1 0 Agent velocity is 150 m/s greater than target
2 0 Agent heading is parallel to target
3 0 Agent range to target is 5000 m
4 0 Agent altitude is equal to target's
5 0 Agent aspect angle to target is 15 degrees

Table 5.1 Training scenario created for plan sector 0-0-0-0-0.

The first action taken by NOSTRUM during response exploration for plan sector

0-0-0-0-0 was to run a simulation using the default proportional control response, which

was set to ((0 0 0) 0.0) in each plan sector. The results of that simulation became

the baseline measurement of performance against which other plan sector responses could
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be compared. When the simulation using the default response was completed, NOSTRUM

generated a line of textual output displaying the important data points collected during

the simulation:

I END-GA•E POSITION I I TINES I

LC PC ((1i111 WVWWW TTTTT) AAAA) ASP OS VDEL RANGE FSH FBY ST EST DT IT

1 0 (( 0 0 0) 0.0) 174 174 1I0 128 IL T 9 0 0 0

Table 5.2 Sample NOSTRUM output. Results of simulating the default response.

The textual line of output requires some explanation, beginning with the mnemonics

identifying each column of data.

1. LC: The current learning cycle. This value increments by one for each response

tested during discovery.

2. PC: The plateau count, representing the number of cycles that the best response

discovered has remained the best response. This value normally increments by one

for each response tested during the learning cycle, but will be reset to 0 when a new

best response has been found.

3. ((NNNNN WWWW'W TTTTT) AAAA): The response being tested. The

nose offset value was indicated by NNNNN, wing offset by WWWWW, tail offset by

TTTTT, and power setting by AAAAA.

4. ASP: The aspect angle measured between agent line-of-site and target tail in the

end-game position.

5. NOS: The nose angle measured between agent line-of-site and agent velocity-vector

in the end-game position.

6. VDEL: Difference in agent and target velocity magnitudes. Positive quantities

indicated that the agent was moving more quickly.

7. RANGE: The distance separating agent and target in the end-game position.

8. FHS: A boolean flag indicating whether or not a final shot was possible in the

end-game position.
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9. FBY: A boolean flag indicating whether or not the agent flew by the target

aircraft.

10. ST: Total shot time accumulated during the simulation, including both actual and

estimated shot times.

11. EST: Estimated shot time that the agent might have accumulated as actual time

if the simulation had continued running.

12. DT: The time the agent was in danger of being fired upon by a missile launched

from the target aircraft.

13. INT: The interestingness of this response.

5.2.1.1 Plan Sector 0-0-0-0-0 Results. Table 5.2 indicated that during the

first learning cycle the default response was the best response explored so far. Since no

other responses had been tested, the plateau counter was set to zero to reflect the age of

the response. The end-game aspect and nose angle indicated that the agent was almost

directly in front of the target aircraft, separated by 128 m. At the end of the simulation

the agent's velocity was still 150 m/s greater than the target, a factor contributing to the

agent fly-by past the target and loss of a final shot advantage. Nevertheless, during the

simulation the agent was able to accumulate 9 seconds of shot time, none of which was

estimated. Since the simulation was terminated the instant NOSTRUM detected a fly-by

there was no opportunity for any time in danger to accumulate. Finally, since this was the

first response explored, and NOSTRUM had no others to compare it to, the interestingness

of the default response was 0.

Although presenting the data in tabular fashion is sometimes useful, it is often easier

to interpret simulation results graphically. Figure 5.2 provides two- and three-dimensional

views of agent behavior relative to the target using the default response. It is apparent

when viewing the data graphically that the agent stayed at nearly the same altitude as

the target throughout the simulation, even though it might have reduced its airspeed and

held a shot position for much longer through a climb or deceleration. This is clearly a case

when proportional control is not the most desirable response.
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I END-GAME POSITION I I TIMES I
LC PC ((NlNll VVVW TTTTT) AAA) ASP OS VDEL LANGE FSH FBY ST EST DT INT

1 0CC 0 0 0) 0.0) 174 174 150 128 IL T 9 0 0 0
2 1CC 0 0 500) 0.0) 176 99 141 508 NIL T 9 0 0 0
3 2 (-500 0 0) 0.0) 129 129 150 89 IL T 9 0 0 0
4 3CC 0 0 0) -0.2) 125 125 109 87 IL T 9 0 0 0
5 0C( 0 0 1000) 0.0) 168 91 134 1003 NIL T 11 0 0 35
6 1C 0 0 1500) 0.0) 101 90 125 1551 NIL T 10 0 0 35
7 2CC -500 0 1000) 0.0) 154 93 134 984 NIL T 11 0 0 35
8 3(( 0 0 1000) -0.2) 2 72 83 1063 NIL NIL 10 0 0 44
9 4CC 0 0 1000) -0.4) 2 36 27 178S NIL NIL 11 0 0 46

10 5 CC 0 0 1000) -0.6) 1 14 1 3078 NIL NIL 11 0 0 55
11 6CC 0 0 1000) -0.8) 0 8 -1 3873 NIL NIL 11 0 0 59
12 0CC 0 0 1000) -1.0) 0 7 0 4368 T 1NL 999 999 0 106
13 1 CC 0 0 500) -1.0) 0 3 0 3727 NIL NIL 11 0 0 108
14 2CC -500 0 500) -1.0) 0 3 -1 3971 NIL NIL 11 0 0 108
15 0 (C -500 0 1000) -1.0) 0 9 -1 4539 T NIL 999 999 0 153
16 1 (( -500 0 1000) -0.8) 0 9 -2 3989 NIL NIL 12 0 0 153
17 2CC -500 0 1500) -0.8) 0 13 2 4351 T NIL 125 108 0 163
18 3CC 0 0 1600) -0.8) 0 11 1 4384 T NIL 176 156 0 163
19 4 CC -500 0 1500) -0.6) 0 20 -2 3476 NIL NIL 8 0 0 163
20 5CC 500 0 1500) -0.8) 0 11 1 4401 T NIL 166 147 0 163
21 6CC 0 0 1500) -0.6) 0 20 -1 3505 NIL NIL 10 0 0 163
22 7 CC -500 0 2000) -0.6) 0 22 2 3670 NIL NIL 4 0 0 163
23 8 C-1000 0 1500) -0.6) 0 20 0 3299 NIL NlL 4 0 0 163
24 9CC 500 0 1000) -0.8) 0 8 -1 4028 T NIL 999 999 0 163
25 10 CC 1000 0 1500) -0.8) 0 10 1 4373 T NIL 149 129 0 163
26 11CC 500 0 1500) -0.6) 0 18 -2 3661 NIL NIL 11 0 0 163
27 12C 0 0 2000) -0.6) 0 22 -1 3957 NIL NIL 5 0 0 163
28 13 CC -500 0 2000) -0.8) 0 16 -2 4647 NIL NIL 13 0 0 163
29 14 C( -500 0 2500) -0.6) 0 29 36 4310 NIL NIL 15 0 0 163
30 15 ((-1000 0 2000) -0.6) 0 30 -1 3626 NIL NIL 4 0 0 163
31 16 CC-1500 0 1500) -0.6) 0 19 1 3329 NIL NIL 4 0 0 163
32 17 ((-1000 0 1500) -0.8) 0 14 -2 4303 T NIL 999 999 0 173
33 18 C-1000 0 1000) -0.8) 0 9 1 3780 NIL NIL 14 0 0 173

34 19 ((-1000 0 1000) -1.0) 0 8 0 4490 T NIL 999 999 0 183
35 20 C-1000 0 500) -1.0) 0 3 -2 3944 NIL NIL 11 0 0 183

Table 5.3 The complete learning cycle for plan sector 0-0-0-0-0.
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Figure 5.2 Default agent behavior in plan sector 0-0-0-0-0. Two- and three-
dimensional results.

