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Abstract  —  In this work we test experimental photovoltaic, 

storage and generator technologies and investigate their potential 
to meet austere location energy needs.  After defining the energy 
requirements and insolation of a 1,100-person base, we develop a 
microgrid model and simulation. Cost optimizations were then 
performed using hourly time-series data to explore the cost and 
performance trade-space of a PV-battery-generator system.  The 
work highlights the cost of resiliency and the dependencies of 
optimum system component sizes on duration and the fully 
burdened cost of fuel.      

Index terms — energy, energy storage, hybrid power systems, 

photovoltaic systems, microgrids, renewable energy sources, 

optimization. 

I. INTRODUCTION 

Photovoltaic (PV) energy generation is currently the fastest-

growing energy source and growth is projected to double by 

2022 [1].  However, for most applications energy storage is 

required as PV is an intermittent energy source. PV and 

battery storage are attractive technologies for defense, 

humanitarian, disaster recovery and construction applications 

because resiliency is valuable, and liquid fuel prices can surge 

during these applications. The fully burdened cost of fuel 

(FBCF) used in this work includes the cost associated with the 

fuel commodity, force protection if required, generator 

maintenance and fuel transport to an austere location. 

Fortunately, rapidly increasing PV power density and battery 

energy density, and the decreasing cost of these technologies 

increases their likelihood of meeting austere location energy 

requirements in a cost-effective manner.  

In this work we investigate ways to meet the published 

energy requirements of a representative contingency base 

located at 31° N latitude without access to an external power 

grid [2].   Requirements are established and a systems 

engineering model is developed to specify microgrid behavior.  

Three candidate photovoltaic, storage and generator 

technologies are documented, and their parameters are used in 

optimizations to explore the cost and performance trade-space 

of the system. This research meets the intent of US 

Department of Defense guidance, which seeks to integrate 

alternative energy sources into austere location bases, where 

cost-effective, in order to increase energy resilience [3], [4].  

 

II. MODELING AND SIMULATION  

The electrical energy demand modeled in this work is from a 

hypothetical 1100-person contingency base without access to 

an external power grid [2], as shown in Fig. 1.  A major energy 

load is heating, ventilation, and air conditioning (HVAC), 

which varied with atmospheric temperature and humidity from 

0.9 to 3.3 MW.  Other energy loads ranged from 1.5 to 1.7 

MW and include lighting, electronics, administration, vehicle 

and aircraft maintenance, civil engineering, water production 

and meal preparation.  The yearly energy requirement is 28.4 

GWh, or 25.8 MWh per occupant, which compares reasonably 

to similar work [5].   

 
Fig. 1. Energy demand for an 1100-person contingency base [2]. 

 

Hourly solar resource data from the National Renewable 

Energy Laboratory (NREL) were downloaded from the NREL 

Geospatial Toolkit [6]. Monthly global horizontal averages 

ranged from a low of 3.0 kWh/m2/day in December to a high 

of 8.2 kWh/m2/day in June, using a clearness factor that 

ranged from 0.58 to 0.74.  These data are shown in Fig. 2. 

 
Fig. 2. Global horizontal insolation [2], [6]. 

 

For the purposes of this study, a single unified microgrid 

serving all loads is assumed, as shown in Fig. 3.  The battery 



 

storage is accomplished through lead-acid or lithium-ion 

batteries.  The inverter can accept DC power from the solar 

panels or batteries and deliver energy to the microgrid, or if 

necessary, pull energy off the microgrid for battery storage.  

Additional solar energy is provided by solar modules 

connected to micro-inverters that convert the DC electricity 

from the solar module to AC electricity of the microgrid.  The 

frequency and voltage of the microgrid is determined by the 

output of the diesel generators, which provide any load that 

can’t be met by the PV or battery storage.  For simplicity and 

due to the duration of the simulations, we disregard battery & 

PV deterioration with time, and the decrease of PV efficiency 

with PV cell temperature, and shipping costs. 

