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Abstract— As the Cape Canaveral Space Force Station and 
Kennedy Space Center increase their launch rate, any process 
that could assist in the automation of the currently-manual 
lightning forecast would be valuable.   This work examines the 
possibility of machine-learning assistance with the daily lighting 
forecast which is produced by the 45th Weather Squadron. A 
dataset consisting of 34 lightning, pressure, temperature and 
windspeed measurements taken from 334 daily weather balloon 
(rawinsonde) launches in the timeframe 2012-2021 was 
examined.  Models were created using recursive feature 
elimination on logistic regression and XGClassifier algorithms, 
as well as Bayesian and bandit optimization of neural network 
(NN) hyperparameters.  The modeling process was repeated 
after eliminating 13 features related to windspeed. The best 
performing models on both datasets were the optimized NN 
models, with an F1 metric of 0.79 on the full dataset and 0.66 on 
the reduced dataset. For comparison, a model that predicted 
randomly achieved F1 = 0.47 on this dataset. The addition of 13 
windspeed-related features more than doubled the complexity 
of the 21-feature no-wind model while increasing model 
performance by 13 percentage points. A notable inference from 
the statistical modeling is that the most important feature from 
both datasets was the Thompson convective index, which is 
related to temperature, dewpoint, relative humidity and lapse 
rate. 

   Keywords: lightning forecast, launch operations, neural 
network, lightning indices 

   Regular research paper 

I. INTRODUCTION & BACKGROUND 

Lightning hazard is a major safety concern at Cape 
Canaveral Space Force Station (CCSFS) and Kennedy Space 
Center (KSC) Florida. This eastern range (ER) is located in 
the thunderstorm capital of the United States. The 45th 
Weather Squadron (WS) currently provides weather support 

to both governmental and commercial launches at CCSFS 
and KSC. Rawinsondes, balloon-borne meteorological 
sensors, collect data daily at 0500/0600 local time and 
1700/1800 local time (1000 and 2200 Zulu time/UTC). The 
dataset included lightning occurrence, meteorological 
characteristics such as wind speed, lapse rate, relative 
humidity, temperature, and thermodynamic and kinematic 
indices such as Convective Available Potential Energy 
(CAPE) & K-index. With the recent significant increases in 
the ER launch rate, the 45th WS forecasting methods will 
need to transition to automated products, where applicable. 
The objective is to reduce required labor by automating 
lightning forecasts. The forecasted lightning can either be 
cloud-to-ground lightening, or intra-cloud lightning which 
does not reach the ground. 

A. Literature Review 

Supervised machine learning algorithms, such as neural 
networks, random forests, logistic regression, and decision 
trees have shown promising improvements in lightning 
prediction accuracy. Additionally, data from many of the 
sensors used in this work have been used to forecast the 
probability of lightning activity in previous studies [1]. 
Studies can be differentiated based on various factors, 
including their primary goal (classification or prediction with 
specific lead time), the utilized features, identification of 
important features, and the spatiotemporal characteristics of 
the dataset.   

Bates et al.'s study at six locations in Australia found that 
logistic regression outperformed other classifiers, such as 
random forests, linear discriminant analyses and quadratic 
discriminant analyses. The results demonstrated the superior 
predictive ability of logistic regression in distinguishing 
between non-lightning and lightning days using large-scale 
atmospheric variables. The identified predictors primarily 



included measures of instability, lifting potential, and 
atmospheric water content. The logistic regression was able 
to achieve hit rates above 90%. Other metrics used, such as 
false-alarm ratio and AUC were also improved with the 
logistic regression model [2]. It is unknown how this model 
compares to a randomly-predicting model on their dataset. 

Zhu et al. developed a support vector machine algorithm 
that classified cloud-to-ground and intracloud lightning with 
an accuracy of 97% at a site in Argentina, outperforming 
existing lightning detection networks [3]. The data used 
originated from the Cordoba Marx Meter Array across 4 days 
in 2018, consisting of 10 electric field change sensors with 
fast and slow channels. The data used for training and testing 
the classification model is the fast-channel waveforms, which 
can detect small-amplitude pulses and provide a full range of 
amplitudes for model training. The significance of accurately 
classifying lightning discharges as cloud-to-ground or intra-
cloud in this paper lies in ensuring safety, as cloud-to-ground 
discharges possess the potential to cause harm to individuals 
and property. For this work it is also unknown how this model 
compares to a randomly-predicting model on their dataset. 