Starting with the default response, NOSTRUM began suggesting changes and tested

a variety of other responses, as show in Table 5.3. NOSTRUM noticed immediately that

the agent was flying past the target and suggested several modifications to prevent this

from happening. The response heuristics suggest climbing above the target, lagging the

target, or decelerating when a fly-by occurs. Each modification was tested in turn during

learning cycles 2, 3 and 4, but none of these was able to prevent the agent from flying

beyond the target. At learning cycle 5, however, NOSTRUM further increased the altitude

of the fly-to point over the target and recorded an increase in interestingness because the

response improved the shot time and was the best response explored so far. The jump in

interestingness was attributed to the application of response heuristic RH4, which received

the 35 point bonus and was -,e-3.pplied again during cycle 6. Increasing the fly-to point

altitude failed to improve the response, and interestingness did not increase again until

NOSTRUM tried combining deceleration with climbing at cycle 8.

Although no immediate increase in shot time occurred, NOSTRUM repeatedly applied

RH6 in cycles 8 through 12 because each application resulted in a slight interestingness

increase. As a result, NOSTRUM discovered a better response at cycle 12 that produced a
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significant increase in shot time'. From cycle 12 on, NOSTRUM tried to improve upon the

response further using various combinations of power settings, lag pursuit, and climbing

above the target to bleed off excess airspeed. At cycle 15 the best response was actually

detected by adding a slight lag pursuit to the response explored during cycle 12. Additional

exploration failed to improve the agent shot time, and the plateau counter stopped addi-

tional exploration at cycle 35. Figure 5.3 graphically shows all of the responses explored

by NOSTRUM, and Figure 5.4 shows the best response explored for plan sector 0-0-0-0-0.

The best response explored for plan sector 0-0-0-0-0 was ((-500 0 1000) -1.0).

Interpreted, the response directed the agent to lag the target by 500 m, climb above the

target by 1000 m, and simultaneously reduce power by 100%. This is close to what might

be intuitively expected. The starting velocity of the agent was quite a bit greater than that

of the target and, left unchecked, the agent was doomed to fly by the target. NOSTRUM

found early on that climbing increased its shot time, but this alone was not enough. Soon,

it discovered that combining deceleration with climbing not only increased the shot time

but prevented a fly-by as well. When the power setting had been decreased as much as

possible, NOSTRUM then found utility in slightly lagging the target.

5.2.1.2 Plan Sector 1-0-0-0-0 Results. Plan sector 1-0-0-0-0, the second

one explored by NOSTRUM, is also a pure plan sector. The initial training conditions for

sector 1-0-0-0-0, shown in Table 5.4, are identical to those for sector 0-0-0-0-0 except that

the agent is moving slower than the target.

Since the agent was traveling slower than the target, it was impossible for the agent

to fly by the target using the default response. Although the agent was able to launch a

missile in the end-game position, NOSTRUM tried to improve the response by extending the

duration of the shot time window. Table 5.5 shows the complete learning cycle for plan

sector 1-0-0-0-0.

NOSTRUM discovered early in the learning cycle that applying response heuristic RH3

produced positive results. Consequently, RH3 received a bonus and was applied first for

several learning cycles starting with cycle 4. At cycle 8, NOSTRUM had increased the

1For aesthetic reasons, shot times that are greater than 999 seconds are displayed in the table as "999."
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Figure 5.4 Bes responses founed for plan sector 0-0-0-0-0. Two- and three-
dimensional results.
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Training Scenario for Sector 1-0-0-0-0
Identifier Value Meaning

Digit Position
1 1 Agent velocity is 150 rn/s slower than target
2 0 Agent heading is parallel to target
3 0 Agent range to target is 5000 m
4 0 Agent altitude is equal to target's
5 0 Agent aspect angle to target is 15 degrees

Table 5.4 Training scenario created for plan sector 1-0-0-0-0.

power setting to its maximum value and began exploring other ways to improve the shot

time. The system recognized that additional progress might be made by shrinking the

end-game velocity delta. Since the target was still moving faster than the agent, NOSTRUUM

suggested a slight dive beneath the target in order to increase agent acceleration. Later

during the learning cycle, when adjustments to set the fly-to point further beneath the

target no longer had a positive impact, NOSTRUM then tried combining lead pursuit with

the best response. At learning cycle 30, NOSTRUM discovered the best response explored,

combining acceleration, diving, and lead pursuit into the plan sector response. Like the

results produced for plan sector 0-0-0-0-0, this is what we intuitively might expect. The

responses explored by NOSTRUM are displayed graphically in Figures 5.5 through Figure 5.7.

An interesting event occurred between learning cycles 9 and 10 for the plan sector

1-0-0-0-0 response that is somewhat counter-intuitive. Looking at cycle 9 in Table 5.5, we

can see that the final velocity delta between agent and target was -93 m/s. The negative

sign indicates that the target was moving faster than the agent. We might expect that if

the agent dove more sharply to increase airspeed, as NOSTRUM suggested in learning cycle

10, that the final velocity delta would actually be less than before. The simulation results,

however, indicate that increasing the dive angle had the opposite effect, and that the final

velocity delta was actually worse than it was in cycle 8 when the agent didn't dive at all.

It has been said that DBL systems are trapped in the world defined by the simu-

lator (20). I suspect that the program output presented here illustrates an occurrence of

the system abandoning a path in the search tree because the simulator did not accurately

represent the real world. If a higher fidelity simulator had been used it is likely that NOS-
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I END-GAIE POSITION I I TINES I
LC PC ((ENNIN VWW TTTTT) AAAA) ASP NOS VDEL RANGE FSH FBY ST EST D) INT

1 0C( 0 0 0) 0.0) 1 1 -150 12569 T EIL 78 25 0 0
2 1 (C 0 0 -500) 0.0) 1 1 -149 12481 T NIL 78 25 0 0
3 2(( 500 0 0) 0.0) 1 1 -150 12566 T NIL 78 26 0 0
4 0C( 0 0 0) 0.2) 1 1 -141 12181 T NIL 81 28 0 35
6 0(( 0 0 0) 0.4) 1 1 -132 11755 T NIL 84 31 0 70
6 0CC 0 0 0) 0.6) 1 1 -123 11348 T NIL 88 35 0 105
7 0C( 0 0 0) 0.8) 0 0 -110 10789 T NIL 95 42 0 149
8 0CC 0 0 0) 1.0) 0 0 -100 10344 T NIL 101 48 0 184
9 0 C( 0 0 -500) 1.0) 0 0 -93 9894 T NIL 108 55 0 219

