
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

12-1-1994

Enhanced Visual User Interface Support for Domain-Oriented Enhanced Visual User Interface Support for Domain-Oriented

Application Composition Systems Application Composition Systems

Richard A. Guinto

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Graphics and Human Computer Interfaces Commons

Recommended Citation Recommended Citation
Guinto, Richard A., "Enhanced Visual User Interface Support for Domain-Oriented Application Composition
Systems" (1994). Theses and Dissertations. 6380.
https://scholar.afit.edu/etd/6380

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F6380&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=scholar.afit.edu%2Fetd%2F6380&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/6380?utm_source=scholar.afit.edu%2Fetd%2F6380&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

<o
-, -
-, -

-, -

* l} {i

* *·
{! !}

~ 1J.
!} {r

ENHANCED VISUAL USER INTERFACE

SUPPORT FOR DOMAIN-ORIENTED

APPLICATION COMPOSITION SYSTEMS

THESIS
Richard A. Guinto

Captain, USAF

AFIT / GCS /ENG /94D-06

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

AFIT / GCS /ENG /94D-06

ENHANCED VISUAL USER INTERFACE

SUPPORT FOR DOMAIN-ORIENTED

APPLICATION COMPOSITION SYSTEMS

THESIS
Richard A. Guinto

Captain, USAF

AFIT / GCS /ENG /94D-06

Approved for public release; distribution unlimited

AFIT / GCS /ENG /94D-06

Enhanced Visual User Interface

Support for Domain-Oriented

Application Composition Systems

THESIS

Presented to the Faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Richard A. Guinto, B.S.C.S.

Captain, USAF

December 13, 1994

Approved for public release; distribution unlimited

Acknowledgements

I wish to thank my thesis advisor, Major Paul Bailor, for his patience and guidance

throughout this research effort. I also want to thank my committee members, Dr. Thomas

Hartrum and Lt Col Patricia Lawlis for their help and advice.

I'd also like to express my thanks to my fellow KBSE researchers for all the support

and cooperation they gave me during our research.

Finally, I want to thank my children, , for understanding that I

had to spend a lot of time at school. Lastly, and most especially, I want to thank my wife,

11111, for understanding, supporting, and most of all tolerating me during this period.

Her patience and encouragement kept me going through my difficulties and successes.

Richard A. Guinto

ii

Table of Contents

Page

Acknowledgements 11

List of Figures vii

List of Tables . ix

Abstract. x

I.

II.

Introduction

1.1 Overview

1.2 Background .

1.3 Problem . . .

1.4 Assumptions

1.5 Sequence of Presentation

1.6 Summary

Literature Review . . .

2.1 Introduction

2.2 Human-Computer Interaction.

2.2.1 Usability

2.3 Human Factors ..

2:3.1 Design Guidelines

2.4 ·user Interface Evaluation Techniques

2.4.1 Heuristic Evaluation

2.4.2 Usability Testing

2.4.3 Guidelines

2.4.4 Cognitive Walk-through

iii

1-1

1-1

1-2

1-5

1-6

1-7

1-7

2-1

2-1

2-1

2-1

2-2

2-4

2-5

2-5

2-7

2-7

2-8

2.4.5 Conclusion

2.5 Summary

Page

2-9

2-9

III. Specification of System Enhancements 3-1

3-1

3-1

IV.

3.1 Introduction

3.2 Application Definition Capabilities .

3.2.1 Defining the Application . 3-3

3.2.2 Identifying components . 3-5

3.2.3 Connecting the imports and exports 3-8

3.2.4 Specifying the update algorithm . . 3-11

3.2.5 Checking semantics, executing the application, and

saving the application 3-14

3.3 Application Executive Visual Capabilities

3.3.1 Application Executive Metaphor Set

3.3.2 Application Executive Event Queue

3.4 Summary

Design and Implementation of AVSI III

4.1 Introduction . . .

4.2 Design Approach .

4.2.1 Level of Effort

4.3 Implementation

3-16

3-16

3-18

3-19

4-1

4-1

4-1

4-2

4-2

4.3.1 Create/Edit Application . 4-2

-
4.3.2 Create Subsystems/Build Imports-Exports 4-7

4.3.3 Building Application/Subsystem Update Algorithms 4-10

4.3.4 Application Executive Visualization 4-17

4.4 Conclusion 4-18

IV

v.

VI.

Testing and Validation of AVSI III

5.1 Introduction

5.2 Validation Domains

5.3 Testing

5.3.1

5.3.2

5.3.3

5.3.4

5.3.5

5.3.6

Compatibility Testing

Measuring Usability Improvement

Digital Logic Circuits Domain . .

Digital Signal Processing Domain .

Event-Driven Circuits Domain

Cruise-Missile Domain .

5 .4 Analysis

5.5 AVSI Ill's Shortcomings .

5.6 Conclusion

Conclusion and Recommendations

6.1 Overview

6.2 Results of This Research

6.3 Recommendations for Future Research .

6.4 Final Comments

Page

5-1

5-1

5-1

5-2

5-2

5-2

5-3

5-6

5-10

5-11

5-14

5-14

5-16

6-1

6-1

6-1

6-2

6-3

Appendix A. Sample Session for AVSI III A-1

A.1 Starting AVSI A-1

A.2 Create a New Application . A-3

A.3 Edit the Application A-3

A.3.1 To add a controlling subsystem-obj to the application A-3

A.4 Edit the Subsystems A-6

A.4.1 To add the primitive objects A-6

A.4.2 To connect DRIVER's Imports and Exports . A-8

V

Page

A.4.3 To create the application-obj's update-algorithm A-12

A.4.4 To build DRIVER's Update Algorithm A-14

A.4.5 To connect BCD-EXCESS3's Imports and Exports . A-17

A.4.6 To build BCD-EXCESS3's Update Algorithm . A-20

A.5 Perform Semantic Checks A-21

A.6 Execute the Application . A-23

Appendix B. REFINE™ Code Listings for AVSI III . B-1

Bibliography BIB-1

Vita . VITA-1

Vl

List of Figures

Figure

1.1. Domain-Oriented Application Composition Environment

1.2. Object Connection Update (OCU) Model

1.3. Architect with AVSI ...

3.1. Control Panel for AVSI II

3.2. Object Connect Update Window

3.3. System Composition Window and Technology Base Window

3.4. Imports/Exports Window and Technology Base Window

3.5. Update Algorithm Window

3.6. Application Executive Event Queue .

3.7. Application Executive Metaphor Set

5.1. Exclusive-OR Circuit and Truth Table

5.2. Half Subtracter Circuit and Truth Table

5.3. Binary Array Multiplier Circuit and Truth Table

5.4. BCD to Excess-3 Decoder Circuit and Truth Table

5.5. Signal-With-Noise DSP .

5.6. Window Demo

5.7. Four Sum Moving Average

5.8. Half Adder Event-Driven Circuit

5.9. Nanci Gate Event-Driven Circuit

5.10. JK Flip Flop Event-Driven Circuit

5.11. Cruise Missile

A.l. BCD to Excess-3 Decoder Circuit

A.2. AVSI III Control Panel

vii

Page

1-2

1-4

1-5

3-4

3-6

3-7

3-10

3-12

- 3-15

3-17

5-3

5-4

5-5

5-6

5-7

5-8

5-9

5-10

5-11

5-12

5-13

A-1

A-2

Figure

A.3. System Composition Window and Technology Base Window .

A.4. System-Composition-Window

A.5. System Composition-Window

A.6. Edit-Subsystem-Window . . .

A.7. DRIVER's Import-Export Window

A.8. Repositioned Icons

A.9. Import Area for BCD-EXCESS3 .

A.10. DRIVER's Import-Export Window

A.11. Import-Export MSP-Windows ..