Leal and Matos’s study in Brazil used six-year (2015-
2020) data from ground-based weather stations, including air 
temperature, humidity, pressure, and wind speed to predict 
lightning occurrence within one hour. Their results showed 
that their decision tree predicted over 70% of lightning 
occurrences [4].  

Mzila et al. predicted 80% of lightening occurrences in 
South Africa using deep neural networks [5]. They used 
meteorological parameters such as the temperature, air 
pressure and lightning data from South Africa weather 
service. Two different neural network architectures were 
applied to the prediction task, namely standard neural 
networks and radial basis function network. Both 
architectures exhibited comparable performance in terms of 
prediction accuracy. 

Essa et al. found that the Long-Short-Term-Memory 
Recurrent neural networks (LSTM) model outperformed 
other models [6]. The study used historical Cloud-to-ground 
Lightning Data from the South African Lightning Detection 
Network (SALDN) for the year 2018. The dataset contains 
nearly 20 million lightning observations grouped into three-
hour intervals.  Three machine learning models are evaluated: 
Autoregressive (AR), Auto Regressive Integrated Moving 
Average (ARIMA), and LSTM Recurrent Neural Network. 
The models were tested for their ability to predict the number 
of Cloud-to-ground lightning flashes in South Africa for a 
three-hour time horizon using the Mean Absolute Percentage 
Error (MAPE) metric. The LSTM’s MAPE was 
approximately 3700 versus AR and ARIMA ‘s MAPE values 
of 15,312 and 15,080, respectively. 

Mostajabi et al, used XGBoost algorithm to demonstrate 
that the model has a predictive capability for lightning 
occurrence lead times up to 30 min [7]. The predictors 

included available surface weather variables, namely air 
pressure at station level, air temperature, relative humidity, 
and wind speed. Finally, Speranza conducted a study [8] that 
utilized surface data from Electric Field Mills (EFM) within 
a 50-mile radius of CCSFS to forecast lightning. The study 
employed various LSTM structure models, all of which 
achieved a prediction accuracy of above 70%. This research 
built on previous efforts by weather squadrons, specifically 
Venzke and Folsom [9] [10], who used simpler decision trees 
for lightning predictions at the time. However, their previous 
work relied on sensors located miles away and did not 
incorporate rawinsonde data. 

The focus of this study is to investigate the ability of 
classical machine learning and neural network algorithms in 
predicting daily lightning occurrence at CCSFS, using the 
CCSFS morning rawinsonde data. We will explore various 
machine-learning models, including deep neural networks, 
logistic regression, and extreme gradient boosting, as they 
have demonstrated high accuracy in predicting lightning and 
thunderstorms in prior research. The study aims to present the 
results to the decision-makers of 45 WS to compare with 
existing systems. The findings of this study could potentially 
improve the current lightning prediction models and 
contribute to better decision-making regarding safety 
measures and operations at CCSFS.  

B. Data Acquisition  

Two sets of data were combined prior to analysis. The first 
set of data was obtained from the 14th Weather Squadron; the 
US Air Force unit responsible for collecting climatic weather 
data. The 14 WS provided summary rawinsonde data, 
including stability indices and mean flow data for each 
rawinsonde released at CCSFS from 2012 to 2021. The list 
of input variables with a brief description, mean, minimum 
value and maximum value can be found in Table 1. In 
addition, further information on these variables can be found 
on the Nation Weather Service (NWS) website on Skew-T 
derived parameters [11]. The second set of data was obtained 
from the 45 WS and provided daily observed lightning 
documentation. This data is utilized as the predictor 
(independent) variable and specifies whether lightning did or 
did not occur. The observed lightning data included lighting 
strikes for multiple locations on or around CCSFS. Lightning 
occurred during 34% of the days in the dataset.   



Table 1: Descriptive statistics of model features, where wind-based 
variables are denoted by bold text.  