10 1 C( 0 0 -1000) 1.0) 0 0 -105 10478 T NIL 98 46 0 219
11 2 (C 500 0 -500) 1.0) 0 0 -96 10027 T NIL 105 52 0 219
12 3CC 0 0 -1500) 1.0) 0 0 -113 10887 T NIL 94 40 0 219
13 4CC 500 0 -1000) 1.0) 0 0 -103 10429 T NIL 99 46 0 219
14 5 CC 1000 0 -500) 1.0) 0 0 -96 10089 T NIL 105 52 0 219
15 6CC 0 0 -2000) 1.0) 0 0 -115 10850 T NIL 93 40 0 219
16 7 CC 500 0 -1500) 1.0) 0 0 -102 10328 T NIL 101 48 0 219
17 8 CC 1000 0 -1000) 1.0) 0 0 -92 9880 T NIL 108 55 0 219
18 9 CC 1500 0 -500) 1.0) 0 0 -98 10108 T NIL 104 51 0 219
19 10 CC 0 0 -2500) 1.0) 1 1 -125 11374 T NIL 84 35 0 219
20 11 C( 500 0 -2000) 1.0) 0 0 -114 10829 T NIL 92 40 0 219
21 12 (( 1000 0 -1500) 1.0) 0 0 -109 10588 T NIL 96 43 0 219
22 13 CC 1500 0 -1000) 1.0) 0 0 -92 9893 T NIL 108 55 0 219
23 14 ((2000 0 -500) 1.0) 0 0 -92 9890 T NIL 108 55 0 219
2415 CC 0 0 -3000) 1.0) 1 1 -123 11295 T NIL 84 35 0 219
25 16 C( 500 0 -2500) 1.0) 0 0 -111 10760 T NIL 92 41 0 219
26 17 CC 1000 0 -2000) 1.0) 0 0 -113 10824 T NIL 94 41 0 219
27 18 (( 1500 0 -1500) 1.0) 0 0 -104 10390 T NIL 99 46 0 219
28 19 CC 2000 0 -1000) 1.0) 0 0 -92 9892 T NIL 108 55 0 219
29 0 ((2500 0 -500) 1.0) 0 0 -91 9870 T NIL 109 56 0 254
30 0 ((3000 0 -500) 1.0) 0 0 -83 9489 T NIL 116 63 0 289
31 1 ((3500 0 -500) 1.0) 0 0 -83 9488 T NIL 116 63 0 289
32 2 ((3000 0 -1000) 1.0) 0 0 -92 9869 T NIL 108 55 0 289
33 3 ((3500 0 -1000) 1.0) 0 0 -91 9839 T NIL 109 56 0 289
34 4 ((4000 0 -500) 1.0) 0 0 -83 9485 T NIL 116 63 0 289
35 5 ((3000 0 -1500) 1.0) 0 0 -92 9880 T NIL 108 55 0 289
36 6 ((3500 0 -1500) 1.0) 0 0 -92 9879 T NIL 108 55 0 289
37 7 ((4000 0 -1000) 1.0) 0 0 -91 9791 T NIL 109 56 0 289
38 8 CC 4500 0 -500) 1.0) 0 0 -83 9484 T NIL 116 63 0 289
39 9 ((3000 0 -2000) 1.0) 0 0 -104 10351 T NIL 99 46 0 289
40 10 ((3500 0 -2000) 1.0) 0 0 -98 10104 T NIL 103 50 0 289
41 11 ((4000 0 -1500) 1.0) 0 0 -87 9603 T NIL 112 60 0 289
42 12 CC 4500 0 -1000) 1.0) 0 0 -90 9771 T NIL 110 57 0 289
43 13 ((5000 0 -500) 1.0) 0 0 -83 9483 T NIL 116 63 0 289
44 14 CC 3000 0 -2500) 1.0) 0 0 -100 10222 T NIL 102 49 0 289
45 15 CC 3500 0 -2500) 1.0) 0 0 -100 10219 T NIL 102 49 0 289
46 16 (C 4000 0 -2000) 1.0) 0 0 -94 9972 T NIL 106 53 0 289
47 17 ((4500 0 -1500) 1.0) 0 0 -92 9878 T NIL 108 55 0 289
48 18 CC 5000 0 -1000) 1.0) 0 0 -86 9561 T NIL 114 61 0 289
49 19 CC 5500 0 -500) 1.0) 0 0 -83 9478 T NIL 116 63 0 289
50 20 ((3000 0 -3000) 1.0) 1 1 -114 10832 T NIL 92 40 0 289

Table 5.5 The complete learning cycle for plan sector 1-0-0-0-0.
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Figure -0.5 Default agent behavior in plan sector 1-0-0-0-0. Two- and three-
dimensional results.
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Figure 5.6 ADl responses tested for plan sector 1-0-0-0-0. Two- and three-
dimensional results.
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Figure 5.7 Best response found for plan sector 1-0-0-0-0. Two- and three-
dimensional results.

TR.UM would have continued diving to close the gap in velodties until it started having a

negative impact on the final shot position.

5.2.2 Learning in Dirty Sectors. NOSTRUM was able to discover better responses

in pure plan sectors more readily than in the "dirty" sectors (where many boundaries were

crossed) because credit assignment was straightforward: the performance of the agent

could be attributed entirely to the response currently being explored. As NOSTRUM moved

away from the pure sectors and towards dirtier ones credit assignment was a more difficult

issue to resolve. As an example, consider the results produced by NOSTRUM in plan sector

0-0-0-0-3. The initial conditions for this training scenario are shown in Table 5.6, and are

also shown graphically in Figure 5.8.

NOSTRUM did not have much success improving the response for this plan sector.

Although NOSTRUM more than doubled the agent's shot time, it began to explore a dead-

end path and never recovered. As shown in Table 5.7, NOSTRUM discovered at learning

cycle 16 that adding an offset to the fly-to point off the target wing was reducing the

end-game aspect angle, causing an increase in interestingness. A shrinking aspect angle

may be an indication that the agent is moving more towards a position behind the target.

In this plan sector, however, the decrease in aspect angle was coupled with a decrease
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Training Scenario for Sector 0-0-0-0-3

Identifier Value Meaning
Digit Position

1 0 Agent velocity is 150 m/s greater than target
2 0 Agent heading is parallel to target
3 0 Agent range to target is 5000 m
4 0 Agent altitude is equal to target's
5 3 Agent aspect angle to target is 105 degrees

Table 5.6 Training scenario created for plan sector 0-0-0-0-3.
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Figure 5.8 A dirty plan sector. Training scenario for plan sector, 0-0-0-0-3, depicted
graphically.
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in end-game range: the agent was now too dose to fire upon the target in the end-game

position.

I END-GANE POSITION I I TINES I
LC PC ((1IN1N wVw TTTTT) AMAA) ASP 10S VDEL RANGE FSN FBY ST EST DT IIT

1 0C 0 0 0) 0.0) 18 31 162 8292 T IlL 6 4 0 0

2 0C( 0 0 -600) 0.0) 13 30 156 5440 T IlL 8 6 0 39
3 1iC 0 0 -1000) 0.0) 16 28 159 6617 T NIL 7 5 0 41
4 2C( 0 0 -1500) 0.0) 16 27 160 6410 T NIL 7 4 0 43
6 0CC 0 0 -2000) 0.0) 11 26 168 6617 T IIL 9 5 0 82
6 1 (C 0 0 -2600) 0.0) 8 26 154 5484 T IlL 9 6 0 84
7 2C( 0 0 -3000) 0.0) 6 26 138 5576 T IlL 9 6 0 86
8 0CC 0 0 -3500) 0.0) 7 26 138 5256 T NlL 13 6 0 121
9 1CC 0 0 -4000) 0.0) 7 24 136 6101 T NlL 12 4 0 123

10 2(( 0 0 -4600) 0.0) 6 22 132 4652 T IlL 10 2 0 126
11 3(( 0 0 -6000) 0.0) 6 22 129 4399 T IlL 12 2 0 127
12 4CC 0 0 -6500) 0.0) 5 19 124 4340 T IlL 12 1 0 129
13 65C 0 0 -6000) 0.0) 5 20 125 4098 T NIL 10 0 0 129
14 6CC 600 0 -5500) 0.0) 6 19 124 4310 T NIL 12 1 0 129
15 7C( 0 0 -6500) 0.2) 6 19 129 4453 T IlL 12 2 0 129
16 8 (( 0 500 -5500) 0.0) 4 19 124 4000 T IlL 11 0 0 131
17 9 C( 0 1000 -5600) 0.0) 6 18 116 3798 IlL NIL 8 0 0 133
18 10 to 0 1600 -6500) 0.0) 3 18 99 3206 NIL IlL 0 0 0 136
19 11 (C 0 2000 -6600) 0.0) 2 16 68 3078 NIL IlL 0 0 0 144
20 12 CC 0 2500 -6600) 0.0) 1 19 64 2806 IlL NIL 0 0 0 146
21 13 (C 0 3000 -5500) 0.0) 1 16 66 3074 NIL NIL 0 0 0 146

22 14 (C 0 2500 -6000) 0.0) 1 19 67 2860 IlL NIL 0 0 0 146
23 16 (C -600 2600 -5600) 0.0) 1 19 64 2803 NIL NIL 0 0 0 146
24 16 CC 0 2600 -6600) -0.2) 1 19 62 2825 NIL NIL 0 0 0 146
25 17 (C 0 3000 -6000) 0.0) 1 18 69 2872 NlL NIL 0 0 0 146
26 18 CC -500 3000 -6500) 0.0) 1 17 58 2979 NIL NIL 0 0 0 146
27 19 CC 0 3000 -5600) -0.2) 1 17 62 2986 NIL NIL 0 0 0 146
28 20 CC 0 3500 -5500) 0.0) 1 15 52 3091 NIL NIL 0 0 0 148

Table 5.7 The complete learning cycle for plan sector 0-0-0-0-3.