A.12. Edit-Update-Algorithm Windows

A.13. Edit-Update-Algorithm

A.14. DRIVER's Update Algorithm

A.15. BCD-EXCESS3's Import-Export Window

A.16. BCD-EXCESS3's Import-Export Window

A.17. BCD-EXCESS3's Import-Export Window

A.18. BCD-EXCESS3's Update Algorithm

A.19. BCD-XS3 Application

Vlll

Page

A-4

A-5

A-5

A-7

A-9

A-10

A-10

A-12

A-13

A-15

A-16

A-17

A-18

A-19

A-20

A-21

A-25

List of Tables

Table

2.1. Usability Principles

3.1. Execution Modes in Architect

3.2. Icon Operations Menu ...

3.3. Imports/Exports Icon Menu

3.4. Window Operations Menu

5.1. Exclusive-OR Test Results ..

5.2. Half Subtracter Test Results .

5.3. Binary Array Multiplier Test Results

5.4. BCD to Excess-3 Decoder Test Results

5.5. Signal-With-Noise Test Results

5.6. Window-Demo Test Results ..

5.7. Four-Sum-Moving-Average Test Results

5.8. Half Adder Event-Driven Test Results

5.9. Nand Gate Event-Driven Test Results

5.10. JK Flip Flop Event-Driven Test Results

5.11. Cruise Missle Flight Test Results

5.12. Usability Improvement

A.l. BCD to Excess-3 Decoder Truth Table

ix

Page

2-6

3-2

3-9

3-9

3-11

5-4

5-5

5-5

5-7

5-8

5-8

5-9

5-10

5-11

5-12

5-13

5-14

A-23

AFIT / GCS /ENG /94D-06

Abstract

This research refined the functionality and usability of a previously developed visual

interface for a domain-oriented application composition system. The refinements incor

porated more sophisticated user interface design concepts to reduce user workload. User

workload was reduced through window reordering, menu redesign, and Human Computer

Interaction techniques such as; combining repetitive procedures into single commands,

reusing composition information whenever possible and deriving new information from

existing information. The Software Refinery environment, including its visual interface

tool lNTERVISTA, was used to develop techniques for visualizing and manipulating objects

contained in a formal knowledge base of objects. The interface was formally validated

with digital logic-circuits, digital signal processing, event-driven logic-circuits, and cruise

missile domains. A comparative analysis of the application composition process with the

previous visual interface was conducted to quantify the workload reduction realized by the

new interface. Level of effort was measured as the number of user interactions (mouse or

keyboard) required to compose an application. On average, application composition effort

was reduced 34.0% for the test cases.

X

1.1 Overview

Enhanced Visual User Interface

Support for Domain-Oriented

Application Composition Systems

I. Introduction

As computers are used more in the workplace, the need for developing usable com

puter hardware and software products becomes more important. Users are offered more

complex data and functions. To allow users to take advantage of these advanced systems,

software developers must provide more sophisticated visually-based user interfaces.

Architect, a prototype domain-oriented application composition and generation sys

tem, is the subject of ongoing research by the Knowledge-Based Software Engineering

(KBSE) research group at the Air Force Institute of Technology (AFIT). Originally devel

oped by Anderson and Randour (1, 16), it was later enhanced with a visual user interface.

This interface, called Architect Visual System Interface (AVSI), gives a graphical represen

tation of the domain-specific language and allows generating, viewing, and manipulating

application specific ihformation (23). Further refinement of AVSI extended Architect's

usability by incorporating sophisticated graphics and improving the application develop

ment process resulting in AVSI 11(3). A significant amount of research still remains for the

further refinement of the interface. This thesis will briefly present the history of Architect

1-1

OOMAIN-ORIENTED APPUCA TION

COMPOSITTON SYSTEM

•••

INFERENCE ENGINE

, ConlrolAlgcnthmaani

ApplicatiOD. Executive

-Roqu1tc:men11 Ellicitation

-Com tHarvetti

0
D
s

TECHNOLOOY BASE (00D8 MS)

Figure 1.1 Domain-Oriented Application Composition Environment

and AVSI and the specific challenges involved in improving Architect's interface, taking

Architect to its highest level of usability.

1.2 Background

The KBSE research group at AFIT conducts research into the various aspects of

domain-oriented application composition and generation as shown in Figure 1.1. Architect

runs within the Software Refinery™ development environment. It is centered on a Lisp-

based wide-spectrum specification language called REFINE. Architect was designed to be

used by an application specialist. The application specialist is familiar with the overall

domain and understands what the new application must do to meet system requirements

and specifications (8:4). Architect provides the application specialist with the tools to

compose applications within specific domains.

1-2

The structure of an Architect application is based on the Object Connection Update

(OCU) Model developed by the Software Engineering Institute (SEI) (9). The OCU model

consists of several software elements used to express a design in the form of subsystems

and hardware interfaces. A subsystem, visualized in Figure 1.2, consists of a controller,

a set of objects, an import area, and an export area. A software system, or application,

is described as a set of subsystems controlled by an executive function. An executive,

is a high level supervisory subsystem that coordinates the behavior and information flow

between subordinate subsystems. The OCU model treats subsystems as self-contained,

abstract units; however, there are no restrictions against a subsystem acting as an object

controlled by another subsystem. More complete definitions of the subsystem components

are provided below.

• Controller: The controller aggregates a set of objects and manages the connections

between them and the fl.ow of information to and from them. Controllers contain an

update function that defines the functionality (or mission) of the subsystem.

• Import area: The import area is the central collection point for the inputs needed

by the objects in a subsystem. The import area collects data from other subsystems

in an application and makes it available to the objects.

• Export area: The export area is the central distribution point for the outputs of a

subsystem that is needed by other subsystems in an application.

• Object: An object models the behavior of real-world components. An object main

tains a state and has an associated set of algorithms responsible for transforming

input data into the state data.

1-3

Imports
Exports

Controller

Objects

Figure 1.2 Object Connection Update (OCU) Model

The application specialist manipulates the domain model to develop a preliminary

software specification within Architect. This specification can then be compiled, and the

resulting code can be executed to simulate system operation. The execution is monitored

for desired functionality of the requested system. The development/ compilation/ execution

cycle can be repeated until the required behavior is achieved. Translation of the specifi

cation into a deliverable software application in Ada, C, or another language, can then be

accomplished.

AVSI was developed to replace Architect's rudimentary command line interface (23).

It allows the application specialist to visualize a "mental model" (11:100) of the application

on the computer monitor rather than having to mentally visualize it. Figure 1.3 shows the

relationship between AVSI and the components of Architect. AVSI gives the application

specialist the basic functional capability of a visual user interface. A major improvement

to AVSI, called AVSI II, provided the application spedalist with a more mature version

of a visual user interface (3). AVSI II extended Architect's usability by incorporating

1-4 .

Software
~ Architecture

Model
DSL Application

(knowledge) Grammar Sped1ic

'
Definition COd~DSL)

+ Domain Model
Domain Specttlc DIALECT

I Technology Language (DSL)

Base (Parser)

a Architect Kernel ..
• Analysis

t .i
• Generation
• Semantic Check

rode • Execution

■
fragments

t f
~

addlt/On modlffcatkm Refine
deletion Object Base

Figure 1.3 Architect with AVSI

sophisticated graphics, adding basic visual interface support for an Application Executive,

and improving the application development process. Nevertheless, Architect combined

with AVSI II still lacked the high degree of functionality desired to minimize the time and

complexity to design a software system. Therefore, the goal of this thesis endeavor was

to continue functional development of the Architect user interface, and further reduce the

level of effort required to enhance usability of the system.

1.3 Problem

In order to make Architect even more "user friendly" for the application specialist,

AVSI II needed additional enhancements. AVSI II provided an application specialist with a

broad base of functionality, but some of the processes were still repetitive, time consuming,

1-5

or tedious. The challenge was to make AVSI III even more usable. To meet the challenges

described above, the following research goals and objectives were established:

1. To extend support to infer controller update algorithms by synthesizing a sequencing

algorithm from the visual representation of control data. The current implementation

of AVSI II requires the application specialist to explicitly define the execution order

of the subsystem(s) and primitive(s). An improved implementation would infer an

update algorithm using as a basis the import and export (i.e., data) connections of

the subsystem(s) and primitive(s) of the application.