Description mean min max 
Convective Available Potential Energy 
(J/kg) 1109.2 -794.9 4247.7 

Lapse rate 700 mb to 500 mb (°C/km) -0.00174 -0.00253 -0.00121 
Lapse rate 850 mb to 500 mb (°C/km) -0.00168 -0.00209 -0.00127 
L convective index (°C) -2.3 -9.2 14.6 
K convective index (°C) 23.6 -38.18 42.4 
Thompson convective index (°C) 26.0 -49.8 51.6 
Vertical lapse rate + low-level moisture 41.5 8.6 55.2 
The temperature at 500 mb (°C) 25.1 18.6 28.2 
The temperature at 700 mb (°C) 17.2 9.4 21.6 
The temperature at 850 mb (°C) 8.7 0.8 13.4 
The temperature at 1000 mb (°C) -6.6 -12.5 -2.7 
Convective temp - Approximate 
temperature that the air near the ground 
must warm to for surface-based 
convection to develop (°C) 

21.52 5.69 26.53 

Relative Humidity 1000 mb to 700 mb 
(%) 67.40 29.78 98.35 

Precipitable water  (kg/m2) 43.57 -403.3 704.46 
Relative Humidity 700 mb to 500 mb 
(%) 48.60 1.716 98.63 

Relative Humidity surface to 700 mb (%) 68.11 31.76 98.31 
Averaged windspeed surface to 700 mb 
(kt) 12.52 2.74 30.43 

Averaged wind speed 1000 mb to 700 
mb in "east/west" direction (kt) -0.585 -26.89 25.68 

Averaged "north/south" wind speed 
1000 mb to 700 mb (kt) 3.71 -22.03 26.27 

850 mb "east/west" wind speed (kt) -0.041 -30.83 35.8 
700 mb "east/west" wind speed (kt) 2.97 -36.79 48.8 
500 mb "east/west" wind speed (kt) 5.97 -30.63 50.32 
250 mb "east/west" wind speed (kt) 13.22 -30.63 93.72 
850 mb "north/south" wind speed (kt) 3.44 -29.82 29.07 
700 mb "north/south" wind speed (kt) 3.27 -30.04 35.19 
500 mb "north/south" wind speed (kt) 1.031 -22.65 33.84 
250 mb "north/south" wind speed (kt) -2.05 -43.73 53.35 
Shear; surface to 6 km (kt) 0.00164 -0.00101 0.00515 
Storm relative helicity; surface to 3 km 
(m2/s2) 5.12 -96.10 97.26 

Wet bulb zero - pressure level where 
sounding is at zero degrees Celsius due 
to evaporational cooling (mb) 

12698.17 5857.78 16365.11 

Lowest FZ level - the lowest elevation 
where temperature equals 0 °C (mb) 15534.33 10662.73 18273.38 

Energy helicity index (J*m2/ s2kg) 0.067 -0.969 1.803 
Bulk Richardson number, CAPE / 0 - 
6km shear (J/kg*kt) 2.26E+06 1.48E+07 3.36E+00 

II. METHOD 

The cross-industry standard process for data mining 
(CRISP-DM) was applied using the phases of data 
understanding, data preparation, modeling, and evaluation 
[12]. All phases were conducted with the Scikit-learn 1.2.2 
and Keras/TensorFlow 2.11 frameworks within a GPU-
enabled Python version 3.9.16 environment.  

The data were modeled with logistic regression, the 
XGClassifier decision tree algorithm, and binary 
classification neural networks. For the first two methods, 
recursive feature elimination (RFE) was used for feature 
selection. The impact of wind variables on the models was 
also investigated. In the logistic regression and the neural 

networks approach there are two classes: 1 for lightning 
occurs and 0 for lightning doesn’t occur.  

A. Data Preparation   

The summary rawinsonde data were manually reviewed for 
missing or incorrect data. For records containing missing or 
incorrect data, the entire record was removed from the 
dataset. After ensuring the data was clean, the data was split 
80/20 into training and holdout/testing datasets. This split 
allows independent testing of the models and prevention of 
overfitting [13]. The models were constructed using the 
training dataset and model performances were calculated 
from the test/holdout dataset.  The logistic regression and 
XGClassifier modeling were applied to this split dataset and 
the neural network modeling further subdivided the training 
dataset into 80% training and 20% validation.  

B. Metrics 

 To evaluate the performance of the classification models, 
we used both the F1 score and confusion matrix metrics. The 
F1 score provides an overall measure of the model's 
performance, but it does not give us insight into the types of 
errors the model is making. In contrast, the confusion matrix 
provides information on the number of true positives (TP), 
false positives (FP), true negatives (TN), and false negatives 
(FN), giving a more detailed understanding of the model's 
performance. The F1 score is calculated as the harmonic 
mean of precision and recall, which are shown in Equations 
1 & 2.   

precision = !"
!"	$	%"

 (1) 

recall							 = !"
!"	$	%&

 (2) 

Therefore, presenting both the F1 score and confusion 
matrix together can provide a more complete picture of the 
performance of the classification model, as it penalizes 
extreme values of either precision or recall. F1 is calculated 
using Equation 3: 

F1	score = 2 × '()*+,+-.	×	()*011
'()*+,+-.	$	()*011

 (3) 

In the dataset, the positive class is a lightning occurrence. 
In the case of lightning forecasting, it is critical that false 
negatives be minimized, where a model predicts “no 
lightning” when lightning actually occurred. False negatives 
are shown in the lower left corner of the confusion matrices 
presented Figure 2 and Figure 4 of this work. 