For many of the plan sectors, NOSTRUM ran into similar dead-ends. Much of the prob-

lem was tied to the sets of interestingness and response heuristics. The heuristics needed

to be general enough to accommodate the multitude of situations that NO9TRUM would

encounter during discovery, but developing such heuristics turned out to be an incredibly

complex task. Consequently, the heuristics that worked superbly in sector 0-0-0-0-0 failed

to have the same success in many other sectors. This was especially true in the opposing

heading crossing angle sectors. Refer to Table 5.8 for an example of a learning cycle where
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the heading-crossing index was 1, indicating that the agent was traveling in the opposite

direction as the target. The suggestions made by NOSTRUM had very little impact on the

total accumulated shot time, and in the end NOSTRUM was unable to find a response that

improved upon the default response.

I END-GAME POSITION I I TINES I
LC PC ((11111 VWVWW TTTTT) LAAA) ASP 10S VDEL RANGE FSH FBY ST EST DT INT

1 0C( 0 0 0) 0.0) 3 6 111 10823 T IlL 57 31 0 0
2 1CC 0 0 -500) 0.0) 3 6 110 10789 T NIL 57 31 0 0
3 2 ((500 0 0) 0.0) 3 6 11 10822 T NIL 57 31 0 0
4 3(( 0 0 0) 0.2) 3 7 113 10816 T NIL 56 30 0 0
5 4CC 0 0-1000) 0.0) 3 6 111 10847 T IlL 57 31 0 0
6 5CC 500 0 -500) 0.0) 3 6 110 10789 T NIL 57 31 0 0
7 6CC 0 0 -500) 0.2) 3 7 112 10827 T NIL 56 30 0 0
8 7 (1000 0 0) 0.0) 3 6 111 10822 T NIL 57 31 0 0
9 8 ((500 0 0) 0.2) 3 7 113 10815 T NIL 56 30 0 0

10 9C 0 0 0) 0.4) 3 7 114 10806 T NIL 56 30 0 0
11 10 (C 0 0-1500) 0.0) 3 6 111 10854 T NIL 57 31 0 0
12 11( 500 0-1000) 0.0) 3 6 111 10847 T NIL 57 31 0 0
13 12CC 0 0 -1000) 0.2) 3 7 112 10837 T NIL 56 30 0 0
14 13C 1000 0 -500) 0.0) 3 6 110 10788 T IlL 57 31 0 0
15 14 CC 500 0 -500) 0.2) 3 7 112 10827 T NIL 56 30 0 0
16 15iC 0 0 -500) 0.4) 3 7 114 10818 T lIL 56 30 0 0
17 16C 1500 0 0) 0.0) 3 6 111 10822 T NIL 57 31 0 0
18 17 CC 1000 0 0) 0.2) 3 7 113 10815 T NIL 56 30 0 0
19 18 CC 500 0 0) 0.4) 3 7 114 10806 T NIL 56 30 0 0
20 19 CC 0 0 0) 0.6) 3 7 115 10794 T NIL 56 30 0 0
21 20 C( 0 0 -2000) 0.0) 3 6 111 10861 T NIL 57 31 0 0

Table 5.8 The complete learning cycle for plan sector 0-1-0-1-0. An opposing
heading-crossing angle sector.

The primary reason that responses in the opposing HCA sectors had such minimal

impact is that the agent spent only a short period of time in each one of those sectors.

There were two factors contributing to the reduction in time. First, since the agent and

target were traveling along heading vectors that were parallel but in opposite directions,

it was only a matter of a few seconds before the agent moved out of the training sector

and into an adjacent sector. This action is shown in Figure 5.9. At time tU, the agent

and target were both in their starting positions for the training scenario. Moments later,

at time t2, the relative positions of the aircraft had changed such that the agent was no
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longer in the training scenario sector but in an adjacent sector. Secondly, MAXIM agents

enter the simulation in search mode and it takes some number of simulation cycles for the

agent to recognize and lock in on a target aircraft. By the time the agent selected the

target aircraft it is quite possible that enough time had elapsed to place the agent in the

situation at time t2. Together, these factors frequently made it difficult to improve the

responses in opposing HCA sectors.

..~~~~ ~ ~ ~ .................... .......... ............. ......... ...
0-."0& "-'"0..

Glmdw 90-121,up 190-

tl t2

Figure 5.9 Sector boundary crossings. Rapid changes in opposing heading-crossing
angles sectors made it difficult for these responses to have a significant effect.

5.2.3 Overall Learning Success. The previous section presented data collected

from NOSTRUM's exploration of a select few plan sectors. This should not suggest, how-

ever, that NOSTRUM was not able to improve the responses of the other 141 plan sectors.

Tables 5.9 and 5.10 present data collected from all plan sectors. The format of the tables

permits comparison of the shot and danger times for a standard agent (indicated in the

table as DEFA ULT) to that of a flexible agent after learning (indicated in the table as

AFTER), and the increase or decrease resulting from learning (indicated in the table as

DELTA).

In 96 out of the 144 training scenarios, NOSTRUM was able to improve the total shot

time compared to the time available to a proportionally controlled agent. In many plan

sectors the improvement was quite significant, giving the agent virtually unlimited shot
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time when a standard MAXIM agent had nearly zero shot time in the same scenario. In the

distant range plan sectors of Table 5.10 NOSTRUM was often able to decrease the agent's

time in danger as it simultaneously increased shot time. In all but three distant range

scenarios, NOSTRUM was able to reduce the time in danger to zero.

There were 20 training scenarios where learning actually had a negative impact on

agent shot time, compared to what an agent using only proportional control would have

in the same situation. During the first learning cycle within each plan sector NOSTRUM

tested the default response to establish a baseline for performance. From this baseline,

NOSTRUM was able to improve the shot time in some of these 20 sectors, but the net

time after learning was still less than that available to a proportionally-controlled agent.

For example, refer to the learning results from plan sector 1-0-0-1-3 in Table 5.9, shown

in a bold-face font. Using strictly proportional control in each plan sector, the standard

agent was able to accumulate 102 seconds of shot time. After learning, however, the total

shot time for the flexible agent had dropped to 63 seconds. This drop in shot time can

be attributed to responses learned in other plan sectors. These responses worked well

when the scenario was initialized with the agent in position to use that response, but they

sometimes had a negative impact when the agent entered from another sector. Since the

total shot time increase in the 96 successful plan sectors far outweighed these marginal

decreases I considered the losses to be negligible.

5.3 Testing the Features Hypothesis

In Section 1.3 a secondary hypothesis called the Features Hypothesis was presented

to state my belief that agent behavior could be improved by selecting responses using a

handful of key features. This hypothesis was expounded in subsequent sections to identify

the five parameters that I selected as the key features and the resolution assigned to each,

effectively dividing up the airspace around the target into a number of plan sectors. An

investigation was not performed to determine which combat parameters should be selected

as the key features; instead, I chose several features that I thought might be appropriate

and conducted tests to assess the usefulness of these features. Section 5.2 discussed the

effects of learning applied to each plan sector individually, but so far no mention has been
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made to the overall changes in agent behavior. Examining how the flexible agent behaved

in more realistic scenarios, rather than engagements against a non-jinking training drone,

is the focus of this section.

Before an analysis of this type can be performed an important question must be

answered: how shall "improvements" in behavior be measured? Improvements can be

measured qualitatively by comparing tactics used by the agent to what might be employed

by a human pilot. Since one of my goals was to make the agent behave more realistically

we might say that behavior has improved if the tactics of a flexible agent after learning

more closely resemble the actions of a human pilot. Alternatively, performance can be

measured quantitatively by counting the number of kills accumulated by a flexible agent in

a relatively large population of random scenarios against a proportionally controlled agent.

Using this metric we might say that the agent's behavior has improved if it can destroy

more enemy aircraft. I was curious to see what kind of improvements, if any, had resulted

using each definition.