 

 

 
 
Fig. 3. Systems block definition diagram model of the simulated 
microgrid.  Solid lines indicate power flow and dashed lines indicate 
frequency and voltage control flow. 

 

An hourly simulation model of the microgrid was developed 

using the parameters in Table 1 for costs & performance 

associated with energy generation, storage, inversion, shipping 

and installation.  System installation, deployment training and 

PV/battery maintenance costs were assumed to be sunk costs 

that are performed by military personnel.  The system 

components include glass-covered PV panels, lead-acid or 

lithium-ion batteries and MEP-012A diesel generators.  The 

cost of 4 generators is included in all simulations.  

The price of fuel can be significant for a large encampment.  

If a PV system is not installed, the 28.4 GWh yearly energy 

requirement uses 2.1 million gallons or 7.9 million liters of 

fuel.  If 30% generator efficiency is assumed, 13.7 kWh of 

electrical energy can be obtained from each gallon of Jet-A 

fuel, or 3.6 kWh from each liter of fuel. The cost of this fuel is 

$28.4M multiplied by the cost of each kWh, which in this 

work was modeled from $0.50 to $7.  The zero PV case shown 

on the left side of Fig. 4 shows a baseline fuel cost of $284M, 

which is $28.4M * $2/kWh * 5 years.   

III. ONE-VARIABLE OPTIMIZATIONS 

The lifecycle cost is defined by the cost of components and 

fuel over a 1-5 year period, and in this section the cost is 

optimized while PV array size or battery capacity are varied.   

A. Cost Optimization while Varying PV Array Size 

This single-variable optimization seeks the lowest cost 

solution to meeting energy demands while varying the size of 

the photovoltaic array.  The parameter values for the 

simulation are shown in the title of Fig. 4, which include the 

unit PV array cost, unit battery cost, battery depth of 

discharge, FBCF, years of simulation and the optimal solution. 

   

 
 

Fig. 4. Cost optimization with varied photovoltaic array size, fixed 
battery size and $2/kWh FBCF.  

 

With the given parameter values, the solid blue line in Fig. 4 

shows the total cost of the system for 5 years of operation. For 

a 50,000 kWh battery, the optimal size of PV array is 89,000 

TABLE I 

OPTIMIZATION PARAMETERS 

Component Parameter 

Photovoltaic (PV) array, installed $1.50 /W 

PV system loss 15% 

PV system efficiency 15% 

Lead-acid battery system with cooling 

and control, installed 

$100 /kWh [2] 

70% DoD 

Lithium-ion battery system with 

cooling and control, installed 

$400 /kWh [7] 

100% DoD 

Battery storage round-trip loss 8% [7] 

Generator, 750 kW, installed $240K (750 kW) [2] 

Generator average fuel efficiency 13.7 kWh/gal 

3.6 kWh/L 

Generator fully burdened cost of fuel 

 

$3-70 /gal 

$1-18 /L  . 

 



 

m2, resulting in a total cost of $210M.  The dotted line shows 

the cost of fuel, which decreases as the amount of PV array is 

increased.  However, the rate of decrease slows as the PV 

array is increased past its optimal PV array size, because at 

that point the PV array is can meet the microgrid load and 

excess energy can’t be stored in the batteries due to 

overcapacity.  This is highlighted by the red line in Fig. 4, 

which shows the unused solar energy that is produced.   

Figure 4 shows an optimal value of PV array size for a 

relatively expensive FBCF at $2 /kWh.  In Fig. 5 all 

parameters are the same as Fig. 4, with the exception that the 

FBCF is decreased to $1 /kWh.  Fig. 5 shows that adding PV 

is not cost effective in this case, as the optimal PV size is 0 m2. 

 

 
Fig. 5. Cost optimization with varied photovoltaic array size, fixed 
battery size and $1/kWh FBCF. 

 

Figure 6 is similar to Fig. 4 and Fig. 5 but instead shows the 

output if the PV array size is held fixed at 89,000 m2 while the 

battery size is varied.  In this case, the optimal battery capacity 

is 38,000 kWh, where it can store the majority of excess 

energy that the PV array produces.  This is illustrated in Fig. 6 

by the knee in the red curve.  