2. To investigate and implement an appropriate visualization method to provide visual

support of the application execution. AVSI II supported application execution by

displaying a textual representation, in the form of an event queue, of the initial and

final states of the application. The enhanced event queue would display not only the

initial and final states, but also display the intermediate states.

3. To support the visualization needs for Architect to compose applications using object

from multiple domains.

4. To test the new interface and quantify AVSI Ill's improvements.

1.4 Assumptions

This research will make several basic assumptions. The domains used to validate

AVSI III, the digital logic-circuits, event-driven digital logic-circuits, digital signal pro

cessing circuits, and cruise missile domains are assumed to be adequate for testing and

validation of AVSI III. These domains have been validated by previous work and would

1-6

provide sufficient coverage over a couple of execution modes. The execution modes cur-

rently supported include non-event-driven-sequential, event-driven-sequential, and time-

driven sequential.

1.5 Sequence of Presentation

The remainder of this thesis is organized as follows:

1. Chapter 2 contains a review of current literature concerning human-computer inter-

actions, human factors, and user interface evaluation techniques.

2. Chapter 3 includes a description of the overall operational concept of AVSI III and its

-
relationship to Architect. It also describes an analysis of AVSI III and the changes

implemented. This chapter also details the visualization of the application execu

tive, the addition of an automatic update algorithm mechanism, the redesign of the

import/export connection process, and the quantification of Architect's changes.

3. Chapter 4 presents AVSI Ill's design, design tradeoffs, and implementation details.

4. Chapter 5 addresses the testing and validation of AVSI III and presents an analysis

of its capabilities.

5. Chapter 6 contains conclusions about the AVSI III research effort as well as including

recommendations for future research.

1.6 Summary

The research proposed in this thesis is essential to meet the high demands an applica-

tion specialist places on Architect. The importance of the role of application composition

1-7

and generation systems like Architect is increasing within the software industry(13). The

new visual user interface implementation, AVSI III, provides the application specialist with

the high degree of functionality required to design complex and sophisticated software sys-

terns.

1-8

II. Literature Review

2.1 Introduction

This chapter summarizes current research in the areas of Human-Computer interac

tion, human factors, data-flow analysis techniques, dependency graphs, and user interface

evaluation techniques. In this chapter, a brief description of Human Computer Interaction

concepts is presented. In addition, the goals of human factors and their evaluation criteria

are discussed. Finally, four different user interface evaluation techniques are summarized.

2.2 Human-Computer Interaction

Human-Computer Interaction (HCI) is what happens when a human and a computer

system interact to perform tasks. This field is new and is dedicated to determining how

best to make this interaction work. HCI includes user interface hardware and software, user

and system modeling, cognitive and behavioral science, human factors, empirical studies,

methodology, techniques, and tools (6). The goal in HCI is to provide the user with a high

degree of usability.

2.2.1 Usability. The main focus of usability is to improve user performance of

tasks with an interactive computer system. Usability is a combination of the following

user-oriented characteristics (18):

• Ease of learning

• High speed of user task performance

• Low user error rate

2-1

• Subjective user satisfaction

• User retention over time

2.3 Human Factors

The goal of human factors is to optimize human performance, including error re

duction, increased throughput, user satisfaction, and user comfort (6). User interaction

designers are realizing that the user should not have to adapt to the interface, but rather

the interface should be designed so that it is intuitive and natural for the user to use.

Several factors weigh heavily into what human factors are:

• User interaction standards - are documents that give requirements for user in-

teraction design. One such document for user interaction is the User-Computer In

terface, MIL-STD-1472C, revised (1990). However, sometimes they require intense

interpretation and tailoring to be useful in user interaction design. Their main ad

vantage is that they draw attention to the user interface, but they are generally too

vague to offer effective guidance (6).

• User interaction design guidelines- are general in their applicability and require

a fair amount of interpretation to be useful. Guidelines are mostly educated opinions

based on experience. One of the best known examples of a collection of guidelines

is the technical report Guidelines for Designing User Interface Software (19). A

guideline's main advantage is that it offers flexible guidance and helps establish design

goals and decisions, but it must be tailored to produce specific design rules. The main

difference between standards and guidelines is that standards are enforceable in user

2-2

interface, while guidelines are merely suggestions as to how to produce a good user

interface.

• Commercial style guides - are documents produced by an organization or vendor

that are made commercially available. They provide a much more concrete and useful .

framework for design than a standards document. A style guide typically includes

the following:

1. Description of a specific interaction style or object, including both its look and

feel.

2. Guidance on when and how to use a particular interaction style or object. Style

guides can provide the basic conventions for a specific product or for a family

of products. Their main advantage is that they improve consistency of the user

interaction design. Examples of currently popular commercial style guides are:

(a) OSF/Motif'M Style Guide from Quest Windows Corporation (15).

(b) OpenLooFM from AT&T/Xerox/Sun

• Customized style guides - are related to commercial style guides in that they

contain similar information with the exception that they also contain specific recom

mendations for various aspects of the user interaction design. These guidelines unlike

commercial guides are made for specific products. Their main advantage is providing

consistent, explicit, unambiguous information for a user interaction design. However,

developing a customized style guide can require a large amount of resources.

2-3

2.3.1 Design Guidelines. The design guidelines described above are very im-

portant in producing a high-quality user interface. However, the number of guidelines

available are numerous and an attempt to list all or even most of them is beyond the scope

of this research. The following guidelines were found to be the most relevant in improving

AVSI.

2.3.1.1 User-Centered Design. Practicing user-centered design emphasizes

a user interface that is easy to use by the user, not what is easy for the developer to build.

This implies that the interface designer know the user. He/she must know the particular

characteristics that make up the type of users that will use the interface. This can not be

done simply by observation or interviews. Methods such as user analysis, task analysis,

information flow analysis, and time-and-motion analysis may be used to determine a better

understanding of the characteristics of the users of the user interface.

Another aspect of user-centered design is based on the prevention of user errors.

Good interaction design anticipates potential problem areas and helps the user to avoid

making mistakes. For example, to prevent typographical errors the user interface should

display, as choices to the user, a list of legitimate choices from which the user may choose.

2.3.1.2 Human Memory Issues. "Make the application memorable by re-

ducing the user's need to memorize." (20:133) A human's short-term memory must be

taken into account when designing a user interface. The human capacity is normally

measured as the famous "seven plus or minus two chunks" (12). This limitation can be

overcome in user interface design by using identification instead of recollection. For exam

ple, identifying a choice from a menu is much easier for the user than having to recollect

2-4

all possible choices and then typing in one of them as a response. Preventing the user from

having to memorize also decreases typographical errors.

2.3.1.3 Menu Issues. "Close targets are faster to acquire than far ones:

Keeping everything but menu bars and other edge-hugging items close to the area of

interest saves the user time." (20:206) Reducing the distance when moving the mouse

pointer or cursor increases usability of the user interface. This concept goes hand-in-hand

with the concept that reducing or eliminating navigation also makes a better user interface.

Design menus to display only those options that are actually available in the current

context. When it comes to displaying menus for user selection, limiting choices available

to those that make "sense" at the time prevents potential errors and also decreases the

memory load on the user. For example, clicking on an icon that represents a print task

selectively displays commands meant specifically for the printer.

2.4 User Interface Evaluation Techniques

A brief search of evaluation techniques to identify the technique that should be used

to evaluate AVSI was accomplished, and four techniques were discovered. These techniques

(7) are heuristic evaluation, usability testing, guidelines, and cognitive walk-through. The

good and bad points of each techniques are described below.

2.4.1 Heuristic Evaluation. User Interface (UI) specialists study the interface

in depth and look for properties that they know, from experience, will lead to usability

problems. Evaluators accomplish Heuristic evaluation (14) by looking at an interface and

trying to come up with an opinion about what is good and bad about the interface. Such

2-5

Table 2.1 Usability Principles

Simple and natural dialogue -Speak the user's language
Minimize user memory load -Be consistent
Provide feedback
Provide clearly marked exits -Provide shortcuts
Good error messages
Prevent errors

an evaluation should be conducted using rules that are derived from certain usability

guidelines such as the nine basic usability principles (14) listed in Table 2.1.