5.3.1 Qualitative Effect of Learning. To observe the qualitative effect of learning

on overall agent behavior I created a battery of engagement scenarios. Each scenario

was a 1-v-1 engagement pitting a standard MAXIM agent against either a flexible agent

or another standard agent. Figure 5.10 shows the relative arrangement of the agent and

target in each of the four scenarios. The initial conditions of each scenario were customized

to allow for variations in agent to target separation, and to set the magnitude of the agent's

velocity vector by some amount above or below the target's velocity. Each scenario was

then run using the MAXIM simulator with learning disabled, alternating between standard

and flexible agents as the opponent. Appendix B contains plots illustrating the behavior

of each type of agent elicited during the scenarios. The behavior of the flexible agent in

some of these scenarios is worth noting.

In the scenario depicted in Figure 5.11, the agent was initially behind and traveling

more slowly than the target aircraft. The proportionally controlled aircraft immediately

started to turn toward the enemy aircraft as soon as it was identified as a threat, shortly

before time ti. On the other hand, the flexible agent recognized that it was moving more
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Scenario I Scenario 2

Not

Scenario 3 Scenario 4

I te

Figure 5.10 Engagement scenarios.

slowly than the target aircraft and tried to close in on the target using lead pursuit. Shaw

says that lead pursuit is a tactic often used by pilots to increase closure on the target

by use of geometry (28). Rather than fly towards the current location of a faster moving

target, a pilot may instead fly towards the spot the target is expected to be a moment or

two in the future. The flexible agent had been trained against a level-flying drone with

this tactic in mind, and the tactic was transferred to the jinking drone in this scenario.

The behavior of the flexible agent in Figure 5.11 is an improvement over that of the

standard agent for another, more subtle, reason. During combat, a pilot struggles to keep

the target aircraft in view at all times because failure to do so can be fatal. Depending on

how tightly the pilot would have to turn the aircraft, the maneuvers of the standard agent

in this scenario might not be used by a human pilot because of the potential for losing

sight of the target during the "blind" inside turn (28). If the agent aircraft was banking

sharply during the turn, the aircraft would be dangerously exposing its underside while the

line-of-site to the target was obscured. In contrast, the flexible agent made only outside
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Figure 5.11 Scenario #1, close range. Two-dimensional behavior of standard (left
plot) and flexible (right plot) agents.

turns and would probably have had the target continuously in view. This was considered

an unexpected benefit, since the flexible agent was trained without any consideration given

to this combat factor.

The initial conditions of Scenario #3 were similar to those of Scenario #1, except

this time both agents started at the saxme X position in space. Figure 5.12 and 5.13 show

the two- and three-dimensional plots of the resulting behavior for each agent type. Again,

the standard agent flies towards the current location of the target and eventually crosses

the target path sometime after time M3 The flexible agent not only tries to lead the target,

but also dives slightly to gain airspeed as it tries to maneuver behind for a better position.

The three-dimensional plot of the flexible agent in Figure 5.13 shows the agent and target

jockeying for position in a downward scissors. In contrast, the three-dimensional plot of the

standard agent in Figure 5.12 shows the competing standard agents dog-fighting almost

entirely at a single altitude (note the Z axis scale in the plot).

The flexible agent also applied learned knowledge regarding climbs and deceleration

to more dynamic situations. For example, in Scenario, #2, shown in Figures 5.14 and 5.15,

the agent initially started at dlose range with a greater velocity than the target aircraft.

As in the previous scenario, the standard agent maneuvered very nearly within the same

altitude throughout the simulation, but the flexible agent attempted to bleed off airspeed
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through a climb 1000 m above the starting altitude. The flexible agent's climb, coupled

with a negative power setting, resulted in a reduced overshoot to a maximum Y position of

: 21000 m, while the standard agent shot over 4000 m farther to a maximum Y position of

ýý 25000 m. Shaw speaks a good deal about maneuvers that trade airspeed for altitude, and

the three-dimensional behavior of the flexible agent depicted in Figure 5.15 more closely

resembles what a human pilot might do during a dog-fight.

N=

2M

aimM

stndr lgotwcos ane

amm

2" 30=4I

aam

,-!

tiM

,7= Is= 111m am vom nm amW " M

Figure 5.14 Scenario #2, standard agent. Two- and three-dimensional behavior of
standaxd agent at close range.
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Figure 5.15 Scenario #2, flexible agent. Two- and three-dimensional behavior of
flexible agent at close range.
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An unanticipated defensive behavior emerged after learning offensive tactics. Fig-

ure 5.16 show the flexible agent engaged against the target in Scenario #1, but this time

starting at long distance range with the agent moving slower than the target. The two

aircraft started a collision course towards one another, but the flexible agent immediately

began a spiraling nose dive shortly after flying past the target. Shaw refers to this maneu-

ver as the defensive spiral The defensive spiral is a very tight rolling scissors, normally

initiated by a slower moving aircraft when an attacker is behind and in position for a shot.

A pilot will use the defensive spiral to reverse the situation, forcing the faster moving at-

tacker to overshoot during the dive and placing the defender in a better offensive position.

Although the conditions prior to the defensive spiral did not warrant such a maneuver it

was interesting to see this flexible agent behavior emerge as a side effect.

Figure 5.16 Scenario #1, long-distance range. Two-dimensional behavior of stan-
dard (left plot) and flexible (right plot) agents. The flexible agent demon-
strated an unanticipated defensive maneuver known as the defensive spiraL

Ironically, Figure 5.16 also illustrates a learning shortcoming. I had hoped that

NOSTRUM would discover better responses to the opposing heading-crossing angle plan

sectors than the head-on collision tactic depicted in the plot. Rather than flying directly

towards the opponent, NOSTRUM explored responses that moved the fly-to point by some

amount to the left and right of the target aircraft position. This would then force the

flexible agent to fly a course parallel to the oncoming target aircraft, putting it in a better

position for an eventual turnaround and rear position shot. Unfortunately, NOSTRUM
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never fully explored these responses because they always seemed less interesting than other

responses.

As a final exercise, I wanted to see how the flexible agent behaved in the flat scissors

scenario presented in Section 1.1. Using the attack responses learned against the non-

jinking drone, the flexible agent maneuvered as shown in Figure 5.17. Compared to the

behavior of the standard agent, the flexible agent's maneuvers more closely resemble what

Shaw claims a human pilot would do in the same situation.
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Figure 5.17 Flat scissors, revisited. Two-dimensional behavior of standard (left plot)
and flexible (right plot) in the flat scissors scenario.
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Figure 5.18 Flat scissors, desired behavior.

Determining the qualitative improvement in agent behavior based on knowledge

learned in scenarios against a non-jinking drone was difficult. I developed the set of canned
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scenarios to evaluate the flexible agent's success in applying the tactics to a dynamic en-

vironment, but this approach presumes many things. Each of the scenarios establishes an

initial condition that may not be realistic and, consequently, may never occur in practice.

The number of potential scenarios is infinite, and the subset used here to test behavior

may not be a good representative sample. Furthermore, the scenarios were conducted for

a finite length of time with both agents completely unarmed, making it difficult to identify

the agent with the best end-game position. What the plots do indicate, however, is that

many of the tactics learned by NOSTRUM against the non-jinking drone were successfully

transferred to a dynamic environment.

The behavior of the flexible agent became much richer and less predictable than its

standard agent counterpart. During several of these canned scenarios the two standard

agents would circle each other endlessly when simulation time was extended, but this never

happened when a flexible agent entered the game. Human pilots would not be expected to

behave predictably, so the addition of response variety may also be considered a behavior

improvement. It is important to recognize that response variations were not produced by

random fluctuations in agent response, but was grounded in previous experience against

a training drone. While we could always modify the standard agent to behave differently

probabilistically, the flexible agent had a reason to respond the way it did 2.

5.3.2 Quantitative Effect of Learning. Determining the quantitative effect of

learning was an easier task than attempting to determine qualitative improvements. This

measurement was accomplished by running 500 randomly generated scenarios pitting a

standard agent against a flexible agent with the learning advantage. Each scenario ran-

domly selected agent and target starting positions, headings, and velocity magnitudes.

