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Abstruct

This research presents a multiresolution wavelet analysis tool for analyzing motion in time
sequential imagery. A theoretical framework is developed for constructing an L.(R>) wavelet mui-
tiresolution analysis from three non-identical spatial and temporal L,(R) wavelet multiresolution
analyses. This framework provides the flexibility to tailor the spatio-temporal frequency characteris-
tics of the three dimensional wavelet filter to match the frequency behavior of the analyzed signal. An
unconventional, discrete multiresolution wavelet decomposition algorithm is developed which yields
a rich set of independent spatio-temporally oriented frequency channels for analyzing the size and
speed characteristics of moving objects. Unlike conventional wavelet decomposition methods, this
algorithm provides independent zoom-in and zoom-out capability in space and time. Symmetric 3D
filters produced by the unconventional decomposition process are combined with the properties of the
Hilbert transform to produce a bank of directionally selective wavelet filters. Multiple directionally
selective wavelet filters are integrated to form a multiresolution vector wavelet motion sensor capable
of unambiguously computing the optical flow of a 3D image sequence. A unique flow restoration
methodology is presented which incorporates a modified version of Grossberg’s gated dipole filter in
a cooperative-competitive flow restoration methodology that reinforces consistent flow behavior and
removes flow inconsistencies. Finally, several digital and optical parallel architectures are investigated

for their ability to speed up the 3D wavelet decomposition process.
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A NON-HOMOGENEOUS, SPATIO-TEMPORAL,
WAVELET MULTIRESOLUTION ANALYSIS

AND ITS APPLICATION TO THE ANALYSIS OF MOTION

1. Introduction
1.1 Historical Background

Modern military target identification systems primarily detect and track lieat sources in an
infrared (IR) image. They often require a “person-in-the-loop” for acquiring a potential target. Once
acquired, the target is generally tracked by first thresholding a high contrast scene for “hot spots”
and then applying one of several tracking techniques including 2D frame-to-frame feature matching,
centroid matching and correlation matching (7, 50). These systems make limited use of a priori

information, target models and other scene analysis techniques used in the computer vision field.

Computer vision target segmentation and recognition systems generally employ a “static is
basic” strategy in which single, static image frames from a time sequence of two dimensional imagery
are analyzed individually for attributes such as texture, color and boundaries. The results are then
later connected in various ways across time (5, 20). However, studies of biological systems show
the analysis of information in time provides animals with extremely valuable clues for segmenting
and identifying moving objects in a dynamic scene (37, 51, 52). Indeed, some animals, such as the
frog, employ a “motion is basic" perceptual strategy in which stationary objects, such as a dead fly, are
evidently ignored during their internal object segmentation and recognition computations. Additionally,
neurophysiological research in higher order mammals (e.g., the macaque) has uncovered anatomically
distinct visual pathways devoted exclusively (at least in the early stages of the visual processing system)

to motion analysis (43, 61).

From a biological perspective, then, it appears some types of object recognition problems may
be better-suited to the analysis of information /n time (a spatio-temporal process) as opposed to the
analysis of information across time (a spatial and temporal process). Thus, the purpose of this research

effort was to focus on the use of motion cues as a means of facilitating the pattern recognition process. In




particular, the research concentrated on one of the earliest steps in the motion-based pattern recognition
process: determining the location, speed and direction of objects moving in a scene. The motion-based
object discrimination strategy employed in this research draws on the results of biological research into

the motion detection properties of the mammalian visual cortex.

The accumulated results of past and ongoing research into the motion detection properties of
cortical cells, layers of cells, and the interconnections between cells in the mammalian visual cortex
provide four valuable clues for the construction of a computer vision-based motion detection system.
First, motion is perceived locally. Humans are able to perceive different motions in different parts of
the scene. However, little is known about the size of localized motion detection regions (57). Second,
perceived motion is spatial frequency specific. Individual motion sensors tend to respond to a specific
band of spatial frequencies (2). The average spatial frequency bandwidth of these cells is approximately
one octave. Third, motion sensors are selective for speed. Indeed, cortical motion detection cells can
reliably detect speed variations on the order of 5% (41). And fourth, motion detection cells exhibit
a spatio-temporal contrast sensitivity that determines the range of spatial frequencies detectable for
moving objects (49). A 2D representation of the spatio-temporal contrast sensitivity data collected
by Robson is shown in Figure 1. Here, temporal frequency corresponds to the speed at which a
horizontally oriented sinusoidal grating moves past a viewer’s field of view. Evidently, spatial and
temporal frequencies that lie outside the diamond shaped region cannot be detected by the human visual
system. These clues clearly point towards the existence of a biological motion detection system in

mammals that responds to localized spatial and temporal frequency stimuli.

Historically, motion analysis algorithms have employed frame-to-frame processing techniques
such as block matching, feature correspondence and spatio-temporal gradient analysis to characterize
objects moving in a 2D scene (5, 26, 27, 55). These techniques require densely sampled imagery in
space and time - which make them computationally expensive - and each is highly susceptible to the
presence of noise in the spatio-temporal imagery. Additionally, their primary emphasis has been on the
consiruction of a velocity field that depicts movement, rather than on the task of explicitly segmenting

moving objects in the scene.

In the mid-to-late 1980s, several researchers began to explore a spatio-temporal frequency
motion analysis approach that required the integration of several frames of time sequential imagery

(1, 19, 25, 57). Each of these approaches is based on the observation that the Fourier transform of




Figure 1. Diamond shaped spatio-temporal frequency plot of Robson’s experimental data relating
spatial and temporal frequency sensitivity of motion cells in primary visual cortex. Tempo-
ral frequency corresponds to the speed at which a horizontally oriented sinusoidal grating
moves past a viewer’s field of view (49).

a 2D brightness pattern moving with constant velocity across a 2D image plane lies on a plane in
spatio-temporal frequency space whose coordinates are governed by the = and y velocity components
of the object. In order to determine the orientation of the plane in frequency space, and, therefore,
the velocity of the moving object, each of these approaches employ heuristic spatio-temporal filtering
techniques that provide little control over inter-dependent filtering characteristics such as filter overlap,
filter bandwidth and space-time/frequency localization. Additionally, these approaches use rigid filter
designs that cannot be easily modified to meet a particular problem scenario. Finally, none of the
approaches are applied in the presence of noise. This research carries forward the Fourier filtering
concepts in the examples cited above, and combines them with the mathematical rigor of the wavelet
multiresolution analysis to yield a unique and powerful motion analysis tool that discriminates moving

objects in noise-corrupted imagery based on their size, speed and directional properties.

1.2 Problem Statement and Scope

Accurately detecting and discriminating multiple objects moving across a 2D sensor array in the
presence of physical and system noise is an unsolved problem. This research studies the feasibility of
using a spatio-temporal wavelet multiresolution analysis for this purpose. The analysis of this solution
strategy focuses on several key areas, including 1) the extension of existing 2D wavelet multiresolution

analysis theory to three dimensions, 2) the creation of separable, non-homogeneous, wavelet filters




that enhance the flexibility of the motion analysis process, 3) decoupling the spatial and temporal
multiresolution decomposition processes to provide the ability to independently analyze spatial and
temporal details in a 3D signal, 4) the construction of a wavelet filter bank that provides directional
selectivity, 5) combining the coefficients obtained in the decomposition process to estimate localized
velocity i~formation in the presence of physical and system noise phenomena, and 6) the investigation
of se .al digital and optical parallelization techniques to determine their ability to increase the speed
of the 3D wavelet motion analysis process. The research contributions made in these areas are briefly

reviewed below.

1. A Three-Dimensional Wavelet Multiresolution Analvsis. Current wavelet literature focuses on
the multiresolution analysis of 1D time signals and 2D images. Y. Meyer’s theory provides for
the extension of the separable wavelet multiresolution analysis to R", however, no deails are
provided for constructing the corresponding orthonormal wavelet basis set (42). This research
shows that each detail space in the 3D multiresolution analysis is spanned by integer translations
of a set of seven wavelets, and that the family of wavelets consisting of all possible dyadic
dilations of these seven wavelets forms an orthonormal basis for L,(R*). Additionally, an “oct-
tree” sub-band coding scheme for implementing a “Discrete Spatio-temporal Wavelet Transform™
is developed which generates a bank of non-overlapping octave-band filters with identical - or

“homogeneous” - spatial and temporal frequency characteristics.

2. A Non-Homogeneous Three-Dimensional Wavelet Multiresolution Analvsis. In the conventional
multiresolution scheme introduced by Meyer and Mallat, the 2D approximation space V' ; was
created from two identical 1D approximation spaces. This generates a wavelet filter with identical
frequency characteristics in the f, and f, spatial frequency dimensions. Similarly, in the 3D
“conventional” extension described above, the tensor product of three identical approximation
spaces was formed to create a 3D approximation space whose corresponding filter has identical
passband characteristics in f,, f, and f,. However, this approach does not provide the flexibility
to tailor the spatio-temporal frequency characteristics of the wavelet filter to match the frequency
behavior of the 3D signal under analysis. This section proves one can construct a “non-
homogeneous” wavelet multiresolution analysis and corresponding orthonormal wavelet basis
for L,(R?) from non-identical spatial and temporal filters, thereby increasing the flexibility of

the wavelet filter design process.




3. A Motion-Oriented Multiresolution Wavelet Analvsis: Decoupling the Spatial and Temporal
Decomposition Processes. At each stage in the “convenuonal” non-homogeneous 3D wavelet
decomposition algorithm, the spatial and temporal samples of the approximation and detail
signals are both equally decimated to yield a bank of analysis filters whose spatial and temporal
bandwidths both decrease by a factor of two from one stage of the decomposition to the next.
Thus, at any level in the decomposition process, one is required to analyze the signal at equal
scales in space and time. It is shown, however, that the analysis of moving objects requires the
ability to examine the signal across multiple scales in time for a fixed scale in space. Thus, an
unconventional 3D wavelet decomposition theory and algorithm are presented that maintains
the orthogonality properties of the analyzing wavelets, employs a sub-band, multirate coding
scheme for rapid signal analysis, and allows one to independently zoom-in and zoom-out on

spatial and temporal details in the scene.

4. A Vector Wavelet Motion Sensor. The motion-oriented multiresolution wavelet analysis described
above was designed to detect objects of different sizes moving with different speeds across a
two-dimensional image plane. The symmetric 3D filters produced by the decomposition process
thus act as a scalar motion sensing detectors in that they respond to the magnitude of an object’s
velocity vector (i.e., its speed), rather than to the vector quantity of speed and direction. In
order to obtain directional selectivity, the independently scaled wavelets are combined with the
traditional properties of the Hilbert Transform to yield an orthogonal set of wavelet motion
sensors that capture signal energy in diagonally opposing regions of frequency space. The
response. of these sensors are then combined to compute the localized speed and direction of a

moving object over multiple scales in space and time.

5. A Cooperative-Competitive Optical Flow Restoration Mechanism. The performance of the
wavelet-based flow estimation algorithm developed under this research effort is degraded by
the presence of physical and system noise phenomena. Therefore, a unique flow restoration
methodology is presented that incorporates a medified version of S. Grossberg’s gated dipole
filter in a cooperative-competitive flow restoration methodology that reinforces consistent flow
behavior and removes flow inconsistencies. The vector wavelet motion sensor is then used in
conjunction with the cooperative-competitive flow restoration algorithm to discriminate moving

objects in noise-corrupted 3D imagery.




6. Digital and Optical Parallelization Techniques for Increasing the Speed of the Motion-Oriented
Wavelet Decomposition Algorithm. The bulk of the processing time required to run the wavelet
vector motion analysis algorithm is taken up by the motion-oriented 3D wavelet decomposition
process. Thus, several digital and optical parallel architectures are investigated to determine their
potential for increasing the computational speed of the motion oriented decomposition algorithm.
The digital parallel algorithms were implemented on a distributed SUN SPARCstation 2 network,
an Intel iPSC/2 Hypercube, and an iPSC/860 Hypercube. The optical architectures employ a
SEMETEX 128 x 128 Magneto-optic Spatial Light Modulator and thermo-plastic holography to
implement the 2D spatial decomposition stage of the 3D motion-oriented wavelet decomposition

algorithm.

1.3 Dissertation Organization

This dissertation is organized into seven main chapters. The following chapter presents back-
ground material that serves as a foundation for this research. The concepts of a continuous wavelet
transform and a wavelet multiresolution analysis are reviewed, including the non-uniform filter bank
properties of the conventional 2D wavelet multiresolution analysis. A cursory description of several
techniques used to compute an optical flow field are then reviewed, followed by a deeper examination
of existing methods for computing the optical flow from spatio-temporal frequency information. Chap-
ter [l describes the extension of the conventional 2D multiresolution analysis to three dimensions.
It is shown that the detail space between two spatio-temporal approximations spaces is spanned by
integer translations of seven wavelets. In .~dfr to enhance the flexibility of the 3D wavelet design
process, Chapter IV proves one can construct a spatio-temporal multiresolution analysis by forming
the tensor product of three non-homogeneous 1D scaling functions. The theory is also developed
for an unconventional multiresolution wavelet analysis that allows one to independently control the
spatial and temporal analysis levels in the decomposition process. In Chapter V, the unconventional
decomposition technique is combined with the properties of the Hilbert transform to generate a wavelet
vecior motion analysis tool that is selective for the size, speed and direction of objects moving ina 2D
image plane. The vector motion tool is combined with a “nn-linear, competitive-cooperative flow en-
hancement technique that provides the ability to compute the optical flow in the presence of system and

physical noise phenomena. Chapter VI then presents several parallel digital and optical architectures




designed to increase the speed of the 3D motion-oriented multiresolution decomposition algorithm.
The final chapter of the document provides a brief conclusion and lists the individual contributions

made throughout this research effort.




I1. Background Material
2.1 Introduction

This research fuses the concept of motion analysis using spatio-temporal frequency (STF)
information, with the analytical capabilities of a 3D wavelet multiresolution analysis. Many of the
theoretical contributions made here lie in the broadly defined area of wavelet transform theory. Thus,
this chapter provides a brief overview (as opposed to a rigorous mathematical analysis) of some
important wavelet related concepts. These concepts include the continuous wavelet transform and
its relationship to a multi-scale correlation process, the wavelet series approximation of a real, finite
energy signal, and the wavelet multiresolution analysis as first introduced by S. Mallat and Y. Meyer
(39, 40). The second major section of this chapter reviews the advantages and limitations of several
non-STF motion characterization techniques. It should be noted here that although several “motion
characterization” algorithms exist for the purpose of computing 3D structure from kinematic motion
data (for a survey of many of these techniques see T. Huang (29)), this research will restrict the
concept of “motion characterization” to the problem of assigning a velocity vector to each location in a
changing 2D scene. This section also contains a brief discussion of a fundamental problem inherent in
any optical flow computation - the aperture problem. The third and final section in the chapter draws
a connection between motion and its representation in spatio-temporal Fourier frequency space, and

discusses STF motion analysis techniques that apply to this research.

2.2 Signal Analvsis with a Wavelet Transform

Wavelet transform theory and, in particular, multiresolution wavelet analyses are gaining pop-
ularity in the signal processing community for three main reasons (48). First, they yield orthonormal
building blocks for finite energy functions which are considerably more diverse than the complex
exponentials found in conventional Fourier analysis. Second each building block has a localized region
of support in R™, making it possible to isolate rapid signal fluctuations over small regions of space or
time. And third, the sub-band coding scheme used in discrete multiresolution wavelet decomposition
and reconstruction algorithms provides a “fast” method for analyzing and synthesizing signals. This
section reviews several key concepts associated with wavelet transform theory that directly apply to

the spatio-temporal signal analysis conducted during this research.




2.2.1 The Continuous Wavelet Transform.  The general definition of a continuous wavelet

transform is given in the literature by

Wl b) = 2= [ s (2 as 0
where f belongs to the vector space L,(R), ¥ is a “wavelet” kernel, and a,b € R (although, for
practical purposes, the dilation parameter a is typically taken to be greater than zero). In order to
reconstruct f from W, f, the so-called “admissibility condition” requires that the constant C,, must be
finite where R

> |9 (f)?

Cy = —df, 2
" /_OO 1.1 f )}

and z/)( fz) = [F9](f.) is the Fourier transform of the wavelet (z). The admissibility condition
ensures % decays sufficiently fast to zero at +o0o. Additionally, to be a true window function (11), it
follows from the admissibility condition that the wavelet transform kernel ¢ must be “zero mean" in

the sense that

[ " ¥(z)dz =0 3

Taken together, the above conditions on the wavelet kernel imply the graph of ¢ must look like a small

wave, or wavelet.

The continuous wavelet transform is obtained by integrating the signal over all possible shifts
and dilations of the wavelet kernel 1. Through a simple variable substitution, this operation can also be
implemented as a correlation process. For example, let the one dimensional spatial wavelet transform,

[Wys](a,b), of a signal, s(z), be given by

+o¢

Wasl(a,8) = [ s(z)%«/)(’”a‘b) dz @

where a is a dilation parameter and b is a translation parameter. Letting 1,(z) = ﬁd) (%), Equation

4 can be rewritten as
+oc

Wasl(@b) = [ s(e)bale - b)dz ©

Equation 5 shows that the wavelet transform can he expressed as a correlation process in which the

signal is correlated with a scaled and dilated version, ¥,, of the wavelet ¢. This relationship can




also be described as a filtering operation in the spatial frequency domain. If S(f.) = F{s(z)},
V(f,) = F{¥(z)}, and ¥,.(f.) = F{va.(z)}, then Equation 5 becomes

[Wys](a,b) = [FTH{S(f:) - Va¥(-afz)}] (b) (6)

where \/a¥(af.) = ¥.(f.).

In many signal analysis applications, including the problem of segmenting and characterizing
moving objects based on local spatio-temporal frequency measurements, one must simultaneously
analyze the space-frequency or time-frequency behavior of a signal. The most commonly used tool for
space-frequency analysis is the Short Time Fourier Transform (STFT). Introduced in its original form
by D. Gabor in the 1940s (18), the STFT can be described by the relationship

STET(E, /o) = [ f(e)ule - e ¥/ de @

where w(z) is a window function with limited extent and the signal’s frequency characteristics are
assumed to remain stationary over the width of the window. Equation 7 shows the STFT simply

computes the Fourier transform of the portion of the signal enclosed by the window centered at £.

One can also view the STFT from a filter bank perspective by considering the frequency be-
havior of the product f(z)w(z — €). From Fourier transform theory, the frequency spectrum of the
product is obtained by convolving the Fourier transform, F'(f,), of f(z) with the Fourier transform,

e 2L W (f,), of w(z — &). This yields the following alternative expression for Equation 7

STFT(¢, f2) F(f.) * W(f,)e 2t

/ F (W (fo — q)e™? Us~2dq (8)

where * indicates convolution and g is a dummy variable. If one defines the transfer function H(q)
by H(q) = W(gq)e**"%7, and if the analysis is restricted to a single frequency, say f,, then the above

integral becomes:

STFT(, o) = [ F@H(f. — 9)dg ©
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Figure 2. a) The STFT represented as a collection of uniform filters centered around a discrete set of
frequencies. b) Representing the continuous wavelet transform as a bank of non-uniform
filters with logarithmic coverage.

Equation 9 shows that when evaluated at a single frequency, the STFT can be expressed as a windowing
operation in frequency space where the window location is f, and the size of the window is determined
by the bandwidth of the transfer function H. Thus, Equation 9 represents the Fourier frequency
components of f localized in space around £ and localized in frequency around f,. If the operation is
repeated for many discrete frequency values, the analysis amounts to a uniform filter bank representation

of the signal as shown in Figure 2a (56).

The major drawback to the STFT as a time-frequency analysis tool is that once a window is
chosen, the space-frequency resolution remains fixed over all space and all frequencies. This implies
the STFT analyzes long duration, low frequency components and short-duration, high frequency
components with the same window, which can lead to inaccurate estimates of the location and frequency
content of both signal types (56). This problem is of particular concern when attempting to analyze
the motion of multiple objects in a scene, each of which may have a different size and velocity.
The continuous wavelet transform overcomes this problem by replacing the fixed width window with

a prototype, or “mother”, wavelet where all impulse responses of the filter bank and their Fourier




transforms are scaled versions of the mother, i.e.,

1

NG (%) & Va¥(af) (10)

Thus, unlike the STFT in Equation 9 where all the responses are obtained by a frequency
shift, the responses of the continuous wavelet transform are obtained by a frequency scaling operation.
Furthermore, if one constrains the dilation parameter of the wavelet so that a constant ratio is maintained
between the bandwidth, Ay, and center frequency, f., of the filters associated with the impulse
responses (i.e., éf:ﬁ = c¢), then the filter bank representation of the wavelet transform consists of
non-uniform filters spread logarithmically over the frequency axis (Figure 2b)). Moving out along
the frequency axis in Figure 2b), the bandwidth of each filter increases by an octave, implying the
spatial width of the corresponding wavelet impulse response decreases by an octave. The advantage
of this type of “constant Q” filter bank approach is that spatial resolution becomes arbitrarily good
at high frequencies, and frequency resolution becomes arbitrarily good at low frequencies. Thus, the
continuous wavelet transform can eventually resolve two narrowly separated spatial impulses simply
by increasing the analyzing frequency (i.e., reducing the analyzing scale) until the spatial dilation of

the corresponding wavelet is sufficiently small to separate the two impulses (48).

2.2.2  Signal Approximation With the Wavelet Series. The continuous wavelet transform
provides a valuable tool for analyzing the space-frequency behavior of a continuous signal. Another
valuable aspect of wavelet theory involves the approximation of finite energy (L) signals with the
wavelet series (sometimes called the Discrete Wavelet Transform (56)). Like the conventional Fourier
series, the wavelet series expands a signal as a weighted superposition of basis elements. However,
unlike the Fourier series, which requires signal periodicity and whose complex exponential basis
elements cover the entire real line, the wavelet series can be used to represent any L, signal by shifted

and dilated versions of a prototype wavelet with limited extent.

For example, let L(0,T’) denote the vector space of T-periodic functions such that

/T If (z)[dz < oo. (1)
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Then any function f in L;(0, T') has a Fourier seri.s representation given by

flay= > ce®i* 12)

n=-x

where the Fourier coefficients are given by the inner product

1 T —i2x Rz
c, = —/ f(z)e 2" t=dz. (13)
T Jo

If b, (x) = e2" %=, then the set {b,, | n € Z}, forms an orthonormal basis for L,{0,T). Furthermore,
if b(z) = e'2"* represents the prototype function for the basis set b,,, then every function in L, (0, T)

is obtained by a superposition of dilations of the prototype function.

Now consider the vector space L,(R) where f € L,(R) implies

/_x‘ |f(z)*dz < o0 (14)

Clearly the set of complex sinusoidal functions b,,(z) can no longer serve as a basis set for L,(R),
since they don’t belong to L,(R). Additionally, since each vector in I.;(R) decays to zero at +oo, it
seems reasonable that candidate functions for an L, ([R) basis set must themselves decay rapidly to zero.
Finally, for practical purposes, it is advantageous to generate each element in the basis set by scaling
and shifting a single prototype function as in the case of the wavelet kernel for the continuous wavelet
transform (14). With these considerations in mind, one can define the coefficients of the wavelet series
by (56)

Cjm = /x f(:c)a,‘f;z//(af;z —nT,)dz (15)

where the sampling parameters a, and T, are constants and n € Z. The corresponding wavelet series

approximazion of the L, signal f is then given by

f@= Y D cintjnalz) (16)

jE-xnzT-oc

i .
where j € Z and ¥;..(x) = as ¥ (alx —nT,). Notice that the coefficients are obtained by discretizing
the dilation and shift parameters of the continuous wavelet transform. For this reason, Equation 15 is

often referred to as the Discrete Wavelet Transform, in which case the wavelet series approximation
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in Equation 16 becomes the means by which the signal f is reconstructed from its Discrete Wavelet
Transform. The idea, then, is to choose values of a,, T, and the mother wavelet ¥’(r) so that the
wavelet series approximation is close (under the L. norm) to the signal f using as few coefficients as

possible. (11).

From the standpoint of this research, there are two important points to make about Equations 15
and 16. First, generally speaking, the dilated and shifted kerne! in the discrete wavelet transform integral
(Equation 15) and the basis elements in the series approximation (Equation 16) are not necessarily the
same function. In order to form a wavelet series approximation, it is only required that the kernel
and corresponding prototype basis element are duals of one another (11). Throughout this research,
however, only identical kernels and wavelet basis elements will be considered. Second, the set {¢, ; }
is not necessarily an orthonormal basis for L»(R). It must simply be a “stable” basis, which may
introduce redundancy between coefficients in the approximation (11). In general terms, the amount
of redundancy in the series approximation is determined by the sampling parameter a,. If q, is set
equal to two and T is chosen to be one, as will be the case with this research, then, under special
circumstances for the choice of v, the wavelet basis set will be orthonormal (13). Assuming this
condition holds, the next section addresses how one constructs such an orthonormal basis set using a

wavelet Multiresolution Analysis.

2.2.3  The Wavelet Multiresolution Analysis in R and R®. A multiresolution analysis consists

of a chain of closed linear spaces V; which satisfy (11)

VaCcVacVycVicv,C--e a7
where
Uvi=L(®; NV, ={0} (18)
JjEZ j€Z
and

flz)eV; & f(z)eV: jeZ

flz)yeV, = f(:v+%)€Vj; nel (19)
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S. Mallat has shown that if the chain of subspaces in Equation 17 meets these requirements,

then there exists a unique “scaling” function ¢(x) € L,(R) such that {2'5¢>(21:r —n)|n€Z}isan
orthonormal basis for V; (often referred to as an approximation space) (39). Furthermore, denoting

the orthogonal complement of V; in V;.; by W, where
Vin=V, e W, (20

one can create a mother wavelet 1(x) such that {2%(2'z ~n) | n € Z} is an orthonormal basis
for W; (here ® indicates the direct sum). The spaces W; where j € Z are mutually orthogonal;
thus, by the denseness property of the multiresolution analysis the set of scaled and dilated wavelets
{2%4(2/z — n) | \j,n) € Z*} forms an orthonormal basis for L,(R). The scaling functions and the

mother wavelet are related by the “two-scale” recursion relations

Y hav3p(22 — n)

n=-—2>

Y() = Y guV28(2z —n) Q1)

n=—2c

¢(x)

where the coefficients h,, and g, are discussed below. W, is typically refeired to as the jth detail
space, because it captures the difference in signal information between the approximation spaces V;.,

and V;.

Approximation and detail signals are created by orthogonally projecting the input signal onto the
appropriate approximation or detail space. Since each space is spanned by an orthonormal basis set,
the signal projection onto a given approximation or detail space at, say, the jth resolution, is equivalent
(i.e., isometrically isomorphic) to the sequence of projection coefficients obtained by the inner product

operations

tjn = /x F(2)24(2 - n)dz

djn = /_if(x)z%z/;(w—n)dx 22)

where a; ,, and d; ,, represent the jth approximation and detail coefficients respectively. The coefficients

in Equation 22 are obtained through a convolution operation in which the output is sampled at the discrete
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Figure 3. Top: Haar scaling function and its Fourier Transform. Bottom: corresponding Haar wavelet
and its Fourier Transform.

LA

points 5>,

k € Z. Thus, based on earlier discussions regarding the continuous wavelet transform, one
might intuitively conclude that the projection operations onto the approximation and detail spaces can
be represented by low and bandpass filtering operations, where the width of the filters depend on the
dyadic scale 27 of the scaling and wavelet functions. Thie is indeed the case as demonstrated by the

frequency behavior of the Haar scaling function and wavelet contained in Figure 3 (39).

In practice, the wavelet multiresolution analysis is implemented with a pyramidal sub-band
coding scheme introduced by Mallat (39). Following Mallat’s approach, a discretely sampled version
of an L,(R) function, f(n), is projected onto the detail space W ; by capturing the difference in
information between orthogonal projections onto the approximation spaces V';.; and V ;. In this
scheme, the signal projections are represented by their respective projection coefficients; thus, the
algorithm is said to generate a Discrete-Space (or Time) Wavelet Transform (56). The approximation
and detail coefficients associated with V' ; and W ; (Equation 22) are generated from the approximation
coefficients at the next higher scale, V ;,,, using a Quadrature Mirror Filter (QMF) pair with impulse
responses h.,, and g, and a decimation-by-2 subsampling process. The impulse responses h,, and g,,
represent the coefficients in the two-scale relationships defined in Equation 21. Although there are

several possible ways to define the relationship between the impulse responses (14, 48), the relationship
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Figure 4. The magnitudes of the frequency responses of the Daubechies order a) 4 and b) 8 QMF
pair. Note how the transition region decreases as the filter order increases.

used throughout this research, is given by g, = (—1)'""h; _,,, where h,, is formed by computing the

inner product between ¢(3) and ¢(u — n).

Perhaps the most commonly used QMF pairs in the wavelet literature are those constructed
by I. Daubechies (14). Throughout this dissertation, a Daubechies filter pair will be referred to
as “Daubechies N” where N is the number of coefficients in the impulse response of the filter.
Daubechies’ filter pairs are easy to implement digitally because they have a finite impulse response
(FIR). Additionally, the transition region, A fr g, between a Daubechies filter’s passband and stopband
narrows as the order of the filter increases as shown by the frequency responses of the Daubechies 4
and Daubechies 8 QMF pairs in Figure 4. Since the h and g filter coefficients are tabulated for a large
number of filter orders (13), this allows one to easily change the filter’s cutoff frequency characteristics
to meet a given design constraint. Unfortunately, there is a major drawback to using Daubechies’ QMF
pairs for the type of image processing work done in this research effort: their frequency responses do

not have linear phase.

A FIR filter has linear phase if and only if its impulse response is symmetric or antisymmetric,
i.e., h(n) = £h(N —n) where N is the order of the filter (56). Daubechies QMF pairs are asymmetric,
thus they do not have linear phase. This can pose serious problems when the filters are used in image

processing applications (14, 16, 36). Edges and lines in an image are constructed from a sum of
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Figure 5. A cubic spline (top) and its corresponding wavelet (bottom), along with their Fourier trans-
forms. Both functions were generated recursively after truncating their impulse responses
h(n) and g(n) to 23 coefficients. Note the passband ripple in the Fourier transforms of
both functions as a result of the truncation process.

critically aligned 2D frequency components. A high-pass filter with a non-linear phase response can
unevenly disperse the frequency components that comprise the edge, causing a blurring effect that
reduces the quality of the high-pass filtering operation. Since it was not the purpose of this research to
develop a FIR, linear phase QMF design technique, when necessary, symmetric FIR filter pairs were
constructed by equally truncating the h and g impulse responses of a symmetric, IIR cubic-spline filter
pair. Examples of a symmetric cubic spline scaling function and its corresponding wavelet are shown
in Figure 5. The scaling and wavelet functions were constructed recursively from their respective
impulse responses after truncating the impulse responses each to 23 coefficients. Note that even after
truncation, the DC component of the wavelet remains approximately zero (i.e., the wavelet meets the
admissibility condition mentioned earlier). Also note the passband ripple in the Fourier transforms
of both functions as a result of the truncation process. A rigorous development of the theory and

construction of cubic spline QMF pairs can be found in Chui (11).