 

 
Fig. 6. Cost optimization with varied battery capacity, fixed PV 
array size and $2/kWh FBCF. 

 

Figure 7 shows the resulting cost surface for many 

combinations of battery and PV array sizes, and shows a single 

global minimum in this portion of the parameter space.  In the 

case, the optimal combination of PV and battery storage 

occurs with 90,000 m2 of PV array and a 45 MWh battery. 

 
Fig. 7. Total cost surface for variations in PV array size and 
battery size, using $2 /kWh fuel and lithium ion battery parameters. 

III. TWO-VARIABLE OPTIMIZATIONS 

In this section the optimal combinations of PV array size 

and battery capacity are determined so that the system cost is 

minimized. Results for lithium-ion and lead-acid batteries are 

presented. 

A. Cost Dependence on One Year and Five Year Simulations 

with Lithium Ion Batteries 

In Fig. 8, for both one year and five year simulations, the 

total cost and optimal combination of PV and Lithium Ion 

battery storage are shown for a wide range of FBCF.  For the 



 

five year simulation, Fig. 8 shows that a PV array is cost-

effective above a FBCF of $18 /gal ($4.7 /L) and battery 

storage is cost-effective above a FBCF of $19 /gal ($5 /L). 

Additionally, the blue curves shown in Fig. 8 highlight that for 

a one year simulation, PV is cost effective above $80 /gal and 

only a negligible amount of battery storage is optimal.  The 

high FBCF for cost-effectiveness results from relatively small 

fuel savings when compared to the high capital cost of the 

system.   

 

 
Fig. 8. 1 year and 5 year FBCF sweep using lithium-ion batteries.  

 

B. Cost Dependence on One Year and Five Year Simulations 

with Lead Acid Batteries 

Figure 9 repeated the method used for Fig. 8 while changing 

the battery parameters to reflect lead acid batteries.  The cost 

is reduced, and a 70% depth of discharge is implemented in 

the model.  When compared to Fig. 8, the 5 year total cost 

curve is lower, showing that the decreased cost of battery more 

than offsets the increased quantity of batteries. Even with the 

change in battery technology, the point at which PV and 

batteries become cost effective is the approximately the same 

for the five year simulation.  For the one year simulation, the 

cost effectiveness threshold remains the same, however the 

optimal combination of PV and battery is larger than the 

lithium ion case. 

One concerning aspect of Fig. 9 is that that the quantities of 

PV and battery, shown in green, vary dramatically with FBCF, 

and are no longer strictly monotonically increasing.  In order 

to investigate this phenomenon, a cost surface was generated 

that is similar to Fig. 7 at $3 /kWh FBCF.  The main 

differences are that lead acid battery parameters were used, 

and the range of batteries and PV array size was extended.   

 

 
Fig. 9. 1 year and 5 year FBCF sweep using lead-acid batteries.  

 

Figure 10 shows there is still a global minimum cost, and 

that the erratic variations of the five year PV and battery 

parameters are due to the relative insensitivity of optimal cost 

to a change in battery size.  When the algorithm determines the 

optimal combination of PV and battery, we believe that this 

insensitivity allows the model to over-fit the complex energy 

requirement and solar resource datasets that are shown in Fig. 

1 and Fig. 2. For this surface the optimal 5 year cost is $225M 

for a 105,000 m2 PV array and 112 MWh battery. 

 
Fig. 10.  Total cost surface for variations in PV array size and battery 
size, using $3 /kWh fuel and lead-acid battery parameters.   



 

VI. CONCLUSIONS 

In this work, we have shown that the decreasing cost and 

increasing performance of PV and battery storage can make 

these technologies cost effective in non-permanent defense, 

humanitarian, disaster recovery and construction applications.  

Cost effectiveness is the most sensitive to FBCF, followed by 

the cost of PV panels and the unit cost of batteries.     
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