These principles correspond to what is considered to be important to the user in

terface community. Studies (14) have shown that the performance of every evaluator is

not the same. While a "good" evaluator might be able to find most of the usability prob-

lems of an interface, a "poor" evaluator could sometimes find problems that were missed.

Aggregates of evaluators are formed by having several evaluators conduct an individual

heuristic evaluation. The individual results are then compiled together to form an aggre-

gate evaluation. Between three and five evaluators are recommended to achieve a decent

evaluation.

2.4.1.1 Advantages. Heuristic evaluation is very intuitive and easy to

motivate people to perform. Therefore, minimum planning is required. Compared to

the other methods, it identifies not only more problems, but more serious problems (14).

It draws most of its strength from the skilled UI professionals who use it, and the heuristic

evaluation method uses a minimum of resources.

2-6

2.4.1.2 Disadvantages. The disadvantages of using heuristic evaluation

include biasing by the current mind set of evaluators, and it doesn't provide a solution

to problems found or doesn't generate breakthroughs in the design. This method requires

extensive UI expertise. To obtain a good evaluation, multiple evaluators are necessary.

2.4- 2 Usability Testing. In usability testing the interface is studied under real-

world or controlled conditions with evaluators gathering data on problems that arise during

its use.

2.4.2.1 Advantages. It is very good at finding serious and recurring prob-

lems and at avoiding low-priority problems. Usability Testing is also good at finding serious

problems.

2.4-2.2 Disadvantages. This method is very costly and requires massive

amounts of time. It, like heuristic evaluation, requires UI expertise. Even though it is very

costly, one would think that it would fair better than most methods, but it still fails to

find all the serious problems and missed consistency problems (7).

2.4.3 Guidelines. Guidelines provide evaluators with specific recommendations

about the design of an interface. The ESD /MITRE compilation of user interface design

guidelines, Guidelines for Designing User Interface Software (19), contains 944 guidelines.

This report represents the most comprehensive guidance available for designing user in

terface software. The report is organized into six functional areas of user-system interac

tion. These areas are: Data Entry, Data Display, Sequence Control, User Guidance, Data

Transmission, and Data Protection. The individual guidelines contained in this report are

2-7

generally worded so that they may be applied across many different system applications.

Because of this generalization, the guidelines must be translated into specific design rules

before they can be used.

Because guidelines may conflict with each other, designers must pinpoint the impor

tance of one guideline over another. Also, since there are so many guidelines to choose

from, designers may have to limit their choices to only the most important ones. When

a final cut is made, all designers have to abide by the chosen guidelines so as to ensure a

consistent design. Finally, after the design is complete, it must be evaluated against the

original design requirements to ensure all design rules have been followed.

2.4-3.1 Advantages. A guidelines evaluation is the best at finding recurring

and general problems. This method works best when UI specialists are used as evaluators,

but in a pinch, software developers can be used as a reasonable alternative.

2.4- 3.2 Disadvantages. Using this approach, evaluators can miss a large

number of severe problems and it is very time consuming (7).

2.4.4 Cognitive Walk-through. The cognitive walk-through method (10) combines

software walkthroughs with a cognitive model of learning by exploration. The developers of

an interface walk through the interface in the context of core tasks a typical user will need

to accomplish. The designer specifies a series of core tasks that are deemed important. For

each core task, the sequence of user actions is specified by the designer. The actions and

feedback of the interface are compared to the user's goals and knowledge, and discrepancies

2-8

between the user's expectations and the steps required by the interface are noted. In

essence, the designer is doing a hand simulation of the processes involved.

2.4.4.1 Advantages. The cognitive walk-through approach helps to define

the user's goals and assumptions. This technique can be done by software developers.

2.4.4- 2 Disadvantages. This method is tedious and sometimes requires too

much detail, and the problems found with this method are typically less general and less

recurring. Also, the amount of time required to analyze the tasks defined by this technique

make it unattractive to most developers(lO).

2.4.s Conclusion. In conclusion, it appears that a Heuristic evaluation of AVSI

II would be the most feasible. It can identify more serious problems than any of the four

methods without expending a large amount of resources.

2.5 Summary

Even with all the research being done concerning human-computer interfaces and

human factors, developing user interfaces still involves concentrating on the user. Designing

user interfaces that are centered on the user produces a more usable user interface. With the

emphasis on practicing user-centered design, the interface designer can develop a product

that is easier to use and understand.

2-9

III. Specification of System Enhancements

3.1 Introdudion

This chapter describes the current and proposed capabilities of Architect's Visual

System Interface (AVSI) IL This description is broken down into two aspects, Application

Definition and Application Executive Visualization. The general process used to analyze

the current capabilities of AVSI II was based on determining the number of user actions

required to complete some step. This helped to pinpoint the areas where improvements

were necessary. Validation of the success of whether significant usability improvement

were made was achieved by measuring user actions required for both versions of AVSI and

making comparisons and conclusions.

3. 2 Application Definition Capabilities

The baseline Architect version 2.0 gave the application specialist the ability to build

domain-specific applications. Previously validated domains are: digital logic circuits (1),

digital signal processing (22), event driven logic circuits (21), cruise missile (21), and

application executives (24).

Applications built using AVSI II must be defined as executing in a specific execu

tion mode. In the n9n-event-driven sequential mode of execution, simulation entities are

updated in a fixed order during each execution. This fixed order in Architect is called the

update algorithm. An event-driven sequential application executes as the result of execu

tive service of events that are asynchronously raised by the application subsystems and the

executive. A time-driven sequential application contains subsystems that react to changes

3-1

Table 3.1 Execution Modes in Architect
Digital Logic Circuits Non-event-driven-sequential
Digital Signal Processing Non-event-driven-sequential
Event-Driven Circuits Event-driven-sequential
Cruise-Missile Time-driven-sequential
Application Executive Executive

in the clock. So, an update algorithm is not required when specifying an application in

either the event-driven sequential and time-driven sequential execution mode. Table 3.1

shows, the domain appropriate for a specific execution mode.

To create an application definition, the application specialist uses a menu driven

graphical user interface (GUI) to interact with Architect to perform operations on a

domain-specific application. First, he must define an application. Defining an applica-

tion is further refined into several steps. The necessary steps are:

1. Select a domain.

2. Select an appropriate execution mode.

3. Name the application.

4. Create and name a controlling subsystem.

With an application defined, any and all secondary subsystem(s) and/or primitive(s)

must be identified, named, and linked to their controlling subsystem. Next, in the case of

the non-event-driven sequential execution mode, an update algorithm, which defines the

order in which each subsystem and/ or primitive is updated must be defined. An update

algorithm is not needed when developing applications that are executed in event-driven

sequential or time-driven-sequential modes. Next, the imports and exports of subsystem(s)

3-2

and/or primitive(s) must be "connected". When the previous steps have been accom

plished, a semantic check is performed to ensure appropriate conditions are met. If any

errors are found, corrections must be made before execution of the application can pro

ceed. Execution of the application is then simulated, and the application's behavior can

be compared with what was expected to determine if modifications are necessary.

AVSI II currently aides the application specialist in performing the necessary steps

to create an application. AVSI II's central interface was based on the use of a control

panel window as shown in Figure 3.1. This necessitates the user to maneuver through a

hierarchy of menu selections before actually selecting the intended command. A goal of

this research was to design and implement modifications to AVSI II to increase usability

by decreasing the user's workload. A careful study of the current process identified several

areas that needed to be improved. The following subsections describe AVSI II's design,

and describes the modifications made to improve it. A stepwise approach was used to

ensure a fully functional interface at all times during this research effort and to correctly

construct an improved interface called AVSI III.