A binary tree structure for implementing Mallat’s 1D wavelet multiresolution analysis is shown in
Figure 6a). The binary tree serves as a “canonical” structure for extending the conventional algorithm to
multiple dimensions. In Mallat’s pyramidal coding scheme, the coefficients of the j + 1st approximation

level are simultaneously decomposed into the jth detail and approximation coefficients using the low-
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Figure 6. 1D sub-band coding algorithm for decomposing the coefficients of the 7+ 1st approximation
level into the coefficients of the jth detail and approximation levels. b) Regions of support
along the frequency axis of the approximation and detail signals.

pass and high-pass impulse responses h(n) and g(n). The regions of support in frequency space of
the resulting approximation and detail signals are shown in Figure 6b). By repeatedly convolving each
approximation signal with h(n) and g(n) and decimating the outputs by a factor of two, the signal
is decomposed into frequency bands whose bandwidths and center frequencies vary by octaves. In
the signal processing literature, the set of filters generated by multiple stages of the the pyramidal

decomposition algorithm is referred to as a two channel paraunitary QMF filter bank (48, 56).

One can also construct a separable orthonormal wavelet basis set for L,(R?) from the chain of

“2D” multiresolution approximation space: {V'; | j € Z}, where V' is defined by (13)

V=V @V} =Span{F(z,y) = f(z)g() | f € V7,9 € V}} 23)

F(x,y) eV, & F(2z,2y) € V1, (24)

where V/* and V]-y are identical “1D” approximation spaces (i.e., they are spanned by the same scaling
function). Here, the 2D scaling function for V' ; is formed from the product of both identical 1D scaling

functions, and the wavelet orthonormal basis for the orthogonal complement W ; is given by three
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wavelets

‘Ilj (z,y) = 2¢(2z)p(2’y)

Viz,y) = 29%(2z)e(2'y)
Uiz,y) = 292 z)¢(2'y) (25)
The family of wavelets
{(¥8(z —m,y-n)|j€Z; (mn)€Z? p=1,2,3} (26)

then forms an orthonormal basis set for L,(R?). Through a straightforward extension of the 1D binary
tree structure, one obtains the 2D “quad tree” wavelet multiresolution decomposition algorithm as
shown in Figure 7a). Here A;f and D} f,n = 1,2,3 denote the projection of the L,(R?) image,
f. onto the approximation space V; and detail spaces, W}, W7, and W spanned respectively
by the wavelets {¥} | p = 1,2,3} (40). Figure 7b) shows the frequency support of the separable
approximation and detail filters used to decompose the 2D image approximation A;,,f into the

approximation A; f and the details D}

, D]2~ and D;‘. Notice that the 2D wavelet decomposition process
can be interpreted as a “signal decomposition in a set of independent, spatially oriented frequency
channels” (40). In Chapter I1I, the 2D wavelet multiresolution analysis is extended to three dimensions
to produce a new signal decomposition tool in which a set of spatio-temporally oriented frequency
channels are used to analyze movement in 3D imagery. In the following section, several traditional

methods for performing this task are reviewed and compared.

2.3 Traditional Methods for Computing Optical Flow

Optical flow is the apparent motion of three-dimensional objects as represented by changing
brightness patterns in a 2D image plane. Algorithms designed to compute optical flow attempt to
assign a velocity vector to each point in a sampled 2D image plane based on the apparent speed and
direction with which brightness patterns move across the image plane. Because optical flow is deduced
from the gray-scale content of an image, rather than directly sensed, optical flow computations are

often highly susceptible to pixel scintillations caused by noise sources in the imaging process.
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Figure 7. a) Stephane Mallat’s 2D discrete multiresolution decomposition algorithm. b) Frequency

support of the 2D decomposition of the approximation image A;,, f into A, f and the
detail images DY f; p = 1,2,3 (40).
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Optical flow representations are used for a wide variety of applications. Humans, for example,
may generate an internal optical flow map as evidenced by our ability to segment moving objects in a
monocularly viewed random dot field in the absence of non-motion cues, (30). Optical flow velocity
fields are also used to solve the so-called reverse optics problem, where one must deduce the 3D structure
and/or motion of real world objects based on changes in their 2D image projections (28, 4, 38).
Additionally, some interpolative and predictive video compression schemes use velocity fields to
reduce the transmission overhead of television signals (29, 32). More recently, researchers have
begun to examine the use of optical flow as a means of segmenting objects in changing 2D imagery
(3, 44). Finally, optical flow has been used in automated image understanding algorithms to determine

navigational parameters such as time-to-adjacency and time-to-collision (5).

Optical flow computational methods are generally divided into three categories. The first
method, often referred to as the correspondence technique, attempts to match blocks of data from one
time frame to the next. These blocks may contain gray-scale intensity values (point correspondence)
or they may consist of pre-extracted features such as edges or corners (feature correspondence) (33).
Correspondence techniques typically attempt to minimize an energy measure that depends on block
locations in two subsequent image frames. The second method computes the velocity field by measuring
the spatial and temporal intensity gradients surrounding each point in a changing 2D image (3, 4, 26, 27).
These measurements are ambiguous in that they produce one equation at each point in the image which
must be solved for the velocity components in the z and y directions. Therefore, spatio-temporal
gradient techniques must further constrain the velocity field to generate a second equation. Typically,
the constrained problem is solved using a variety of optimization techniques. The third method
employs spatio-temporal Fourier phase and frequency information to compute optical flow. Fourier
phase-based computations rely on the well known Fourier transform property that converts shifts in
the spatial domain to linear phase terms in the frequency domain (23, 31, 33). Since digital phase is
phase wrapped between —m and w, these techniques require phase unwrapping routines to compute
the velocity of an object whose movement generates phase shifts greater than 27. Finally, Fourier
Sfrequency methods compute optical flow using spatio-temporal frequency information (1, 19, 25, 58).

Various approaches that fall into each of the above categories are reviewed in the following sections.
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2.3.1 Feature Correspondence. Historically, the computation of a 2D velocity flow field
has been considered to be a correspondence task (33). That is, after determining the locations of a
corresponding pair of features in two subsequent time frames, a displacement vector is assigned to
the spatial coordinates underlying these features. The set of features used in the computation vary
from a block of gray-scale intensity values, to a complex arrangement of edges, corners, textures, or
colors. Features can be extracted using a feature matching template in a pre-processing stage, or, under
a more general scheme, they can be chosen arbitrarily by capturing data that exceeds a highly localized
contrast detection threshold (33). In any case, the features and their respective spatial coordinates in
one time frame are compared with a feature list from the subsequent time frame to find the best match.
The spatial displacement between the features is then divided by the interframe time interval to obtain

the optical flow for the points in the scene that correspond to the moving features.

Another common optical flow computational method that falls loosely into the category of feature
correspondence is called block-matching. This technique is often used in motion-compensated video
coding schemes. “Features” in this case are actually gray-scale intensity values contained in a block of
pixels (i.e. a pel) of some pre-defined size. Each pel in a time frame is compared with all pels in the
next time frame to locate the point that provides the best match between corresponding pel pairs. After
assigning a velocity vector to every sample point in, say, a 2D video image array, one can theoretically
reduce the transmission overhead of the video imagery by transmitting the original image frame once,

and updating it at the decoder with a subsequent set of block-matched displacement vectors.

The measuring stick with which features or blocks are matched between frames varies; however,
in most cases, the corresponding feature locations are required to minimize some cost function. A
simple example of a standard block matching cost function minimization scheme is one which searches

for the optimum pair of spatial coordinates (d;, d,) that minimize

E= Y [bp(n—di,m—d;) —be(n,m)] (27)

(n.m)EB,
where b, and b,, are blocks of equal dimension in the current and previous frames, and B, represents
the compact region of support of the block (23). In order to increase the efficiency of the matching
algorithm, more sophisticated feature correspondence methods often take into account local and/or

global motion constraints.
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Figure 8. Pictorial representation of four common constraints used in optical flow computations (5).

Ballard lists several of the more common motion correspondence constraints for image frames
separated by small time intervals. These are depicted in Figure 8. The maximum velocity constraint
assumes a maximum velocity v,,,, for each object in the scene. The maximum displacement of
any object then is simply v,,,; At where At is the interframe time interval. Knowing the maximum
displacement allows one to limit the best-match search space. The second heuristic is based on the
laws of physics which preclude the velocity of objects with finite mass from making discontinuous
changes over small time intervals. The third constraint assumes that rigid objects exhibit common
motion between frames. The final constraint assumes that two points from one image cannot match a
single point from the next image. The primary problem with each of these constraints is that they all
assume motion “sinks” and “sources” are absent from the scene (5). This assumption tends to increase
the sensitivity of the algorithms to natural phenomena found in military imagery such as noise and
occlusions. It is shown in Chapter V that the wavelet-based optical flow algorithm developed in this

research functions well despite the presence of these phenomena.

2.3.2  Spatio-Temporal Differentiation. ~ The spatio-temporal gradient approach to computing
optical flow measures the first order spatial and temporal gradients around each spatial coordinate ia
a sequence of densely sampled imagery. These measurements yield the component of motion in the
direction of maximally increasing intensity. The motion component that lies perpendicular to the spatial

gradient is then determined using a variety of constrained optimization techniques. In this section, the
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spatio-temporal gradient optical flow algorithm as originally developed by Horn ¢/. al. is presented,
along with a brief explanation of an important problem that impacts the motion analysis approach

developed under this doctoral research - the aperture problem.

When an object moves in a scene, it generates a changing intensity pattern across the retina,
or image plane, of the viewer. If the object moves with constant velocity components (u,v) in a
time interval ¢, the intensity of a single point in the image plane can be represented by the function
flx+ bz, y + by,t + 6t) where bz = uét, by = vét and the velocity vector (u, v) represents the

velocity of the object at the point , y. Expanding this function in a Taylor series then yields

flz + b6z, y+ by,t+ 6t) = f(z,y,t )+—'—f-6 +8f fé

Or Oy 6 t @8

where the higher order terms have been ignored and the partial derivatives are evaluated at (x,y,t). The
key assumption made in the optical flow derivation is that the intensity of a point x + éx,y + by at
time t + 6t is identical to the intensity at x,y,t. That is, the moving pattern (or point in this case)

simply shifts position in time. This assumption implies
f(z +bz,y + by,t + 6t) = f(z,y,1) (29)

Cancelling terms in Equation 28, dividing by 6t, and letting &¢ go to zero then gives,

Bf__a_fdm of dy
T8t oz dt+3y dt (30)

da: _y : _ dr . dy
where the velocity of the moving point is specified by the terms 57 and Z¥. Lettingu = $-andv = %,

Equation 30 can be written as

_of _of | of
FrR = @D

Or, representing the velocity components by the vector u,

of _
-5 =Vfu (32)

where V f is the spatial gradient of the image. Equation 31 has an interesting interpretation. It implies

that if a viewing point in the image plane is held fixed, the time rate of change in intensity of the image
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Figure 9. Direction ambiguity induced by a moving edge as seen through a circular aperture. The
motion computed by Equation 32 is consistent with any of the shown velocity vectors (47).

point equals the spatial rate of change at the point multiplied by the velocity with which points in the

scene move past the fixed viewing point.

The primary problem with the optical flow model as expressed in Equation 32, is that it is
underconstrained (i.e., it yields only one component of motion in the direction of maximally increasing
intensity). This shortcoming in the spatio-temporal gradient approach is often referred to as the
“aperture problem” (47). For example, consider the moving brightness contour (edge) in Figure 9.
Equation 32 gives the magnitude of the velocity component in the direction normal to the moving edge
(i.e., the direction of V f); but, it does not provide any information about the magnitude of the velocity
component lying parallel to the edge. Therefore, the actual direction of the movement is ambiguous
and could lie along any of the vectors shown in the diagram. This same problem exists for a human
observing a moving edge through an aperture. When the edge moves in a direction parallel to its

boundary, it appears stationary to the observer.

The underconstrained spatio-temporal gradient flow model represented by Equation 32 is com-
monly solved by first imposing one or more of the motion constraints described earlier, and then
solving for the velocity at each point in the scene using various combinatorial optimization techniques
(4, 26, 27). Perhaps the most commonly used method imposes a non-linear, spatial smoothness con-

straint on the velocity field. This constraint, which requires that neighboring points in the image plane
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have similar velocities (similar to the “physics” constraint introduced in the previous section), attempts

to minimize the square of the magnitude of the gradient of the optical flow velocity:
2 2 2 2

)G = &) +GE) ®
In reality, however, neighboring points do not necessarily have similar velocities (such as at
an object boundary or at an occluding edge); thus, in these instances the smoothness constraint leads
to inaccurate velocity estimates. E. Hildreth (26) attempted to solve this problem bty computing the
velocity along boundary contours; however, her approach imposes a velocity smoothness constraint
along the arc of the boundary that also leads to inaccurate motion estimates (4). Other problems
commonly associated with the spatio-temporal gradient approach as implemented by Horn er. al.
include 1) it does not allow discontinuities in the velocity field that occur when a moving object is
temporarily occluded, and 2) imposing a smoothness constraint requires the computation of second
order spatial derivatives which magnify noise in the scene. The motion estimation approach developed
in this research performs better under these conditions by combining the flow “averaging” effects of

the wavelet ransform with the cooperative-competitive flow correction properties of a gated dipo'e

filter (see Chapter V).

2.3.3 Fourier Phase Approach.  The Fourier phase approach computes the optical flow of an
object moving across a 2D scene by measuring the phase change associated with a purely translational
shift in = and y over time. The approach takes advantage of the shift property of the Fourier transform
which states that a shift in the spatial domain corresponds to a linear phase ter in frequency domain.
Or, more formally, (33):

Fourier Shift Property: If F(u,v) = F{f(z,y)} and g(x,y) = f(z — a,y — b), then
G(u’ ‘U) = f{f(.’c —-a,y— b)} = F(U, v)e—iZﬂ’(tm—Qf—vb)'

The Fourier phase approach generally works in the following way. Let f(m, n) represent a discretely
sampled signal traveling with a constant velocity. If the amplitude and pbase of the DFT of f(m,n)
are given by A;(k, ) and ¢;(k,!) respectively, and if f translates a discrete distance Am, An in time

At across an M x M image plane, then the above shift property implies the phase difference over the
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discrete time interval can be expressed by

A¢(k)l) = ¢f(kvl)—‘¢q(kvl)
2rk 2l

= ¢f(k,l)_(¢f(kyl)—(vl3m+ ﬁAn))
2wk 2l
= “'ATI'-Am-F HAYI (34)

If the phase change is known at two frequencies, Equation 34 can be solved for Am and An which can
then be divided by At to yield the velocity of the object. Equation 34 holds for a single object translating
across an image plane (31). If multiple objects are present, the standard technique is to subdivide the
scene into non-overlapping blocks and compute the phase shift within each block. Additionally, if
noise is present in the scene, Equation 34 can be evaluated at several different frequencies (using a

least-mean-squares method, for example) to find the shift parameters that best fit the phase data (23).

The primary problem with :ae Fourier phase approach lies in the ability to accurately estimate
the phase shift in Equation 34. If the object displacement over the time interval At is large, the change
in phase may be larger than 2w. Because the DFT wraps phase between —7 and 7, discrete phase
measurements of a fast object may yield a gross underestimate of the actual velocity. One approach to
this problem is to evaluate Equation 34 at low frequencies where the longer spatial frequency periods
allow larger displacements over time before the phase periodically repeats. This approach, however,
prevents the accurate estimate of localized motion parameters. The optical flow algorithm in Chapter V
overcomes this problem through the use of spatio-temporal wavelets which are localized 1n space and
time. Another approach is to employ a phase unwrapping routine to unwrap the true phase difference
from the measured, periodic phase components. Unfortunately, these routines rely on user-defined
thresholds which make them difficult to generally apply to natural image sequences. For a good

example of a phase unwrapping routine see Oppenheim and Schafer (46).

2.4 Motion Analvsis Using a Spatio-Temporal Frequency Approach

Experimental studies of motion analysis in the human visual system imply motion information
is processed by the brain in parallel channels, each of which is selective for a specific location,
spatial frequency, and velocity. Several researchers have attempted to model this behavior using a

spatio-temporal Fourier analysis technique which decomposes a moving object into patc. s of oriented
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sinusoids moving past an image plane region at some temporal frequency (15, 25, 57). This section
reviews several key concepts associated with the computation of optical flow using spatio-temporal
Fourier frequency measurements, beginning with a discussion of the connection between spatio-
temporal frequency (STF) and the velocity of a 2D object moving across an image plane. It is shown
that an STF component can be interpreted as a 2D sinusoid with a fixed spatial period and orientation
moving with a constant velocity proportional to its temporal frequency. Furthermore, the Fourier
transform of an object moving with constant speed and direction can be represented by a plane in
Fourier frequency space. Finally, a relevant frequency filtering technique is described which uses STF

information to compute optical flow.

Consider the single spatio-temporal frequency component shown in Figure 10a). If the frequency
component is expressed as the delta pair §(f; —a, f, — b, fi —¢) + 8(f. + a, f, + b, fi + ¢), then

its inverse Fourier transform is given by the traveling wave:
f(z,y,t) = cos(az + by + ct) 35)

where the amplitude of the inverse transform has been ignored. If the time-dependent cosine is
evaluated at ¢ = 0, then, following Goodman (21), it can be represented by a family of parallel
lines of constant phase as shown in Figure 10b). Here, each line represents a locus of points along
which cos(az + by) = 1 or, equivalently, az + by = 2kw, k = 0,1,2,.... The velocity of the
wave is depicted by the vector, V, drawn perpendicular to the lines of constant phase in Figure 10b).
Assuming the z and y velocity components of V are given by v, and v,, the traveling cosine wave can
be expressed as

f(z,y,t) = cos(a(x — vst) + by — v,t)) (36)

where ¢ has been defined by ¢ = —av, — bv,. Combining the ratio %l = % obtained from like
triangles in Figure 10b), with Equations 35 and 36, yields the following relationship between the

velocity components of the wave and the spatio-temporal frequencies (a, b, c)

_ ac
T B
be
o= T aZ + b2 (37)
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Figure 10. a) Delta pair in spatio-temporal frequency space. b) Lines of constant phase associated
with inverse Fourier transform of delta pair in part a).

Thus, the spatial frequency pair (a, b) define the pitch, orientation and direction of the traveling wave,
while its speed is directly proportional to the temporal frequency ¢ (19). This implies, a 3D sequence
of images can be constructed from the summation of appropriately shifted and scaled 2D sines and
cosines moving at different speeds. Now consider the behavior in spatio-temporal frequency space of

an object, rather than a single spatial frequency, traveling across a 2D image plane.

Assume a stationary object is imaged onto a viewing plane and that the intensity of the object
at some point in the image is described by the function f(z,y) (i.e., its intensity does not vary with
time). Next, assume the object translates along a linear trajectory with constant velocity (v, v,). The
motion of the intensity pattern as it sweeps across the image plane can then be modeled by the function

f(z —v,t,y —vyt) (58). Now consider the spatio-temporal Fourier transform of this function.
o< .,
F{f(z —vt,y —v,t)} = /// fz = v t,y — vyt)e 2=t uwt /i) dadydt (38)
where f., f,, f. are spatial and temporal frequencies. Using the substitution variables

P = -t

g = Y-yt

the Fourier transform of the moving object can be expressed as

Fiia-vty-v)} = [[ [ 1@ qeitwrmtnano i
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= [ PU, ettty
Fferf,)-8(fi 4 vefe + 0, 1,) (39

1

where F(f., f,) is the Fourier transform of the stationary object f(z,y). Equation 39 implies that
when an object moves in space with a constant velocity, each spatial frequency component of its
static Fourier transform (i.e., its Fourier transform when stationary in space) simply shifts along the
temporal frequency axis by the amount v, f, + v, f,. To help visualize this behavior, consider the one

dimensional function shown in Figure 11.

Figure 11 a) shows a stationary rectangle function, rect(z,t), in an image plane coordinate
system . Since the function is stationary and the shape of the rect does not change in time, its spatio-
temporal Fourier transform (Figure 11 b) is restricted to the f, axis. In Figure 11 c), the rectangle
moves with some constant velocity v,. The Fourier transform of the moving rect, shown in Figure 11
d), is then given by F'(f.)-6(f.+v. fz). Thus, constant velocity motion in one spatial dimension shifts
the Fourier transform of the stationary object to a line in 2D spatio-temporal frequency space defined
by ft = —v. f.. Similarly, constant velocity motion in two dimensions shifts the Fourier transform of

the object onto a plane in 3D frequency space defined by f; = —(v. f. + v, f,) (see Figure 12).

A single temporal frequency component in the “velocity” spectrum of the moving object can

also be expressed as

ft = —(U:fz"'vyfy)
= —v- f
= —vfcos(fd —a) (40)

where v and 6 are the speed and direction of motion respectively, and f and o are the magnitude
and direction of the spatial frequency f., f,. Equation 40 specifies the magnitude of the velocity
component lying in the direction of the spatial frequency. As one equation in two unknowns (v and 6),
it cannot unambiguously identify the velocity of the moving object. That is, like the spatio-temporal

gradient approach, this method also suffers from the “aperture” problem.

31




Figure 11. a) and b) Stationary one dimensional rectangle function and its spatio-temporal Fourier
transform. c) and d) Rectangle function moving with constant velocity, v, and its Fourier
transform.
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Figure 12. Dashed lines outline plane generated in 3D spatio-temporal frequency space by a two
dimensional object moving with constant vertical velocity. Circles illustrate shift of a
single frequency component.

One possible way to solve this problem is to measure the temporal frequencies f!, fZ associated
with two different spatial frequency pairs f, f, and f2, f2. This generates two equations which can
be used to simultaneously solve for the two unknowns v, and v,. In previous efforts, researchers have
filtered the time varying image with a bank of spatiaily localized spatio-temporal filters (e.g., Gabor
filters), where each filter is tuned to a different spatial and temporal frequency as shown in Figure 13
(25, 58). As an image moves past a receptive field, the spatio-temporal filters that match the texture
content and speed of the image at a given location will activate, yielding several spatial and temporal
frequency triplets which can then be used to determine the velocity vector associated with that receptive

field.

The major advantage of the Fourier motion analysis method is that it solves the aperture problem
without imposing the artificial constraints used in the spatio-temporal gradient optimization approach.
This has the potential of making the technique less susceptible to noise, and more accurate at velocity
boundaries such as occlusions or object edges in the scene. Additionally, the Fourier technique more
closely models the early stages of the human visual system by creating individual motion detection
channels that select for a given spatial frequency, direction and speed. The major disadvantages
associated with existing STF approaches are 1) they rely on “heuristic” filter banks that provide

little control over important inter-dependent filter design characteristics such as filter overlap, filter
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Figure 13. Bank of spatio-temporal Gabor filters used by Watson and Ahumada to compute local
velocity components (58).

bandwidth, and space/spatial frequency localization, 2) they employ short-time Fourier transform
techniques that limit their analysis to a fixed resolution in space and time, 3) their filter designs cannot
be easily modified to match the design constraints imposed by different problem scenarios, and 4) their
flow computation algorithms have not been demonstrated in the presence of noise. The spatio-temporal
frequency approach developed in the following chapters overcomes these problems through the use
of a rigorous, wavelet-based mathematical framework and a cooperative-competitive flow restoration

methodology.

2.5 Conclusion

Conventional methods for characterizing motion in 3D imagery are susceptible to noise and
require the use of motion constraints that reduce their accuracy at boundaries where the velocity
field is discontinuous. Spatio-temporal frequency techniques overcome many of these problems by
computing optical flow from multiples image frames. Current spatio-temporal frequency techniques
employ “heuristic” filter banks that are not easily adaptable to natural imagery. Additionally, these
methods are based on the Short Time Fourier Transform, which restricts the analysis to a single
scale in space and time. Finally, both the spatio-temporal gradient and spatio-temporal frequency
motion analysis methods are computationally expensive. The wavelet multiresolution analysis yields
a mathematically rigorous method for decomposing an image into a sequence of approximation and

detail spaces that capture unique object characteristics at multipie spatial scales. It is implemented as
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a fast, sub-band coding scheme which generates a non-uniform filter bank of independent, spatially
oriented frequency analysis channels. In the following chapters, the 2D multiresolution analysis will
be extended to three dimensions to yield an efficient algorithm for decomposing 3D imagery into a set
of spatio-temporally oriented frequency channels. The conventional 3D multiresolution analysis will
be modified to enhance the flexibility of the separable filter design process and to increase the motion
selectivity of the analyzing wavelets. Unlike existing motion analysis algorithms, the modified 3D
wavelet decomposition algorithm allows one to rapidly compute optical flow over muitiple scales in
space and time, thereby creating a powerful tool for extracting moving targets in a scene based on their

size, speed and direction.
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II. A Wavelet Multiresolution Analysis for L,(R?)
3.1 Introduction

Although Y. Meyer developed the general theory for wavelet multiresolution analyses in L, (R™),
his work does not provide details for actually constructing orthonormal wavelet bases for these spaces.
Additionally, previous instantiations of Meyer’s wavelet multiresolution analysis dealt exclusively with
one and two-dimensional signals (14, 39). Thus, this chapter begins by extending Mallat’s theorems
for the construction of wavelet orthonormal bases for L,(R) and L,(R?) to the space of finite energy
spatio-temporal signals, L,(R?). It is shown that a separable wavelet orthonormal basis for L,(R*)
consists of a set of seven dyadic wavelets evaluated over all possible integer shifts and dilations. The
second section of the chapter presents an “oct-tree” sub-band coding scheme for implementing the
Discrete Spatio-temporal Wavelet Transform. The algorithm generates a bank of octave-band filters
such that each filter possesses uniform spatial and temporal frequency characteristics. The sub-band
decomposition algorithm is then applied to a set of synthetic 3D imagery to demonstrate its ability
to extract vertical, horizontal or diagonal features from moving or stationary targets. The chapter
concludes with a discussion of the advantages and disadvantages of using the “conventional” wavelet

multiresolution analysis for 3D motion analysis.

3.2 Orthonormal Wavelet Basis

The vector space L, (R*) consists of all functions, f(z,y,t) such that

///_Z |f(z,y,t)|*dzdydt < oo 40

A wavelet multiresolution analysis for L,(R*) consists of a chain of approximation spaces, V/, that
differ in resolution by a factor of 27 in each of the three dimensions z, y, and t. These spaces satisfy an
extension of the L,(R) multiresolution analysis properties listed in Section 2.2.3. In particular, their
union is dense in L, (R?) and their intersection contains only the zero element. Like the multiresolution
analysis for L,(R), the approximation of a three-dimensional signal at the jth resolution level is

obtained by orthogonally projecting the signal onto V';. The details between the jth and j + st
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approximations are captured in the detail space W ; where
Via=V, oW, (42)

and & denotes the direct sum operation. Each of the approximation spaces contains a three-dimensional
scaling function ¢(2/x, 2’y, 2/t) where the set {¢(2’z — 1,27y —m, 2/t —n) | ({, m,n) € Z°} forms

an orthonormal basis for V' ;.

V ; isaclosed, linear subspace of L;(R?), and is formed from the tensor product of three identical
L,(R) approximation spaces (42). The term “identical” here implies each space is constructed from
the same scaling function. If V/, V;/ and V' are identical approximation spaces in L(R), then the jth

approximation space in L,(R®) is defined by

V=V @V @V, =Span{F(z,y,5) = [ @)s)h(t) | € V7, g € VP and h € V] (43)

where ® denotes the tensor product operation. The unique scaling function for V' ; is given by the

separable product
®(z,y,t) = ¢(z)d(y)b(t) (44)

where ¢(x), #(y) and ¢(t) are identical scaling functions in L, (R). It is not difficult to show that the
set {27 ¢(27z — 1)¢(2y — m)$(27t —n) | (I,m,n) € Z°} then forms an orthonormal basis for V.
Furthermore, if 1(), ¥ (y) and ¥ (t) represent the wavelets generated by the L,(R) scaling functions
#(z), ¢(y) and ¢(t), then the following theorem shows one can construct dyadic wavelet orthonormal

bases for W ; and L,(R?) from seven sets of scaled and shifted “wavelets.”

Theorem 1. Let v be the one-dimensional wavelet generated by the scaling function ¢. Then

the seven “wavelets”

Vi(z,y,) = 2¥¢(22)(27y)u(2')
Vi (z,y,t) = 27 9(2z)p(2y)p(2'1)
V(z,y,t) = 27 p(Da)y(2y)p(2t)
Vi(z,y,t) = 279(22)p(2y)p(271)
Vi(z,y,t) = 279(22)p(2y)p(2t)
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Vo(z,y,t) = 279(2z)9(2y)d(2't)
Viz,y,t) = 2F9(2z)p(2y)y(2't) 45)

are such that for each j € Z, {¥¥(z —~ I,y —m,t —n) | (I,m,n) € Z% p =1,2,...,7} forms an
orthonormal basis for W' ; and the set {¥% (¢ —1,y—m,t—n) |j € Z; (I,m,n) € %, p = 1,2,..., T}
forms an orthonormal basis for L,(R?).

Proof. Let V;, j € Z, be a multiresolution approximation of L,(R*) formed by the tensor

product

V=V V@V =Span{F(z,y,t) = f(z)g(y)h(t)| f € V7, g€V} and h € V}} (46)

where V7,V and V} are multiresolution approximations of L;(R). Let W7, W} and W} be the

orthogonal complements of the closed, linear spaces V> C V75, V¥ C V%, and V! C V/, . Then

Vi = Vi1 ® VﬂH ® V;t+1

= W7eVy)e(We V) (W;eV)) 47)
The right hand side of Equation 47 can be rewritten as follows

RHS = [W/@W/oW/e[W oW/ Ve [W: Ve W)
& WreoVieVi]e[VieW!eW|e[VieW!eV/]

e [VfeVieWw]e ViV eV]] (48)
Since V; = V7 ® V! ® V!, the orthogonal complement, W ;, of V'; in V' ;,, can be expressed as

W;=Vu-V; = [W/eW/eWje[W;eW!eV/|e W oVeW]]
& WieV/eVile[VieW!eW/|e[V;eW! e V)|

o [VfeoVieWw]] (49)

The sets of functions {21 ¢(2/z —1) |1 € Z}, {26(27y—m) |m € Z}, and {23 $(2/t—n) | n € Z},
form orthonormal bases respectively for the L (R) approximation spaces V7, V¥ and V. Additionally,
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the sets of functions {23 (2/z —1) |1 € Z}, {2¥(2’y—m) |m € Z},and {29 (2/t —n) |n € Z},
form orthonormal bases respectively for the complementary spaces W7, W and W/. Thus, the set of
functions {¥¥(z — [,y = m,t — )| (I,m,n) € Z% p = 1,2, ..., 7} forms an orthonormal bases for

W ;. Furthermore, the fact that L,(R’) can be formed by the direct sum decomposition

Dw, = L.(®) (50)

jez

implies the family of functions {¥¥(z — I,y — m,t —n) | j € Z; (I,m,n) € 2% p=1,2..,7}

constitutes an orthonormal basis for L, (R?). Q.E.D.