Starting locations of the aircraft was restricted within a cubic arena 20000 m long on each

side, and relative aircraft velocity was kept within ±200 mi/s. In addition, each aircraft

was given four missiles to fire upon the other. In order to measure the effect of learning I

ran the scenario first using a standard agent against the target. Then, the same scenario

was run using a flexible agent.

2This is not to imply that the behavior of the flexible agent followed a chain of reasoning, but that it
had tried different responses in somewhat similar situations and selected the best one it could find.
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Results of 500 Random Scenarios

Event Agent Type
Standard Agent Flexible Agent

Target 191 times 186 times
Destroyed
Agent 196 times 184 times
Destroyed I

Table 5.11 Results of 500 random scenarios. Results of random scenarios used to
measure quantitative improvement.

The results of the simulations, shown in Table 5.11, were not what I had expected.

I had anticipated that the flexible agent, with the addition of responses employing various

types of pursuits and energy management maneuvers, would out-kill the standard agent.

Since the difference in the number of kills separating the standard and flexible agents is not

statistically significant, the data indicates that learning may have had little quantitative

impact on overall agent performance. However, the results of the 500 random scenarios does

not reflect entirely upon the quality of the responses learned. NOSTRUM learned responses

on the basis of improved shot and danger times in an environment completely free of enemy

missiles. The underlying strategy was to improve the maneuvering capability of the agent

so that it could maintain an offensive position, giving the agent multiple opportunities

to fire upon and destroy the target if previously launched missiles were not successful.

Once threatening missiles were introduced, however, the rules of the game were instantly

changed. Immediately after the target aircraft launched a missile the agent transitioned

out of attack mode and into evade mode. As a result, the random scenarios quite often

tested the effectiveness of only a few seconds of the attack phase followed by many seconds

in the evade phase. A better test of attack responses would restrict missiles to rear-quarter

use. The flexible agent was trained to achieve a better rear-quarter position than the

standard agent, yet the missile objects within MAXIM are all-aspect weapons. If missile

use was limited to the rear quarter of a target aircraft, the flexible agent might be better

suited to achieve a firing position than the standard agent. I did not pursue this method of
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testing, however, because it entailed changing the rules of engagement to produce a desired

result.

5.4 Summary

The discovery-based learning system, NOSTRUM, was designed to experiment with

variations in attack responses for MAXIM air combat agents. I believed that DBL would

be a useful tool for improving the behavior of an agent by training it to behave more

appropriately in specific situations. Using improvements in shot and danger time as the

discriminating factors, NOSTRUM was able to develop a more robust and less predictable set

of universal plan responses for the flexible agent. Before learning, MAXIM agents pursued

enemy aircraft using a single proportional control strategy. After learning, the flexible

agent had learned the utility of lead, lag and pure pursuits, as well as how to use dives

and climbs while maneuvering for a better offensive position.

I also believed that overall agent behavior could be improved by triggering responses

using a handful of key features. This hypothesis was tested by engaging the flexible agent

after learning against a standard agent. Qualitative and quantitative data was collected

to determine whether or not the knowledge learned against a non-jinking drone would be

transferable to a more dynamic environment, using the key features as indices into the

array of responses. The flexible agent was trained in an environment devoid of weapons,

so quantitative measurements of improved performance were not positive. However, many

of the strategies learned during training were put into use while maneuvering against a

jinking opponent. I consider this evidence to be supportive of a qualitative behavioral

improvement.
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VI. Summary, Conclusions &1 Recommendations

6.1 Research Summary

This thesis introduced NOSTRUM, a DBL system for exploring autonomous agent

responses in the air combat domain. While there are many functional areas within air

combat that could have been investigated, NOSTRUM focused its attention to tactics that

might be useful during a dog-fight with an enemy aircraft. NOSTRUM was tuned for exper-

imentation in the world created by MAXIM, a prototypical air combat simulator developed

at AFIT for potential use in the DIS project.

Several autonomous agent architectures were reviewed, with attention given to reac-

tive, planning, deliberative, and combined systems. MAXIM is a reactive system based on

the concept of the universal plan. A universal plan is simply a set of pre-planned agent

responses designed to cover every possible situation the agent might encounter. The uni-

versal plan employed by MAXIM is limited in its variety of responses, sometimes resulting

in predictable or arbitrarily inappropriate behavior.

NOSTRUM used discovery-based learning to enhance one portion of MAXIM's universal

plan, the part dictating behavior during the attack phase. A new representation of the

universal plan was created and integrated into MAXIM, partitioning behavior into 144 plan

sectors. Instead of relying exclusively on the proportional control strategy previously hard-

coded into the MAXIM universal plan, more appropriate responses were chosen based on the

values of the key features. Five parameters were selected as the key engagement features:

aspect angle, relative altitude, relative velocity, heading crossing angle, and range to target.

Each feature was used as an index into a table of attack responses. This approach lead

to the flexible agent, a less predictable autonomous agent designed to select the most

appropriate response based on the combat situation of the moment.

Some machine learning techniques were examined, but discovery-based learning ap-

peared to be the most appealing. The complexity of the air combat tactics domain, com-

bined with my lack of expert knowledge in the domain, readily lent itself to a form of

learning that was not inherently knowledge intensive. Compared to explanation-based

learning, DBL systems typically require only a small amount of domain knowledge for
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learning to begin. Instead, the discovery-based system acquires knowledge by mimick-

ing the scientific method: the system examines data, formulates hypotheses, selects and

conducts experiments to test hypotheses, and repeats.

The act of discovery used by NOSTRUM was a modified form of the scientific method.

The system examined data reflecting the usefulness of a response and suggested modifi-

cations that might improve behavior. NOSTRUM then executed a scenario to evaluate a

suggested response, and the cycle would repeat. As long as the behavior of the agent

appeared to be improving NOST'RUM continued suggesting new responses to test. After a

number of un-interesting experiments had been conducted, NOSTRUM sensed that progress

was no longer being made towards an improved solution. At that point, it remembered the

best response discovered for that plan sector and moved on to the next. In this fashion,

NOSTRUM experimented with alternative attack responses for all 144 plan sectors.

Attack responses were represented as three-dimensional offsets to the current posi-

tion of the target aircraft. An additional parameter in the response was used to adjust

the aircraft power setting. During simulation execution, a flexible agent would retrieve

the appropriate attack response from an array containing all 144 responses. The fly-to

point was then "tailored" to the current position and heading of the target aircraft by

adding offsets to the target nose, wing, and tail vector. NOSTRUM suggested variations in

attack responses by adjusting the fly-to point in space relative to the target aircraft while

simultaneously suggesting changes in the aircraft power setting. This contrasted with the

standard agent attack response which always maneuvered the agent directly towards the

enemy aircraft, giving no consideration to target bearing or the potential utility of energy

management maneuvers.

6.2 Conclusions

This research was designed to test two sub-hypotheses I had formulated regarding

the suitability of DBL as a tool for learning tactics in the air combat domain. My conclu-

sions regarding each sub-hypothesis will be presented individually, starting with the DBL

Hypothesis:
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DBL Hypothesis:
Given the division of agent responses by key features, discovery-based learning
can improve behavior by testing various responses within each division and
remembering those that worked best.

The DBL Hypothesis was the foundation of this research. With it, I stated my belief

that discovery-based learning could be used to improve the behavior of an autonomous

agent, sector by sector. To test this hypothesis, NOSTRUM was programmed to cycle

through all 144 plan sectors against a non-jinking drone, suggesting variations in each

plan sector response and testing those that appeared to be the most promising. Sets

of interestingness and response heuristics were developed to guide NOSTRUM through the

search space as it looked for and remembered responses that improved shot and danger

time.

The data presented in Chapter 5 indicate that discovery-based learning was useful

in learning more appropriate responses to the training scenarios. In the overwhelming

majority of the plan sectors, NOSTRUM Was able to increase the available shot times through

a combination of fly-to point and power setting adjustments. In a significant number of the

training scenarios, NOSTRUM was able to place the flexible agent in a stable firing position

behind the target for indefinitely long periods of time, whereas the standard agent shot

time was definite and short. I consider this research objective successfully achieved.