3.2.1 Defining the Application.

3.2.1.1 Description of the Current Application Definition Process. To ere-

ate a new application, the application specialist must click on the "Create New Appli

cation" button on the control panel. The user is then prompted for a domain. AVSI II

requires the user to choose a domain and an execution mode for the application being

built. Non-event-driven-sequential mode is selected for the digital logic circuit and digi

tal signal processing domains, while the Event-driven-sequential mode is selected for the

3-3

. A C01nmon Windo1;v
• ARCHITECT VISUAL SYSTEI\il INTERFACE

C!"late
New

Application

show
oom~n

Descriptions

Load
Swed

Application

Edit
Application

Edit
Subsystem

Check
semantics

l\ilESSAGE \VINDO\V

Test
Primitive

Object Base has been Cleared

Figure 3.1 Control Panel for AVSI II

E><ecute
Application

clear
Object
Base

Event-driven circuit domain, and Time-driven-sequential mode is selected for the Cruise-

Missile domain. Next, the user is prompted for an application name.

3.2.1.2 Analysis of the Application Definition Process. Examination of

the current process indicates that the current operation requires the user to recall from

memory what the execution mode of the application should be. Because the current design

of Architect dictates strict adherence to the matching of domain with the exact execution

mode (see table 3.1), this prerequisite can be implemented in a more fitting manner.

3.2.1.3 Improvements to the Application Definition Process. Improvements

in AVSI III incorporate the capability to automatically select the execution mode required

based on the chosen domain, thus reducing the amount of information the user needs to

elaborate to Architect.

3-4

3.2.2 Identifying components.

3,2.2.1 Description of Current Component Identification Process. Once an

application name is defined, AVSI II requires the user to choose "Edit Application" from

the AVSI control panel. A submenu then displayed a list of loaded applications, prompting

the user to choose an application to edit. After selecting the appropriate application

name, another submenu is displayed giving the user a choice of either selecting "Edit

Application Update", "Edit Application Components", "Save Application", or "Abort".

"Edit Application Component" should be chosen, displaying a composition window while

showing the user the control hierarchy relationships. Currently, there is only one icon with

text labeling it an "APPLICATION-OBJ" with the name of the application as defined.

Clicking on the blue background of the window brings up yet another submenu in which

the user should choose "Create New Subsystem". The user is then prompted for the

subsystem's name. Once the subsystem is named, an outline of the subsystem icon is

displayed in the composition window. This outline can be positioned in the composition

window as desired by the user. Once the icon is positioned, clicking a mouse button anchors

that icon. The subsystem icon is then displayed with text labeling it an "SUBSYSTEM

OBJ" with the name defined by the user. Additional subsystems may be created in the

same fashion. The procedure for linking subsystem(s) to its controlling subsystem is then

accomplished. Once the subsystem is created and named, it is linked to the application by

clicking the mouse on the subsystem icon and selecting "Link to Source" from the pop-up

menu. The link is then created.

3-5

In AVSI II, creating primitives, was accomplished by first selecting "Edit Subsys

tem" and choosing the appropriate controlling subsystem. The Object Connection Update

(OCU) model (9) is then displayed as shown in Figure 3.2. Clicking on the icon labeled

"Objects" then displays two windows. The windows displayed are the "SUBSYSTEM

OBJ" window and "Technology Base" window. The application specialist then selects any

primitive(s) that the application design requires from the "Technology Base Window" and

"positions" it into the "SUBSYSTEM-OBJ" window.

Exports

Controller

Objects

Figure 3.2 Object Connect Update Window

3.2.2.2 Analysis of Component Identification. Analyzing the processes

required when identifying components, the necessary tasks to accomplish are:

1. Create subsystem(s).

2. Create primiti'le(s).

3. Linking subsystem(s) and/or primitive(s) to their controlling subsystem.

The two windows required to complete the steps mentioned are the "System Compo

sition Window" and the "Technology Base Window". So it is evident that AVSI III should

3-6

automatically display both the "System Composition Window" and the "Technology Base

Window" as shown in Figure 3.3.

3.2.2.3 Improvements to Component Identification. In the "System Com-

position Window" the application specialist must create a controlling subsystem, and may

create any secondary subsystem(s). The application specialist may also select any prim-

itive(s) that the application design requires from the "Technology Base Window" and

"position" it (the primitive) into the "System Composition Window". Linking of sub-

system(s) and/or primitive(s) is identical to the previous version of AVSI II (3). This

significantly reduces the effort required by the application specialist.

'.-i.,,t1.•111 (u111po,1tm11 \\'uulo\\ It'\ IIJUJ)U!:!,\ 11,l\t• \\ II Uhl\\ IOI LI I{(l I TS

NANO-GATE-OBJ COUNTER-OBJ MUX-OBJ

> ¥ n
NOT-GATE-OBJ LEO-OBJ JK-FUP-FLOP-OBJ

:[> 6r a
OR-GATE-OBJ SWITOl-OBJ HALF-ADDER-OBJ

{> D D D :[> fil
AND-GATE-OBJ HOR-GATE-OBJ DECODER-OBJ

Figure 3.3 System Composition Window and Technology Base Window

3-7

3.2.3 Connecting the imports and exports.

3:2.3.1 Description of Current Imports/Exports Connection Process. In

AVSI II, connecting the imports and exports of the application subsystem(s) and/or prim

itive(s), is accomplished by first selecting "Edit Subsystem" and choosing the appropriate

subsystem. The Object Connection Update (OCU) model (9) is then displayed as shown

in Figure 3.2. Clicking on the icon labeled "Import Area" then prompts the user to choose

either "Make Connections", "View Information", or "Abort". Selecting "Make Connec

tions" displays the "Imports/Exports" window. The connections are then made between

the imports and exports of the appropriate subsystem(s) and/or primitive(s).

3.2.3.2 Analysis of Imports/Exports Connection. AVSI II requires the

application specialist to navigate a series of menu structures in order to make the im

port/ export connections. It required a minimum of five user actions before the appropriate

windows are displayed to allow the user to make the needed connections. The connecting

of imports and exports is made laborious by the hierarchical navigating of menus. Mini

mizing menu navigation will greatly reduce the level of effort required to accomplish this

task.

3.2.3.3 Improvements to Imports/Exports Connection. In AVSI III, con-

necting the imports and exports is accomplished by use of the "Icon Operations" menu.

Modifying the menu to include a selection to go directly to the "Imports/Exports" window

reduces the level of effort. Clicking on any icon displays the "Icon Operations" menu giving

3-8

the user several choices. The choices given an application specialist are shown in Table

3.2.

Table 3.2 Icon Operations Menu

Delete-Object
Edit Label
Move
Link Multiple Targets
Link to Source
Make Connections
Edit Application Update
Pretty Print Object
View /Edit Object Attributes
View /Edit Object Descriptions
Men Icon
Men Object
Check Semantics
Execute Application
Save Application
Abort

Selecting "Make Connections" clears the screen of the underlying windows and dis-

plays the "Imports/Exports" window displaying the highest level subsystem of the appli-

cation. Clicking on the subsystem icon brings up another menu in which "Make Internal

Connections" should be chosen. The connections are then made as previously described.

Using AVSI III, the application specialist only performs two user actions to navigate the

appropriate windows before being able to make the connections required.

Table 3.3 Imports/Exports Icon Menu

Move Icon
Men Icon
Men Object

3-9

o- a
NANO-GATE-OBJ COUNTER-OBJ "'4UX-OBJ

{>- ~ n
NOT-GATE-OBJ LED-OBJ JK-FLIP-FLOP-OBJ

OR-GATE-OBJ SWITOI-OBJ HALF-ADDER-OBJ

D D- fil
AND-GATE-OBJ NOR-GATE-OBJ DECODER-OBJ

Figure 3.4 Imports/Exports Window and Technology Base Window

To further increase usability, the ability to add additional primitives is included. In

fact, the entire subsystem composition process can be accomplished with this mode by

incrementally selecting new primitives and connecting them together.

Clicking on an import icon and an export icon produces a connection between the

two. When all connections are made, the "Imports/Exports" window is deactivated by

using the "Window Operations" menu shown in Table 3.4.

3-10

Table 3.4 Window Operations Menu

Shrink
Deactivate
Move
Rescale Window
Clip Icon Labels
Restore Icon Labels
Refresh
Men Window
Abort

3.2.4 Specifying the update algorithm.

3.2.4- 1 Description of the Current Update Algorithm Specification Process.