The approximation and detail signals at the jth resolution are obtained by orthogonally pro-
jecting the signal onto either V; or W ;. Now, consider the projection of the signal onto V ;. If
Gitomm (T4, 1) = 2¥$(2z — 1)¢(2/y — m)@(2/t — n), then the orthogonal projection, A, f, of

the signal f onto the approximation space V'; can be represented by the series

A]f = Z Z Z aj:(l,m.n)¢j:(l.m.n) (51)
I m n

where the projection coefficient a;,(; ;. ..) is given by the inner product of the signal with the orthonormal

basis element 2% ¢(2z — 1)¢(27y — m)p(27t — n), ie.,

Qj.(lmn) = \//“[Zgo f(:l', Y, t)2%’.¢(2]$ - 1)¢(2}y - m)¢(2lt - ")d-’ﬂdydt (52)

The orthogonal projection of the signal onto the jth detail space, W ;, is obtained in a similar manner;
however, the signal must now be projected onto each of the seven basis subsets described in Theorem
L. Thus, if ¥7 ;.. .. (2,9, t) = ¢ (z — 1,y — m,t — n), then, by Theorem 1, the detail signal D; f

can be expressed by the series

Dif = Zl: 22 it Pritomam (33)
m n p

where p = 1,2, ..., 7 and the detail coefficients d;?:( 1.m.n) &r€ given by the seven inner products

Bimm = [ [ [ feut2%8@e - 002y = mpp(2it - n)dudyds
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Lomn = [ [ [ 1@u02¥ 62z~ hu(@y - mis(2t - nidedyat
Bumn = [ [ [ fm02%0@e - 0p@y - mpp(2t - ndedyd
Boiner = [ [ [ 1@u 0200z - o2y - mipt - m)dedyat
&y = ///_Z f(z,9,02F (P z — D2y — m)p(2t — n)dzdydt
Boimm = [ [ [ 1@wn2¥o@e - u@y - mio(t - n)dzdydt

Smm = [ [ [ f@w02¥o@e - hp@y - mu(@t - ndedydt 9

Since the sets of shifted scaling functions and wavelets form orthonormal bases for the approxi-
mation and detail spaces V'; and W ; respectively, the signal projections onto either of these L, spaces
are uniquely and completely represented by the I, coefficients in Equations 52 and 54. The next section
describes a pyramidal algorithm that enables one to quickly and efficiently compute these coefficients

for multiple spatial and temporal scales from a sampled version of the input signal.

3.3 Discrete Multiresolution Decomposition Algorithm

This section describes a fine-to-coarse digital algorithm for computing the approximation and
detail coefficients associated with an L,(R?) wavelet multiresolution analysis. The algorithm is
constructed through an extecsion of Mallat’s 1D decomposition algorithm (40). It begins by assuming
the sequence obtained by sampling the signal in z,y and ¢ represents the coefficients associated with
the orthogonal projection of f onto the “zeroth” approximation space V4. The coefficients of the next
lower resolution approximation and detail signals, A_; f and D _, f, are computed first by convolving
the discrete input signal with the 3D separable QMF pair derived below and keeping every other sample
in z,y and ¢ (i.e., decimating the output by a factor of two). This process is repeatedly applied to the
approximation coefficients generated at each resolution level to obtain the detail and approximation

coefficients at successively lower levels.

Since the chain of approximation spaces {V; | j € Z} forms a multiresolution analysis in
L,(R?), the first property in Section 2.2.3 guarantees that V; C V,,, for all j. This implies that
for any triplet (I, m,n) € Z°, the basis element 2% ¢(2/z — 1)¢(2/y —~ m)$(2/t — n) in V; can be




expanded in the orthonormal basis of V' ;. ,. Therefore, one can write

¢(2°z — 1)p(2y — m)p(2't — n) = 2°U+Y Z Z Z $(2u - 1)(2’v — m)p(Qw — n),

$(2 u ~ p)p(2 v ~ )¢ (27w )> (2’“1 —P)o(2 Y — g)p(2T t ~ 1) (55)

where p, g, € Z. Expanding the inner product in the above expression in its integral form then gives

P (. )—23<J+”/// B(2'u — 32w — m)d(2'w — n)]
(B2 u - p)g(27 v — 9)¢(2H w — r)|dudvdu (56)

Using the variable substitutions

-g = 2u-1

b .

5 = v —m

% = Yw_n 57)

the right hand side of Equation 56 can be rewritten as
at b
[ [ [ 638060~ @ - 20)6(6 ~ (g = 2m))d(e = (7 — 2n)|dadbde  (58)
Next, defining the function h by
me) = [~ 6oy - 2)dy (59)

the right hand side of Equation 56 can be combined with Equation 59 to yield the following expression

for the arbitrary basis element 2%‘145(21'1 —Dé(27y —~ m)p(2t — n)

27 §(2z — 1)p(2y — m)$(2t —n) =
YD A2l — p)h(2m — q)h(2n — r)p(27* 1z — p)p(27Hy — q)(27Ht — 1) (60)
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where h(z) = h(—z). In order to obtain the coefficients associated with the signal projection onto

V ;, one can form the inner product of f with the arbitrary basis element in Equation 60 as follows

Qj:ilonn) T <fa 2‘?¢(2JI - l)¢(2jy - m)¢(2Jt - n))

= Y 3 3 h(2 - p)h(2m — 9)h(2n - r)(f,$(2' "z — p)(2 'y - g)o (27 — 7))

= Z Z Z ;1(21 - p)f_l(?.m - ‘1)}—1(2" = 7)1 1pagr)

= [ajs1p.grm * A(p) * h(q) * h(r)] (21,2m, 2n) (61)

[l

where “x” is the discrete convolution operator. Equation 61 shows the discrete representation of the
orthogonal projection of the signal onto the approximation space V; can be obtained by discretely
convolving the coefficients of the projection onto the next higher resolution level, V', ,, with the
separable impulse response h(—p)h(—gq)h(—r) and keeping every other sample in each dimension.
Next, a similar procedure is used to derive the coefficients associated with the orthogonal projection onto
the detail space, D} spanned by the functions (2% 9(2z-D)y(2y—m)y(2't—n)| (I, m,n) € Z3}.
These results can then be generalized to compute the coefficients associated with the projections onto

the remaining detail spaces D} — DS.

Recall that the approximation space V ;. , is formed by the direct sum of V'; and W ;. Thus,
W ; is contained in V', and any basis element in W ; can be expanded in the orthonormal basis of

V ;+1. In particular, the W ; basis element ¥(2'z — 1)9(2/y — m)¥(2’t — n) can be written as
J J

Y@z — DDy - m)p(Ft —n) = 20V YN S w(2u - DY(2v - mpy(2w - n),

(2w~ p)p(27H v — q)B(27  w — 1))p(27 T — p)p(2H y — q)p(2F 1t — 1) (62)

Using the variable substitutions in Equation 57 and following the same procedure used earlier, the inner

product in the above expression becomes

///:W%W(g)«ﬁ(%)]w(a —(p—20))é(b— (g — 2m))¢(c ~ (r — 2n))]dadbdc  (63)

42




Defining the impulse response g(z) by
_ [T ..Y
s@)= [ vl - 2y (64)
and combining it with the integral in Equation 63 yields

2% 92z — Ny (Py — m)Y(2/t —n) =
Z Z Zg(m p)3(2m — )g(2n — r)p(27* 'z — p)(27M 'y — @)(2 1t — 1) (65)

where §(z) = g(—z). The detail coefficients for the orthogonal projection onto D] are now obtained

by taking the inner product of f with the W ; basis element 27 (27z — 1)1(27y — m)4(27t — n) as

follows
Cpmmy = (279272 — Y27y — m)y(27t — n))

= Y 3> 52 -p)a2m— )a(2n — r){f, (2 'z — p)$(27 'y ~ (21t — 1))
= Z Z Z g(2l = p)§(2m — 9)3(2n — 7)aj41:pgr)

= [a‘j+1:(p.q,r) * g(p) * .‘_](Q) * g(r)] (21, 2777., 2”) (66)

Equation 66 shows the discrete representation of the orthogonal projection of the signal onto the portion
of the detail space spanned by integer translations of the “wavelet” \Ilj can be obtained by discretely
convolving the coefficients of the projection onto the next higher resolution approximation level, V';, ;,
with the separable impulse response g(—p)g(—q)g(—r) and keeping every other sample in each

dimension. Following a similar procedure, the remaining detail coefficients d’ , through d$

jillmmn Fitlom.n)

are given by the 3D discrete-space convolutions

Gtmmy = (@410 * B(D) * h(q) * §(r)] (21,2m, 2n)
df (tommy = [G+10p.0m * R(P) % §(q (r)] (21,2m,2n)
Stmay = [Girnimgn * h(P) * §(g) * §(r)] (2,2m, 2n)
itmmy = [Bivpgn * 3(p) * R(g) x A(r)] (2[,2m, 2n)
Gtmmy = [Gi41:p0.m * 3(p) * h(q) * §(r)] (21, 2m, 2n)
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Figure 14. Oct-tree sub-band coding structure used to decompose the j + 1st approximation coeffi-
cients into the jth approximation and detail coefficients in a conventional L, (R?) wavelet
multiresolution analysis.

Eimm = [@jr10pgm *F(P) * §(q) * A(r)] (21,2m, 2n) 67)

Equations 61, 66 and 67 show that the jth approximation and detail coefficients are obtained in
a pyramidal fashion by discretely convolving the j + 1st approximation coefficients with various
combinations of the 1D impulse response pairs h and g and decimating the outputs by a factor of two.
This process can be succinctly represented by the oct-tree sub-band coding structure shown in Figure
14. In a conventional extension of the L,(R?) wavelet multiresolution analysis, the oct-tree structure
is formed by appending the canonica! binary tree structure to each output of the quad-tree. The third
tier convolves h(—n) and g(—n) with the frames of the j + 1st approximation tensor where a frame
represents a snapshot of the spatio-temporal signal at an instant in time. The next section describes the

octave-band spatio-temporal frequency bank generated by this algorithm.

3.4 Spatio-Temporal Filter Bank Representation

The sequences h(n) and g(n) are the impulse responses of a QMF pair; thus, their z-transforms

represent low and band-pass filters respectively (40). By repeatedly convolving a discrete 1D signal




with h(—n) and g(—n) and downsampling the outputs of each stage by a factor of two, the frequency
content of the signal is effectively partitioned into octave-band regions of support. The binary tree
decomposition algorithm developed by Mallat to generate the coefficients associated with orthogonal
projections onto approximation and detail spaces can therefore be viewed as a sub-band filtering process
in which the bandwidth and center frequency of each successive filter (moving out along the frequency

axis) increases by a facior of two (56).

In the L,(R?) oct-tree coding structure, the impulse responses are convolved separately with
each of tho discrete spatial and temporal axes. By varying the order in which the impulse responses
are applied to the rows, columns and frames of the signal, one can control the frequency characteristics
of the corresponding sub-band filter. For example, convolving h(n) with each of the three axes yields
a filter with low-pass spatial and temporal frequency characteristics. Conversely, if g(n) is convolved
with each axis, the resulting filter will have band-pass spatial and temporal frequency characteristics.
Additionally, since the separable 3D impulse responses for these two examples are identical in space
and time, the transfer functions associated with the impulse responses will possess identical filter
characteristics (e.g., bandwidth, transition region, cut-off frequency, center frequency) along each
frequency axes. Thus, if the 3D frequency bandwidth of the discretely sampled input signal (i.e., the
bandwidth of the signal projection onto the Oth approximation space) is contained in the volume shown
in Figure 15a), convolving the rows, columns and frames with either h(n) or g(n) and downsampling
by two yields discrete approximation and d” detail signals with the frequency supports shown in Figure

15b).

In order to obtain the remaining discrete detail signals d* ., ., through d® ., . hand g
are separately convolved in various com+’ ‘nations with each axis. The supporting regions in spatio-
temporal frequency space of the resulting discrete detail signals are shown in Figure 16. The passband
characteristics along each frequency axis for a given filter are determined by the order in which the
spatio-temporal axes are convolved with h and g (see Ecuation 67). Like Mallat’s 2D algorithm,
the spatial frequency characteristics of the detail filters capture either horizontal, vertical or diagonal
spatial frequency components in the scene (40). However, by adding a temporal dimension to the
L,(R®) decomposition algorithm, one can capture these same spatial frequency components for either
moving or stationary targets. Additionally, the multi-scale property of the decomposition algorithm

generates spatio-temporal filters tuned to different object sizes and speeds. Thus, the L,(R?) discrete

45




a) b)

Figure 15. a) Spatio-temporal frequency volume of discretely sampled input signal, or, equivalently,
the bandwidth of the 7 = 0 discrete approximation space. b) Frequency supports of the
j = —1 approximation and detail spaces A_; f and W f respectively.

multiresolution analysis algorithm represents the decomposition of a 3D signal into a bank of indepen-
dent spatio-temporally oriented frequency channels. The next section presents the results of applying
the L,(R3) discrete multiresolution analysis algorithm to a synthetic scene consisting of a moving and

a stationary object.

Finally, note that the j = —1 approximation region in Figure 15b) and the detail regions in
Figure 16 combine to span the j = 0 approximation region in Figure 15a). If one were to implement
the next stage of the sub-band decomposition algorithm, the ; = —1 approximation frequency volume
in Figure 15b) would be decomposed into constituent j == —2 approximation and detail frequency
volumes identical to those contained in the j = 0 approximation volume but reduced in bandwidth
along each dimension by a factor of two. The important point to note here is that each stage in
the “conventional” L;(R®) decomposition process simultaneously reduces the spatial and temporal
bandwidths of the filters. Thus, for any given spatial scale, one is forced to analyze the scene at the
same temporal scale. This constraint precludes the possibility of analyzing multiple temporal scales
(i.e. object speeds) for a fixed spatial scale, which in turn limits the tools effectiveness for the purpose

of motion analysis (9). More will be said about this problem later in the chapter.
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Figure 16. Spatio-temporal frequency volumes of discrete detail signal
dl—l;(l,m.n) through ds—l;(l,m,n)'

3.5 A Simple Application

The “conventional” L,(R?) discrete wavelet multiresolution analysis depicted by the oct-tree
sub-band coding structure in Figure 14 is theoretically capable of extracting horizontal, vertical and
diagonal features from moving or stationary objects in 3D imagery. In order to test these properties, the
algorithm was applied to a 64 x 64 x 64 synthetic image sequence. The image sequence was created
on a Silicon Graphics computer and consists of a simple animated scene containing a stationary and
a moving rectangle of equal size and intensity as shown in Figure 17. The moving rectangle starts in
the upper left corner of the scene and moves to the lower right corner in a parabolic fashion, while the
stationary rectangle remains fixed in the lower left corner. The sizes and speeds of the objects were

constructed to prevent spatial or temporal aliasing (this topic is discussed further in Chapter IV).

The decomposition algorithm was written in C and implemented on several UNIX platforms
including a NeXT, SUN SPARCstation 2, Silicon Graphics 4D, Silicon Graphics 8D, and a CRAY
MPX. The discrete convolutions in Equation 67 were carried out with a three-dimensional shift-and-

multiply routine rather than with filtering operations in the Fourier spatio-temporal frequency domain.
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n=24 n=32

n=3§8 n=16 .~
n=40 n=48 n=>56 n =64

Figure 17. Several frames of an animated scene consisting of a stationary rectangle and a moving
rectangle of equal size and intensity. Each frame contains 64 x 64 pixels.

Border problems, which are a common probiem in convolution schemes, were reduced by making the

borders symmetric about the spatial and temporal axes.

Assuming the discretely sampled image sequence represents the approximation coefficients at the
resolution level j = 0, Figure 18 shows several frames containing the detail coefficients d- ,. d” . d° |
and d” |, all of which were produced using a Daubechies 4 QMF pair in both space and time (14).
Based on the frequency responses of the separable impulse responses in Equation 67, one expects that
d? | and d* | will extract the horizontal features, and d° | and d” | will extract the diagonal features
of either stationary or moving objects. It is instructive to compare these results with those obtained
by applying a 2D multiresolution analysis to a simple rectangle as demonstrated by S. Mallat (Figure
19). Recall that under the 2D multiresolution analysis, an L,({R*) image is decomposed into a set of
spatially oriented channels where each channel captures either vertical, horizontal or diagonal features
of the image. On the other hand, Figure 18 shows that under an L,(R*) multiresolution analysis,
the scene i« composed into independent spatio-temporally oriented channels which now provide the

ability to extract these same spatial details for either stationary or moving objects.
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Figure 18.

a)

b)

c)

d

n=1

n=20 n=32

Four level 7 = —1 detail coefficients obtained by decomposing the scene in Figure 17
using a Daubechies 4 QMF pair in space and time. In a) and b) d? ; and d* , respectively
extract horizontal features of moving and/or stationary objects. Inc) and d) d° , and d” ,
respectively extract diagonal features of stationary and/or moving objects.
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Original Image

Approximation and Detail
Coefficients for 3 Decomposition
Levels

Figure 19. Multiscale results obtained by applying S. Mallat’s 2D multiresolution analysis to a simple
rectangle. These results were taken from (40). The figure depicts the ability of the 2D
decomposition algorithm to extract horizontal, vertical and diagonal features at three
different resolution. The square in the upper left hand corner is the final approximation
signal produced by the decomposition process.

3.6 Discussion

The L,(R?) wavelet multiresolution analysis and the discrete decomposition algorithm presented
here were constructed from an extension of Mallat’s L,(R) and L,(R?) theory. Consequently, there
are several limitations that carry over with the “conventional” extension that make it less than ideal for

the analysis of motion. Three of these fundamental limitations are explained below.

In the conventional multiresolution analysis introduced by Meyer and Mallat, the 2D approx-
imation space L,(R?) was created from two identical 1D approximation spaces. This generates an
approximation, or scdiing funcicn, filter with idcniical frequency characteristics in the f, and f,
spatial frequency dimensions. Similarly, the L,(R®) approximation space developed in this chapter
was formed from the tensor product of three identical L,(R) approximation spaces. Like the separable
2D wavelet filter, the corresponding 3D filter has idenucal passband, stopband and transition region
characteristics in f,, f, and f;. The major drawback to this approach is that it does not provide
the flexibility to tailor the spatio-temporal frequency characteristics of the wavelet filter to match the
frequency behavior of the 3D signal under analysis. For example, a particular problem may require
a narrow transition region between the temporal frequency passband and stopband, but allow a much

wider spatial frequency transition region. Since a wider transition region can be obtained with a lower
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Figure 20. a) Black lines represent the frequency support of two identical objects moving at dif-
ferent velocities superimposed on the filters formed in frequency space by one step in
a conventional multiresolution decomposition. b) Frequency support of moving objects
superimposed on filters formed by one spatial and two temporal decompositions. Notice
how the filters now separate the two objects.

order filter (i.e., fewer h and g coefficients), a multiresolution analysis constructed from filters with
non-homogeneous spatial and temporal frequency characteristics would improve the computational
efficiency of the design. In the conventional L,(RR*) wavelet multiresolution analysis, the designer
must use an identical higher-order filter in both the spatial and temporal frequency dimensions in order

to meet the temporal frequency design specifications.

A second important limitation of the conventional L,(R3) multiresolution analysis is that it
restricts the analysis of spatial and temporal details in an image sequence to the same resolution level
(9). In order to demonstrate how this poses a problem for a spatio-temporal frequency motion analysis
approach, consider the 2D motion problem of two identical 1D rectangles moving with slightly different
velocities. Assume that the size and intensity of the rectangles remain constant in time, and that they
move with the constant translational velocity components v; and v,. As discussed in Chapter II, the
Fourier transform of the moving rectangles are given by F(f.)-6(f:+v, f.)and F(f.)-6(f.+v. f.).
Thus, constant velocity motion in one spatial dimension shifts the Fourier transform of the stationary
rectangles, F(f.), to two lines in 2D frequency space defined by f; = —v, f, and f;, = —v, f,. This
behavior is demonstrated in Figure 20a) where the lines represent the regions of support of the moving
rectangle’s Fourier transforms. It is assumed here that the magnitude of v, is slightly less than v,. The
lines are superimposed on the wavelet filterbank formed by one step in a conventional multiresolution

wavelet decomposition.
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Object moving to
the left '

Object moving to
the right

Figure 21. Black lines represent the frequency supports of two 1D objects moving at the same speed
in opposite directions superimposed on the annulus formed in the Fourier plane by two
steps in a conventional multiresolution decomposition.

In order to discriminate between the two moving objects, spatio-temporal frequency based motion
analysis techniques commonly employ filters designed to separate their spectrums in frequency space.
However, in example a), the shaded filter marked W? generated by the conventional multiresolution
decomposition cannot resolve the two spectrums. Now consider the frequency support superimposed
on the “unconventional” filter bank shown in Figure 20b). These filters, marked W? and W7}, were
produced by decomposing the signal once in space and nwice in time. Thus, by “decoupling” the spatial
and temporal decomposition stages of the conventional discrete wavelet multiresolution analysis, one
can clearly resolve the two spectra. This “decoupling” process is described in more detail in Chapter

Iv.

The third problem with using a conventional multiresolution wavelet theory for motion analysis
is that it is not directionally selective. For example, now consider a pair of 1D moving rectangles, one
of which moves to the right at a speed v and the other which moves to the left at the same speed. Their
frequency supports are shown by the crossed lines in Figure 21. Notice that both lines pass through
the frequency support of the detail space W3. Since the 2D wavelet associated with this space is real,
its Fourier transform is symmetric about both the f, and f, axes. Thus, the W?* wavelet will respond
equally to an object moving in either direction at the speed v. The conventional discrete wavelet
transform therefore is clearly not directionally selective. Chapter IV presents a solution to this problem

by incorporating a Hilbert Transform into the L,(R?) wavelet multiresolution analysis.
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3.7 Conclusion

Y. Meyer’s theory for wavelet multiresolution analyses in L, (R") does not provide details for
constructing orthonormal wavelet bases for L,(R?). Furthermore, previous instantiations of Meyer’s
wavelet multiresolution analysis dealt exclusively with L,(R) and L,(R?) signals (14, 39). Thus,
the first section of this chapter provided the mathematical details for the construction of wavelet
orthonormal bases for the space of finite energy spatio-temporal signals, L,(R?). Theorem 1 shows
this basis set consists of seven dyadically dilated and translated wavelets which represent “independ “nt”
spatio-temporal channels in 3D Fourier frequency space. In the second section, an “oct-tree” sub-band
coding scheme was presented for implementing the Discrete Spatio-temporal Wavelet Transform. The
algorithm generates a bank of octave-band filters such that each filter possesses uniform spatial and
temporal frequency characteristics. The sub-band decomposition algorithm was applied to a set of
synthetic 3D imagery to demonstrate its ability to extract vertical. horizontal or diagonal features
from moving or stationary targets. Lastly, three important problems were described which limit the
utility of the conventional wavelet multiresolution decomposition algorithm for motion analysis. These

problems are resolved in the following chapter.
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IV. A Non-Homogeneous, Motion-Oriented Ly(R3) Wavelet Multiresolution Analvsis

4.1 Introduction.

The previous chapter discussed three major problems associated with using a conventional
L,(R®) wavelet multiresolution analysis for segmenting and characterizing moving objects in time-
sequential imagery. The purpose of this chapter is to present solutions for two of these problems.
The two problems concern 1) the restrictions placed on the 3D wavelet filter design process by the
theoretical development of the homogeneous approximation space V';, and 2) the oct-tree decompo-
sition architecture that constrains the analysis of spatial and temporal details to the same resolution
in space and time. The first problem is addressed in the following section, where it is shown that an
L,(R*) wavelet multiresolution analysis can be constructed from a separable scaling function formed
from three non-identical L, ([R) scaling functions. This provides the flexibility to build wavelet filters
with non-homogeneous spatial and temporal frequency characteristics. Next a solution to the second
problem is presented which essentially “decouples” the spatial and temporal decomposition processes
using a modified wavelet packet and a non-standard decomposition tree structure. The resulting al-
gorithm, referred to as a motion-oriented wavelet multiresolution analysis, yields an analytical tool
with independent zoom-in and zoom-out capabilities in space and time. Since the algorithm is discrete
in both space and time, one must consider how it is affected by spatial and temporal aliasing. This
problem is examined in the fourth section. In particular, the aliasing problem is addressed in terms of
its affect on the discretely sampled input signal. The last major section of the chapter presents several
results obtained by applying the non-homogeneous, motion-oriented wavelet multiresolution analysis
to different sequences of synthetic and real IR imagery. The chapter concludes by summarizing the

capabilities and limitations of the new motion analysis tool.

4.2 A Non-Homogeneous Wavelet Multiresolution Analvsis for L,(R?).

The approximation space V' of the conventional L,(R®) wavelet multiresolution analysis
presented in the previous chapter was formed from the tensor product of three identical approximation
spaces. This approach produced a scaling function filter with identical passband characteristics in f,,
[y and f,. This in turn limits the filter designer’s ability to tailor the spatial and temporal frequency

characteristics of the wavelet filter to match the frequency behavior of the 3D signal under analysis.
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This section demonstrates one can increase the flexibility of the design process by creating a “non-
homogeneous” wavelet multiresolution analysis for L,(R?) signals from non-identical spatial and
temporal L,(R) approximation spaces. The section begins by creating an L,(R®) approximation
spaces from a separable 3D scaling function formed by multiplying different 1D spatial and temporal

scaling functions.

4.2.1 Separable Scaling Function and Approximation Space. Let ¢ be a scaling function
such that {2%#(2’ - —n) | n € Z} forms an orthonormal basis for the multiresolution approximation,
V;, of L3(R). Let é be a different scaling function such that {2'543(21 -—n) | n € Z} forms an
orthonormal basis for the multiresolution approximation, V, of L,(R). Define the separable, closed,

linear subspaces of L,(R?) by

V=V @V} ® V) =Span{F(z,y,1) = f(2)g(u)h(t) | [ € V},g €V} and h € V}} (69)

Given the above definition of the approximation space V ;, Theorem 2 shows there exists a separable
3D scaling function such that the set comprised of all its integer translations forms an orthonormal
basis for V' ;.

Theorem 2. For each j € Z, the set of functions {2%*q5(21:c — Dé(27y — m)@(2/t —

n) | (I, m,n) € Z*} forms an orthonormal basis for V ;.
Proof Let & (1.m.n (7, Y, 1) = 27 $(2z — 1)$(27y — m)$(2't — n). Then
1 ifl=0Vandm=m'andn =n’

<¢j:(l.m,n)aQj:(l'.m’.n’)> = (69)
0 otherwise

where (-, -) denotes the inner product on L,(R*). Equation 69 implies the set of vectors {® ...y [ (I, m,n) €
Z3} forms an orthonormal set in L,(R?).

Now, let F' be a vector in V';. By definition of V;, F(z,y,t) = f(z)g(y)h(t) for some
feV, geViandhe V]' Expressing f, g an . 1 in terms of their respective orthonormal bases

and rearranging terms yields

F = Z 2j <f7 ¢j:l>¢j;l Z 2j (g’ ¢j:m>¢j:m Z 2j<h'a &j:n)‘i’j;n
i m n
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= Z Z Z 2%‘ <fgh’ ¢il‘¢j:"ld.>j:n)¢j;l¢j;m$j:n
I m n

= E Z Z 2% F, ®jittmn) Rjitmon) (70)
I m n

where ¢;., = ¢(2/ - —¢q) and ¢;., = #(27 - —q). Equation 70 shows F can be expressed as a Fourier
series expansion of the orthonormal set {®;.(1.,.n) | ([, m,n) < Z°}. Thus, by the Fourier Series

Theorem (45), {®.(1,m,n | ({, m,n) € Z°} forms an orthonormal basis for V' ;. Q.E.D.

Theorem 2 allows one to create an L,(R®) approximation space from non-identical L,(R)
approx.mation spaces. Furthermore, it shows that the resulting approximation space is spanned by
integer translations of a separable scaling function formed from the product of three non-identical
scaling functions. The next section proves that the scaling function and approximation space generate
a multiresolution analysis. The multiresolution analysis i. then used in section 4.2.3 to construct an
orthonormal wavelet basis for L,(R*) comprised of wavelets with non-homogeneous spatio-temporal

frequency characteristics.

4.2.2 Multiresolution Analysis.  In order to construct a multiresolution analysis, recall from
Section 2.2.3 that the approximation spaces V' ; must possess the following properties: there must 1)

exist a chain of closed linear spaces V/;,

VL,V ,CcV_,CcV,CV,C--- @Y
such that 2)
jez jez
and where 3)

flz,y,t) €V; & f(2z,2y,2t)e V,y,; jEZ

l
f(:v,y,t) € Vj = f(z+ —_,y+7_n.

n . 3
5 2j,t+ 2—]) eV, (I,mn)ez (73)

Theorem 3 shows the non-homogeneous approximation spaces V', do indeed satisfy these properties.

Theorem 3. The family of closed, linear spaces, {V; | j € Z}, forms a multiresolution analysis

in Lz([Rs)

56




Proof. To prove property 1), it will sufficetoshow V, C V', forarbitrary j € Z. Let F € V,
where F(c,y,t) = f(z)g(y)h(t)suchthat f € V*,g € V'andh € V'. Now, f € V* g€ V¥
and h € \7} implies f € V%,,g €V}, andh € 1%

J+1- But,

V1 = Span{u(z)v(y)w(t) |u € Vi ,v € VY, andw € V4, }

Thus, the vector F' must also be contained in V' ;,,, implying V; C V.