A secondary issue was addressed along with the DBL Hypothesis:

e What domain knowledge is required for discovering air combat tactics?

I believe that the interestingness and response heuristics within NOSTRUM reflect

some of the important domain knowledge for air combat tactics, but developing the heuris-

tic sets to be general enough for the many training scenarios was difficult. Throughout

system development and testing, I had to resist the temptation to add heuristics that

would guide the system along a desired path. This was especially true for the plan sectors

with opposing heading crossing angles and large aspect angles, referred to previously as the
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"dirty" sectors. While it is virtually impossible to totally eliminate bias in the heuristics of

a DBL system, the addition of specialized heuristics would certainly diminish the successes

of the system to discover better responses for itself.

Initially, I thought that my near total lack of combat tactics knowledge was going to

be an impediment to in this research. As work progressed, however, I began to suspect that

the gaps in my knowledge were almost beneficial. Critics of DBL systems contend that the

heuristics are so carefully constructed that the program cannot help but stumble upon the

desired solution. The question then arises: Did the system actually learn anything, or was

something already locked into the heuristics implicitly just made explicit. Since I was not

an expert in the domain it was very difficult for me to coach the system into producing

any particular result. Although my heuristics encapsulate some very basic notions about

energy management, as well as what the "good" and "bad" aspects of an engagement might

be, the responses discovered by NOSTRUM were the result of an honest discovery process.

The likelihood of ever developing a minimal set of heuristics to deal with the wealth

of possible combat scenarios, without coaching the system, seems remote. NOSTRUM failed

to learn some responses as I had expected because it did not find the search path leading

to these responses interesting. The best example is when NOSTRUM explored responses for

the opposing heading-crossing angle sectors. In many of the training scenarios for these

plan sectors, a human pilot might direct his aircraft along a flight path parallel to the

target's flight path. Then, after the two aircraft have passed each other, the pilot would

immediately turn towards the target six o'clock position. Maneuvering in this manner has

qualitative advantages that are difficult to state in the form of an interestingness heuristic,

nor is it easy to state unequivocally which response is "better" or "best." The payoff

resulting from a particular maneuver is not always obvious, and sometimes the situation

must temporarily degrade before the response that best resembles a human response can

be found. In the situation presented here, NOSTRUM did not investigate fly-to point adjust-

ments that made the flight paths more parallel because it did not increase, and sometimes

reduced, shot time. Without explicitly checking for this situation and assigning an associ-

ated interestingness bonus NOSTRUM would never discover the textbook response.
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The other sub-hypothesis investigated during this research was the Features Hypoth-

esis:

Features Hypothesis:
Agent behavior can be improved by selecting a response based on a handful
of key features.

This hypothesis stated my belief that overall agent behavior could be improved by

selecting the most appropriate response based on a manageable set of key features. If

the responses known by the agent were appropriate, then these key features could be

used as indices into a universal plan. I tested this hypothesis using two techniques. The

first method was used to gauge qualitative improvements in agent behavior by engaging a

flexible agent against a jinking target aircraft in a battery of test scenarios. The second

method used quantitative measurements to count the number of successful target kills

by the flexible agent compared to the standard agent in a large population of randomly

generated scenarios.

Chapter 5 and Appendix B present plots of the flexible agent behavior compared to

the standard agent behavior in each of the 32 test scenarios. These plots indicate that

some of the knowledge learned by the flexible agent against the non-jinking drone was

transferable to a more dynamic environment populated with maneuvering enemy aircraft.

I clearly saw cases where the flexible agent used variations in tactics against the jinking

target, such as lead and lag pursuit and energy management strategies, that NOSTRUM had

found to be effective against the non-jinking drone. The resultant behavior of the flexible

agent was also sufficiently varied that predictability was effectively reduced. Consequently,

I believe that the Features Hypothesis was also successfully confirmed.

Quantitative improvements in agent behavior were not noticeable. This was mea-

sured using 500 randomly generated scenarios pitting the flexible agent against a standard

MAXIM agent. Each of the 500 scenarios was also run with two standard agents competing

against each other to establish a performance baseline. A comparison of the number of

target aircraft destroyed by the standard agent and those by the flexible agent indicate that
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there was no statistical improvement in performance once the two aircraft were armed and

allowed to fire upon one another. This measurement should not be used as an indication of

the success or failure of DBL applied to this domain since the flexible agent was trained in

an weapon-less environment in a single phase of execution whereas the scenarios exercised

the agent in all three phases.

Associated with the Features Hypothesis were three related side issues:

9 During combat, what parameters are critical when selecting a course of action?

e What granularity in the critical parameters is required to improve agent behavior?

* How should the behavior of MAXIM agents be represented so that a working learning

component can be integrated into the simulator?

These three issues are all tightly intertwined in the representation I choose for the

universal plan. The universal plan was decomposed into 144 smaller slices known as plan

sectors. Each plan sector identified a response that was tuned to a specific engagement

situation, and was selected using the five parameters as an index into a table of responses.

When the flexible agent started in a position to the rear of the target aircraft this represen-

tation of the universal plan appeared to work well, accounting for most of the improvement

in overall agent behavior in the test scenarios. However, when the flexible agent moved out-

side of the rear plan sectors and into dirtier sectors the representation was not as effective.

Responses in opposing heading-crossing angle sectors were not executed for a significant

period of time because the agent quickly moved from sector to sector. Likewise, scenarios

that placed the agent in a starting position with a large aspect angle quickly degenerated

into an opposing heading-crossing angle scenario as the agent turned backwards to meet

the opponent.

The overall objective of this research was to test my primary hypothesis, that DBL

could be used to improve the performance of an agent in the air combat domain. The

primary hypothesis was decomposed into the aforementioned sub-hypotheses, and would

be supported if each of the sub-hypotheses could be independently verified. I believe the
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primary objective has also been accomplished, and that DBL was shown to be a useful

tool for acquiring knowledge about tactics in the air combat domain.

6.3 Recommendations for Future Research

In the course of this work a few alternatives for future enhancement have been consid-

ered that I was not able to investigate. Some of these ideas relate to the discovery process

in general, others for improving performance in the air combat domain in particular.

9 DBL systems tend to be hill climbing systems, and NOSTRUM is no exception. A

potential problem with this behavior is that the system can climb blindly up the first

hill it sees and get stuck, when a much better solution could have been found if the

system looked in every direction before taking a single step. Rather than being a

pure hill climber, NOSTRUM could employ steepest ascent hill climbing, examining all

spawned response and assess the interestingness of each. This would really force the

system to progress along the path with the greatest prospect for success, instead of

investigating the first path encountered that seemed interesting.

e The plan sector division of universal plan responses works well in a limited number

of situations. The difficulty is actually the result of a frequently shifting fly-to point;

in many situations, the flexible agent did not have enough time to execute the plan

sector response for it to have an effect. One possible solution to this problem might

be to continue selecting responses based on the current situation (as indicated by

the key parameters), but execute the response for a fixed period of time. The DBL

system could experiment with not only the responses but with the amount of time to

continue applying the response. When the elapsed time has ended, the agent could

re-assess the situation and select a new appropriate response to execute for the next

few moments.

e Another approach that may improve the behavior of the agent would be to parti-

tion the space around the target into unequal slices, dividing the plan sectors more

coarsely so that the dirty plan sectors are bigger than the pure plan sectors. With
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a larger slice of airspace the flexible agent will remain in these sectors for a greater

period of time, giving the response more time to have an impact.

It may not be possible to produce behavior indistinguishable from humans in this

domain without a much larger base of air combat knowledge to work from. DBL could

still be leveraged, however, by using a more sophisticated approach: the system could

have knowledge of many basic maneuvers and how to implement them, and discovery

could be used to splice them together in an effective sequence. This would be labor

intensive on the part of the developer, and would require considerably more expert

knowledge to build the maneuver knowledge base.

6.4 Closing Thoughts

As NOSTRUM discovered improvements in its attack responses I was discovering how

difficult it is to learn tactics that can be applied in dynamic situations. Getting NOSTRUM

to learn responses that improved the behavior of the flexible agent in a single training

scenario was relatively easy, but trying to develop heuristics that were general enough for

every training scenario was another matter. Nevertheless, the exposure to the process of

discovery was enlightening and useful.