Once the imports and exports have been defined, in the case of the non-event-driven-

sequential execution mode, the update algorithm for the application must be specified.

AVSI II required the user to accomplish this in two parts. These two parts are defining

the overall application update algorithm and defining each subsystem's update algorithm.

In defining the application update algorithm, the user must select the "Edit Application"

button in the control-panel. Next, the user must choose the application whose update

algorithm is being defined. Then, selecting "Edit Application Update" from another pop-

up submenu provides the appropriate diagram windows that are necessary to accomplish

this task. In defining_the update algorithm for a subsystem, the user must select the "Edit

Subsystem" button in the control-panel. Next, the user must choose the subsystem whose

update algorithm is being defined. The subsystem diagram window is displayed providing

the user with the OCU model of the subsystem. Then, clicking on the "Controller" icon

provides the appropriate diagram windows that are necessary to accomplish this task.

3-11

After the appropriate application/subsystem was selected, AVSI II presented three

"Update Algorithm" windows: one giving a graphical (iconic) view of the update algorithm,

one giving the textual view, and one called the "Controllee" window. The "Controllee"

window displays a copy of the icons created in the "System Composition" window and two

additional icons that represent if-then and do-while constructs. To build the update algo-

rithm, the application specialist clicks the mouse on an icon in the "Controllee" window.

The mouse cursor changes to a "bulls-eye" shape and the application specialist clicks on

a "nub" in the "Edit Update Algorithm" window. AVSI II automatically adds the icon

to the "Edit Update Algorithm" window and a textual representation to the textual up-

date algorithm window. To create a six object update algorithm, the application specialist

performed two mouse actions per object for a total of 12 actions.

D
AA-Z-ANDZ

:[>
KA•Z-OA

t>-
HA-Z-NOT

~
STATEMENT

ii: .
STATEMENT

D
KA-Z-NIOI

upd.at.11 Hl-2-AIIDl
update D.•2-Allll2
updat.11 D.-2-0II
updat, l:ll-2-wr

~ ···--► D-----► 0-----► D----•► t>-----·►
KA-Z-ANOI HA-Z-OR

Figure 3.5 Update Algorithm Window

3-12

3.2.4.2 Analysis of the Update Algorithm Specification. The procedure for

building the update algorithm under AVSI III needed to be less tedious. Using information

from the import/export connections process, AVSI III can infer an update algorithm. This

reduces the amount of user actions.

3.2.J,.3 Improvements to the Update Algorithm Specification. Enhance-

ments in AVSI III provide the user with the capability to build the update algorithms

automatically or manually. AVSI III requires the user to do this in two parts. Starting

from the "System Composition", window the user clicks on an icon producing the "Icon

Operations" menu and selects "Edit Application Update". AVSI III then displays the "Up

date Algorithm" windows and determines which update algorithm the user is attempting

to build. Clicking on the "Application-OBJ" icon corresponds to building the application

update algorithm and clicking on a "SUBSYSTEM-OBJ" icon corresponds to building a

subsystem update algorithm. From here the user can choose to either automatically or

manually build the update algorithm. To build the update algorithm automatically, the

user must click on the "Update Algorithm" window surface and choose "Automatically

Build Update Algorithm" from the menu displayed. AVSI III uses the import/export con

nections specified when making the import/export connection to infer an update algorithm.

AVSI III then displays the inferred update algorithm and the user can modify or accept it.

Manually building the update algorithm is identical to the previous version of AVSI (3).

Using AVSI III to create a six object update algorithm, the application specialist performs

one user action, thus reducing the application specialist's workload from 12 actions to one.

3-13

3.2.5 Checking semantics, executing the application, and saving the application.

3.2.5.1 Description of Current Semantic Checking €3 Application Execution

Process. Once the application has been built, the application specialist needs to check the

semantics of the application. This is accomplished by clicking on the "Check Semantics"

button of the control-panel. The results from the semantic check routine are displayed in

the EMACS window and the AVSI control panel.

After the application has been semantically checked, the application specialist can

execute it. This is accomplished by clicking on the "Execute Application" button on the

control-panel. If the application has a non-event-driven-sequential, the execution simply

proceeds and the results are displayed in the EMACS window. If the application has an

event-driven execution mode, a text window displaying the current contents of the event

queue is presented. The window, shown in Figure 3.6, also contains four control selections

that allow the application specialist to add events to the queue through a set of input

menus, modify events on the queue, or delete events from the queue. When all changes

have been made, "Begin Execution" can be selected from the window. Execution then

begins and the results are displayed in both the EMACS window and the AVSI control

panel.

3.2.5.2 Analysis of Semantic Checking & Application Execution Process.

Until now, all buttons with the exception of the Save Application on the control-panel

have been duplicated via modifications to the "Icon Operations" menu. To further increase

usability, reducing the distance when moving the mouse pointer can be accomplished by

3-14

Event Queue for NANDGA TE- TEST

Event Type For Primitive Thru-Subsystems Priority Time Comment

START-EVENT-OBJ EVENT-HANDLER (APP-EXEC) 100 0
SET-STATE-EVENT-OBJ SW-1 (SUB-1) 5 0
SET-STATE-EVENT-OBJ SW-2 (SUB-1) 5 50
SET-STATE-EVENT-OBJ SW-1 (SUB-1) 5 100
SET-STATE-EVENT-OBJ SW-2 (SUB-1) 5 150
SET-STATE-EVENT-OBJ SW-1 (SUB-1) 5 200
SET-STATE-EVENT-OBJ SW-2 (SUB-1) 5 200
STOP-EVENT-OBJ EVENT-HANDLER (APP-EXEC) 100 300

ADD an Event to the Queue
MODIFY an Event on the Queue
DELETE an Event from the Queue

BEGIN EXECUTION - editing complete

Display Old Event List (After Execution)

Figure 3.6 Application Executive Event Queue

3-15

modifying the "Icon Operations" menu to also include the "Check Semantics", "Execute

Application", and "Save Application" commands.

3.2.5.3 Improvements to Semantic Checking €3 Application Execution Process.

AVSI III provides the application specialist with an alternate way to check semantics,

execute the application, and save the application. Clicking on any icon in the "System

Composition Window" brings up the "Icon Operation" window. A selection can be made to

execute any of the tasks mentioned above. This arrangement ensures complete redundancy

for all operations relating to defining an application.

3.3 Application Executive Visual Capabilities

This section describes the current and proposed capabilities of the application execu

tive. Here the enhancements of the application executive metaphor set and the application

executive event queue is explained.

3.3.1 Application Executive Metaphor Set.

3.3.1.1 Description of the Current Application Executive Metaphor Set.

With AVSI II, creating a new application or loading a saved application that is either event

driven-sequential or time-driven-sequential execution mode, the application executive is

automatically inserted into the application definition. This insertion is done without any

feedback given to the application specialist.

3.3.1.2 Analysis of the Current Application Executive Metaphor Set. To

exhibit the correct behavior, visual representation of the application executive primitives

3-16

is essential. When an operation is done, it is always important that some sort of visual

feedback is given to the application specialist to reinforce that the operation was completed.

In this case, displaying icons that represent the components (Event Handler, Connection

Manager, and Global Timer) of the Application Executive reinforces the fact that the

Application Executive was inserted into the application definition.

3.3.1.3 Improvements to the Application Executive Metaphor Set. Visual

feedback was added to AVSI III by creating icons for the "Application Executive" domain.

The connection manager, clock, and event-handler icons, as shown in Figure 3.7, were

developed using Cossentine's Developing a Metaphor Set (3). This modification gave AVSI

III the ability to visually represent the appropriate behavior specified by the application

specialist.