To prove the denseness condition of property 2), let

M=JV, (74)

Jjez

and assume M is not equal to L,(R?®). M is therefore a proper subspace of L,(R*) and, by Hahn-
Banach (45), there exists a linear functional £ on L,(R®) such that /(M) = 0V M € M and
£(G) # 0for some G € Ly(R*) — M. Then, by the Riesz Representation Theorem (54), there exists
aunique H € L,(R®) such that

«r) = | N / b / " F(z,y,)H(z,y, t)dzdydt 15)

VF € L;(R*). Furthermore, if £ does not equal the zero functional, then H # 0. Additionally,
I(M)=0VY M € M implies H 1 M. Consequently, the orthogonal projection of H onto V; € M,
P;H, must equal zero. Now, since H € L,(R?), there exists a compactly supported C> function, H,,,
suchthat ||H,— H|| < e. And, by the Orthogonal Projection Theorem, || P; H,|| = ||P;(H,— H)|| <
||H, — H|| < €. Thus, by Parseval’s Identity,

IPH P = 2% 3.3 [8(2z — D(2y — m)$(2't ~ n), Ho(=,y,1))[?
{ m n

< € (76)
Using standard mathematical manipulations, it can be shown that

Y DTN (2 — DP(2y — m)$(27t — n), Ho(z,y,t))|* = 77
l m n
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[90 /:‘w‘/—x Iﬁo(ﬁi777T)|2|¢;(2‘J£)¢2(2"}7’)$(2-JT)|2d£dndT+ R} (78)

where H - denotes the Fourier Transform of H, and

IR} <Y 3 Y IHL(€ + 27271 n + 202 m, 7 + 20270 | £ (€, 7, 7)) (79)

1#0 m#0 n#0

Now consider the sequence ¢f functions

H;(&n,7)= Z Z Z |Ho(€ + 2721, + 2722 m, T + 2727n)| (80)
1£0 m#0 n#0
Since H, is a compact C'*° function, H o is uniformly bounded and H; — 0 as j — oco. Additionally,
.FL € L;(R?) implies R; — 0asj — oo (l1). Moreover, d> and q~5 are continuous and uniformly
bounded and ¢(0) = ;5(0) = 1. Hence, Lebesgue’s Dominated Convergence Theorem can be applied
in conjunction with Equation 76 to obtain

i /_°° /_’” /jo |Ho (&0, 7142776 d(2 ) $(2 7 7) Fdedndr = IHIP < & @)

j—ro0

Finally, ||H,|| < eand ||H, — H|| < € implies ||H|| < 2¢. But € arbitrarily small implies H = 0,

which contradicts our original assumption. Thus, M is dense in L, (R®).

To prove the intersection property of Proposition 2) let

M=(V; (82)
jez
Since each element V'; in M is closed, M is closed and {0} is therefore clearly contained in M.
Now, let F'(z,y,t) = f(z)g(y)h(t) be an element in M. Then, F is contained in V; for all j € Z.
And, by the definitionof V;, f € V7, g € Viandh € V' forall j € Z. But, the sequence of spaces
{V; | 7 € Z} forms a multiresolution analysis for L,(R), implying f = 0, g = 0 and h = 0. Thus, F
is contained in {0} and M = {0}.

Like Property 1), Property 3) follows easily from the fact that V'; is constructed from a tensor
product of three multiresolution approximations of L2(R). If F(x,y,t) = f(z)g(y)h(t) € V, then
f(z) € V7, g(y) € V! and h(t) € Vj‘. Thus, f(2z) € V3,, 9(2y) € VY, and h(2t) € VJ'H
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implying F(2z,2y,2t) € V ;. Moreover, f(z) € V7, g(y) € V? and h(t) € VJ‘ implies
fle+3) € Vi g(y+2) € V¥andh(t+£) € Vi Thus, F(z+ 5,y +2,t+%) € V,.  Q.ED.

Theorem 3 proves one can construct a multiresolution analysis from the non-homogeneous
separable scaling function ¢(:z:)¢(y)¢~$(t). Since the existence of an orthonormal wavelet basis is
guaranteed by the formation of a multiresolution analysis (39, 42), the purpose of the next section is to
describe the properties of such a basis set. In particular, it will be shown that the 3D wavelets in the basis
set are formed from the product of three non-identical 1D functions, allowing one to independently

control the spatial and temporal frequency characteristics of the wavelet filters during the filter design

process.

4.2.3 Orthonormal Wavelet Basis.  In the 3D multiresolution analyses, approximations of a
spatio-temporal signal at the jth and (j + 1)st resolutions in space and time are obtained by orthogonally
projecting the signal respectively onto the spaces V'; and V', ;. The spatial and temporal details that
comprise the difference in information between these two approximations are then contained in the
orthogonal complement of V'; in V. Asin Chapter 3, this complementary space is denoted by the
symbol W ;. Theorem 4 shows an orthonormal basis for W'; (and for L,(R?)) consists of seven sets

of scaled and translated “wavelets.”

Theorem 4. Let 1 and ¢ be the one-dimensional wavelets respectively generated by the scaling

functions ¢ and q§ Then the seven “wavelets”

Vi(z,y,) = 2% ¢(2/2)p(27y)d(2'1)
V(z,y,t) = 2% p(2ia)p(27y)d(2't)
V(z,y,t) = 27¢(2z)y(2y)P(2"t)
i(z,y,1) = 279(2z)p(27y)d(2'1)
W(z,y,1) = 279(22)p(2y)h(2')
W(z,y,1) = 279(22)p(27y)$(271)

Ui(z,y,t) = 2%9(2z)p(2y)d(2't) (83)
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are such that for each j € Z, {¥/(z — I,y —m,t —n) | ({,m,n) € Z% p = 1,2,...,7} forms an
orthonormal basis for W ; and {¥¥(z — l,y —m,t —n)|j € Z; (I,m,n) € Z% p=1,2,...,7}

forms an orthonormal basis for L,(R?).

The proof of Theorem 4 is not provided here because, with one exception, it follows precisely
the proof of Theorem 1 contained in Section 3.2. The only difference between the two proofs is that
the time dependent scaling function and wavelet ¢(t) and () in the proof of Theorem | are now
replaced everywhere by the new (and different) functions $(t) and v (t) respectively. Because the
orthonormal wavelet basis for a given detail space is formed from the product of three non-identical
1D spatial and temporal wavelets, the resulting wavelet filter for that space has non-homogeneous
spatial and temporal frequency characteristics. Also, because the wavelet basis for each detail space
is separable in space and time, the filter designer can easily and independently control the spatial and
temporal frequency behavior of the wavelet filter. This property will prove valuable in the following
chapter where the spatial and temporal frequency characteristics of the 3D filter are adpated to match

the spatial and velocity behavior of a moving object.

In the next section, discrete versions of the non-homogeneous wavelet filters are used in an
extension of Mallat’s 2D discrete multiresolution analysis referred to here as a “non-homogeneous
L,(R?) discrete wavelet multiresolution analysis.” Since the development parallels the construction of
the homogeneous L, (R?) discrete multiresolution analysis described in Chapter ITI, many of the details
are left to the reader. Also, as was the case with the homogeneous discrete wavelet multiresolution
analysis, the resulting non-homogeneous oct-tree decomposition structure is somewhat impractical for
the analysis of moving objects. Thus, the non-homogeneous oct-tree structure is presented here more
for completeness than for its intended use as a motion analysis tool. A non-conventional discrete

decomposition structure more suited to the analysis of motion is presented later in the chapter.

4.2.4 Discrete Multiresolution Decomposition Algorithm.  The development of the discrete,
non-homogeneous wavelet multiresolution decomposition algorithm closely follows the derivation in
Section 3.3 for the homogeneous case. This section, therefore, will briefly present a derivation of one
branch of the oct-tree decomposition algorithm, and simply list the discrete convolution operations that

comprise the remaining seven branches.




Like the derivation in Chapter III, begin by assuming the sequence obtained by sampling the
signal in x,y and f represents the coefficients associated with the orthogonal projection of f onto
the approximation space V,. Since the chain of approximation spaces {V; | ; € Z} forms a
multiresolution analysis in L(R®), any basis element in V'; can be expanded in terms of the basis
elements of V. Therefore, given the basis element 27 ¢(2/z ~ 1)$(2'y — m)$(2/t ~ n) in vV,

one can write

$(2z — o2y = m)$(2't —n) = 20TV F TN p(2u — [)(2/v — m)é(2w - n),
P q r

$(27 u = p)g(27M v — 9)B(2 w — 7))(2 T - p)B(2y — q)B(27H t — ) (84)
where p, ¢,r € Z. Expanding the inner product in the above expression in its integral form yields

23U Ly = 93+ ///K [6(2'u — D)p(2/v — m)$(2'w — n)]
(#(27 u — p)p(27 v — ¢)B(27 w ~ r)]dudvdw 83)

Again, using the variable substitutions

g = 2u—1

b _

2 = 2v-m

% = Yw-n (86)

the right hand side of Equation 85 can be rewritten as

//[* 1"5(3)"’(3)5’(%)%(“ —(p - 2D)¢(b — (g — 2m))d(c — (r — 2n))]dadbdc  (87)

Next, defining the functions h and A by

=
8
i

® %

/jo ¢(%)d>(y - z)dy
/

=
N
i

& %)&(y — 2)dy (88)

A
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the right hand side of Equation 85 can be combined with the “impulse responses” in Equation 88 to
yield the following expression for the arbitrary basis element 27 ¢(2/z — 1)$(2/y — m)(2’t — n)

2¥4(2/z — 1)p(2y — m)$(2t —n) =
Z Z Z h(2l - p)h(2m — Q)h(2n — 1)$(27 'z — p)B(2* 'y — )21t — 1) (89)

where h(z) = h(—z) and f:z(:c) = h(—z). In order to obtain the coefficients associated with the
signal projection onto V';, one next forms the inner product of f with the arbitrary basis element in

Equation 89 as follows

Gama = (Fr276(2z — D(2y — m)$(2t — n))
= Zzzh(m pIR(2m — Q)h(2n — 7)(f,6(27 'z — p)$(2*'y — q)p(27* 't — 1))

= Ezzh (21 - p)h(2m - q)h(2n ~ r)aji1pr

= [ai+l;p,q,r * h(p) * h(‘]) * h(T')] (21,2m,2n) (90)

where “x” is the discrete convolution operator. Equation 90 shows that the discrete representation
of the orthogonal projection of the signal onto the approximation space V', is obtained by discretely
convolving the coefficients of the projection onto the next higher resolution level, V', ,, with the
separable, non-homogeneous impulse response h(—p)h(—q)h(—r) and keeping every other sample
in each dimension. Following a similar procedure, the seven discrete 3D convolution operations that

produce the coefficients of the orthogonal projection onto the detail space W ; are given by

Bimn = (854100 * B(p) + h() * §(r)] (21, 2m, 2n)
Eimn = [asvimar * h0) * 5(9) * h(r)] (21, 2m, 2n)
Bimn = (250100 * B(2) £ 5(0) + 5(r)] (21,2, 20)
Bimn = [asrpar* 3() * h(q) * h(r)] (21,2m, 2n)
Simn = [@ir1p.00 * 5(P) % h(g) * §(r)] (21,2m,2n)
Bimn = [as41p.00 * 3(0) * 3(0) * h(r)] (21,2, 2n)
Gimn = (4100 *30) * 3(g) ¥ §(r)] (21, 2m, 2n) O
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where §(n) = §(~n) and h(n), g(n) and h(n), §(n) represent two different QMF pairs. Equations
90 and 91 form all eight branches of the non-homogeneous oct-tree decomposition structure shown in
Figure 22. As before, the detail signals are obtained by convolving the discrete approximation signal
at the next higher resolution level along each axis with various combinations the discrete “impulse
responses” h(n), g(n) and h(n), (n). The convolutions can also be viewed as filtering operations
in discrete 3D frequency space, where the separable 3D filters are constructed from non-identical 1D
spatial and temporal filters. The discrete filter bank designer can now quickly and easily combine
different spatial and temporal QMF pairs to match the spatial and temporal frequency characteristics
of the signal. For example, one can construct a discrete 3D filter using, say, a Daubechies 4 QMF
pair for the spatial convolutions and a Daubechies 9 QMF pair for the temporal convolution. This
yields a filter with a larger passband and a narrower transition region along the temporal frequency
axis than along the spatial frequency axes. The design trade-off, of course, is that in order to meet
the “tighter” temporal design requirements, one must use a higher order filter. The practicality of this
design flexibility will be more evident in the following section where an unconventional decomposition
algorithm is presented which allows one to examine an image sequence at multiple resolutions in time

for a fixed resolution in space.

4.3 A Motion-Oriented Wavelet Multiresolution Analysis for L(R®)

In the discussion section at the end of Chapter 3, an argument was made against using the
conventional oct-tree decomposition structure for analyzing motion ir an image sequence. Essentially,
it was shown that the oct-tree structure generates a filter bank comprised of analysis filters whose spatial
and temporal bandwidths both decrease equally by a factor of two from one stage of the decomposition
to the next. That is, it does not allow one to simultaneously examine the image sequence at different
spatial and temporal resolutions. Thus, it is not possible with the conventional structure to construct
a filter that captures the energy of moving objects with dissimilar spatial and temporal frequency
characteristics such as large, fast objects (i.e., objects with high temporal frequency and low spatial
frequency content), or small, slow objects (low temporal frequency and high spatial frequency content).
In order to correct this problem, this section first presents the theory behind an unconventional, “motion-

oriented” multiresolution analysis that decouples the spatial and temporal decomposition processes of
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Ay f ™

x(-n) I . Convolve with flipped spatial

: Convolve with flipped temporal
impulse response function

Figure 22. Oct-tree sub-band coding structure used to decompose the 7 + 1st approximation co-
efficients into the jth approximation and detail coefficients in a conventional, non-
homogeneous L,(R*) wavelet multiresolution analysis.

the conventional muitiresolution analysis. A sub-band decomposition algorithm is then described which

provides the ability to independently analyze spatial and temporal details in a 3D image sequence.

4.3.1 Decoupling the Spatial and Temporal Decomposition Process. =~ The motion-oriented
multiresolution wavelet analysis is based on the construction of an orthonormal basis for the “de-
coupled” spatio-temporal approximation space V' ; ;. The definition of the decoupled spatio-temporal

approximation space is given by

Vie =V @V} @V} =Span{F(z,y,t) = f(z)g(y)h(t)| f € V7, g € V) and h € V}} (92)

where j represents spatial resolution, k represents temporal resolution and j is not necessarily equal to

k. The corresponding orthonormal bases for V' , are described in Theorem 5.

Theorem 5. For each j € Z and k € Z, the set of functions {2/*%¢(2/z — I)¢(2y —
m)$(2*t — n) | (I,m,n) € Z°} forms an orthonormal basis for V ;.




Proof of Theorem 5. Let @, 1. ) (2, ¥, t) = 27t $¢(272 — 1)(27y — m)(2*t — n). Then

1 ifl=0Uandm =m'andn = n’
(q)j.k;(l.m.n)’Qj.lc;(l‘.m'.n’)) = (93)
0 otherwise

and the set of functions {®; i.(1,mn) | ({,m,n) € Z°} therefore forms an orthonormal set in L,(R?).
Now, let F be a vector in V; ;. By construction of Vi F(z,y,t) = f(z)g(y)h(t) for some
feVi,geViandhe V. Expressing f, g and h in terms of their respective orthonormal bases

and rearranging terms yields

F= El: Z Z 2j+%<F, (I’j,k-.u,m,n))‘bj‘k;((,m.n) (%4)

Equation 94 implies F can be expressed as a Fourier series expansion of the orthonormal set
{®;.x:t,mm) | (I, m,n) € Z%}. Therefore, the Fourier Series Theorem ensures {®;ktmm | (I, m,n) €

Z°} is an orthonormal basis for V ;. Q.E.D.

Now let W ; ;. represent the orthogonal complement of V ik 10 V50 such that
Vj+1,k = Vj,k @ Wj,k (95)

Then, Theorem 6 describes an orthonormal basis for the spatial detail space W ; ;.

Theorem 6. Let 1 and ) be the one-dimensional wavelets generated by the scaling functions
¢ and ¢ respectively and let W ; . represent the orthogonal complement of V/ sk in Vg . Then the
three functions

U (z,y,t) = 2773420 2)9(2y)d(24)
U (z,y,t) = 27FEg(202)4(27y)B(24)
Uz, y,t) = 27 Ey(20)h(27y)P(24) (96)

are such that for each (j, k) € Z%, {¥%,(z — L,y — m,t —n) | (I, m,n) € Z°%; p = 1,2,3} forms

an orthonormal basis for W ;..
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Proof of Theorem 6. Given V/; ;. and the three multiresolution approximations in L, (R),
{Viliez}, {vyljet}, {(Vilkel) 97
V j+1.k can be expressed as

Viae = V5, 0V4L 0V

= WreaVH)oWeV)eV (98)
The right hand side of Equation 98 can be rewritten as follows

RHS = [W:oW!/oV]a[W;eV!eV]

& [VFew!eVie[VieV!e (99)

Since V= VFQV!® V!, the orthogonal complement, W ; i, of V; ;. in V', ; can be expressed

as
W=V -Vi=W oW/ eVleW:eV/oV|e[VieWw!aV)] (100)

The sets of functions {23 ¢(2/z 1) || € Z}, {2 ¢(2y~m) |m € Z},and {23 $(25t—n) | n € Z}
form orthonormal bases respectively for the L, (R) approximation spaces V;*, V,” and V!. Additionally,
the functions {2%¢(2jz -1)|! € Z} and {2§¢(2jy —m) | m € Z} form orthonormal bases
respectively for the complementary spaces W and W?. Thus, the set of functions {‘Il;’_,c(z —ly—-
m,t—n) | ({,m,n) € Z*; p= 1,2, 3} forms an orthonormal basis for W' ;.. Q.E.D.

A straightforward consequence of Theorem 5 is that V'; ;. is contained in V ;. ;. if and only if
j < j'and k < k'. This fact is illustrated by the lattice of spaces shown in Figure 23. Here, the chain
of spaces comprising the “conventional,” non-homogeneous 3D multiresolution analysis lies along the
diagonal formed when j = k. The remaining subspaces are created by independently decomposing
the conventional spaces along spatial (vertical) and temporal (horizontal) lines. In this illustration a
finite decomposition beginning at V', ; is assumed. The detail spaces highlighted by gray squares are

obtained by vertically decomposing the originally sampled signal contained in V , , using the algorithm
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Figure 23. Array of embedded subspaces formed by further decomposing conventional multires-
olution spaces (represented by diagonal k = j) along vertical (spatial) and horizontal
(temporal) lines.

described below. These spaces capture the spatial details in the image sequence for a fixed resolution in
time of £ = 2. Theorem 6 ensures the highlighted detail spaces are orthogonal. Theorem 7 now shows
that each detail space, W ; ;., can be decomposed in time to produce orthogonal, temporal detail spaces
for a fixed resolution in space. The temporal decomposition is based on a special case of Coifman and

Meyer’s wavelet packet theory as proved by 1. Daubechies (12, 14).

Theorem 7. Let W;" ¢ (@ = 1,2, 3) represent the space spanned by integer translations in space

and time of the function ¥, (z,y,t) = \Ilg-’(:c,y)ﬁ(i(?kt) where,

Vi(z,y) = 2¢(Pz)p(2y)
Vi(z,y) = 29(2z)p(2y)
Vi(z,y) = 29(2z)y(2%y) (101)
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Define the functions,

Vi(z,y,t) = ¥(z,y) Y 24h.8(2¢ - n)

Vlz,y,t) = Wi(z,y) Y 2%5.4(2% - n) (102)

then \I!‘fl.(a:—l,y—m,t—2n),\Il’-'2k(:c—l,y—m,t— 2n) | (!, m,n) € Z*)} form an orthonormal
ik Js

basis for

W?,k = Span{‘l’fk(z - lvy -m,t— n) I (l7m,n) € 23}

Proof. Consider the following Lemma which describes a special case of Coifman and Meyer’s

wavelet packet theory as proved by I. Daubechies (12, 14).

Lemma 1. Let f be any function such that the f(t — n), n € Z, are orthonormal. Define the

functions

F'(t) = > haf(t-n)
Fi(t) = > gaf(t—n) (102)

Then {F*(t — 2m), F2(t — 2m) | m € Z} forms an orthonormal basis for Span{f(t—n)|n € Z}.

Since the functions 2% (2%t — n), n € Z, are orthonormal, Lemma 1 implies {Fi(t -

2m), F{(t — 2m) | m € Z} forms an orthonormal basis for Span{¢(2*t — n) | n € Z} where

Fi(t) = ) had(2t—n)

i

Fi(t) = ) g.0(2%t~n) (104)

Now, let ¥2 , (z —1,,y —m,, 1) = iz —1,,y —mo)2%$(2’°t) where the integer pair (1,,m,) € Z?

is chosen arbitrarily. Next, define the functions \Ilg’lk and \Ilfz,L as follows:

‘I’?lk(m =y —m,,t) = ‘I,JP(:L‘ —loyy - mo)Fl} (t)

'

\I’?,zk(x - loay - moat) = ‘I’_’;(LII - loay - mo)Flf(t) (105)
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Then, the set of functions {‘Il;’_lk(:c —l,,y—m,,t—2n), \IIj’i_(z —l,,y—m,,t—2n)|n € Z} forms

an orthonormal basis for Span{¥* , (z — l,,y — m,,t — n) | n € Z}. But (, ,m,) chosen arbitrarily
j.k

implies{\I!f_lk(a:—l,y—m,t—2n),‘Ilf?k(z—l,y—m,t—2n) | (I, m,n) € Z°} form an orthonormal

“

basis for Span{¥’ , (z — I,y — m,t — n) | ([, m,n) € Z3}. Q.E.D.

4.3.2 Discrete, Motion-Oriented Decomposition Algorithm.  The previous section ensures
the spatial and temporal decomposition processes in the conventional multiresolution analysis can
be decoupled to generate multiple temporal resolutions of a 3D signal for a fixed spatial resolution.
Furthermore, the spaces containing the temporal detail signals are orthogonal across all spatial and
temporal resolution levels. This section describes an (O(N*) sub-band decomposition algorithm that
produces the coefficients obtained by orthogonally projecting a 3D signal onto 2ach of these orthogonal
detail spaces. It is further shown that the filter bank pro. uced by this unconventional decomposition
algorithm yields a set of independent spatial-temporal channels for lccating vertical edges, horizontal

edges and corners of objects moving at different speeds.

In order to describe the algorithm, consider the problem of analyzing the motion of a two
dimensional object traveling in an N x N x N image sequence. In this case, V;; represents the
closed linear space formed by the tensor product V> ® V? ® V}!. Additionally, le: Agof (i.e., the
discrete projection of the original signal onto the space V ;) represent the sampled 3D image sequence.
Finally, let D” |  f represent the discrete projection of the signal onto the spatial detail spaces W7 |
where it is understood that p = 1,2,3. A visualization of the decomposition process is shown in

Figure 24.

In the first stage of the decomposition algorithm, A, , f is decomposed spatiallv into the approxi-
mation and detail signals A_, o f and D? | , f respectively by convolving the rows and columns of each
frame in Ay o f with flipped versions of the spatial filters h and g, and decimating the spatial dimensions
by a factor of two. This process is illustrated for arbitrary spatial and temporal resolution levels j and &
in Figure 25. The spatial algorithm is then applied recursively to each subsequent spatial approximation
signal, A_;o; 7 = 1,2, 3..., to generate a sequence of signals which captures the spatial details between
successively smaller spatial resolutions for the temporal resolution ¥ = 0. The spatial approximation
signals, A_;0; 7 = 1,2, 3..., produced by this process are represented by the lightly shaded planes in
Figure 24. The darker planes represent the spatial detail signals D” ;,f; p=1,2,3; j = 1,2,3...
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Figure 24. A visualization of the 3D motion-oriented wavelet decomposition process.
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Figure 25. Spatial, and temporal decomposition algorithms for 3D motion-oriented multiresolution

wavelet analysis. Decomposition is shown for arbitrary spatial and temporal resolutions
levels 7 and k.
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Assuming the number of coefficients in the wavelet filter is small compared to the number of
samples, NV, in each dimension of the image sequence, the computational comuplexity of this stage of the
algorithm is found by determining the total number of values computed by the spatial decomposition
process. To this end, first note that the number of samples at each spatial decomposition levei are
half the number at the next higher level. Thus, if the spatial dimensions of a frame in the originally
sampled signal are N x N, then the dimensions of a frame at the next lower spatial decomposition
level are % X —12! Furthermore, since four signals are produced by the spatial decomposition process (1
approximation and 3 detail), the total number of values computed by the first spatial decomposition is
54—" + ’-‘;— + NT + NT = N?Z. Continuing the process, the next spatial decomposition produces a total
of %— values per frame, and so on. Letting the nur:ber of spatial decompositions go to infinity then
gives an upper bound on the number of spatial values computed per frame of ‘% Finally, assuming
their are N frames in the image sequence, the total number of spatial values computed in the spatial

4iv? 4N*

decomposition stage of the algorithm is then N - 53— = *2—.

In the next stage of the algorithm, the first level spatial detail signals D*, ,f; p = 1,2,3
are decomposed in time by convolving flipped versions of the temporal filters h and g across all
frames at each spatial location and decimating the temporal dimension by a factor of two (Figure 25).
The temporal decomposition algorithm is then applied in a cascade fashion to each of the temporal
approximation signals to yield a set of temporal detail signals, D*, , f; p =1,2,3; k =1,2,3,..,,
for each spatial detail signal in the first spatial decomposition level. This process is then repeated
for each spatial detail signal D' ,f, D%, f,andD? ;. f; j = 2,3,4, ... at each stage of the spatial
decomposition process. The temporal detail signals produced by this process ars represented by the

unshaded planes in Figure 24.

In order to determine the computational complexity of the temporal decomposition stage of the
algorithm, note that the upper bound on the number of temporal values computed over all temporal
decomposition levels at one spatial location is 2V. Consequently, given that the number of spatial

locations produced in the spatial decomposition process is bounded by % the total number of

gN?
2

values computed in the temporal stage of the algorithm is then 2N - 4—’:— = . Finally, adding

the upper bounds on the spatial and temporal decomposition processes yields an upper bound of

SN.'K + 4N:‘

3 - = 4N ® for the total number of vaiues coniputed in the spatio-tempora! decomposition
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process. Thus, the computational complexity of the discrete motion-oriented multiresolution wavelet

decomposition algorithm is O( N?).

By repeatedly decomposing the temporal information contained in each spatial detail signal
one gains the ability to independently zoom-in and zoom-out on spatial and temporal details in the
scene. For example, assuming the size of a moving object corresponds to the spatial resolution
j = —3, its speed can be approximated by comparing the magnitude of the coefficients contained in
the temporal detail signals D* ; . f, D?,  f,andD*, , f; k = 1,2,3, ... (recall that in the conventional
decomposition scheme, the analysis is restricted to temporal detail information contained in the space
W _3,-3). Furthermore, Theorems 6 and 7 guarantee that the detail spaces generated by the spatial
and temporal decomposition processes in the motion-oriented algorithm are orthogonal. Therefore,
the main lobes of the spatio-temporal frequency spectrums of the basis functions associated with these
spaces have essentially non-overlapping regions of support in the Fourier frequency domain. This

behavior is illustrated in Figure 26,

Figure 26 shows the supporting regions in the positive half of the temporal frequency plane
of the 3D muitiresolution motion analysis filters. Notice, that the filter’s passbands in the 2D spatial
frequency plane (f; = 0) are identical to those produced by the conventional 3D multiresolution
decomposition aigorithm described in Section 3.1. However, unlike the frequency specirum generated
by the conventional L,(R®) wavelet multiresolution analysis (Chapter III), which contains only low
pass and band pass support regions for each of the horizontal, vertical and diagonal spatial detail filters
in the spatial frequency plane, the new frequency spectrum contains a bank of temporal frequency
bandpass filters for each spatial orientation. Viewed from a motion analysis perspective, this unique
and unconventional filter bank now provides the flexibility to discriminate objects moving ina 3D image
sequence with dissimilar spatial and temporal frequency characteristics (e.g., small objects traveling

slow and large objects traveling fast).

In the discussions that follow, it will sometimes be easier to first explain a particular concept as it
applies to the problem of computing the velocity of a 1D object moving in a 2D spatio-temporal image
sequence. Thus, as an aid to the reader, Figure 27 shows the spatio-temporal detail spaces obtained by
applying the motion-oriented decomposition algorithm to a 2D image sequence. The shaded regions in
Figure 27 each represent the frequency support of one detail signal filter generated by the 2D motion

wavelet decomposition process. The narrow, white vertical strip in the center represents the filter
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of wide object
moving slow

“Vertical® details
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Figure 26. A visualization of the frequency support in the Fourier plane of the basis functions for
each space generated by the 3D wavelet multiresolution motion decomposition.
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Figure 27. A visualization of the frequency support in the Fourier plane of the basis functions for
each space generated by the 2D wavelet multiresolution motion decomposition.

associated with the last approximation space generated by the spatial decomposition algorithm. Just
as in Mallat’s conventional 1D multiresolution analysis, the abscissa of the frequency plane divides
the original signal into fine and coarse spatial detail signals. The outermost lighter region contains
the spatial details of narrow objects (i.c., high spatial frequencies), while the innermost dark region
captures the spatial details of wide objects. The ordinate axis divides each spatial detail signal into
multiple temporal detail signals that capture temporal frequency components associated with multiple
speeds.. Thus, for example, the large dark square in the upper right hand corner captures narrow, fast
moving 1D objects; while the dark region two temporal resolution levels beneath it captures narrow,

slow moving 1D objects.

The filter banks produced by the 2D and 3D motion-oriented wavelet decomposition algorithm
yield a set of independent spatio-temporal channels for locating vertical edges, horizontal edges and
corners of objects moving at different speeds. The motion-oriented filter bank was generated using a
rapid sub-band coding scheme in which a discretely sampled input signal was decomposed indepen-
dently in space and time. By discretely sampling the input signal, one risks the possibility of spatial
and/or temporal aliasing. Spatial aliasing is a common image processing problem that is typicaily
handled by a 2D lowpass filtering operation (16, 20). The temporal aliasing problem, particularly as it

pertains to 2D objects moving in a 3D image sequence, is less commonly discussed in the literature.
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Therefore, the following section examines the effect of spatio-temporal aliasing on Fourier frequency

motion analysis.

4.4 Spatio-Temporal Aliasing and Fourier Frequency Motion Analysis

In Chapter II, a simple relationship was derived between the speed of a sinusoidal grating and
its temporal frequency. Additionally, it was shown that the temporal frequencies of a more complex
object moving at a constant velocity are related to the object’s velocity components v, and v,. In both
cases, the temporal frequency bandwidth increased proportionately with the velocity of the object. The
velocity of an object therefore plays a critical role in determining the temporal sampling rates required
to prevent aliasing in a discretely sampled signal. For example, consider the case of the simple traveling
sinusoid

f(z,y,t) = cos(ax + by + ct) (106)

It was shown in Section 2.4 that the = and y components of the sinusoid’s velocity vector V' are given

by
ac
T TEaw aom
be
WS Tarw (108)

If the spatial sampling frequency exceeds the Nyquist limit, and if the temporal sampling frequency is
given by C, then aliasing will not occur provided the temporal frequency ¢ < % This implies that, for

a fixed spatial frequency, the magnitude of the velocity vector ||V || must be such such that

Vi + vl
B ( ac >2+( be )2
- a? + b? a? + b2

C
2va? + b2

il

(109)

The relationship in Equation 109 shows that the magnitude of the velocity is inversely proportional to the
magnitude of the sinusoid’s spatial frequency. Consequently, as the spatial frequency of the sinusoid

decreases, larger velocities are allowed before temporal aliasing occurs. Of course, this argument
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assumes the moving object is a sinusoid of a given spatial frequency. And since a sinusoid always
travels perpendicular to its brightness contour, it was only necessary to consider the magnitude of the
velocity vector. In reality, however, the aliasing limits of mcre complicated objects are determined by

both the magnitude and the direction of their velocity. This topic is discussed next.