C. Trivial Modeling   

As a further part of data understanding, performance 
metrics are also calculated for two trivial models. The first is 
a model that predicts the majority class of “no lightning” or 
0, also known as the no-information rate model. The second 
is a model that predicts randomly with equal probabilities. 
For these trivial logistical models, all datapoints were 



utilized.  The majority class model possessed an F1 = 0.40, 
and the random model had an F1 = 0.47. 

D. Statistical Modeling 

The statistical models applied in this work used recursive 
feature elimination (RFE) to iteratively select features, using 
the sklearn logistic regression and XGClassifier algorithms.  
The default values for logistic regression were used, and the 
max_depth parameter within XGClassifier was set to 1 to 
limit overfitting.  The F1 metric on the training and holdout 
datasets were compared to the other modeling techniques. 

E. Neural Network Modeling 

The Python Keras API was utilized to construct a neural 
network for this problem. Keras requires the selection of a 
loss function, optimizer, optimization parameter, and 
optional regularization technique.  Since the neural network 
is a binary classification neural network the loss function 
chosen for this neural network is binary cross-entropy. 
Dropout was selected as the regulation technique parameter 
[14]. Adam & SGD algorithms were both evaluated as 
options for the optimizer. 

Class weights were specified as the NN models had 
difficulty avoiding defaulting to the trivial majority case 
model. Also, to correct instability noted in the final stages of 
training, an adaptive learning rate was applied that halved the 
learning rate every 30 epochs. 

For the maximum number of neurons, we use guidance 
from Widrow, who proposed that the number of 
recommended datapoints P is the number of weights 
(neurons * (inputs + 1)) divided by the desired error level, 
according to Equation 4 [15]. For a 20% error level and 334-
row dataset, the recommendation was 2 neurons for dataset 
#1 and 3 neurons for dataset #2. As a result, the capacity of 
the neural network was limited to within an order of 
magnitude of this recommendation, and potential overfitting 
was monitored. 

𝑃 = 2345627∗(:2;4<7$=)
35565

        (4) 

The Adaptive Experimentation Platform (Ax) library was 
installed into Python, and used to tune the neural network 
model’s hyperparameters. Bayesian optimization was used 
for numeric features, and Bandit optimization was used for 
categorical features. Within Ax, the hyperparameters tuned 
and their search space is defined on the left side of Table 2. 
Ax converged on a solution after 30 optimization loops. 

 

Hyperparameter  Range Dataset 
#1 

Dataset 
#2 

Learning Rate 0.001 – 
0.5 0.041 0.101 

Class weight for 
“1” class 1-2 1.34 1.65 

Dropout Rate 0.0– 0.5 0.0 0.0 

# Hidden layers 1-4 1 1 
Neurons/layer 1-15 6 1 
Batch size 8-128 76 79 
Activation 
Function 

ReLU, 
SeLU ReLU SeLU 

Optimizer Adam, 
SGD SGD SGD 

Table 2. Hyperparameters for the Ax-optimized NN models 

 

III. Analysis & Results 

Performance metrics are presented in this section for the 
three variations of modeling (logistic regression, XGBoost & 
neural network) on dataset #1 and dataset #2. For 
comparison, the trivial majority-class and random models 
yielded F1 metrics of 0.40 and 0.47, respectively. 

A. Dataset #1 Modeling – All Features 

Figure 1 shows the F1 metric for the training and holdout 
datasets, across a range of input features.  All features were 
used as inputs to the NN, and RFE feature selection was used 
on the logistic regression, and XGClassifier models.  As 
visible in Figure 1, the optimized NN had the highest 
performance on the holdout dataset with F1 = 0.79. This 
model’s performance on the training and test/holdout datasets 
are designated by the black arrow in Figure 1. Even when 
limited to max_trees = 1, XGClassifier had significant 
overfitting issues as the number of features increased.  The 
set of optimal neural network hyperparameters for this 
dataset is presented in Table 2 in the previous section.  