/: (u11J;,;r.t; •/V;;;{/,)'II

CONN-MGR

S)\lt•m ('utnfJO\:itum \\'uu1m,

r =,
SUBSYSTEM-OBJ

APP-EXEC

ED
SEQ

Event
Manag

EVENT-IWIDLER

(2)
GLOBAL-TIMER

Figure 3.7 Application Executive Metaphor Set

3-17

3.3.2 Application Executive Event Queue.

3,3.2.1 Description of the Current Application Executive Event Queue Pro

cess. With the application built and semantically checked, executing an application

using the event-driven-sequential or time-driven-sequential execution mode displays a text

window displaying the current contents of the event queue. The window, shown in Fig

ure 3.6, allows the application specialist to add, delete, or modify an event. Once all

changes have been made, selecting "BEGIN EXECUTION" starts the execution of the

application. Execution is simulated by displaying the contents of the event queue both

before and after execution, thereby giving the application specialist a minimal snapshot of

the behavior.

3.3.2.2 Analysis of the Application Executive Event Queue. To furnish

a better behavioral picture of an application executing in the event-driven-sequential or

time-driven-sequential mode, each change in the event queue is made visible in order that

the application specialist may understand the true behavior of the application.

3.3.2.3 Improvements to the Application Event Queue. In AVSI III, when-

ever an event is added, modified, or deleted the change is made visible to the application

specialist. With this revision, a more precise picture of the application behavior is exhib-

ited.

3-18

3.4 Summary

AVSI II, the Architect Visual System Interface created by Weide (23) and improved

upon by Cossentine (3), was essential in developing Architect into a favorable tool for

users. While Weide based his research and implementation on functionality, and Cossentine

based his research on the appearance and usability of the interface, this research effort

concentrated on reducing the level of effort. AVSI III allows the application specialist to

undertake the task of representing and executing an application with greatly reduced effort

and in a more logical manner than he could with AVSI II.

The next chapter provides information relevant to the design decisions and tradeoffs

experienced in developing AVSI III, as well as the rationale behind those decisions.

3-19

IV. Design and Implementation of A VS! III

4.1 Introdudion

This chapter discusses the specifics of each aspect of AVSI Ill's design approach,

design tradeoffs, and implementation details. It presents an analysis of the design decisions,

and an examination of the implementation goals and objectives.

4.2 Design Approach

The basic concepts and procedures used in improving AVSI III were developed by

applying common methods of software engineering. First, a basic understanding of AVSI II

and the underlying structure of Architect was obtained. The design of AVSI II allowed the

application specialist to compose applications by following a sequence of user actions. The

main thrust of the design approach was based on reducing the level of effort required to

accomplish each task. This can be broken down into several aspects of the user interface

design. An analysis of the user tasks involved in building an application was used to

determine the high-frequency tasks. High-frequency tasks are defined as tasks that are

used repetitively. Once these high-frequency tasks were identified, a plan was developed

based on the task.

The secondary ~hrust of the design approach was based on improving the application

executive execution phase. Emphasis was placed on giving the application specialist an

improved behavioral picture of the application. With the short time given to accomplish

such a task, concentration was placed on improving the visual representation of the event

queue.

4-1

4. 2.1 Level of Effort. The design of AVSI II was analyzed to determine the

high-frequency tasks. This was simplified by further decomposition in functional areas.

4.2.1.1 User Actions. To determine how to reduce the number of user

actions required to accomplish a task, an investigation was done to determine which user

actions were necessary and what improvements could be made. The identified user ac

tions were classified into several functional areas. Each user action had its own set of

modifications needed in order to improve the usability of AVSI. These functional areas are:

1. Create/Edit Application

2. Build Application Update Algorithm

3. Create Subsystems/Build Imports-Exports

4. Build Subsystem Update Algorithm

5. Execute the Application

4.3 Implementation

4.3.1 Create/Edit Application. This functional area was enhanced by analyzing

the sequence of user tasks required and implementing several modifications to increase

usability. To create and edit an application these user actions are necessary:

1. Click on the control-panel button labeled Create New Application.

2. Select Domain.

3. Enter Application Name.

4-2

4. Choose Execution Mode.

5. Click on Edit Application button.

6. Choose Application to edit.

7. Select Edit Application Components.

8. Invoke Window Operations Menu.

9. Choose Create New Subsystem.

10. Enter Subsystem Name.

11. Position Subsystem.

12. Invoke Icon Operations Menu.

13. Choose Link to Source.

14. Click on Source Icon.

The high-frequency user actions found for this task were selecting the execution mode

and navigating the control-panel menu. The enhancements to reduce user actions in this

task were:

1. Automatic Selection of Execution Mode

2. Reorder Window Presentation

4.3.1.1 Automatic Selection of Execution Mode. A simple approach was

taken to enhance usability for this task. The execution mode selection was made automatic,

instead of prompting the user to select from a list of execution modes (see section 3.1).

The implementation of this enhancement was accomplished by replacing the single-menu

4-3

function with a newly designed get-execution-mode function. The code representing the

pop-up window prompting for the execution mode was:

let(exe-mode :symbol= single-menu("Choose Execution Mode: " exe-modes))
app-mode(desc-obj) <- exec-mode;

and was replaced with:

app-mode(desc-obj) <- get-execution-mode(*CURRENT-DOMAIN*);

The get-execution-mode function was defined as follows:

function get-execution-mode(this-domain: symbol): symbol=

let (exec-mode: symbol= undefined)

this-domain= 'CIRCUITS
--> (exec-mode<- 'NON-EVENT-DRIVEN-SEQUENTIAL);

this-domain= 'ED-CIRCUITS
--> (exec-mode<- 'EVENT-DRIVEN-SEQUENTIAL);

this-domain= 'DSP
--> (exec-mode<- 'NON-EVENT-DRIVEN-SEQUENTIAL);

this-domain= 'CRUISE-MISSILE
--> (exec-mode<- 'TIME-DRIVEN-SEQUENTIAL);

exec-mode

This code is fairly easy to understand and maintain.

4.3.1.2 Reorder Window Presentation. The idea here was to analyze the

sequence of windows_ and the number of user actions required to navigate the required

windows to achieve the necessary task. Creating a new application always begins with

creating a controlling subsystem. The goals of this section are:

1. Establish the System Composition Window as the Primary window.

4-4

2. Along with the System Composition Window expose the Technology Base Window

and enable the user to create instances of primitive objects.

3. Duplicate application functions in easier to access menus. Easier in the sense that

less user actions are required. This can be accomplished by making some selections

context-sensitive.

4. Reduce the distance that the user has to move the mouse to access frequently used

menus and commands.

5. Give the user the option between two methods to navigate the menus.

The reordering of windows was based on two main portions of the AVSI II code. The

fact that creating an application always began by defining a controlling subsystem was

the first portion. Loading a saved application, was frequently followed by modifying the

application. In both cases, presenting the edit-objects window automatically reduces

the number of user actions the application specialist needed. In creating a new application,

adding a call to the edit-appl-components function in create-new-application func

tion automatically presents the "Application-Obj" window. The same goes for loading a

saved application, adding a call to the edit-appl-components function in

load-saved-application function automatically presents the "Application-Obj" window.

Another user ac;tion reduction strategy used was to give the application specialist the

opportunity to add and link primitives while also creating and linking subsystems in the

"Application-Obj" window. This meant displaying the "Technology Base Window" while

also displaying the "Application-Obj" window. This enhancement just required modifying

the edi t-appl-components function to include calls to:

4-5

expose-window(*TECH-BASE-WINDDW*);

display-primitives();

The mouse handler function for the technology base window already allows the user

to create instances of primitive objects chosen from the technology window and place them

into the "Application-Obj" window, so the mouse handler did not need any modifications.

With both the "Application-Obj" and the "Technology Base Window" windows exposed,

the application specialist is allowed to instantiate, delete, and link primitive objects and

subsystems in one convenient location without having to traverse more windows.

With the above changes, the original function of the "Application-Obj" window was

changed moderately so a change to the window title from "Application-Obj" to "Sys-

tern Composition Window" was appropriate. This change was done in the edit-objects

function in the refine file edit-ss .re.

window-title(dw) <- concat(symbol-to-string(name(instance-of(ss))),
symbol-to-string(name(ss)));

was replaced with

window-title(dw) <- ("System Composition Window");

11. II

To further decrease user actions for the application specialist, a design decision to

force the user to default windows provided a position from which all user actions could

start from. These_default windows are the "System Composition" and "Technology Base"

windows. For example, whenever the application specialist deactivates any window other

than the default windows, AVSI III deactivates all active windows and redisplays the

"System Composition" and "Technology Base" windows. The application specialist is

always brought back to the same starting point.