Recall from Chapter II that the Fourier transform of an object moving with the constant velocity

components (v, vy) is given by

f{f(l' - v:tvy - vyt)} = F(fzvfgpft +v:f¢: +vyfy) (110)

which implies the 2D Fourier transform of the moving object is shifted onto the plane given by

ft=~(vzfz+vyfy) (111)

If the temporal sampling frequency is givea by F}, and if one again assumes that the spatial sampling

frequency exceeds the Nyquist limit, then temporal aliasing will not occur provided

f! = ’sz:-f-vy.fy
= [[VIIIIf]lcos(¢v — &)
< —I—:‘—t (112)
- 2

where || f || is the magnitude of the spatial frequency pair ( f., f, ), ||V|| is the magnitude of the velocity
vector, ¢ is the angle of the spatial frequency pair, ¢v is the angle of the velocity vector and the
minus sign in Equation 111 has been neglected. Equation 112 shows that the presence or absence of
temporal aliasing depends on a vector product relationship between the spatial frequency content of
the object, its speed and its direction of motion in the sense that the temporal frequency depends on the
cosine of the angle between the direction of motion and the direction of a particular spatial frequency.
The following paragraphs provide examples of temporal aliasing in the frequency representation of an

image sequence that contains a single moving object.

Consider the 2D gaussian moving along a 457 trajectory as shown in Figure 28a). The image
volume is 64 x 64 x 64. The Fourier transform of the moving object lies along the plane in Figure

28b), where the “slope” of the plane (i.e., the tangent of the angle between the f, axis and the nearest
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a)

“Shifted”” Gaussian
frequency distribution

b)

Figure 28. a) A gaussian moving along a 45¢ trajectory. b) The plane in the Fourier domain contains
the frequency components of the moving object. The shaded side of the frequency volume
represents the spatiai frequency components associated with the most negative temporal
frequency component,

vector contained in the plane) is determined by the speed of the gaussian. The lightly shaded surface of
the frequency volume represents the spatial frequency components associated with the most negative

temporal digital frequency component f, = —.

Assume now that the velocity components of the moving gaussian are 1 frame/sec. in the r and
y directions. Also assume that input signal is sampled so that the spatial and temporal sampling rates
do not violate the Nyquist sampling criteria, and that the cutoff radius of the circularly symmetric DFT
of the gaussian is approximately »% The spatial frequency components in the f, = —m frequency
plane will then form a single line as shown by the density plot of the moving object’s FFT contained
in Figure 29a). Furthermore, Equation 112 implies the maximum temporal frequency of the object,
ft..... occurs at the spatial frequency that lies in the direction of motion (for the circularly symmetric
Gaussian frequency distribution). The spatial frequency coordinates at which this occurs are (3.3)

]

yielding a maximum temporal frequency of

s frame 7 cycles frame 7 cycles
tvar Ty S
sec 2 frame sec 2 frame
cycles
=7 (113)
sec




which is equal to the digital Nyquist cutoff frequency. Now consider what occurs when the variance of
the gaussian is reduced so that the spatial frequency radius is increased to approximately V27 radians.
If the object’s = and y velocity components remain constant at 1 frame/sec., the maximum digital

temporal frequency now becomes

frame  cycles frame  cycles
ftrae =1 ' '
’ sec frame sec frame
{
= op ¥l (114)

sec

which is twice the digital Nyquist limit. Thus, one would expect to see aliased frequency components
near the temporal frequency borders of the FFT frequency volume. This is clearly the case as shown
by the f, = — plane contained in Figurc 29b). Here, the aliased components appear as a second line
in the lower left corner of the frequency plane. Also, the length of the line is greater than in a) since

the frequency cutoff radius has doubled.

Equation 112 also implies that temporal aliasing will occur when large objects (with small spatial
frequency magnitudes) travel too fast. This is demonstrated by the double lines in Figure 29¢). Here,
the velocity of the gaussian is 2 frames/sec. in both directions and the maximum spatial frequency

magnitude has been reduced to its previous value of T’}— yielding a maximum temporal frequency of

frame = cycles frame x cycles
Strae = 2 Y Y
sec 2 frame sec 2 frame
cles
= oY (115)

sec

The maximum spatial frequency magnitude is once again the same size as the first example, therefore
the line of spatial frequency components in the density plot is shorter than those in b). Also, because
the object is traveling faster than the objects in the other two examples, the slope of the plane decreases

(i.e., the plane lies closer to the f, axis) and the lines in c) lie closer to each other.

In order to prevent temporal aliasing, Equation 112 implies one can spatially filter each frame i .
the image sequence to limit the magnitude of the spatial frequencies. For example, a circular filter with
a radius of |/ f2, + f2, might be a good choice where f., and f,, are the cutoff frequencies of the
filter. One might then assume a worst case scenario in which the direction of motion would lie in the

direction of the spatial frequency with the largest magnitude contained within the passband of the filter.
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a) b) c

Figure 29. a) FFT of a single line of spatial frequency components inthe f, = — 7 temporal frequency
plane generated by a moving gaussian whose temporal frequencies satisfy the inequality
in Equation 112. b) Two lines appear in the f, = —m plane as a result of temporal aliasing.
The object travels with the same velocity as a), but the object size decreases by a factor
of two. ¢) Temporal aliasing again forms two lines in the f, = — plane, Now. however,
the object size is the same as in a), but the velocity components have both doubled.

This assumption sets the cosine term equal to one and reduces Equation 112 to Equation 109. Under
these circumstances, one can then choose the appropriate temporal sampling frequency to ensure the
maximum expected speed of any object moving in the scene does not violate the inequality in Equation

109.

4.5 Applications and Results

The purpose of this section is to demonstrate the capabilities and the limitations of the motion-
oriented wavelet multiresolution analysis by applying it to several different image sequences. The
first two tests are designed to show that the motion-oriented decomposition algorithm, unlike the
conventional L-(R?*) algorithm in Chapter III, can simultaneously look across different scales in space
and time to differentiate between 1) two equally sized objects traveling at different speeds. and 2)
two different sized objects traveling at different speeds. In the third test, the motion-oriented motion
algorithm is applied to real IR imagery of a tank moving across open terrain. The outcome of this test
demonstrates the algorithm’s ability to zoom-in and zoom-out on spatial and temporal details in a noisy
scene. The results are also briefly compared with the output of a simple frame-differencing motion
segmentation technique. Finally, the algorithm is applied to a synthetic image sequence containing two
equally-sized objects traveling at the same speed but in opposite directions. This test demonstrates a
fundamental limitation of the motion-oriented wavelet decomposition algorithm - it is not directionally

selective. A solution to this problem is presented in Chapter V. Each of the tests ccnducted in the




b)

Figure 30. a) Several frames of 64 x 64 synthetic, grayscale imagery containing two equally sized
rectangles traveling at different speeds. The speed of the upper rectangle is twice that of
the lower rectangle. n represents a frame in the image sequence. b) A visualization of the
planes containing the Fourier transforms of both rectangles. The darker plane corresponds
to the faster rectangle.

chapter employed a Daubechies 4 QMF pair for spatial decomposition and a Daubechies 12 QMF pair
for temy.~ral decomposition (14). This yields greater resolution along the temporal frequency axis with
which to separate the speeds of the moving objects. Since the objects are identical, spatial resolution

is less important, allowing for the use of a more computationally efficient 4 tap spatial filter.

The first sequence of images consists of 128 frames of 64 x 64 synthetic, grayscale imagery.
The image sequence, shown in Figure 30a), contains two equally sized rectangles traveling horizontally
across an image plane at two different speeds. The upper object travels at one frame per second, and
the lower object travels at one-half frame per second. Since the vertical velocity, v,,, of both rectangles
equals zero, their Fourier transforms will lie on the planes given by the equation f, = — f, 1, where
v, is either one or one-half frames per second. If the largest digital spatial frequency of both objects is

7, then the planes will appear as shown in Figure 30b).

Now consider the horizontal plane of the Fourier transform taken through the largest positive
digital spatial frequency f, = 7 as shown in Figure 31. The frequency support of the wavelet filters

generated by several decompositions in space (f,) and time are overlayed on this plane. Considering
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Figure 31. Frequency supports of the wavelet filters generated by several decompositions in time
for a plane taken through the FFT of the image sequence in Figure 30a) at the spatial
frequency f, = m. The dark lines represent the 2D projections of the Fourier transforms
of the moving objects. The spatial frequency axis f, points out of the paper.

only the spatial frequencies surrounding f, = , the filters generated at each step in the temporal
decomposition process are highlighted in gray. Note that the Fourier transform of the fastest object
intersects the filter with digital center frequencies f, = w, f, = 7, f, = 7, while the Fourier transform
of the slower object lies through the filter located at f, = , f, = =, f, = 7. Further note that although
the center frequencies are specified here by their positive spatial and temporal frequencies, the filters

are actually symmetric around all three axes (recall Figure 26).

In order to segment the two horizontally moving objects, the representations in Figures 30 and
31 suggest choosing the wavelet coefficients associated with the first spatial decomposition level and
either the first or the second temporal decomposition levels. Furthermore, at either temporal level, one
can also choose between filters that extract diagonal or vertical object features. Figure 32 shows both
cases for the first and second temporal decomposition levels. Here, the outputs were thresholded to
eliminate the small amount of energy captured in overlapping frequency bands of neighboring filters.
Incidentally, since the planes do not pass through the wavelet filters associated with horizontal features,

it is not possible to segment horizontal features. This is consistent with the aperture problem described
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in Chapter II which prevents the measurement of motion in a direction paratlel to a brightness contour

(in this case, a horizontal line moving horizontally).

The second image sequence contains two differently sizea objects traveling at two different
speeds. Again, the purpose of this test is to demonstrate the algorithm'’s ability to extract information
at different scales in space and time. Specifically, recall that the conventional wavelet multiresolution
analysis restricts the analysis of motion to the same resolution in space and time. That is, the filters
produced by this approach are tuned to either large, slow objects (low frequencies in space and time)
or small, fast objects (high spatial and temporal frequencies). The conventional approach therefore
cannot extract moving objects with dissimilar spatial and temporal frequency characteristics, such as
large/fast or small/slow objects. This experiment shows the motion-oriented multiresolution analysis
segments objects with both types of dissimilar 3D frequency spectrums. The 64 x 64 x 64 grayscale
image sequence is shown in Figure 33. The larger of the two rectangles is traveling vertically at two
frames per second, while the smaller rectangle’s speed is one frame per second. The dimensions of the

large rectangle are twice those of the smaller rectangle.

In the second test set, the horizontal velocities of both objects equal zero, so their Fourier
ransforms lie on the planes given by f, = — f,v, where v, is either one or two frames per second.
If the largest digital spatial frequencies of the small and large objects are 7 and &~ 7 respectively,
their Fourier transforms will lie on the planes shown in Figure 33b). Following the previous example,
consider the vertical plane of the Fourier transform taken through the largest positive digital temporal
frequency f; = 7 as shown in Figure 34. The frequency supports of the wavelet filters for several
spatial resolutions are overlayed on the f, = = plane, and the dark lines represent the intersections of

the planar frequency supports of the two object with this plane.

Figure 34 suggests that the two objects can be segmented in frequency space by filtering the
image sequence with the wavelet filters associated with either the light or dark gray regions of the
ft = = plane. This corresponds to a wavelet decomposition of one resolution level in time and either
one (dark gray) or two (light gray) resolution levels in space. Figure 35 shows the wavelet coefficients
obtained by such a decomposition. Assuming the image sequence represents the coefficients associated
with the projection of the signal onto the j = 0, k = 0 approximation space, then Figure 35a) contains
the magnitude of the coefficients of the projection onto the ; = —1,k = —1 resolution level, and

the coefficients in Figure 35b) are from the ; = —2,k = —1 resolution level. Two different detail
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Figure 32.

b)

n=24

a) Segmenting the diagonal and vertical features of the faster object by decomposing the
input signal one level in space and one level in time. The slower object is completely
attenuated by the motion-oriented filter bank. The dimensions of the resulting coefficient
sequence are 64 x 64 x 64. b) Segmenting the slower object by decomposing one level
in space and two levels in time. The coefficient sequence dimensions are 64 x 64 x 32
(row, column, frame). Here n represents a frame in a coefficient sequence. In this case,
the faster object is completely eliminated by the filter bank.
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Figure 33.

Figure 34.

a)

b)

a) Several frames of (4 x 64 synthetic, grayscale imagery containing two differently sized
rectangles traveling at two different speeds. The 1arger rectangle is traveling at twice the
velocity as the small rectangle. b) A visualization ¢ the planes containing the Fourier
transforms of both rectangles. The Fourier transform of :he larger rectangle lies on the
narrower, lighter plane.
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Frequency supports of the wavelet filters generated by several spatial decompositions
for a plane taken through the FFT ui the image sequence in Figure 33a) at the temporal
frequency f, = 7. The dark lines represent the 2D projections of the Fourier transforms
of the moving objects onto the f. = 7 frequency plane.
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filters were applied at each resolution level to capture either horizontal or diagonal object features.
Additionally, since Figure 35b) was obtained by decomposing the image sequence two levels in space,
the dimensions of each image in Figure 35b) are now one-quarter the size of the images in the original
64 x 64 x 64 image sequence. Finally, as before, a threshold was applied to capture the largest

coefficients (in magnitude) at each resolution level.

The third sequence of images, shown in Figure 36, was chosen to demonstrate the motion-
oriented algorithm’s ability to zoom-in and zoom-out on spatial and temporal details in a natural image
sequence. The image sequence contains a large, slow moving tank executing a 180° turn. The imagery
is corrupted by background noise, and a plume of hot gasses is evident behind the tank in frame 100
after it executes the turn. In addition, the image jitters slightly from frame to frame, presumably as
a result of slight movements in the camera platform. The image dimensions are 128 x 128 (row,

columns, frames) and the values are eight bit grayscale (0 through 255).

The tank is fairly large and its movement is slow compared to other objects in the scene (notably,
the rapidly changing pixels associated with background noise). Thus, a large amount of its energy
should be contained in the coefficients corresponding to wavelets with longer dilations (i.e., lower
resolutions) in space and time. This behavior is clearly evident in Figure 37 which contains a single
frame from each of several different decomposition ievels in space and time. Moving horizontally from
right to left across the top of figure, which corresponds to decreasing the spatial resolution for a fixed
temporal resolution, it is evident that the energy in the spatial wavelet coefficients increases. However,
since the temporal resolution is held constant at the highest level, the scintillating background pixels
with their correspondingly high temporal frequency energy are still very much present in the scene. If
one now moves vertically down the right side of the figure, so that the temporal resolution decreases
for a fixed spatial resolution, the coefficients associated with the large, slow tank become more and
more evident, until, at the spatio-temporal resolution level j = ~3,k = —2, only the tank remains in
the image. Thus, a wavelet filter tuned to large, moderately slow moving objects successfully extracts

the tank from the noisy image sequence.

A second test conducted on the tank image sequence was performed to compare the motion
segmentation properties of the motion-oriented multiresolution analysis with a more traditional seg-
mentation technique known as frame differencing. In this technique, pixel values in an image frame at

time ¢ + 1 are subtracted from the image at time £ in order to remove stationary objects from the scene.
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Figure 35.

b)

a) Segmenting the diagonal and horizontal features of the larger, faster object by decom-
posing the input signal two levels in space and one level in time. Smaller, slower object
contained in original input image sequence is completely removed from the scene. The
coefficient sequence dimensions are 16 x 16 x 32. b) Segmenting the smaller, slower ob-
ject by decomposing one level in space and one level in time. In this case, the larger, faster
object has been eliminated by the motion-oriented filter bank. The coefficient sequence
dimensions are 32 x 32 x 32,
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n=50

n=75 n=100 n=12§

Figure 36. Several frames of a sequence of IR images in which a large, slow moving tank executes a
180° turn.

This technique is used extensively in real-time motion detection systems such as the multiresolution
Pyramid Vision Machine developed by P. Burt (10). Two common problems with frame differencing
techniques are 1) they require pixel registration between image frames in order to “subtract out” sta-
tionary information, and 2) frame to frame pixel scintillations caused by noise are not removed by the
differencing process. The major advantage of the technique is that it can be implemented in real time.
Figure 38 compares several unprocessed frames of wavelet detail coefficients to similar poses of the

tank produced by a simple frame-differencing operation.

Figure 38b) shows the wavelet coefficients at the spatio-temporal resolution level j = 1, & = 3.
In each frame, the spatial and temporal detail signals of the vertical, horizontal and diagonal! features
are combined to yield a complete outline of the tank. The motion-oriented wavelet decomposition
algorithm has captured the edges of the tank while virtually eliminating the noisy background. The
frame differencing technique, shown in Figure 38a), also captures edge information, however this
technique is clearly more susceptible to noise sources in the “stationary” background. In Burt's smart
sensing pyramid vision scheme, objects of interest in the image sequence are located by analyzing frame
differenced images at multiple spatial resolutions. However, Figures 37 and 38 show these objects
can be significantly obscured by noise and other motion related phenomena (such as camera jitter) in

the scene. The motion-oriented decomposition tool, on the other hand, allows one to independently
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Figure 37. Single, unprocessed frame of detail coefficients from each of several different motion
decompositions in space and time. Moving left to right across the figure increases the
spatial dilation of the wavelet which in turn extracts lower spatial frequencies from
the sequence. Moving from top to bottom increases the wavelet’s temporal dilation,
thereby extracting lower temporal frequencies from the sequence. The lower right image
corresponds to a spatio-temporal resolution of j = —3,k = —2.
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Figure 38.

frame
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a) b)

a) Several frames of moving tank image sequence processed with a traditional frame-
differencing motion extraction technique. b) Detail coefficients generated by a motion-
oriented wavelet decomposition at the spatial and temporal resolution levels j = 1,k = 3.
The temporal details of the horizontal, vertical and corner spatial details have been
combined to form an outline of the moving object.
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Figure 39. a) Several frames of 64 x 64 imagery containing two identical rectangles traveling with
the velocity components v, = 0 frame/fsec. and v, = x1 frame/sec. b) A visualization
of the planes containing the Fourier transforms of both rectangles. The spheres represents
the frequency support of one of the seven “detail” wavelet filters.

examine spatial and temporal details in an image sequence in order to simulitaneously locate features

at different scales and eliminate extraneous motion related information.

The final test conducted in this section is designed to reveal the directional insensitivity of the
motion-oriented algorithm as discussed in Section 3.6. The image sequence used for this test consists of
two identical rectangles moving horizontally across the field of view at the same speeds but in opposite
directions. The y velocity component of both objects equals zero and the x velocity components are
v, = =1 frame/sec. Several frames of the moving objects, as well as the planes containing their Fourier

transforms are shown in Figure 39. The dimensions of the discrete image volume are 64 x 64 x 64.

The spheres in all eight corners of the frequency volume shown in Figure 39b) represent the
frequency support of one of the seven detail filters generated by one step in the spatial and temporal
decomposition process (i.e., j = k = —1). Since the coefficients of the QMF pair that generate
the filter are real, the frequency supports are symmetric about all three axes. The Fourier transforms
of both objects lie on the planes that cut through diagonally opposing quadrants of the frequency
volume. Although the planes correspond to motion in two opposite directions, they both pass through

four of the eight spheres. Clearly, this filter will “ring” in the presence of either of the two moving
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Figure 40. The “diagonal” detail coefficients obtained by one step in the motion-oriented spatial and
temporal decomposition processes. The filter associated with these coefficients captures
both objects even though they are traveling in opposite directions.

objects. Indeed, as Figure 40 shows, the coefficients associated with this wavelet filter capture both
oppositely moving rectangles. Thus, the detail filters generated by the motion-oriented decomposition
algorithm respond more like scalar motion (or speed) detectors than vecror motion detectors. In order
to increase the directional selectivity of the wavelet filter, Chapter V employs a Hilbert transform
decomposition technique that allows one to capture the energy contained only in diagonally opposing
filter pairs (e.g., the two spheres located in the opposing octants defined by f, > 0.f, > 0.f, > 0
and f, <0, f, <0, f; <0).

4.6 Conclusions

This chapter presented an unconventional L.(R®) multiresolution wavelet analysis designed
for the purpose of analyzing motion in time sequential imagery. A theoretical framework was first
developed that allows for the construction of an L.(R?) multiresolution wavelet analysis from three
non-identical L»(R) spatial and temporal multiresolution wavelet analyses. This framework provides
greater flexibility for tailoring the spatio-temporal frequency characteristics of the three dimensional
wavelet filter to match the frequency behavior of the analyzed signal. An unconventional. discrete
multiresolution wavelet decomposition algorithm was then described which yields a rich set of indepen-
dent spatio-temporally oriented frequency channels for analyzing the size and speed characteristics of
moving objects. Unlike the conventional L.(R*) wavelet decomposition method described in Chapter
I, this “motion-oriented” algorithm provides independent zoom-in and zoom-out capability in space

and time.

The motion oriented algorithm was applied to a natural image sequence and several synthetic

image sequences in order to demonstrate its capabilities and [imitations. It was shown that decoupling
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the conventional spatial and temporal decomposition processes provides the ability to segment objects
with dissimilar spatial and temporal frequency characteristics (e.g., small, slow objects or large, fast
objects). Additionally, the independent zoom-in and zoom-out capability of the motion-oriented
decomposition tool allows one to locate objects at different spatial scales in the presence of extraneous

motion related phenomena such as camera jitter, background noise and sensor noise.

The final example demonstrated that the motion-oriented algorithm produces scalar motion sen-
sors that are sensitive to objcct speed, but insensitive to object direction. In Chapter V, a Hilbert
Transform is used in conjunction with the unconventional wavelet decomposition process to produce
vector motion sensors that respond preferentially to vertical, horizontal or diagonal features corre-

sponding to a given object’s size, speed, direction and location in the scene.




V. Object Discrimination Using a Motion-Oriented Wavelet Multiresolution Analvsis

5.1 Iuroduction

The previous chapter presented a unique motion-oriented L,(R?) multiresolution wavelet anal-
ysis designed to detect objects of different sizes moving with different speeds across a two-dimensional
image plane. Furthermore, it was shown that the symmetric wavelet detail filters generated by the
motion-oriented wavelet analysis act as scalar motion sensors in that they respond to the magnitude of
an object’s velocity vector (i.e., its speed), rather than to the vector quantity of speed and direction. The
purpose of this chapter, therefore, is to expand the properties of the motion-oriented wavelet analysis
to provide a multiresolution motion analysis tool that discriminates multiple moving objects in a three-
dimensional image sequence based on their location, size, speed and direction of motion. The chapter
is divided into two major sections. The first section provides the mathematical foundation for the vector
motion analysis tool by combining the properties of the Hilbert transform with the motion-oriented
multiresolution wavelet analysis to yield a bank of directionally selective wavelet filters. An algorithm
is then presented which combines the responses of the directionally selective wavelet filters to discrim-
inate multiple objects in a 3D image sequence by computing the optical flow. The second major section
of the chapter introduces a unique cooperative-competitive strategy that restores localized flow fields
corrupted by noise. The strategy employs a modified gated dipole filter designed to reinforce consistent
flow behavior and remove flow inconsistencies. Several examples are provided which demonstrate the

utility of the gated dipole flow restoration process.

5.2 A Vector Wavelet Motion Sensor

Section 4.5 presented several examples which demonstrated the capabilities of the discrete
motion-oriented multiresolution wavelet analysis. These included the ability to differentiate between
objects moving in an image sequence based on their location, size and speed. The final example,
however, served to emphasize a key limitation of the motion analysis technique - it is not selective
for motion direction. Since velocity is a vector quantity consisting of both speed and direction, this

limitation constitutes a serious shortcoming for a motion analysis tool.

The inability of the motion-oriented multiresolution wavelet analysis to respond preferentially to

direction of motion is attributable to the symmetry of the quadrature mirror filters in three-dimensional
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Figure 41. 3D Fourier transform of the wavelet \Ilj(r. y.t} graphically rendered using a ray tracing
program developed at AFTT.

frequency space. This symmetry is clearly evident in Figure 41 which shows a three-dimensional
Fourier transform of the “seventh™ detail wavelet, \Ilj(.r. y.1) as defined in Theorem 1. The wavelet
was iteratively constructed from Daubechies 7 g filters in space and time. The figure was obtained by
graphically rendering the Fourier transform of \[lj(r. y.!) using a ray tracing program developed at

AFIT (34).

As discussed in Section 4.5, when two objects move horizontally in opposite directions and
at equal speeds across an image plane, their Fourier transforms will lie on two planes as shown in
Figure 424). Assuming the speed of the objects matches the temporal frequency characteristics of the
Fourier transform in Figure 41, it’s clear the corresponding filter will capture both objects in the imaze
sequence. One might think that the inability to preferentially discriminate one object from the other
might be overcome by devising a way to cancel the response of the filter in four of the regions contained
in opposite quadrants of the frequency volume as shown by the four black spheres in Figure 42a). One
could then selectively extract objects moving in either direction by canceling the response of the filter
regions in the appropriate quadrants. The problem with this approach, however, is demonstrated by the
frequency response shown in Figure 42b) which contains the planes associated with two objects. one

moving vertically and the other moving horizontally at the same speeds.
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Figure 42. a) Fourier transforms of two objects moving horizontally with the same speed but in
opposite directions. Opposing quadrants are highlighted in dark lines. The spheres depict
the frequency supports of the filter shown in Figure 41. b) Fourier transforms of two
objects traveling horizontally and vertically with equal speeds. The black spheres are
located in diagonally opposite octunts of the frequency volume.

Figure 42b) shows that by selectively canceling the filter response only in opposing quadrants
of the frequency volume, one cannot preferentiaily segment either of the horizontally and vertically
traveling objects. However, if it were possible to cancel the response of the filter everywhere but in
diagonally opposing octants of the frequency volume, as shown by the black spheres in Figure 42b),
one could theoretically discriminate between both objects in the image sequence (58). This section
describes a method for obtaining such a frequency response through the use of the Hilbert transform.
Although the Hilbert transform was employed for a similar purpose by Watson and Ahumada (58) the
contribution in this phase of the research consists of the creation of an “extended” real signal which
is incorporated in the motion-oriented multiresolution wavelet analysis to yield diagonally opposing
wavelet filters at all possible spatial and temporal resolutions. Several properties of the Hilbert transform

that are relevant to this objective are discussed next.

5.2.1 The Hilbert Transform. The Hilbert transform is a convolution operator with the

transfer function, Hil(f), where (60)

Hil(f) = —jsga(f) (116)
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The sgn or “signum” function is defined as

[ I, >0
sgn(f)=4 0, f=0 (117)
l -1, f<0

so that the effect of the Hilbert transform is to shift the phase of all frequency components of a signal
by a factor of — 7 radians. If X(f) is the Fourier transform of an input signal x(t), then its Hilbert

transform, x(?), is

&(t) = FHX(/)H(f)}
= xz(t) * hal(t) (118)
where the impulse response, hil(t) = —jF ' {sgn(f)}, is obtained from the Fourier transform pair
L — sgn(f) (119)
mt

and where the double headed arrow denotes the Fourier and inverse Fourier transform operations.
Inserting Equation 119 into Equation 118 then yields the following definition for the Hilbert transform

of z(t)

M) = ./x =0,

o Tt —T)
= /x 274, (120)
—~c T

Clearly, &(t) cannot be computed at t = 0, however, in this research, the Hilbert transform is

implemented in the Fourier domain where this problem does not arise (58).

Now consider the complex analytic signal, =, (), defined in terms of the real signal z(t) and its

Hilbert transform, Z(t),

zq(t) = 2(t) + j2 (1) (121)

The spectrum of the analytic signal is often used in single-sideband communication systems to reduce

the transmission bandwidth of a signal (60). It is obtained by computing the Fourier transform of the
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right hand side of Equation 121 as follows

XJ(f) = X(f)+iX(f)
= X(f)+iH())X(])
= X(f)+jl-jsen(f)X(f)]
= X(f)[1+ssa(f)] (122)

From the definition of the signum function, Equation 122 can be expressed as

xJ(f)={ K >0 (123)

0, f<0
which shows the frequency response of the analytic signal contains only the positive frequency com-
ponents in the signal’s spectrum. Similarly, by changing the sign in the first line of Equation 122
from a positive to a negative sign, one can retain only the negative frequency components of the signal
spectrum. This property is employed in the following section to selectively choose diagonally opposing

octants in 3D frequency space.

5.2.2 Directionally Selective Wavelet Filters.  As a first step in understanding how the Hilbert
transform can be used to generate the directionally selective filters described above, consider again the

dyadic Wavelet transform of the one-dimensional signal x(t) previously presented in Chapter II,

[Wf](2,m) =27 /N z(t)y (2't —~ m) dt (124)

where | and m are integers that specify the dilation and translation of the wavelet kernel and (t) is a
mother wavelet. As in Equation 4 in Section 2.2.1, the wavelet transform can be expressed in terms of

the convolution integral

(W £1(2',m)

/ T () tn(m — t)dt

-0

z(t) * i (t) (125)

i

97




where ¥,(t) = 2;111,1:(—2' t). Next, define the pair of analytic mother wavelets by
YE() = (1) £ (1) (126)
Notice that the analytic wavelet is indeed a “wavelet” in that it meets the admissibility condition

—it——dw < o© (127)
—xo @]

/°° W (w)?

given in Section 2.2.1. This follows from the fact that the energy in a signal and its Hilbert aransform

are equal. That is,
(¥ (w)]* = [F{@I = | - jsgw[*1¥(w)[ = [¥(w)] (128)

Using the relationship derived in Equation 122, the spectrum of the analytic mother wavelet pair

can be expressed by

2¥(f), £>0
Vo (f) = ( (129)
0, f<0
and
_ 0, f>0
Yo (f) = (130)
2y(f), <0
where the symbols “+” and “—” indicate the positive and negative halves of the frequency axis and

W(f) is the Fourier transform of (¢). The moduli of both “one-sided” spectra for a Daubechies 12

analytic wavelet pair are shown in Figure 43.