I have reservations about the usefulness of DBL applied to anything but the most

restricted domains. The supposed benefit of DBL is that only a small base of domain

knowledge is required for learning to begin, but dynamic and unpredictable situations

cannot be effectively handled without adding heuristics to specifically deal with these

situations. This leads to system coaching, effectively forcing the DBL system to "discover"

treasure when you already know where it is already buried. If this kind of coaching is

required, of w'at use is discovery? In these situations, it might be simpler to build the

desired knowledge immediately into the system and eliminate the time-consuming learning

process

1Although NOSTRUM was not built with speed and memory efficiency in mind, it was excruciatingly

slow. A typical learning session took six days from start to finish. This was primarily due to execution
time that accumulated while running thousands of simulations, each taking anywhere from 45 seconds to
90 seconds to complete.
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Another important thing to consider is the desired comparability of agent behavior

after learning to that of a human expert. It is quite possible for a DBL system such as

NOSTRUM to improve behavior in the air combat domain, but the resultant behavior may

not closely match the tactics actually employed by fighter pilots. Such systems may discover

approaches to combat that do not have corresponding equivalents in military doctrine. If

the goal is to build a tactical knowledge base for use in an interactive simulation it would

be desirable for the final behavior to model that of the intended ally or enemy.

It was a challenge to implement discovery-based learning in a dynamic environment.

In the air combat domain, it was difficult to isolate the parameters to collect and compare,

and it was equally difficult to measure progress when it did not immediately result in im-

provements in shot or danger time. Discovery becomes more complicated when the world

is populated by other agents, adding credit assignment to the list of potential problems.

I made an effort to circumvent this difficulty by training the flexible agent against a pre-

dictable non-jinking drone. Agent behavior did improve after learning, but the responses

are certainly brittle in the sense that they are tuned for very specific situations. This may

be an indication that DBL is not suited for learning in environments that are ill-behaved

and unpredictable.
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Appendix A. Terms and Computations

This Appendix provides the details of the equations used by NOSTRUM to compute

the values of the five key parameters: aspect angle, relative altitude, range, relative ve-

locity, and heading-crossing angle. Details of fly-to point adjustments are also provided.

Figure A.1 graphically depicts the terms involved in these calculations.

Wrm estpdon
(Xt. Yw. Zt)

(Xaw, Yaw, Z)

otargt Wing vector

(Xtt. Yu, 7*)

agent tail vector oagt trg" velocity vector
(Xat Yt, ZOt) relative (xv Yv Ztv)

alftite

"agnt agent velo'city vco
(Xav, Yav, Zav)

Figure A.1 Terms used by NOSTRUM.
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The following terms are used in the equations to follow:

position&.g.t = Yo , positiont.,, et =

o Ja Zt J

vei'city....t =|y.. velocityt,,,,t = •t.

I-zag, [xZ ap Z tV

Wingaoen,- = y , Wing.,ua,- = ys I I

Zat t

taiTa gent z., trn4Ft,., = t

A.1 Aspect angle

The aspect angle was used by NOSTRUM to partially describe the position of the agent

relative to the target aircraft. This measurement does not account for the heading of the

agent relative to the target, but does relate the position of the agent relative to the target

heading. Aspect angle was computed by projecting the line-of-sight vector onto the plane

passing through the target aircraft fuselage and wings, and measuring the angle between

this projection and an imaginary line extending from the rear of the target, as shown in

Figure A.1.

NOSTRUM computes the aspect angle as follows:

To = poaitionothrget - POsitison.gen.

lowint -- TO. SWingtarget
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los,o,a = 1oj.-velocityt,.,t

tan (aspect) = b08n

Valid values for aspect angle range from 0 to 359 degrees. The tan (aspect) com-

putation resolves the aspect angle to a value between 0 and 180 degrees; NOSTRUM does

additional computation to resolve the angle into the proper quadrant, as shown in Fig-

ure A.2.

Figure A.2 Aspect angle quadrants.

A. 2 Relative Altitude

Relative altitude was used to describe the relative position of the agent above or

below the target alrcraft. This value was the simplest feature value to compute:

altitude .a.v = za - zt

A positive altitudere14,t, indicated that the agent was above the target.
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A.3 Heading-Crossing Angle

The heading-crossing angle, hca, was computed using the vector dot product. An

hca of 0 degrees indicated that the agent was flying a course parallel to that of the target;

an hca of 180 degrees indicated that the agent was flying a course in the opposite direction.

cos (hca) - velocitys.t • velocityt°,rgt
Ilvelocity,,,.,tJ JJ;_elo;i~tyt,o,•,.tJ

A.4 Range

Range, the distance between the target and agent, was calculated by determining

the magnitude of the agent line-of-site vector:

range = V(x, - xa) 2 + (yt - yo)2 + (z, - z.) 2

A.5 Relative Velocity

Relative velocity was used to indicate how much faster or slower than the target

aircraft the agent was moving. A positive velocityre,0 ,av indicated that the agent is moving

faster than the target.

velocityo.ga,,t. = I[velocity.,.flnI - Ilvelocit y, 9 ., Il

A.6 Fly-to Point Adjustments

This section provides the details of fly-to point adjustment, the process of rotating

three-dimensional response offsets onto the world coordinate system. To begin, NOSTRUM

required an additional piece of information not accounted for in Figure A.1: the local

coordinate system response.

response = ((offset.o, offsetwno offsettait) power)

The nose and wing offsets in the response, offset.... and offsetwi,, specified a com-

ponent of the right-handed coordinate system local to the target aircraft, as shown in
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Figure A.3 The local target coordinate system.

Figure A.3. The tail offset, offsettij, specified a displacement above or below the target

position on an axis that was parallel to the world coordinate system Z axis. The offsettal

term was handled differently because I wanted a flexible agent to climb or dive relative

to the target position, regardless of target orientation; if this offset was allowed to rotate

with the orientation of the target, a response that would normally warrant a climb would

become a dive for inverted targets.

To prevent intended climbs and dives relative to the target from having the opposite

effect, NOSTRtUM calculates a modified heading vector that takes the X and Y components

of the target velocity vector into account:

XtV

0X1
heading~target(moadifie) = leocthrl,

~~ 3 g

0

NOSTFUM uses the modified heading vector to compute a modified wing vector. This

was done by crossing the modified heading vector into the Z axis to produce a right-handed

orthogonal vector component:
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wingtarset(modilied) = headingwarg*t(m•&fjtd) x [ = [/.

Calculating the position of the fly-to point in the world coordinate air space was

accomplished by adding the offsets in the local airspace, individually rotated, to the current

target position:

flyToPointreoated = position.rg.t + offset..,.headings.or.t(m.o4&,d) +

0

offsetwing, Wi t.r,.t(me*&fd) + offset,.il 0
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Appendix B. Engagement Scenarios

This appendix illustrates the behavior of the standard and flexible agents in each of

the four scenarios presented in Chapter 5. Each scenario was executed four times using

the following starting parameters:

1. Close range, agent moving slower than target

2. Close range, agent moving faster than target

3. Long-distance range, agent moving slower than target

4. Long-distance range, agent moving faster than target

B-1



0 CO

I t Ii

I' /

72

x/

0\ ,, ..

"C 0C<s
oV5

0 .CO

ZC 0

.0 Ca

E B-

at j

4B-



I I Ii

ci/
S~'

0 0)

0 . . .

.0

C 0

0_ 1P \

Figure B.2 Scenario #2, close range, agent moving slower than target.
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Appendix C. Source Code & Flow Charts

The source code for NOSTRUM is not included as part of this document. Two flow

diagrams have been provided, however, to illustrate the main elements within the NOSTRUM

program and how they interact with one anc~her. Those interested in obtaining a copy of

the source code should direct their requests to:

Maj. Gregg Gunsch (AI Lab)

AFIT/ENG

2950 P St.

WPAFB, OH 45433-7765

ggunschc@afit. af. mil
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