 

 
Fig. 1. XGClassifier, logistic regression, and neural network modeling 

results from dataset #1. The F1 metric for both the training and holdout 
datasets are presented. The arrow indicates the best model; the optimized 
NN model. 

When balancing the tradeoff between complexity and 
performance, the best dataset #1 model is judged to be the 
Ax-optimized NN model. Its metric of F1 = 0.79 on the 
test/holdout dataset far exceeded the performance of any of 
the logistic regression or XGClassifier models. For the NN 



model, the confusion matrix for both the training and holdout 
datasets is presented in Figure 2. 

 

 

 
Fig. 2. Ax-optimized NN model performance, as illustrated by the 

confusion matrix for the training dataset (top) and test dataset (bottom).   

B. Dataset #2 Modeling – Without Wind Features   

Figure 3 presents the F1 metric for the training and holdout 
datasets on models created from dataset #2. The same process 
was followed to create neural network models, and also 
logistic regression and XGClassifier using RFE feature 
selection.  Similar to dataset #1, the Ax-optimized neural 
network provided the highest performance with F1 = 0.66 on 
the test / holdout dataset. This model’s performance on the 
training and test/holdout datasets are designated by the black 
arrow in Figure 3. As visible in Figure 3, the NN model 
significantly outperformed logistic regression and the 
XGClassifier algorithms.  

 

 
Fig. 3. XGClassifier, Logistic Regression, and neural network modeling 

results from dataset #2.  The f1 metric for both the training and holdout 
datasets are presented. The arrow indicates the best model; Ax-optimized 
NN with all features. 

The best dataset #2 model is judged to be the Ax-optimized 
NN model. Its metric of F1 = 0.66 on the test/holdout dataset 
exceeded the performance of any of the logistic regression or 
XGClassifier models. The confusion matrix for both the 
training and holdout datasets is presented in Figure 4. 

 

  



 

 
Fig. 4. XGClassifier 8-feature confusion matrix for the training dataset 

(top) and test dataset (bottom).   

C. Model Evaluation   

From the statistical modeling there were notable inferences 
available on both datasets. From dataset #1 (full dataset), the 
2-feature logistic regression model on achieved the highest 
performance of any of the statistical models; F1 = 0.72 on the 
holdout dataset. The 2 features included in this model were 
the Thompson index, and the north/south component of wind 
speed at a pressure of 850 mb.  For dataset #2 (without wind 
features) the 4-feature logistic regression model was 
interesting, as it was a simple model that achieved close to 
the highest performance of any of the statistical models; f1 = 
0.68 on the holdout dataset. The 4 features included in this 
model via the RFE process were the Thompson index, the 
temperature at a pressure of 850 mb, the averaged relative 
humidity between 500-700 mb, and the average relative 
humidity from the surface to 700 mb pressure.  

One of the main attributes of the model is consistently 
forecasting lightning occurrence. The current method 
employed at the 45 WS is a forecaster who determines 
whether lightning is going to occur later in the day by using 
many available tools and intuition. As such, different 
forecasts are produced as influenced by the on-duty 
forecaster. A machine-learning model will output 
reproducible results independent of individual forecasters. 
Using the model, the forecaster will also be able to output a 

probability of lightning occurring later in the day and the 
probabilities will be reproducible. 

Ultimately, the output of the model could have application 
as a part of the morning weather briefing to inform range 
customers about impending lightning that may affect their 
range operation for the day. In addition, the model will save 
daily FTE-hours used to forecast lightning occurrences. 

IV. Conclusion 

In this work, a dataset consisting of 34 lightning, pressure, 
temperature and windspeed measurements was analyzed 
from 334 daily weather balloon / rawinsonde launches.  
Models were created using recursive feature elimination on 
logistic regression and XGClassifier algorithms, and also 
using Bayesian and bandit optimization of neural network 
hyperparameters.  The best performing models on both 
datasets were the optimized NN models, with an F1 = 0.79 
on the full dataset and F1 = 0.66 on the reduced dataset. The 
addition of 13 windspeed-related features more than doubled 
the complexity of the 21-feature no-wind model while 
increasing model performance by 4%. A notable inference 
from the statistical modeling is that the most important 
feature from both datasets was the Thompson index.  Future 
work could include expanding the set of input features and 
comparing machine learning performance to manual 
forecaster performance. 
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