Now define the analytic wavelet transform pair by

[WEz)(2,, m) 27 /Oo z(t)p= (2't — m) dt

= 2% (/ix(t)gb(?t—m)dtﬂ:j/x z(t)zﬁ(2‘t—m)dt) (131)

-2

where 1 (t) is the Hilbert transform of the wavelet ¥(t). Using the previously defined substitution

variable 1;(t) and the new variable ¥,(t) = 25 v)(—2't), Equation 131 can be expressed as the sum
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Figure 43. a) A Daubechies 12 wavelet and b) the magnitude of iEs Fourier transform. c¢) The one-
sided spectrum of the analytic signal ¥} (t) = 9(t) +j9(t) and d) the one-sided spectrum
of the analytic signal ¥ (t) = ¥(t) — 79 (¢).

of two convolution integrals:

wEel2m) = [ a(uim -tz [ aybim -t
= o(t) * ult) & o (t) + (1)
= {t) * ult) & ga(t) # [il(2) # (0]
= z(t) * () £ jz(t) * hil(t)] * %u(2)
= z(t) *%u(t) £ 52 (2) x u(t)
= t)+ () (132

Equation 132 shows that the analytic wavelet transform of a real signal, z () is equivalent to the wavelet
transform of the analytic signal, z,(t) where z,(t) = z(t) + 7&(¢). Since the transforms are obtained
using convolution integrals, this process can also be implemented in the Fourier frequency domain as

follows,
[Wiz](2',m) = a(t)*u(t) £ j2(t) * ¥i(t)
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FHX ()W) + 5[-jsgnl 1) X (£ ]}
= FHX()W(L £ sgn(5)]} (133)

Viewed as filtering operation, the “one-sided” analytic wavelet transforms capture either the positive or
negative frequency components in the signal spectrum that lie within the bandpass regions of the wavelet
filter ¥(f). The transforms are easily obtained by filtering the input signal with ¥( f) and retaining
only the positive or negative portions of the frequency spectrum. Since the resulting spectrums are
one-sided (i.e., asymmetric), the one-dimensional analytic wavelet transforms will always be complex.
Next consider how one can use a Hilbert transform in conjunction with a three dimensional Wavelet
transform to capture the frequency components contained in diagonally opposing octants of a three-

dimensional frequency spectrum.

In order to obtain directional selectivity in a spatio-temporal frequency analysis, the previous
section showed a filter is required that possesses identical regions of support in diagonally opposing
octants in three-dimensional frequency space. Because of its symmetry, the 3D wavelet filter yields
identical regions of support in all eight frequency quadrants. It is possible, however, to capture any
two diagonally opposing wavelet filter regions through the judicious application of multiple 1D Hilbert

transforms. For example, consider the “extended real mother wavelet” given by

¢r1s(97,y,t) = ¢(1',y,t)—th(z)*hll(y)*¢($,yat)_hd(‘??)*hll(t)*d’(x,y,t)

—hil(y) = hil(t) * Y(z,y,t) (134)

where the subscript 718 indicates the extended mother wavelet is real and, as shown next, its Fourier
transform captures frequencies in the first and eighth diagonally opposing octants of 3D frequency

space as defined in Figure 44.

Once again using the Hilbert transform pair

L o sgn(f) (135)

i

the Fourier transform of v,.;5(, y, t) can be written as
Fltbms(z,y, 1)} = ¥(fa, fy, f)[L + sgn(fo)sgn(fy) + sgn(fz)sgn(f.) + sgn(f,)sgn(f.)]
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octant | f, fy f, | Yris
1 + | + | + 4¥
2 + - + 0
3 -+ |+ 0
4 - - |+ 0
5 + | - - 0
6 + |+ | - 0
7 -+ | - 0
8 - - - 4v

Figure 44. Table showing the frequency response of the extended wavelet 1,15 (z, ¥, t) in each of the
eight octants of a spatio-temporal frequency volume. The plus and minus signs indicate
the corresponding frequency region is greater than or less than zero respectively. The
frequency response is non-zero in the diagonally opposing octants 1 and 8 where it is four
times the frequency response of the constructing wavelet ¢(z,y, t).

= ‘I’(f:a fyv f\t)[l + Sgn(fmfy) + Sgn(f::’ ft) + Sgn(fy: ft)] (136)

where the real, separable 2D signum function, sgn( f., f.), is formed from the product of the imaginary
1D signum functions —jsgn(f,) - —jsgn(f,). The table in Figure 44 shows the frequency response
of Equation 136 for each of the eight octants in a spatio-temporal frequency volume. Evidently
the frequency response is non-zero only in the first and the eighth octants, which correspond to the
"agonally opposing frequency regions f, > 0,f, > 0,f, > 0and f; < 0,f, < 0,f, < 0.
Furthermore, the frequency response in these two regions is four times the response of the constructing
wavelet ¢(z,y,t). Figure 45 shows the 3D Fourier transform of the extended wavelet 1,.15(x, y,1),
where the constructing wavelet employs a Daubechies 7 g filter in space and time. The Fourier
transform of the constructing wavelet was previously shown in Figure 41. As before, the Fourier

transform of 1,15z, y, t) was graphically rendered using a 3D ray-tracing program.

The frequency response of the extended wavelet 1.15(,y,t) captures the spatio-temporal
frequency components lying in the diagonally opposing frequency regions f. > 0,f, > 0,f, > 0
and f: <0, f, <0, f; < 0. Three additional extended wavelets are needed to capture the remaining

three diagonally opposing octants. The three w velets and their Fourier frequency responses are shown
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Figure 45. 3D Fourier transform of the extended wavelet v',.;5(.r. y. t) graphically rendered using a
ray tracing program developed at AFIT. The constructing wavelet employs a Daubechies
7 g filter in space and time.

in Equations 137 through 139. A visualization of the regions of support in spatio-temporal frequency

space of each of the four extended wavelet's Fourier transforms is provided in Figure 46.

Cosldoy t) = uvicoy. )+ hilie) = hilty) > vl oy t) = halte) = hil(ty - viroy. )
+hil(y) = hil(t) = vl y. t)

Fi{vislo oy 1y = ¥ f f, [0 —sani(f,. f,)+senlf,. fo) —sen(f,. [} (137)

Cranle gyt = wle oy t) = hilley < hil(y) = vlx oy 0y + heltaey = hility = vl oy b
+hiliy) = hil(ty = vlr.y.t)

Fluvaete oy )y = W(f, f, 1 +sanlf,. [0 - sgni f,. fo) - sgnif,. fih (138)
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Yras(@,0nt) = Y(a,y,t) + hil(z) * hil(y) * $(z,y,1) + hil(z) * hil(t) * ¥(z,y,1)
—hil(y) * hil(t) * ¥(z,y,1)

f{¢r45(z’yat)} = ‘I’(fzvfwft)[l'—s@(fxafy)+sgn(ft,ft)+sgn(fy)ft)] (139)

18: V([ fu f)(1 + sgn( fo)sgn(fy) + sgn( fr)sgn{ fi) + sgn{ fylsgn{ fi))
27 W fo fy. f) (1 = sgn(f)sgn(fiy) + sgn{ f)sgni fr) — sgnlfy)sgn(fo)
36: U(fe. fyn S (1 + sgn(fo)sgn(fy) — sqn(fz)sgn(fy) — sgnlfu)sgn(fr))

45: W(fr. fy. S (1 = sgn( f)sgn( fy) — sgnifa)sgn(fi) + syn(fy)sgnifi))

Figure 46. A visualization of the regions of support in spatio-temporal frequency space of the Fourier
transforms of the four extended wavelets 1,15(x,y,t) through ¥.45(x,y,t) where the
constructing wavelet 1(z,y,t) is bandpass in f,, f, and f,. Note that each wavelet
captures two diagonally opposing regions in frequency space and that four wavelets are
needed to cover all eight octants.
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Taken together, the four extended wavelets cover all four possible diagonally opposing regions
in spatio-temporal frequency space. As argued earlier, this adds a degree of directional selectivity not
provided by the symmetric frequency spectrum associated with a conventional 3D wavelet (although,
it will be shown later in this chapter that full directional selectivity is obtained only by combining
the responses of two extended wavelets). In the above examples, the constructing vavelet pussessed
the highpass spatio-temporal frequency characteristics associated with the detail wavelet ¥} (z,y, t)
(see Theorem 4). The following section incorporates the “extended wavelet” concept into the motion-
oriented multiresolution wavelet analysis developed in Chapter IV to yield a bank of diagonally

opposing wavelet filters tuned to multiple object sizes, speeds and directions.

5.2.3 Directionallv Selective, Motion-Oriented Multiresolution Wavelet Analvsis.  The pre-
ceding section showed that one can capture diagonally opposing supporting regions of a 3D symmetric
wavelet filter through the use of an extended real wavelet filter. It was also shown that the symmetric
filter bank generated by the discrete motion-oriented multiresolution wavelet analysis serves as a scalar
motion sensor in that it can sense the speed of moving objects but not their direction. The purpose of
this section is to wed the two concepts to form the foundation for a vector motion sensing tool that

responds preferentially to a given object size, speed and direction.

Begin the development by assuming that f(z, y, t) represents an L, (R®) spatio-temporal signal.

Without loss of generality, construct the extended real signal, f¢(z,y,t), as follows

fe(:lf,y,t) = f(:r,y,t)—hzl(a:)*hzl(y)*f(:c,y,t)—hzl(z)*hzl(t)*f(:r,y,t)

_hll(y) * hll(t) * f(a:’y’t) (140)

where hil(x) is the Hilbert transform integral kernel given in Section 5.1.1. and the signs in Equation
140 match those given in Equation 134. Theorem 8 shows that f(z,y, t) is an element of L,(R>) and

can therefore be decomposed under a wavelet multiresolution analysis.

Theorem 8. Let f € L,(R*). Then f© is also contained in L,{R3).
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Proof. Let g(z,y,t) = hil(x) * hil(y) * f(z,y,t), and show that g € L,(R®). That is, show

llg(z,y,t)||* < co where || - || indicates the L, norm. Now, by Parsevals Identity,

1F{g(z,y, ) }I?
= [|(=Jjsga(w.))(—jsgn(w,)) F(w,, wy, o) ||’

= ”F(wuwvat)llz

llg(z, v, DII?

where F(w;,wy,w;) = F{f(z,y,t)}. But, the Fourier transform maps L,(R*) onto L,(R?). Thus,
| F(wz,wy,w:)||* < co which implies [|g(x,y,t)[|> < co. Furthermore, this result implies the L,

norm of each of the last two components in f¢(z, y, t) are also finite, so that

|1£¢ (=, v, DI 1f (z,y,t) = hil(z) * hil(y) * f(z,y,1) — hil(z) * hil(2) * f(z,y,1)

—hil(y) = hil(t) * f(z,y,t)||*

< |f (=, y, Ol + |hil(z) * Ril(y) * f(z,y,0)|1* + ||hil(z) * hil(t) * f(z,y,1)]]?
+|[hil(y) * hil(t) * f(z,y,t)|I?
< oo (141)
Thus f¢ is an element of L, (R?). Q.E.D.

Next, following the notation in Chapter IV, assume the projection of the extended signal onto

the zeroth approximation space is given by
QGipgr = B0:pigr— hil(p)* hil(q) *@g:p.q..— hil(p) xhil(r) % ag.p.q.r — hil(q) ¥ hil(r) *ag.p.4.» (142)

where p, q and r are elements in a rectangular sampling grid and ay,, ¢ is simply a sampled version
of the original signal. Chapter IV showed that the projection coefficients at the —1st approximation
level can be obtained by discretely convolving the projection coefficients at the zeroth approximation
level with the separable scaling function ﬁ(p)i_z(q)i:z(r) and keeping every other sample. Recall that

the impulse responses h(n) and k(n) are formed from two different scaling functions. In Chapter IV,
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this process was expressed by the equation
d_1lmn) = [aO:(p.q,r) * l_’l(p) * B(Q) * iz(r)] (21,2m,2n) (143)

Inserting Equation 142 into Equation 143 and rearranging yields the following expression for the

projection of the extended signal onto the j = —1st approximation level

@ e = [Sipgn * BR) ¥ h(g) * A(7)] (21, 2m, 2n)
= [( Gotpugrs — hil(p) * hil(g) * Gopgr) — hil(p) * hil(r) * ag:(p.qun
—hil(q) * hil(r) * aopgr) ) * h(p) * B(q) * h(r) ] (21, 2m, 2n)
= [ o * { Bp) * h(q) * h(r) = (hil(p) * hil(q)) * h(p) * h(g) * (r)
—(hil(p) * hil(r)) * h(p) * h(q) * A(r)
—(Ril(q) * hil(r))h(p) * R(q) * A(r) } ] (21, 2m, 2n)

[ DFT™* { Aol(fp~fq-fr) ' I—{(fpa fq’ fr) { 1

+sg0(fp, fo) + sga(fy, fr) + sgn(fo, £2) } 3 1(2,2m, 2n) (144)
where
H(f.) = DFT{h(n)}
H(f) = DFT{h(n)} (145)
and
H(fp for ) = U AS)H(S) (146)
Equation 144 shows that the projection coefficients at the ; = —1 approximation level for the

extended signal defined in Equation 140 can be obtained by discretely filtering the originally sampled

signal ag,((p.q.r)) With the extended scaling function filter

Fl(fpa fq? fr) {1 + Sgn(fm fq) + Sgn(fp’ fr) + sgn(f,,, fr)} (147)
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inverse Fourier transforming the result, and keeping every other sample in each dimension. As
discussed in the previous section, the signs in the definition of the extended signal determine the
non-zero, diagonally opposing frequency regions of the extended scaling function filter. In this
case, the resulting coefficients therefore represent the information in the sampled signal that lie in
the passband of the scaling function filter H( fps fg» £} contained in the diagonally opposing regions
fp>0,f,>0,f >0andf, <0, f, <0, f. <0. Theinformation in the remaining three diagonally
opposing frequency pairs is obtained by varying the signs of the extended signal in accordance with

Equations 134 through 139.

In practice, the coefficients associated with diagonally opposing frequency regions at an arbitrary

spatial and temporal resolution level are computed as follows. First, components 2, 3 and 4

.

Hp.g.r)

ag;(p'q‘,., = Qo;(p.q.r) —ﬂ(p) x hil(q) * Bo:(p.gr) ~ ﬁil(p) * hil(r) * @q.(;.q.0) — hil(g) * hil(r) * ay
1 2 3

4

(148)
that comprise the discrete, extended real signal in Equation 148 are formed by multiplying the FFT of
the sampled image sequence by the appropriate combination of 1D Hilbert transform transfer functions
and inverse Fourier transforming the result. Causality problems associated with the temporal Hilbert
transform are avoided by defining the mid-frame inthe N x N x N image sequence (i.e., f(p, g, % )
as t = 0. After constructing the extended real signal, all four components are then decomposed
individually using the discrete motion-oriented multiresolution wavelet analysis in Chapter IV. At
each level of decomposition in space and time, the four sets of projection coefficients (one set for
each of the extended signal components) are summed in accordance with the sign conventions in
Equations 134 through 139. Each sign convention captures the information in one of four diagonally
opposing frequency regions for a symmetric wavelet filter generated at a given spatial and temporal
decomposition level. This process is illustrated by the flow diagram shown in Figure 47 in which the
extended jth approximation coefficients are decomposed into four sets of d” detail coefficients which

are then summed to extract the information contained in diagonally opposing wavelet filters.

The “directionally selective motion-oriented multiresolution wavelet analysis” described above
produces a bank of spatio-temporal filters that are selective for both object speed and, to some degree,
direction of motion. The degree to which the extended wavelet filters are directionally selective is

determined by the orientation of the plane in Fourier space that contains the spatio-temporal frequency
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8:p.q. hil(p)* hil(g)«a; hil(p)+ hil(r) *a; hil(q) » hil(r)*a,
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Figure 47.
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Decompose Each Component Separately by Convolving With
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Diagonally
Opposing Filter
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Flow diagram depicting one step in a process designed to capture frequency information
contained in diagonally opposing frequency regions of a symmetric wavelet filter. The jth
approximation coefficients are decomposed into four sets of d” detail coefficients which
are then summed to extract the diagonally opposing frequency information.
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n=1 n=16 n=32 n=48 n=64

Figure 48. Several frames of 64 x {1 imagery containing two identical rectangles traveling with the
velocity components (v, = L.v, = ()) framefsec. and (v, = 0. ¢, = 1) frame/sec.

components of the moving object. For example, consider the case of an object that is moving either
purely horizontally or purely vertically. The plane containing its Fourier transform will then consist of

one unknown velocity component, ¢, or r,, as given by:

Horizontal Motion: f, = —v. f,
Vertical Motion: f, = —v, f

In this case. a single directionally selective wavelet filter with a center frequency pair f,. f, or f.. f,
that matches the spectrum of the moving object can unambiguously segment the object from the scene.
In essence, a single wavelet filter, then, provides the ability to solve one equation in one unknown.
In order to demonstrate this capability, consider the image sequence shown in Figure 48. The image
sequence contains two objects traveling at the same speed, however one object moves horizontally
while the other moves vertically. Both sequences contain 61 frames of 64 x 6.1 grayscale imagery.

Now consider the Fourier transforms of the stationary and moving objects.

Figure 49a) displays the magnitude of the 2L Fourier transform of both identical rectangles.
This figure was obtained by Fourier transforming a single frame from the image sequence. The regions
of support of the horizontal, vertical and diagonal filters generated by two levels of decomposition in
a 2D spatial wavelet multiresolution analysis are overlayed in white on the 2D spectrum. The figure
in part b) provides a visualization of the planes in spatio-temporal Fourier space containing the 2D
Fourier transforms. The spheres in b) represent the symmetric detail filter created by decomposing the
image sequence one level in space and time in a motion-oriented multiresolution wavelet analysis. The
solid black and gray spheres represent diagonally opposing detail filters that capture objects traveling

horizontally (black) or vertically (gray).

In order to segment the two objects, all four discrete signal components in Equation 148 were

constructed using the methods described earlier. Each signal component was then decomposed one
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Figure 49.

<)

a) 2D FFT of the rectangles in Figure 48. The frequency supports of the spatial wavelet
filters generated by two steps in a wavelet multiresolution analysis are overlayed on the
FFT. b) A visualization of the planes in Fourier space containing the FFTs of the moving
objects. The spheres represent the symmetric wavelet filter generated by one spatial and
temporal decomposition level in a motion-oriented muitiresolution wavelet analysis. The
solid black spheres are selective for horizontal motion while the gray spheres (one is
hidden) select for vertical motion. c) The coefficients obtained by segmenting the hori-
zontally moving object using the directionally selective motion-oriented multiresolution
wavelet analysis. The filter pair created during this process is highlighted in black in part
b).
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level in space and time using the motion-oriented multiresolution wavelet analysis. The coefficients
for each signal component associated with the symmetric detail filter shown in Figure 49b) were then
summed in accordance with the sign conventions in Equations 138 and 139 to produce the filters
represented by the diagonally opposing black and gray spheres in part b). The resulting coefficient
sequence associated with the filter pair that captures horizontally moving objects is shown in Figure

49c).

This test demonstrates that the directionally selective wavelet filters formed by appropnately
summing the decomposition coefficients of the four extended signal components are able to segment
two rectangular objects traveling horizontally and vertically with the same speed. However, the test also
shows that the coefficients produced by this process are clearly distorted compared to those produced
by the symmetric filter in Section 4.5. This distortiou is partly attributable to the directionally selective
filters which only capture the spatial frequency components in diagonally opposing quadrants of the
2D Fourier transform in Figure 49a). Additionally, some distortion is introduced by the digital Hilbert
transform process and by machine precision limitations that affect the coefficient summation process.
However, these distortion effects notwithstanding , there is yet a more fundamental problem associated

with the segmentation of moving objects using a single diagonally opposing filter pair.

The moving objects in the foregoing example travel in either a purely horizontal or purely vertical
direction. Consequently, they each have only one velocity component and their Fourier transforms
lie on planes that are described by a single equation in one unknown velocity component (the other
component equals zero). Only one diagonally opposing wavelet filter with a known center frequency
pair, say (fzo, f1,) in the case of a horizontally moving object, is therefore required to solve the plane
equation, f; = —(fiv, + fy - 0}, for the unknown velocity component v,. The problem, of course, is
that objects don’t typically move in a purely horizontal or vertical direction, so that their corresponding
planes in Fourier space are generally described by one equation in nvo unknown velocity components,
ie, fi = —(fsv. + f,v,). This implies objects moving in many different directions can produce
spectra that lie in the passband of a single diagonally opposing filter. Consequently, a single filter
cannot unambiguously segment objects moving in arbitrary directions. This problem is resolved in the
following section by computing the response of multiple filters at a given location in the scene and

combining the responses to solve for both unknown velocity components.
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5.24 Computing Optical Flow.  The previous sections showed that the symmetric wavelet
filter produced by the motion-oriented multiresolution wavelet analysis acts a scalar motion sensor in
that it responds to object speed (a scalar quantity) rather than object velocity (a vector quantity consisting
of speed and direction). Consequently, a method was presented which combined the properties of
the Hilbert transform with the motion-oriented multiresolution wavelet analysis to produce a bank
of directionally selective wavelet filters. It was shown, however, that a single directionally selective
wavelet filter is not sufficient to unambiguously determine the direction of a moving object. The purpose
of this section, therefore, is to present a method that allows one to unambiguously compute direction
of motion by combining the responses of two directionally selective wavelet filters. Specifically, the
method yields the = and y velocity components - or optical flow - of a moving brightness pattern at

each point in the image plane.

5.2.4.1 Concept. Consider again the case of a simple 1D object traveling at some
speed v, as previously discussed in Chapter II. Recall that the Fourier transform of the moving object
lies on a line in 2D frequency space defined by f, = —v, f.. If the largest digital spatial frequency
¢! the stationary object is 7 radians, then the frequency support of the moving object is depicted by
the line in Figure 50. Here, the line is superimposed on the wavelet filters generated by multiple
spatial and temporal decompositions in a 2D motion-oriented multiresolution wavelet analysis as
discussed in Chapter IV. The shaded regions represent the wavelet detail filters produced by one spatial

decomposition and three temporal decompositions.

The digital center frequencies of each of the filters in the upper right quadrant of the filter bank
are shown along the spatial and temporal frequency axes of the 2D frequency space in Figure 50.
The wavelet detail filter in the upper right corner of the quadrant (marked with a 1) is produced by
convolving the rows and columns of the sampled spatio-temporal input signal with the discrete QMF g
filter. Since the digital center frequency of the discrete 1D filter is 7 radians, the spatial and temporal

digital center frequencies of the 2D filter are also 7 radians.

Now consider the filter marked with a “2” located in the upper right quadrant of the frequency
plane. The digital spatial center frequency of the filter remain 7 radians; however, since the rows
(time axis) of the signal have twice been convolved with the discrete tempora. wavelet and decimated

by a factor of two, the temporal center frequency is now 7 radians. Because the line formed in
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Figure 50. The linear supporting region in 2D frequency space of the Fourier transform of a 1D
object translating with some velocity v,. The line is superimposed on the wavelet filter
bank produced by a 2D directionally selective motion-oriented multiresolution wavelet
analysis. The shaded regions represent the diagonally opposing wavelet detail filters
produced by one spatial decomposition and three temporal decompositions. The digital
center frequencies of the filters are show in the upper right quadrant.

frequency space by the Fourier transform of the moving object lies through this filter, its (£, f,)
digital center frequency pair (5, 7) can be used to estimate the velocity of the object at each point along

the subsampled spatial axis as follows:

= ——frame/sec (149)

In order to extend the 2D velocity filtering concept to three dimensions, next consider Figure
51a). This figure shows several diagonally opposing filter pairs obtained by decomposing an “extended”
signal once in space and twice in time and summing the coefficients following the sign convention in
Equation 134. The digital center frequencies of the horizontal, vertical and diagonal filter pairs are

identified by their respective digital center frequency triplets.

Now suppose a single object is traveling diagonally from the lower left to upper right across an

image plane. The plane in 3D frequency space containing the object’s Fourier transform is depicted in
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Figure 51. a) The digital center frequency triplets (fz, f,, f;) of the diagonally opposing filters
generated by decomposing a discrete input signal one level in space and two levels in time
using the directionally selective motion-oriented multiresolution wavelet analysis. b) A
visualization of the plane in 3D frequency space containing the Fourier transform of a 2D
brightness pattern moving diagonally from the lower left to the upper right hand corner
of an image plane.

Figure 51b). Notice that the plane slices through the two darkly shaded filters with center frequencies
0, 7, —m) and (m, 0, —7). Both center frequency pairs can be used to estimate the velocity components

of the moving object by solving the 2 x 2 system of equations given by

-r = —(0-v,+7-vy)

-1 = —(m-v,+0-v,) (150)

Solving these equations then yields the velocity components v, = v, = 1 frame/sec.

Clearly, the accuracy of the velocity estimate depends on the spatio-temporal frequency charac-
teristics of the analyzing filter. A filter with a sharp transition region (i.e., narrow variance) will provide
a more accurate estimate of the true velocity and it will reduce the amount of overlap, or inter-band
aliasing, between neighboring filters. This also reduces the susceptibility of the velocity estimate to
noise. On the other hand, increasing the frequency resolution of the filter forces one to pay the price
of reduced resolution in space and time. Here, the non-homogeneous multiresolution wavelet analysis

developed under this research effort offers a distinct advantage over the conventional homogeneous
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Figure 52. Several frames of 64 x 64 imagery containing a gaussian brightness pattern traveling with
the velocity components (v, = v, = 1) frame/sec. The variance of the gaussian was
chosen to prevent spatial and temporal aliasing.

discrete wavelet transform algorithm in that it allows one to minimize the effects of the resolution

trade-off by constructing the 2D analyzing wavelet filter from 1D filters of different orders.

For example, suppose several objects with significantly different spatia! frequency characteristics
are traveling at similar speeds along the 1D spatial axis. The temporal frequency resolution requirements
are more stringent than those for the spatial frequencies. Thus, one might design a more computationally
efficient separable 3D wavelet filter by combining a higher order temporal wavelet with a lower order
spatial wavelet. The homogeneous discrete multiresolution wavelet analysis, on the other hand, would
require one to use the higher order, more computationally expensive, filter in both the spatial and

temporal dimensions in order to meet the temporal design criteria.

5.2.4.2 Waveler Velocity Estimation Algorithm.  The previous discussion focused on
some general concepts associated with using the directionally selective motion-oriented multiresolution
wavelet analysis to compute the velocity of a single 1D and a 2D object moving in a space-time image
sequence. This section presents a “multiresolution wavelet velocity estimation algorithm™ used to
compute the flow field for the more general case of multiple 2D objects moving in a 3D image
sequence. In order to familiarize the reader with the details of the 3D algorithm. it is first applied
to a relatively simple imaye sequence containing a single moving 2D brightness pattern. It is then
applied to more general scenarios in which multiple objects with different sizes and velocities move in
noisy and occluding backgrounds. Several frames of the first test image sequence are shown in Figure
52. The sequence contains 64 frames of 64 x 64 grayscale imagery. The moving brightness pattern
consists of a single gaussian traveling diagonally across the field of view with the velocity components
(v, = v, = 1) frame/sec. The variance of the gaussian was chosen to prevent spatial and temporal

aliasing as discussed in Chapter IV.
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The first stage of the multiresolution wavelet velocity estimation algorithm employs the discrete
directionally selective motion-oriented multiresolution algorithm previously summarized by the flow
diagram in Figure 47. The four components of the extended N x N x N (row, column, frame)
image sequence are first constructed and each is decomposed over all possible resolution levels in
space and time. The resulting coefficient sequences associated with each symmetric detail filter in
the non-conventional wavelet decomposition are then appropriately summed to extract the information
contained in diagonally opposing filter pairs. For example, denote the sampled input image sequence
in Figure 52 by a, o, and assume it represents the discrete coefficients obtained by projecting the input
signal onto the zeroth approximation space Ay, f. As was the case in Chapter IV, the two subscripts
separately represent the spatial and temporal resolution level of the projection. Furthermore, assume
that the discrete extended signal has been formed as described in the previous section and that the 3D
component sequences are given by ¢j o, ¢4 o, cs o and ¢ o where ¢j o = ag .

Decomposing tk: four N x N x N extended signal components one level in space then

generates four sets of three %’- x -’2! x N detail coefficient sequences denoted by d° ;. d“? ;, and
d*3 , where ¢ = 1,2,3,4 stands for “component”. Each of the 4 x 3 = 12 spatial detail sequences
is then decomposed over all possible resolutions in time, while retaining only the temporal derail
coefficient sequences as discussed in Chapter IV. If the order of the temporal filter is such that only two
temporal decompositions occur before the length of the temporal filter exceeds the number of frames

N N N

in the decomposed image sequence, then the decomposition process will produce an & X 5 X 3

and % x & x & coefficient sequence for each of the twelve spatial detail coefficient sequences.

2 4
This process uitimately produces 24 sequences denoted by d”_‘{ ¢« where f = “filter” = 1,2,3 and

¢t = “time” = —1, —2. Note that each of the 24 sequences has spatial dimensions of T x &.

The final step in the first stage of the wavelet velocity estimation algorithm is to sum the detail
coefficients to produce four diagonally opposing frequency pairs for each of the three filters at each
temporal resolution. This process generates a total of 24 coefficient sequences which can be described

by the equations

1. 2. 3, 4,
d£18:~1.t = E : E E d—{.t - d—{.z - d—{.t - d—{.t
P g r

dlyr vy = Z Z Z af, +d>, -, +d*,
P oq
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dhore = DL S -+ +d,
14 q r

Ay = Y. Y Y d + ], +d, -d¥, (151)
P q ”

where, again, f is the spatial detail filter, 18 thru r45 represent the four diagonally opposing frequency
pairs, t = —1, —2 is the temporal resolution level,p = ¢ = ¥, and r = ¥ or ¥ depending on the

temporal resolution level. The sign conventions are those used in Equations 134 through 139.

In the second stage of the algorithm, the coefficients associated with ail 24 diagonally opposing
detail filters are compared to find the two largest coefficients across all time at each point in the
subsampled —2’! X %’— image array. The digital center frequencies of the diagonally opposing detail filters
associated with the two largest coefficients at each location are then recorded and passed on to the third
stage of the algorithm. As shown previously in Figure 51, the value of each frequency element in the
triplet is determined by the filter type (i.e., horizontal, vertical or diagonal), the diagonally opposing
passband region, and the number of times the original coefficient sequence was decomposed along the

spatial or temporal axes to generate the filter.

The third stage of the wavelet velocity estimation algorithm computes and assigns a velocity
vector to each location in the subsampled image array. This is accomplished by solving the plane
equation f, = —(v. f, + v, f,) at each location using the center frequency triplet pair computed for
that location in the second stage of the algorithm. The third stage solves the two-by-two system using
Cramer’s rule, which, given the center frequency pair ( fz1, fy1, fu1) and (fz2, fy2, fi2), computes the

velocity components as follows

(fuzfur — fnfer)
D

vy=_(left2;f22ftl) (152)

vy = —

where D = f.1f,2 — fy1fz2 is the determinant of the two-by-two system. In the event that the
determinant at a particular location equals zero, the velocity components at that point are both set
to zero. Figure 53 shows the output of the wavelet velocity estimation algorithm at the first spatial
decomposition level for the input image sequence shown previously in Figure 52. The flow map was
obtained by passing the 32 x 32 subsampled array of velocity components computer: by the third

stage of the wavelet velocity estimation algorithm to the MATLAB® flow generaticn package called
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Figure 53. The optical flow map produced by decomposing the image sequence in Figure 52 one
level in space and multiple levels in time. The vectors indicate the direction and speed of
the moving object.

“quiver.” The length and direction of the velocity vectors indicate the speed and direction of the
moving object. The image sequence was decomposed using a truncated cubic spline (23 taps) in space
and a Daubechies’ 12 in time. As discussed in Chapter II, a cubic spline was chosen for the spatial
component of the non-homogeneous 3D wavelet filter v avoid introducing phase distortions associated

with asymmetric Daubechies’ filters.

5.24.3 Results. The flow map in Figure 53 demonstrates the ability of the wavelet
velocity estimation algorithm to characterize motion in a simple scenario consisting of a single object
moving against a black background. This section presents the results obtained by applying the algorithm
to more complicated motion scenarios. In the first test, the scenario is complicated by the addition of a
second object traveling in the same direction but at a different speed (Figure 54a). The velocity of the
second objectis (v, = v, = .5) frames/sec. Figure 54b) shows the flow map obtained by decomposing
the sequence one level in space using a 3D wavelet filter constructed from a 23 tap truncated cubic
spline in space and a Daubechies 4 in time. A smaller order temporal filter was used in this example in
order to generate more decomposition levels in time. This in turn increases the number of “speed bins”

in the directionally selective motion-oriented multiresolution wavelet filter bank, thereby enhancing
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Figure 54.
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a) Several frames of 64 x 64 imagery containing two identical gaussian brightness patterns
traveling in the same direction but at different speeds. The velocities of the two objects
are (v, = v, = 1) frames/sec. and (v, = v, = .5) frames/sec. b) The optical
flow map produced by decomposing the image sequence one level in space using a non-
homogeneous 3D wavelet filter constructed from a spatial cubic spline truncated to 23
taps and a Daubechies 4 temporal filter.

the velocity estimation capabilities of the system. The flow map clearly shows that the wavelet-based

motion analysis method is able to discriminate between both objects by employing the space/time -

frequency localization properties of the multiresolution wavelet analysis. The next test sequence shows

that the method is also able to correctly compute the optical flow of multiple objects traveling in several

different directions at different speeds.

Figure 55a) shows several frames of a 64 x 64 x 64 image sequence containing four objects

traveling with the (v,,v,) velocity components (1,1), (—1,1), (1,0) and (0,1) frames/sec. The

image sequence was designed to test the algorithm’s response to discontinuities in the velocity flow

field. These phenomena occur where the paths of the moving objects cross, and where the v rtically

moving object in the lower right hand corner abruptly vanishes halfway across the field of view (referred
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a) Several frames of 64 x 64 imagery containing four identical gaussian brightness patterns
traveling at different speeds and in different directions. b) The optical flow map produced
by decomposing the image sequence one level in space using a non-homogeneous 3D
wavelet filter constructed from a spatial cubic spline truncated to 23 taps and a Daubechies
12 temporal filter.

to as a motion “sink™). Part b) displays the flow map obtained by decomposing the image sequence

one level in space using a 3D wavelet filter constructed from a 23 tap truncated cubic spline in space

and a Daubechies 12 in time. From a qualitative perspective, the flow vectors at the points in the

scene where the moving objects cross paths and where the vertically moving object abruptly stops,

do not seem appreciably affected by the discontinuities in the velocity field. The velocity vectors at

the locations where the objects cross paths generally match the direction and speed of at least one of

the overlapping objects. Additionally, the flow vectors at the motion sink do not display the random

behavior associated with more common spatio-temporal gradient flow computation techniques (see

Chapter II). Both these phenomena are attributable to ihe “flow averaging” effects of the spatial and

temporal wavelet convolution processes. The next example demonstrates the multiresolution properties

of the wavelet velocity estimation algorithm.
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Figure 56. Several frames of 32 x 32 imagery containing two gaussian brightness patterns with
different variances and velocities. The large object travels at four times the speed of the
smaller object.

After completing the third stage of the flow computation process, the wavelet velocity estimation
algorithm returns control to the first stage. Here, the l X % x N spatial approximation coefficient
tensors generated by the first spatial decomposition are again decomposed one level in space and
multiple levels in time to yield an optical flow map with the spatial dimensions } X } The entire
process then recursively repeats until a spatial decomposition level is reached where the number of taps
in the spatial component of the separable quadrature mirror filter exceeds the number of approximation
coefficients along one spatial dimension of the subsampled image tensor. Since each spatio-temporal
decomposition level corresponds to a particular spatial scale (size) and object speed. the wavelet
multiresolution velocity estimation algorithm provides the ability to discriminate between objects with
different sizes traveling at different velocities. This capability is demonstrated by the next test image
sequence shown in Figure 56. The sizes and velocities of the gaussians were chosen to demonstrate the
ability of the algorithm to discriminate between large objects traveling fast and small objects traveling

slow. Recall that the “conventional” L.(R®) multiresolution analysis developed in Chapter III did not

provide this capability.

The results of the multiresolution test are shown in Figure 57. In order to clearly show the size
and velocity discrimination properties of the algorithm, a separate flow map was generated at each
spatial and temporal decomposition level. An 11 tap cubic spline spatial filter and a 12 tap Daubechies
temporal filter were used to construct the separable 3D wavelet filter; therefore, the velocity estimation
algorithm allows two spatial and two temporal decompositions. This yields four multiresolution flow
maps, where each map captures a different size and speed combination for the gaussian brightness
patterns used in the test. The test results, which contain a single flow field at the spatial and temporal
resolutions associated with large, fast and small, slow objects, clearly demonstrate the size and velocity

resolution properties of the wavelet multiresolution velocity estimation algorithm.
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Ffour multiresolution optical flow maps generated by computing the optical flow of the
image sequence in Figure 56 at multiple resolutions in space and time. The results
show that the wavelet multiresolution velocity estimation algorithm is able to clearly

discriminate between large objects traveling fast, and small objects traveling slow.
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Figure 58. a) A simulated tank moving across an occluded field of view. The simulated illumination
source located to the left and behind the reader causes the tank's pixels to scintillate as the
tank changes position with respect to the source. Additionally, the tank passes in front of
the tree on the right and behind the tree on the left. b) Optical flow field generated by the
wavelet multiresolution velocity estimation algorithm.

The final test conducted in this section applies the velocity estimation algorithm to a more
realistic image sequence containing a tank moving across an occluded field of view (Figure 58a)). The
1 x 64 x 64 image sequence was constructed on a Silicon Graphics computer using the computer
aided software design package BRL~CAD©. In this image sequence, the tank moves across the field
of view at a constant velocity, passing in front of the tree on the right and partially behind the tree on
the left. Reflections from a simulated illumination source located behind and to the left of the reader
cause the pixels on the tank’s surface to scintillate as it changes position with respect to the source. The

image sequence was decomposed using a 23 tap cubic spline in space and a Daubechies 12 in time.

The velocity flow field generated by applying the wavelet multiresolution velocity estimation
algorithm to the simulated tank image sequence is shown in Figure 58b). The flow field generally

indicates horizontal motion at a constant speed over the regions in the field of view corresponding to
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the moving tank. However, there are erroneous flow vectors located at several locations in the scene.
These flow aberrations are primarily attributable to pixel scintillations on the rank’s surface which
violate the constan: intensity assumption of the algorithm. The rapidly fluctuating pixels generate
temporal frequency components which lie off the object’s motion plane, and which create the 1llusion
of motion in non-horizontal directions by exciting the filter pairs associatcd with these directions.
In addition to the scintillating pixels, the velocity discontinuities near the base of the occluding tree
also appear to cause minor problems for the velocity estimation algorithm. However, erroneous flow
information around these discontinuities, like the motion sink in a previous example, is for the most
part eliminated by the spatio-temporal averaging effects of the 3D wavelet correlation. The following
section presents a unique competitive-cooperative flow restoration mechanism that employs a gated

dipole filter to correct flow aberrations caused by these and other types of noise sources.

5.3 A Coaperative-Competitive Flow Restoration Mechanism

The final example in the previous section demonstrates the effect two common noise sources
have on the accuracy of the flow vectors computed by the wavelet multiresolution velocity estimation
algorithm. The purpose of this section is to present a unique flow restoration mechanism that finds and
corrects localized flow inconsistencies generated by these noise sources. The section begins with a brief
discussion of the gated dipole filter as first proposed by S. Grossberg as part of his Boundary Contour
System (22). Next, a methodology is presented that combines a modified version of Grossberg's
gated dipole filter with a cooperative-competitive strategy that rewards and enhances consistent flow
behavior and removes flow inconsistencies. Several examples are then provided which demonstrate

the flow correction capabilities of this methodology.

5.3.1 Modified Gated Dipole Filter. A gated dipole filter is a non-linear interpolation filter
that was first developed by S. Grossberg for the purpose of “filling in” partially completed object
boundaries (22). This section describes a modified version of Grossberg’s dipole filter designed to
fill in partially completed flow fields and re-orient flow vectors that lie outside a prescribed orientation

bandwidth established by the orientations of neighboring flow vectors. The output of the modified
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dipole filter, D;;, for the kth: orientation at the z, jth pixel Incation is given by

D = Z[I"PQ][F:qij T+ Z[If'PQ][Gﬁqij M (153)

P9 P9

where I denotes pixel intensity and the + symbol indicates rectification. The variable k represents
a particular flow vector orientation, where it is assumed that the flow vector orientations have been
discretized into M levels. Furthermore, it is assumed that the “composite” flow map generated by the
multiresolution wavelet velocity estimation algorithm has been subdivided into M oriented flow maps,
where the oriented flow map M;. contains only the vectors in the composite flow map that lie in the
kth direction. The filter is centered at the flow map coordinates z, j and the summation occurs over all

coordinates p, g in the “r-neighborhood” of oriented flow maps surrounding the kth orientation.

The functions F},, and G}, in Equation 153 are given by

Pt = e‘z(N'”"’/P—Uz[COS(Qiqu - k)Tt
ijpq = —e"zm"""/}’—”z[COS(Qiim - k)T]+
Nipg = Ji=pf+ (i = g)
j—4q
e (! 154
Qijpg arc an(z_p) (159

where each function represents one lobe of a dipole receptive field. Figure 59 shows both lobes plotted
on a “horizontal” orientation plane. The activation of both lobes is plotted as a three dimensional

surface above the plane.

Now consider one lobe of the dipole plotted as a 2D projection onto the kth orientation plane
as shown in Figure 60. The major parameters that determine the characteristics of the dipole lobe are
Nijpgs Qijpg» P, and T. Ny, computes the distance from the dipole center (2, j) to a surrounding
point (p, q). Qi;p, computes the angle of the line segment joining (7, j) and (p, g). The major axis of

the dipole lobe lies in the kth direction and is represented by the vector k.

The cosine term, cos(Q;jp, — k), determines the orientational tuning characteristics of the filter
by measuring how parallel the line segment (¢, — p,q) is to the vector k. The maximum value of

the kernel occurs when k and the line segment (7,7 — p, q) both lie in the same direction. Since the
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Figure 59. Two views of the right and left hand lobes of a dipole filter lying on a horizontal orientation
plane. The lobe activations are represented as 3D surfaces above the orientation plane.
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Figure 60. A 2D projection of a dipole lobe onto the kth orientation plane. The major axis of the
dipole is oriented in the k direction.

cosine term is half-wave rectified, the kernel equals zero at all points (p, q) for which the absolute

value of the angle Q;;,, is greater than 90°.

The constant P in the leading exponential term determines the location along the major axis
of the highest activation region of the dipole lobe. Figure 61 (top) illustrates how the position of the
activation region changes with P. The constant T is an odd integer that determines the sharpness of
the orientational tuning by controlling the rate at which the activation region decays on either side of
the major axis. Figure 61 (bottom) shows tuning sharpness increases (i.e, the width of F};,, decreases)
with T. Thus, as T decreases, the gated dipole filter is able to fill in missing flow vectors across like

oriented, but disjoint vectors in space. This behavior is shown in Figure 62.

As noted previously, the summation parameter = is an element of a small neighborhood of
orientations surrounding the kth oriented flow map. The size of the neighborhood determines the
“orientation bandwidth” of the gated dipole filter. For example, consider the localized flow field shown
in Figure 63a). Although the majority of the flow vectors indicate purely horizontal motion, a small
number indicate two slightly different motion directions, presumably caused by noise in the image
sequence. Figure 63 shows three oriented flow maps centered around the horizontal flow map that
contains the three differently oriented vectors. The horizontally oriented gated dipole filter is positioned

at the same location in each flow map. The response at this location, which consists of the sum of the
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Figure 61. Top: Plots showing how the location of the highest dipole activation region varies with
the constant P. Bottom: Plots showing how the decay of the dipole activation region
across the major axis (i.e., tuning sharpness) varies with the constant 7.
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Figure 62. Flow completion properties of dipole filter as a function of 7". Top dipole: Small T
expands the width of the dipole lobes to complete flow path between two disjoint flow
vectors. Bottom dipole: Large T" contracts the width of the dipole lobes and prevents the
formation of an interpolating flow vector.

respor ses from each of the three flow maps, is clearly greater than the response of the horizontal flow
map alone. Thus, increasing the size of the orientation bandwidth can enhance the overall response of
an oriented gated dipole filter. Assuming the horizontally oriented response in this example exceeds
the response of all other directionally oriented filters, the flow restoration methodology described in
the next section then replaces the distorted vector with the correct, horizontally oriented flow vector,

thereby correcting the noise induced flow distortion.

5.3.2 Methodology. The flow restoration methodology presented here employs a cooperative-
competitive strategy that reinforces consistent flow behavior and eliminates flow inconsistencies. Con-

sistent flow behavior is defined as follows:

An ensemble of three or more neighboring flow vectors are “consistent” if they possess
the same orientation and magnitude, and if they propagate in a direction parallel to their
common orientation.

The fundamental premise here is that the path taken by an object as it travels across the field of view

should lie precisely in the same direction as its corresponding flow vectors. At first, this may seem
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Figure 63. a) Localized flow distortions caused by noise in a 3D image sequence. b) Flow maps
contained in the orientation bandwidth surrounding the horizontal flow orientation. A
horizontally oriented gated dipole is shown at the position ¢, j in each of the flow maps.
¢) Outputs of oriented flow maps sum to form interpolated flow vector at 7, j.
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Figure 64. Several examples of consistent and inconsistent flow behavior.

like a trivial assumption, but one only has to examine the flow map of the moving tank in the previous

example to find an example of an ensemble of vectors that collectively propagate in one direction

(horizontal) yet point in a different direction. Several examples of consistent and inconsistent flow

behavior are shown in Figure 64. Incidentally, under this definition, the consistency of a single flow

vector or of two neighboring vectors is undetermined.

The cooperative-competitive flow restoration methodology consists of two main stages as shown

in Figure 65. The first stage, called the cooperative stage, is designed to reinforce consistent flow behav-

ior. This stage begins by discretizing the orientations of the flow vectors in each of the multiresolution

flow maps produced by the wavelet multiresolution wavelet velocity estimation algorithm. For this

research, the vector orientations were discretized to positive integer multiples of 22.5°. This generates

16 possible discrete flow orientations between the angles of 0 and 360 degrees. In the next step of

the cooperative stage, the composite multiresolution flow maps are decomposed into a set of oriented

flow maps, where each oriented flow map contains only the vectors in the composite flow map that

match one of the discrete orientai.on levels. In this case, 16 oriented flow maps were generated for

each composite multiresolution flow map. Next, each oriented flow map is filtered with an identicallv

oriented gated dipole filter to cooperatively reinforce consistent flow behavior in the composite flow

map.

In order to determine flow consistency at a given orientation, a temporary, binary oriented flow

map is first created in which the existence of a flow vector at a given location is signified by placing

a value of 1 at that location. The response of each lobe in a like-oriented gated dipole filter is then
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measured at each 7, j location in the binary oriented map and in the adjacent binary maps contained
in the orientation bandwidth of the gated dipole filter. If the magnitude of the responses in each lobe
at a particular location both exceed a pre-defined activation threshold, then their “cooperative™ action
causes the gated dipole to “fire” and the value of the response magnitude is inserted at the corresponding
location in the oriented flow map. This value is eventually converted back to a vector direction when
the oriented flow maps are recombined into a single composite flow map. The requirement that both
lobes exceed an activation threshold ensures that the flow propagates consistently over a minimum area

as determined by the locations of the highest activation regions and the widths of the dipole lobes.

The location of the highest activation region in a dipole lobe is specified by the value of the P
parameter in Equation 153. Here, P was chosen so that the locations of the highest activation regions
in each lobe occur at the nearest points on opposite sides of center point of the filter as determined by
the orientation of the filter (see Figure 66a). Because only three adjacent points are involved in the
computation, this setting corresponds to the minimum distance required to achieve flow consistency.
One can strengthen the consistency requirement by extending the location of the highest activation
region further from the filter center and increasing the activation threshold as shown in Figure 66b). In
addition to the location of the highest activation regions, the widths of the receptive fields associated
with each lobe also play a significant role in determining flow consistency. Recall that the width of
the receptive field is determined by the parameter T" in Equation 153. As T decreases, the receptive
field of the lobe widens, and more vectors surrounding the main path of the object are included in the
flow consistency computation. As shown in Figure 66c), this essentially weakens the flow consistency

requirement.

The cooperative stage of the flow restoration methodology ends when the magnitude of the
gated dipole filter response is measured and recorded at each location in every oriented flow map. The
orientation and magnitude of the restored flow vector is then determined in the second, or competitive,
stage of the methodology. In this stage, the response magnitudes at a given location compete across all
possible flow orientation levels. Under a winner-take-all rule, the composite flow vector is assigned
the orientation of the oriented flow map that possesses the largest response at that location. This
winner-take-all strategy ensures that a single flow vector is ultimately assigned to each location in the
final composite flow map. The magnitudes of the remaining composite flow vectors are determined by

computing the average magnitude of the non-zero flow vectors contained under the gated dipole filter
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Figure 66. a) Minimum distance required to achieve flow consistency. The activation threshold
for each lobe of the gated dipole filter is shown on the right. b) Strengthening the flow
consistency requirement by shifting the location of the highest activation region away from
the dipole center and increasing the activation threshold. b) Weakening the consistency
requirement by expanding the lobes of the dipole receptive fields.
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in the winning oriented flow map. Several examples showing the flow restoration capabilities of the

two stage methodology are presented next.

5.3.3 Applications and Results.  One of the most challenging problems associated with any
optical flow computation is the discrimination of moving targets in the presence of noise. This problem
is particularly troublesome for differential fiow computation techniques, which generally require con-
tinuous spatial and temporal intensity distributions (6). Spatio-temporal integration techniques, on the
other hand, may be better suited for this task due to the spatial and temporal averaging effects inherent
in the integration process. In particular, this section provides several examples which demonstrate
the ability of the integration-based flow computation and correction algorithm developed under this

research to discriminate targets obscured by both system and physical noise phenomena.

The first set of examples test the algorithm’s ability to discriminate targets moving in an image
sequence corrupted by system noise. It is assumed that system noise is an additive process consisting
of contributions from several different noise sources including the system’s sensor and its electronics
package. Under the Central Limit Theorem, the cumulative effects of system noise on each pixel
of an output image can be approximated by a gaussian probability density function (PDF) (39).
Furthermore, the degree to which this additive gaussian noise is correlated between pixels is determined
by the physical properties of the syscem. In these examples, correlated gaussian noise was obtained
by lowpass filtering a white, or uncorrelated, gaussian noise profile using a purely real gaussian filter
(59). The degree of correlation between image pixels was determined by the size of the passband of

the lowpass gaussian filter.

The amount of noise energy added to each frame in an image sequence was controlled by the
standard deviation of the zero-mean gaussian random variable used to generate the noise distribution
of each pixel in the image and the average signal intensity of the frame. The relationship between the

standard deviation and the noise energy is given by (17)

average signal intensity of frame

S/N = 20log,, (155)

standard deviation of pixel

where S/ N is the signal to noise ratio of each pixel of the image. In these examples, Equation 155
was first used to determine the required standard deviation for a desired signal-to-noise ratio. The

procedures described in (59) were then followed to generate various degrees of spatially correlated
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gaussian noise. The degree of correlation was determined by the cutoff frequency, a, of a circularly

symmetric real gaussian filter whose frequency response is given by
H(u,v) = e Fwi+vy’ (156)

where u and v are spatial frequency components. Under these procedures, the degree of correlation

increases with o

The first example is designed to demonstrate the ability of the flow restoration methodology
to remove inconsistent flow information contained in a 3D image sequence. Several frames of the
32 x 32 x 32 image sequence used in the first example are shown in Figure 67a). The sequence
consists solely of spatially correlated gaussian noise obtained using a filter cutoff trequency of o = 1.
Figure 67b) shows the multiresolution flow maps produced by the wavelet multiresolution velocity
estimation algorithm using an 11 tap cubic spline in space and a Daubechies 4 in time. Since the
flow vectors produced at both spatial resolutions demonstrate little if any flow consistency, the flow
restoration methodology should eliminate all vectors from each map. This is clearly the case as shown

by the “flow restored” maps in Figure 67c).

In the second example (Figure 68), two image sequences were constructed by adding two
differently correlated noise patterns to an image sequence consisting of a gaussian intensity distribution
moving at v, = v, = 1 frames/sec. across a 32 x 32 field of view. In both examples, the signal-to-
noise ratio was —10d B and the average signal intensity value was 14.161. The noise sequence in part
a) is the same sequence generated in the first example, while part b) was formed from a noise sequence
with a higher degree of correlation as given by a = 10. Figure 69 shows the flow maps produced after
applying the cooperative-competitive flow restoration methodology to each of the image sequences in
Figure 67. In both cases, the technique was able to remove flow inconsistencies caused by the gaussian
noise sources while retaining the flow vectors associated with the moving object. The fact that the
flow restoration process in part a) was less successful than in b) is caused by the presence of higher
spatial frequency components that lie near the band limits of the signal spectrum. These frequency
components, which are not so strongly present in b), are captured in the first level spatial decomposition

whose resolution matches the resolution of the moving object.
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a)Several frames of a 32 x 32 x 32 noise sequence consisting solely of slightly correlated
gaussian noise obtained using a filter cutoff frequency of o = 1. b) Multiresolution flow
maps showing inconsistent flow behavior associated with noise sequence. ¢) Multires-

olution flow maps show flow inconsistencies removed by cooperative-competitive flow
restoration methodology.

Several frames from two different image sequences obtained by adding spatially correlated
gaussian noise to a 32 x 32 x 32 image sequence containing a gaussian brightness pattern
traveling at v, = v, = 1 frames/sec. The signal-to-noise ratio was —10d B and the
average signal intensity value was approximately 14 in both examples. The degree of
correlation was obtained from Equation 156 using a) a = 1 and b) a = 10.
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Figure 69. Flow maps produced after applying the cooperative-competitive flow restoration method-
ology to the image sequences in Figure 67a) and b).
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The final example is designed to test the ability of the flow restoration algorithm to remove
flow inconsistencies caused by a combination of system and “physical” noise phenomena such as
occlusions and reflectance variations caused by movement with respect to a fixed illumination source.
In this example, four image sequences were formed by adding four equally correlated noise sequences
with different sigral-to-noise ratios to the simulated tank image sequence presented in Figure 58 at
the end of the previous section. Figure 70 shows the resulting image sequences and their respective
signal-to-noise ratios. The cutoff frequency of the filter used to generate the 64 x 64 x 64 equally
correlated noise sequences was o = 2. The average intensity of the tank sequence (including the trees)
was approximately 80. As before, each image sequence was decomposed with a 23 tap cubic spline
in space and a Daubechies 12 in time. The flow maps obtained after applying the flow restoration
methodology are shown in Figure 71. The flow map at the top of the figure was obtained by applying
the wavelet flow computation and restoration algorithm to the “noiseless” image sequence. Notice that
flow inconsistencies caused by pixel scintillations on the tank’s surface and boundary occlusions have
been corrected to indicate the true speed and direction of the tank. The remaining flow maps show the
output of the algorithm for the four noisy image sequences in Figure 70. The flow computation and
restoration algorithm clearly produced a reasonable approximation of the flow field down to a signal-
to-noise ration of 5. After this point, spurious, noise-induced flow vectors began to appear outside the
flow region until, at at a signal-to-noise ratio of approximately one, the true flow field became difficult

to discern.

5.4 Conclusion

Chapter IV presented a unique, non-homogeneous multiresolution wavelet analysis designed to
extract moving objects in a 3D image sequence based on their location, size and speed. It was shown,
however, that this “scalar” motion-oriented multiresolution analysis lacked a key attribute of a useful
motion analysis tool - directional selectivity. The purpose of this chapter, therefore, was to extend the
properties of the motion-oriented wavelet filter bank to form a “vector” motion analysis tool. This new
tool is capable of discriminating moving objects based on their location, size, speed and direction of
movement. The method was based on the formation of four extended real image sequences from a
judicious application of 1D spatial and temporal Hilbert transforms. These signals, when decomposed

using the discrete motion-oriented multiresolution wavelet analysis developed in Chapter IV, yielded
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SN =10

Figure 70. Four image sequences generated by adding equally correlated gaussian noise to the tank
image sequence previously shown in Figure 58. The signal-to-noise ratio of each sequence

is shown along the left hand side of the figure.
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Figure 71.

No noise
SN =10 SIN=7
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The upper flow map was produced by applying the flow computation and restoration
algorithm to the original “noiseless” tank image sequence in Figure 58. The remaining
flow maps correspond to various signal-to-noise ratios as indicated under each map.
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four sets of coefficients that could be summed to capture the signal frequency content contained in one
of four diagonally opposing regions in frequency space. The largest coefficients of the decomposition
process at each location in the image sequence were then combined to compute the optical fiow of the

signal.

Several examples were provided which demonstrated the ability of the multiresolution wavelet
vector motion analysis to correctly compute the optical flow of an image sequence and thereby dis-
criminate between multiple objects of different sizes moving with different speeds and directions.
Furthermore, like all optical flow algorithms, it was shown that the performance of the wavelet-based
flow estimation algorithm was degraded by the presence of physical and system noise phenomena. The
final section of the chapter therefore presented a unique flow restoration methodology that incorporated
a modified version of S. Grossberg’s gated dipole filter in a cooperative-competitive flow restoration
methodology. Several examples were provided which demonstrated the ability of the flow restoration
algorithm to find and correct localized flow inconsistencies caused by spatially corrz :ted gaussian

noise, occiuding boundaries, and rapid fluctuations in reflected surface intensities.

The multiresolution wavelet vector motion analysis technique developed in this chapter offers
several distinct advantages over other spatio-temporal frequency motion analysis approaches. First,
and perhaps most important, the wavelet motion analysis provides a rigorous mathematical framework
for the construction of a multiresolution, motion-oriented filter bank. Other spatio-temporal frequency
approaches, most notably those developed by Heeger (24) and Watson (58), employ ad hoc, fixed
window, Fourier filtering strategies that do not provide a formal mechanism to control key properties
such as filter bandwidth, inter-band filter overlap, and space-time/frequency localization. Second, the
3D analyzing filters used in the motion analysis algorithm are constructed from the non-homogeneous
multiresolution wavelet analysis developed in Chapter IV. Thus, their spatial and temporal frequency
characteristics can be easily and independently varied to match the size and velocity constraints of
the design scenario. And third, the pyramidal, sub-band coding scheme used to generate the motion-

oriented filter bank provides a fast method for analyzing motion at multiple spatial scales.

Although the sub-band coding scheme used here is “fast” compared to the Fourier frequency
filtering techniques used in other spatio-temporal frequency motion analysis approaches, it is still much
too slow to implement in real-time on a sequential digital computer. For example, coding inefficiencies

notwithstanding, the average processing time required to decompose a 128 x 128 x 128 image sequence
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across all spatial resolution levels, generate a flow map for each level and post-process the flow maps
to remove flow inconsistencies was approximately 35 minutes on a single user SUN SPARCstation
2. Thus, the next chapter investigates the feasibility of reducing the computation time of the wavelet
multiresolution analysis using two very different parallel architectures - a digital Hypercube, and an

optical correlator.
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VI. Increasing the Speed of the Motion-Oriented Multiresolution Wavelet Decomposition

Algorithm through Digital and Optical Parallelization
6.1 Introduction

The bulk of the processing time required to run the wavelet vector motion analysis algorithm
is taken up by the motion-oriented 3D wavelet decomposition process. Indeed, a C version of the
O(N?) serial decomposition algorithm requires approximately 30 minutes of wall clock time to fully
decompose a 128 x 128 x 128 image sequence on a dedicated SUN SPARCstation 2. Thus, the serial
motion-oriented decomposition algorithm would be difficult to implement in real-time on existing
single microprocessor platforms. The purpose of this chapter, therefore, is to investigate the potential
for increasing the computational speed of the decomposition algorithm using digital and optical parallel

architectures.

The first section of this chapter presents two parallel digital versiens of the spatio-temporal
decomposition algorithm developed and implemented by AFIT students on a SUN SPARCstation
distributed network, an Intel i/PSC2 8-node Hypercube, and an i/PSC/860 64-node Hypercube. Exper-
imental results demonstrate an approximately linear increase in decomposition speed with the number
of Hypercube nodes. The second section of the chapter presents a paralle] 2D optical wavelet architec-
ture published as part of this research effort in Optical Engineering, September, 1992. The purpose of
this phase of the research was to determine the feasibility of implementing the 2D spatial decomposition
stage of the 3D algorithm using optical technology. Experimental results verify the feasibility of the
concept; however, several adjustments must be made in the proposed architecture to make it applicable

to a general class of wavelet filters.

6.2 Digital Parallelization

This section summarizes the results of an investigation conducted by members of the AFIT
pattern recognition research group into the computational speed-up achieved by parallelizing the
discrete motion-oriented wavelet decomposition process (53). Although the wavelet decomposition
process is inherently parallelizable at many different scales, the original decomposition algorithm was
implemented in C' on a single microprocessor machine. This serial algorithm was divided along

functional lines into modules that performed specific program tasks (e.g., load an image, perform
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spatial decomposition, perform temporal decomposition, etc.). Captain Laura Suzuki and Lieutenant
Rob Reid parallelized the serial program along these same functional lines, but at different levels of
“granularity” designed to match tne parallel processing capabilities of three different parallel systems:
1) a distributed SUN SPARCstation 2 network (coarse-grain), 2) an 8-node Intel iPSC/2 Hypercube,
and 3) a 64-node Intel iPSC/860 Hypercube (fine-grain). Before discussing the parallel algorithms,
a brief review is provided of the major functions of the serial decomposition algorithm as previously

described in Chapter IV.

6.2.1 Serial Motion-Oriented Wavelet Decomposition Algorithm. A visualization of the
key functions in the serial motion-oriented wavelet decomposition algorithm is shown in Figure 72.
The input to the sequential algorithm is an N x N x N (rows, column, frames) 3D image sequence
representing the projection coefficients of the “zeroth” spatio-temporal approximation ievel. The first
stage of the algorithm spatially decomposes each frame of the image sequence into the next lower
spatial approximation and detail signals by convolving the 1D spatial scaling function and wavelet
filters with the frame’s rows and columns and keeping every other sample in space. This process is
then recursively applied to each successively smaller spatial approximation signal until the number of

samples in the spatial dimension are less than the number of coefficients in the spatial filter.

In the next stage of the algorithm, the spatial detail signals formed by each spatial decomposition
are decomposed in time by convolving the 1D temporal wavelet and scaling function filters across
all frames at each spatial location and keeping every other sample in time. Again, this process is
recursively applied to each temporal approximation signal until the number of time samples in the final
downsampled approximation signal is less than the number of coefficients in the temporal wavelet

filter.

As derived in Chapter IV, the computational complexity of the discrete motion-oriented mul-
tiresolution wavelet decomposition algorithm is of Q(NN?). This high degree of complexity makes it
difficult to apply the algorithm to real-time target discrimination problems using off-the-shelf, single
microprocessor platforms. Thus, the next section describes how the sequential algorithm described
above was parallelized to run on a distributed SUN SPARCstation 2 network, and on two 8 and 64-node

Hypercubes.
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Figure 72. A visualization of the motion-oriented multiresolution wavelet decomposition process.

6.2.2 Parallel Algorithms for Distributed SUN SPARCstation 2 Nenwork and Intel iPSC/2 and
iPSC/860 Hypercubes.  Viewed from a parallel programming standpoint, a major advantage of the
motion-oriented wavelet decomposition algorithm is its scalability (53). Thatis, each of the coefficients
produced by one spatial decomposition are computed independently, so that each computation can be
assigned to a single parallel node. Thus, given an unlimited number of parallel processing nodes,
one can theoretically reduce the order of the spatial decomposition from O(N?) to O(log, N), where
log, N is the bound on the number of spatial decompositions. Unfortunately, the parallel processing
systems available to AFIT have a limited number of nodes; thus, the parallel implementations described

next were much more “coarse-grain” than the O(log, N) scenario.

The first parallel design was implemented on a distributed SUN SPARCstation 2 network. This
design, like the Hypercube design discussed next, broke out the program tasks along functional lines.
A task graph showing the major functions of the serial 3D decomposition program packet3D is shown
in Figure 73a). The lightly shaded circles represent the critical path of the decomposition. They include
the initial task of reading in the 3D input sequence (1), and the follow-on tasks of generating a spatial
approximation signal at each lower spatial decomposition level (3). Task (2) represents the generation

of the three spatial detail signals, and task (4) represents the complete temporal decomposition process.
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a) b)

Figure 73. a) Major processing tasks associated with the motion-oriented wavelet decomposition
algorithm. The lighter shaded circles represent the critical path of the algorithm. Task (1)
reads in the input coefficients and generates the first spatial approximation level. Task (2)
generates the three spatial detail signals. Task (3) generates successively smaller spatial
approximation signals, and Task (4) generates a complete set of temporal detail signals. b)
Task assignments for the distributed decomposition algorithm shown by blocked regions
(53).

Figure 73b) displays the manner in which these tasks were assigned to the distributed SUN network.
Here, the critical path is left running on a single machine, and additional tasks are ailocated (or forked)
to the remaining machines as data becomes available. One of the primary problems with this approach
is that the number of parallel tasks allocated during the spatio-temporal decomposition process is fixed.

Therefore, this coarse-grain parallel design is not scalable to the size of the input signal.

The second parallel design was implemented on an 8 and a 64-node Intel Hypercube. In this
design, a single node designated as a system supervisor sends data and control instructions to each of
the worker nodes. When the worker node has completed its task, it returns the results to the supervisor
node and awaits further processing instructions. The algorithm begins by passing a different 2D frame

of data to every available node. After receiving a frame of data, each node performs a complete 2D
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spatial decomposition and returns the results to the supervisor. The supervisor node then recombines the
data and initiates the temporal decomposition process. The temporal decomposition is accomplished
by bundling together groups of “time-strings” and passing them to available nodes for processing. A
time-string consists of the temporal values “found on a line drawn through all the frames at a given
(z,y) point in some level of the spatial decomposition (53).” Since the degree of parallelism in the
spatial and temporal decomposition processes is dependent on the number of frames and time-strings
in the image sequence, this program is considerably more scalable than the distributed SUN algorithm.
A drawback to this architecture, however, is the memory restrictions of the individual processing nodes
limit the dimensions of the input image sequence to 48 x 48 x 48. The next section describes the

reduction in processing time achieved with both algorithms.

6.2.3 Tests and Resuits.  Threc experiments were conducted to determine the average speed-
up of the distributed SUN and Hypercube algorithms over the serial version of the motion-oriented
multiresolution wavelet decomposition algorithm. For the purposes of these tests, the speed-up, S is
defined as (53)

S = Do (157)

Trun
where Tjq.. 1S the baseline run time of the serial algorithm, and ,.,, is the run time of the parallel

algorithm.

The first test was performed to determine the average speed-up of the distributed SUN algorithm.
The test was performed on a 128 x 128 x 128 image sequence using a 12 tap Daubechies’ wavelet in
space and time. The baseline time was determined by timing the seria! version of the algorithm from
start to finish. The average baseline time over five runs was 31.6 minutes. Since the decomposition
algorithm was distributed across several machines, the run time was determined by measuring the time
required to execute the critical path on the main machine, as well as the execution times of the side
processes on the remaining three machines. Averaging the results over five runs, the overall speed up

of the distributed network was

Sovera = min (Seriticals Sside)
(316 316
= min (m,m)
= 1.904 (158)
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Figure 74. Speed-up vs. number of nodes for the iPSC/2 implementation using a Daubechies 8 tap
filter in space and time (53).

which is less than the linear value of 4. This slower-than-linear behavior is caused by 1/O contention
created when the machines running the side processes are forced to wait to obtain input data from the
same file server. Although not attempted here, it should be possible to alleviate this contention by
passing the information directly to the side path machines. This would in turn reduce the run times of

the side paths and increase the speed-up of the distributed SUN system.

The second experiment was performed using an 8-node Intel iPSC/2 Hypercube. Four test
image sequences were used in the experime..t. The dimensions of the test sequences were 8 x 8 x 8,
16 x 16 x 16, 32 x 32 x 32 and 48 x 48 x 48 (recall that memory limitations prevented the use
of {arger image sequences). The experimerits were conducted with both a Daubechies’ 4 tap and a
Daubechies’ 8 tap spatio-temporal filter. It was determined that the serial version of the algorithm was
different enough from the parallel version that it made a poor baseline for the tests. Thus, a 2-node
version of the Hypercube algorithm was chosen as the baseline test case. Since the memory allocation
scheme used in these tests was inefficient, the run times were obtained by measuring “computational”
times only (i.e., memory allocation and J/O times were ignored). Figure 74 shows the speed-up for 2, 4
and 8 nodes using the Daubechies 8 tap filter. Note that the speed-up is nearly linear for each of the

test image sequences.

The third and final experiment was conducted with an iPSC/860 64-node Hypercube. Although
the parallel algorithm was developed and debugged at AFIT, the tests were conducted on an iPSC/860
located in Beaverton Oregon. Additionally, with the exception of the number of nodes used in the
experiments, the tests performed here were identical to those previously performed with the iPSC/2.

The results of the iPSC/860 tests for an 8 tap spatio-temporal Daubechies filter are shown in Figure
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Figure 75. Speed-up vs. number of nodes for the iPSC/860 implementation using a Daubechies 8
tap filter in space and time (53).

75. Notice that the speed-up past the 8 — 10 node point is generally slower-than-linear. This behavior
is caused by the fact that the communications time, which is included in the run time calculation and
which is approximately constant for all configurations, is considerably larger than the nodal processing
time. Thus, as more nodes are added to the system configuration, the reduction in processing time
is small compared to the constant communications time and the speed-up no longer appears linear.

However, the speed-up is still quite significant, particularly for the larger test sequences.

The results of the above experiments suggest that the time required to perform a 3D motion-
oriented decomposition can be significantly reduced by parallelizing the algorithm and running it on a
parallel digital platform such as the Intel Hypercube. Furthermore, it appears quite possible that one
can improve the speed-up beyond the results achieved here by, for example, more efficiently allocating
memory, reducing 1/O operations, and lowering the communications overhead of the algorithm. In
the next section, an optical alternative for increasing the speed-up is explored in which the spatial
decomposition stages of the algorithm are implemented in frequency space using Fourier transforming

lenses and thermoplastic holography.

6.3 Optical Parallelization

Test results from the previous section showed that the speed-up achieved by parallelizing the
motion-oriented multiresolution wavelet algorithm on a digital Hypercube increases approximately
linearly with the number of parallel nodes used in the computation. Theoretically then, one can
achieve real time processing speeds by simply adding enough nodes to the parallel implementation.

However, the speed-up curves obtained for the modestly sized 48 x 48 x 48 image sequence show
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that even if one ignores memory allocation and /O times, thousands of nodes would be required to
reach a minimum video system computational throughput of thirty frames per second. These types
of frame rates would clearly be difficult to achieve with existing parallel digital technology. Thus,
the purpose of this section is to present the results of an investigation into the feasibility of using a
parallel optical archutecture for performing the 2D spatial decompositions required by the first stage of

the spatio-temporal decomposition algorithm.

6.3.1 Optical Wavelet Theorv.  Chapter II described how a continuous 1D wavelet transform
can be implemented as a Fourier filtering operation. This proy *rty makes the 2D wavelet transform
ideally suited for optical implementation. To demonstrate this property, let the two dimensional, spatial

wavelet transform, {Wi](a, b, ¢, d), of an image, ¢(z,y), be given by

e 1 _ d
Wyilla,be,d) = [ [~ ite,y) m¢(mac,y ) dedy (159)

where a,b are dilation parameters, and c,d are ranslation parameters. Letting,;(z,y) = 71117 Y (%,4),

Equation 159 can be rewritten as

+
Weillab,ed) = [ [ ita,w)bale - ey - d)dody (160)

Equation 160 shows the wavelet transform can be expressed as a correlation process in which the
image is correlated with a dilated version, 1,,, of the wavelet 1. Of course, correlations can be easily
implemented as filtering operations in the spatial frequency domain. Thus, if I(f., f,) = F{i(z,y)},

U(fz, fy) = F{¥(x,y)}, and Cob( f2, fy) = F{¥ar(x,y)}, then Equation 5 becomes
Wyil(a,b,¢,d) = [F7{I(f., £,) - Vab¥(=af.,~bf,)}] (c,d) (161)

where vab¥(af., bf,) = ¥a(fz, fy). For a given pair of dilation parameters a, b, Equaiion 161
can be implemented optically by first recording the image’s Fourier transform on a hologram placed
in the frequency plane of a Vander Lugt correlator (21). The hologram is then illuminated with the
Fourier transform of an appropriately dilated Haar wavelet, and the resulting correlation term is Fourier

transformed to produce the wavelet transform. The results described in this section were produced
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using a simr‘lar approach in which the image and the optical wavelet were generated with a binary

SEMETEX 128 x 128 MOSLM. (8).

One drawback to using a binary device tc generate an optical wavelet is that it cannot produce
the continuous scaling factor traditionally associated with a wavelet. For example, in one dimension
the wavelet kernel is typically given by t/l’iw (£3%) where the scaling term :% acts as an energy
normalization factor (14). Because the wavelet and the image are both generated with the MOSLM, it
is not possible to include an energy normalization factor in the optical wavelet transform. However, the

absence of the normalization factor does not affect the existence of the transform’s inversion integral

(8); therefore, the optical implementation presented here is referred to as a “wavelet” wransform, where

the transform filtering operation in terms of the unnormalized wavelet kernel, 3 (’;“, 1‘b~d) , is given
by
Whil(a,b,¢c,d) = [FH{I(f., fy)) - ab¥(—af,, -bf,)}] (c.d) (162)

A second drawback to generating an optical wavelet with a binary device is that one is restricted
to wavelets with binary amplitude distributions. One such mother wavelet commonly used in early
wavelet applications is the Haar wavelet (11). In two dimensions, a separable Haar mother wavelet is

given by

I if0<e<5and0<y<.bor 5<z<land.b<y<]l1
hiz,y)=4 -1 if5<r<land0<y<.50r 0<z< 5and.5<y<1 (163)

0 otherwise

A two dimensional Haar mother wavelet and its Fourier transform are shown in Figure 76. Although
the discontinuities along the borders between the zero, positive, and negative states of the Haar wavelet
make it undesirable as a kernel for transforming highly continuous images, the uniform regions of
intensity between these well defined discontinuities make it suitable for implementation with binary
electro-optic devices. In particular, this section examines the feasibility of implementing a Haar wavelet
transform using a Vander Lugt optical correlator in which a family of Haar wavelets is generated with

a SEMETEX 128 x 128 Magneto-Optic Spatial Light Modulator (MOSLM).

Figure 77 contains a digital simulation of the optical Haar wavelet transform where the binarized,

128 x 128 image used in the experiment (Figure 77a) is correlated with four differently dilated Haar
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Figure 76. Two dimensional Haar mother wavelet (left) and its Fourier transform (right).

wavelets. In order to accurately simulate the holographic storage and recall process. each of the
wavelet space projections was obtained by first multiplying the Fourier transform of an unnormalized
Haar wavelet with the conjugate of the Fourier transform of the image, and then Fourier transforming

the result. The optical designs used to accomplish this process are described in the following section.

6.3.2 Svstem Design. Two system designs were used to optically implement Equation 162.
Both designs used different methods for generating a family of Haar wavelets on the MOSLM. The first
method employed the ternary phase-amplitude state capability of the MOSLM. Here, the +1.0. —1
pixels of the Haar wavelet were generated by operating the MOSLM in a phase-only mode. The
surrounding O state pixels were generated by accessing the MOSLM s neutral, or demagnetized state.
In this state, plane wave light passing through the demagnetized pixels was diffracted into higher order
spatial frequency components which were eliminated by low-pass spatial filtering techniques (35).

Multiple dilations were achieved by electronically varying the number of +1, —1 and O state pixels.

The second method used a variable square aperture to control the dilation of the wavelet. Here,
a full 128 x 128 Haar wavelet was written on the MOSLM and a variable square aperture positioned
at the center of the wavelet controlled the wavelet's dilation. The O state was obtained by simply
blocking the light surrounding the +1, —1 region inside the square averture. This dilation technique
was investigated after experiments revealed the ternary mode MOSLM was unable to produce a true

zero state.




a) 128 x 128 image b) 4 x 4 wavelet

¢) 8 x 8 wavelet d) 16 x 16 wavelet

Figure 77. Theoretical results from a digital simulation of the optical continuous Haar wavelet trans-
form: a) 128 x 128 binarized input image. b) - d) Correlation of the input image with
four different wavelet dilations.
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Figure 78. Vander Lugt optical correlation designs: a) Wavelet dilations controlled electronically
using ternary state MOSLM and spatial filter. b) Wavelet dilations controlled by variable
square aperture.

Figure 78 shows the Vander Lugt correlation schemes used to implement both wavelet transform
methods. In each implementation, a 128 x 128 binarized input image was generated by the MOSLM
and recorded on a thermo-plastic hologram using a Newport HC-310 thermal holographic camera. The
reference-to-object beam power ratio generated by the 60mw HeNe laser was maintained at 10 : 1 an<’
the reference beam angle was 31° off the optic axis. In the first design (see Figure 78a) two lenses, L;
and L,, together with a low-pass spatial filter are used to block the energy diffracted into higher order
spatial frequency components by the demagnetized pixels in the MOSLM. The second design, Figure
78b), uses lenses L; and L, toimage the 128 x 128 Haar wavelet onto a variable square aperture located
in the front focal plane of the 4f correlator. The correlation results for both designs were imaged onto
a CCD array and captured using an AT&T Truevision Advanced Raster Graphics Adapter (TARGA)
framegrabber.

6.3.3 Tests and Results. An example of a Haar wavelet generated using the first design

method is shown in Figure 79. This figure was obtained by rotating the output polarizer of the MOSLM
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Figure 79. Optical Haar wavelet implemented with ternary state MOSLM. Center region containing
1, —1 pixels is 64x64. Output polarizer is adjusted for maximum contrast.

to produce maximum contrast between its three operational states. Figure 80 shows a typical result
obtained by correlating a 16 X 16 ternary phase-amplitude state wavelet with the binarized input image
shown in Figure 77a). The poor quality of these results was traced to the inability of the spatial filtering
process to remove enough diffracted energy from the zero state pixels for the MOSLM to adequately
approximate the behavior of a Haar wavelet. Although several potential solutions to this problem were
implemented, none yielded adequate results. Thus, even though the ability to electronically clock in
multiple wavelet dilations using the ternary phase-amplitude mode of the MOSLM is highly desirable,
this research shows the ternary design technique cannot be implemented satisfactorily with current

MOSLM technology. The second design method yielded substantially better results.

Figure 81 shows a 32 x 32 Haar wavelet produced using the aperture stop wavelet design
method. In this figure, the output polarizer is adjusted to produce maximum contrast between the two
different wavelet states. During operation, the polarizer is adjusted so that the MOSLM operates in a

phase-only mode to yield a uniform intensity across the +1 and —1 regions of the wavelet.

Figure 82 allows a comparison of the theoretical and experimental results obtained by correlating
the input image with a 8 x 8 Haar wavelet. Although there are strong similarities in the shape and

contrast of the edges predominantly detected by both the digital and optical wavelets, the digital wavelet
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Figure 80. 16 x 16 spatially filtered wavelet correlated with binarized input image.

Figure 81. 32 x 32 Haar wavelet produced using the aperture stop wavelet design method.
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a) b)

Figure 82. Comparison of digital a) and optical b) results obtained by correlating the binarized input
image with an 8 x 8 Haar wavelet.

was able to resolve finer details in the scene. This difference is attributable to the existence of a DC
component in the optical wavelet’s frequency spectrum (recall that a true wavelet is a "zero mean”
signal so that the wavelet filter has no DC frequency component}). The DC component is caused by
1) SLM pixel drop-outs that prevent the number of +1 and —1 pixels in the wavelet from summing
to zero, and 2) unavoidable stray light passed by approximately 25% of each of the SLM’s pixels.
Additionally, the frequency spectrum of the wavelet is altered by energy diffracted off the edges of
the square aperture. These factors combine to allow low frequency components of the input image
spectrum to survive the correlation process, thereby reducing the edge resolving capabilities of the

optical wavelet transform.

6.4 Conclusion

Two different parallel methods were investigated for reducing the computational time of the
order (O(V?) serial, motion-oriented wavelet decomposition algorithm. The first, or digital, method
employed three digital parallel architectures with varying degrees of “granularity.” The first architecture
was a course-grain parallelization of the serial algorithm using a distributed SUN SPARCstation 2
network. Although the overall processing time was reduced by a factor of approximately 2, the system
and algorithm designs were not scalable. The second two architectures investigated were Intel iPSC/2

and iPSC/860 Hypercubes. The parallel algorithms associated with these platforms were less “coarse-




grained” than the distributed SUN algorithm in that they were scalable with the number of frames and
“time-strings” in the input image sequence. The results of several tests conducted with differently
sized image sequences and wavelet filters displayed a near linear speed-up in computational time over
a serial baseline system. Furthermore, the results suggest that the speed-up can be further increased by

improving administrative tasks such as memory allocation and IO operations.

The second method presented was designed to investigate the feasibility of using an optical
architecture to implement the spatial decomposition stages of the serial motion-oriented decomposition
algorithm. Here, two different optical architectures were presented for implementing an optical Haar
wavelet transform. Both methods used a Vander Lugt correlator to perform the wavelet transform and
a SEMETEX 128 x 128 MOSLM to generate multiple dilations of the Haar mother wavelet. The most
successful method employed a variable square aperture to control the dilation of a 128 x 128 Haar
wavelet written to the MOSLM. This method was developed to compensate for the poor ternary phase-
amplitude operation of the MOSLM. Although the results of the variable aperture method compare
favorably to a digital simulation of the process, inherent limitations of the binary MOSLM (e.g., stray
light, pixel drop-outs) prevent the creation of a true “zero mean”, scaled wavelet. Additionally, the
binary device does not aliow for the construction of more general wavelets with continuous amplitude

distributions.
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VIl. Conclusion and Contributiony
7.1 Conclusion

Accurately detecting and discriminating muitiple objects moving across a 2D sensor array in
the presence of physical and system noise is an unsolved problem. Modern military target recognition
systems generally employ a “static is basic” strategy in which single, static image frames from a
time sequence of two dimensional IR imagery are individually analyzed for hot spots in the scene.
However, biological studies show many animals rely on a “motion is basic” strategy in which objects
are detected and identified by analyzing the temporal behavior (direction and speed) of more complex
object attributes such as texture, orientation, edges and color. Furthermore, research into mammalian
motion analysis systems reveal the existence of biological motion detectors that are 1) localized in
space, 2) spatial frequency specific, and 3) sensitive to both direction and speed for spatial frequency
contrasts greater than the subject’s contrast sensitivity. The goal of this research, therefore, was to
develop a computer vision-based motion analysis system that borrows on these biological concepts
to discriminate between multiple objects moving in a noise corrupted scene. This goal was achieved
through the development of a unique and powerful spatio-temporal, multiresolution wavelet motion
analysis tool that computes the location, speed and direction of 2D brightness patterns moving within

a sampled 3D image sequence.

Previous computer vision techniques designed for this same purpose have generally fallen into
two categories: spatio-temporal differentiation, and, more recently, spatio-temporal integration tech-
niques. Spatio-temporal differentiation techniques were made popular from the discovery that localized
velocity information can be computed from the spatio-temporal gradient of a moving brightness pattern.
However, these techniques require densely sampled imagery and are extremely sensitive to noise. They
also require the use of ad hoc rules to compute motion at object boundaries and in regions of constant
intensity. Spatio-temporal integration techniques, on the other hand, deduce local motion by integrating
across many frames in an image sequence, generally in the form of a convolution or Fourier filtering
operation. Animportant advantage of spatio-temporal integration is that flow discontinuities caused by
object boundaries, occlusions and image noise are “averaged out” in the integration process. The dis-
advantage of previous spatio-temporal integration methods is that they employ heuristic mathematical

techniques that provide little contro! over inter-dependent filtering characteristics such as filter overlap,
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filter bandwidth, and space-time/frequency localization. Additionally, these techniques use rigid filter
designs that cannot be easily modified 1o meet a particular problem scenario. The spatio-temporal
integration technique presented here solves these and other problems by constructing a motion analysis

framework on the rigorous mathematical foundation provided by a multiresolution wavelet analysis.

The development of the wavelet motion analysis tool occurred in a stepwise fashion, where
each step of the research depended on the success of the previous step. Thus, although the overall
contribution of this research effort is the development of mathematically rigorous yet flexible spatio-
temporal frequency motion analysis tool, several smaller contributions were made throughout the
design process. These contributions are described below in the order which they occurred in the design

process.

7.2 Contributions

e An L,(R®) Wavelet Multiresolution Analysis. Although Y. Meyer developed the general
theory for wavelet multiresolution analyses in L,(R™), previous instantiations of the wavelet
multiresolution analysis dealt exclusively with one and two-dimensional signals. Thus, the first
step in this research effort was to extend the mathematical details that governed the construction
of wavelet orthonormal bases for L, (R) and L,([R?), tc the space of finite energy spatio-temporal
signals, L, (R®). As aresult of this effort, it was shown that a separable wavelet orthonormal basis
for L,(R®) consists of a set of seven dyadic wavelets evaluated over all possible integer shifts
and dilations. Additionally, an “oct-tree” sub-band coding scheme for implementing a “Discrete
Spatio-temporal Wavelet Transform” was developed which generates a bank of non-overlapping
octave-band filters with uniform spatial and temporal frequency characteristics. This sub-band
decomposition algorithm was then applied to a synthetic 3D image sequence to demonstrate its

ability to extract vertical, horizontal or diagonal features from moving or stationary targets.

e A Non-Homogeneous L,(R?) Wavelet Multiresolution Analysis. The approximation spaces
of the L,(R?) wavelet multiresolution analyses developed by previous researchers, as well
as the above L,(R3) wavelet multiresolution analyses, are formed from the tensor product
of identical 1D approximation spaces. This approach produces a scaling function filter with
identical passband characteristics in each dimension of Fourier frequency space. This in turn

limits the filter designer’s ability to tailor the frequency characteristics of the wavelet filter to
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match the frequency behavior of the input signal. Additionally, it reduces the computational
efficiency of the 2D or 3D discrete wavelet transform algorithm by preventing the use of lower
order, less computationally expensive filters along frequency coordinates with “looser” design
constraints (e.g., a motion analysis problem that requires a higher degree of spatial frequency
resolution than temporal frequency resolution). The next step of the research therefore was
to increase the flexibility of the wavelet filter design process to allow for the construction of
a separable spatio-temporal wavelet filter with non-uniform spatial and temporal frequency
characteristics. This was accomplished through the creation of a unique “non-homogeneous”
L, (R?) wavelet multiresolution analysis which generates a separable wavelet orthonormal basis
for L,(R*) consisting of seven dyadic 3D wavelets constructed from non-identical 1D spatial
and temporal wavelets. The resulting theory is quite flexible in that it allows one to construct an
orthonormal wavelet bases for L,(R®) from anyv three L,(R) scaling functions provided each

generates an L, (R) multiresolution analysis.

A Motion-Oriented Multiresolution Wavelet Analysis: Decoupling the Spatial and Tem-
poral Decomposition Processes. At each stage in the “conventional” non-homogeneous 3D
wavelet decomposition algorithm, the spatial and temporal samples of the approximation and
detail signals are both equally decimated to yield a bank of analysis filters whose spatial and
temporal bandwidths both decrease by a factor of two from one stage of the decomposition to
the next. Thus, at any level in the decomposition process, one is required to analyze the signal
at equal scales in space and time. It is therefore not possible with the conventional structure to
generate a wavelet filter that captures the energy of moving objects with dissimilar spatial and
temporal frequency characteristics such as large, fast objects (i.e., objects with high temporal
frequency and low spatial frequency content), or small, slow objects (low temporal frequency
and high spatial frequency content). The purpose of the this phase of the research, then, was
to develop a 3D multiresolution wavelet decomposition technique that provides the ability to
independently zoom-in and zoom-out on spatial and temporal details in a 3D image sequence.
This was accomplished by “decoupling” the spatial and temporal decomposition processes to
produce a rich set of independent spatio-temporally oriented frequency channels for analyzing
the size and speed characteristics of moving objects. The motion-oriented wavelet decomposi-

tion algorithm was applied to a battlefield IR image sequence which demonstrated its ability to
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locate objects at different spatial scales in the presence of extraneous motion related phenomena

such as camera jitter, background noise and sensor noise.

A Vector Wavelet Motion Sensor. The motion-oriented multiresolution wavelet analysis de-
scribed above was designed to detect objects of different sizes moving with different speeds
across a two-dimensional image plane. The symmetric 3D filters produced by the decomposi-
tion process thus act as a scalar motion sensing detectors in that they respond to the magnitude
of an object’s velocity vector (i.e., its speed), rather than to the vector quantity of speed and
direction. The purpose of this stage of the research, therefore, was to expand the properties of the
motion-oriented wavelet analysis to provide a multiresolution motion analysis tool that discrim-
inates multiple moving objects in a three-dimensional image sequence based on their location,
size, speed and direction of motion. This effort was implemented by dividing a symmetric
wavelet filter into four diagonally opposing frequency pairs whose response more accurately
determines the speed and direction of a moving object. The method employs the unique concept
of an “extended real signal”, which, when decomposed under a motion-oriented multiresolution
wavelet analysis, yields four sets of wavelet coefficients that can be summed to extract the
portion of the signal’s frequency spectrum that lies in a given diagonally opposing region in
3D frequency space. The spatio-temporal center frequencies of multiple diagonally opposing

wavelet pairs are then used to compute the optical flow of spatio-temporal image sequence.

A Cooperative-Competitive Optical Flow Restoration Mechanism. Like all optical flow
algorithms, the performance of the wavelet-based flow estimation algorithm developed under
this research effort is degraded by the presence of physical and system noise phenomena.
Therefore, a unique flow restoration methodology was developed in the next phase of the
research that incorporates a modified version of S. Grossberg’s gated dipole filter in a cooperative-
competitive flow restoration methodology that reinforces consistent flow behavior and removes
flow inconsistencies. Several examples were provided which demonstrated the ability of the
flow restoration algorithm to find and correct localized flow inconsistencies caused by spatially
correlated gaussian noise, occluding boundaries, and rapid fluctuations in reflected surface

intensities.

Digital and Optical Parallelization Techniques for Increasing the Speed of the Motion-

Oriented Wavelet Decomposition Algorithm. The bulk of the processing time required to run
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the wavelet vector motion analysis algorithm is taken up by the motion-oriented 3D wavelet
decomposition process. For example, coding inefficiencies notwithstanding, approximately 30
minutes of wall clock time was required to fully decompose a 128 x 128 x 12X image sequence
on a dedicated SUN SPARCstation 2. Thus, the serial motion-oriented decomposition algorithm
would be difficult to implement in real-time on existing single microprocessor platforms. The
purpose of this stage of the research, therefore, was to investigate the potential for increas-
ing the computational speed of the decomposition algorithm using digital and optical parallel

architectures. The contributions made in these two areas are discussed below.

1. Digital Parallelization of the Discrete Motion-Oriented Mutliresolution Waveler Algo-
rithm. A serial C version of the 3D motion-oriented wavelet decomposition algorithm was
parallelized by members of the AFIT pattern recognition group to investigate the speed-
up potential of three digital parallel architectures with varying degrees of “granularity.”
The first architecture was a course-grain parallelization of the serial algorithm using a
distributed SUN SPARCstation 2 network. Although the overall processing time was re-
duced by a factor of approximately 2, the system and algorithm designs were not scalable.
The second two architectures investigated were Intel iPSC/2 and iPSC/860 Hypercubes.
The parallel algorithms associated with these platforms were less “coarse-grained” than
the distributed SUN algorithm in that they were scalable with thc number of frames and
“time-strings” in the input image sequence. The results of several tests conducted with
differently sized image sequences and wavelet filters displayed a near linear speed-up in
computational time over a baseline serial platform. Furthermore, the results suggest that
the speed-up can be further increased by improving adminisirative tasks such as memory

allocation and I/O operations.

2. Optical Parallelization of a 2D Spatial Wavelet Decomposition. The purpose of this
research was to determine the feasibility of using a parallel optical architecture for per-
forming the 2D spatial decompositions required by the first stage of the spatio-temporal
decomposition algorithm. Here, two different optical architectures were investigated for
implementing an optical Haar wavelet transform. Both methods used a Vander Lugt corre-
lator to perform the wavelet transform and a SEMETEX 128 x 128 MOSLM to generate

multiple dilations of the Haar mother wavelet. The most successful method employed a
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variable square aperture to control the dilation of a 128 x 128 Haar wavelet. The results

of this phase of the doctoral research are published in the September 1992 issue of Oprical

Engineering.
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