4-6

Using AVSI III to create and edit an application the following 10 vice 14, user actions

are necessary:

1. Click on the control-panel button labeled Create New Application.

2. Select Domain (Execution mode is inferred).

3. Enter Application Name.

(a) System Composition Window & Technology Base Window automatically dis

played.

4. Invoke Window Operations Menu.

5. Choose Create New Subsystem.

6. Enter Subsystem Name.

7. Position Subsystem.

8. Invoke Icon Operations Menu.

9. Choose Link to Source.

10. Click on Source Icon.

4.3.2 Create Subsystems/Build Imports-Exports. To create additional subsys-

tem(s) and/or primitive(s) and to connect the import and export connections these user

actions were necessary in AVSI II:

1. Click on the control-panel button labeled Edit Subsystem.

2. Select the subsystem to edit.

4-7

3. Click on Objects icon on OCU model.

4. Create New Subsystems as described in Section 4.3.1.

5. Click on primitive object in Technology Base Window

6. Place in Subsystem-Obj window

7. Enter a name for instance of primitive object.

8. Repeat for other primitive objects.

9. Click on instance of primitive object (invokes Icon Operations Menu).

10. Select Link to Source.

11. Click on Subsystem source.

12. Deactivate window.

13. Click on Import or Export area icon on OCU model.

14. Choose on Make Connections.

15. Click on export icon.

16. Click on import icon.

The high-frequency user actions found for this task were navigating the control

panel menu to make the import and export connections of the corresponding primitives

and subsystems. The enhancements to reduce user actions in this task were:

1. Icon Operations Menu

2. Imports/Exports Diagram Window

4-8

4.3.2.1 Icon Operations Menu. The icon operation menu modification was

fundamental in reducing the number of user actions necessary for the application specialist

to define an application. Decreasing the distance the application specialist had to move

the mouse pointer in order to select an operation was the first consideration. Decreasing

the number of menu levels was also another viable design consideration in reducing the

user actions required. Adding menu items to the icon menu was a simple task in that

adding the following lines of code was sufficient.

<"Make Connections", (lambda(i, w) make-connections(current-application))>,

<"Edit Application Update", (lambda(i, w) edit-appl-update(tree-node-for-icon(i)))>,

<"Check Semantics", (lambda(i, w) semantics-check-application())>,

<"Execute Application", (lambda(i, w) execute-the-application())>,

<"Save Application", (lambda(i, w) save-appl())>]

The mouse handler allows a vehicle for object class identification. That vehicle can

be used to define context-sensitive function calls. For example, if the application specialist

clicks on a subsystem icon, subsequent calls to make-connections or edit-appl-update

are made with that subsystem as its parameter.

4.3.2.2 Imports/Exports Diagram Window. The modifications to the im-

ports/exports connection process was accomplished by providing the application specialist

with an alternative way to navigate thru the hierarchical control-panel menus. This alter-

native way to navigate thru the menus involves using the Icon Operations menu described

in section 4.3.2.1. The "Make Connections" selection on the Icon Operations menu, pro-

vides the application specialist with a direct link to the Imports/Exports diagram win

dow. Clicking on a subsystem icon displays an Imports/Exports diagram window for

that subsystem. All subsystems and/or primitives can then be defined and linked to their

4-9

controlling subsystem. All imports can also be connected to their corresponding exports

and vice versa. Using AVSI III to create additional subsystem(s) and/or primitive(s) and

to connect the import and export connections the following 8 vice 16 user actions were

necessary:

1. Click on the controlling subsystem icon.

2. Select Make Connections.

(a) The Imports/Exports Diagram window for the controlling subsystem is dis

played.

3. Create New subsystems/primitives as described in section 4.3.1.

(a) Each subsystem and primitive is linked to the controlling subsystem.

4. Deactivate window.

5. Click on Import or Export area icon on OCU model.

6. Choose on Make Connections.

7. Click on export icon.

8. Click on import icon.

4.3.3 Building Application/Subsystem Update Algorithms. When using AVSI II,

creating an application with the non-event-driven-sequential execution mode required the

application specialist to define the update algorithm. The update algorithm specifies the

sequence in which the primitive objects or subsystems in the application update their state

information so that the data is propagated through the application to the output in the

4-10

appropriate order. To decrease the load on the application specialist in AVSI III, when

the application specialist chooses to "Edit Update Algorithm", the user is given an option

to have the update algorithm built automatically.

4- 3.3.1 Specifying the Update Algorithm. With AVSI II, to edit the appli-

cation update algorithm these user actions were necessary:

1. Click on the control-panel button labeled Edit Application.

2. Choose Application to edit.

3. Edit Application Update.

4. Click on Subsystem Icon.

5. Place in Application Update Sequence.

6. Invoke Window Operations Menu.

7. Select Deactivate.

With AVSI II, to edit the subsystem update algorithm these user actions were nee-

essary:

1. Click on the control-panel button labeled Edit Subsystem.

2. Choose Subsystem to edit.

3. Click on Controller Icon.

4. Click on Subsystem/Primitive Icon.

5. Place in Algorithm Update Sequence.

4-11

6. Invoke Window Operations Menu.

7. Select Deactivate.

The enhancements involved in reducing user actions in this task were:

1. Reorder Window Presentation

2. Modify Icon Operations Menu

3. Infer update algorithm

4. Window Operations Menu

4.3.3.2 Reordering of Window Presentation. Because AVSI III defaults

to the "System Composition" and "Technology Base" windows, the application specialist

does not have to navigate further before he can invoke the "Icon Operations" window.

Clicking on an application icon or a subsystem icon causes AVSI III to display the Icon

Operations menu. Selecting "Edit Update Algorithm" first executes edit-appl-update,

which causes ap evaluation of the menu-y-or-n?("Infer Update Algorithm?") condi

tion. Menu-y-or-n? is an INTERVISTA™ function that provides a special type of single

choice menu that is appropriate when you want to ask a question that can be answered

with a yes or a no (17). Answering yes calls infer-update-algorithm Capp) which is

the newly defined fm_1ction designed to infer the update algorithm.

4-3.3.3 Modify Icon Operations Menu.

been described in section 4.3.2.1.

4-12

These enhancements have already

4.3.3.4 Infer Update Algorithm. The derivation of the update algorithm

attains a tremendous decrease in user actions required by the application specialist. The

next section outlines implementation code conceived for this purpose.

function infer-update-algorithm(app: application-obj)

format(factive, "-%Entering the Infer-Update-Algorithm function in edit-applic.re-%");

format(debug-on, "-%APP is: -A-%", app);

let(new-statement: statement-obj= undefined,

i-obj: import-obj= undefined,

o-obj: export-obj= undefined,

input-set: set(symbol) = {},

output-set: set(symbol) = {},

input-output-set: set(symbol) = {},

sequence-set : set(symbol) = {},

sequence: seq(statement-obj) = [],

top-ss: subsystem-obj= arb({x (x: subsystem-obj)

(subsystem-obj(x)) &

(-empty(Import-Area(x)))})

) % let

%--
% If requesting to build the application update algorithm,

% typically there is only one top level subsystem so, the

% the algorithm is trivial. Note: If there is more than

% one top level subsystem then this code relies on the

% user to specify the sequence of execution.

%-- ---
application-obj(app)

--> ((enumerate o over application-components(app) do

new-statement<- make-object('update-call-obj);

operand(new-statement) <- o;

sequence<- prepend(sequence, new-statement)

); % End Enumerate

size(application-components(app)) = 1

4-13

--> application-update(app) <- sequence

); ¼ End Transform

¼--
¼ Requesting to build a subsystem update algorithm.

¼--
subsystem-obj(app)

--> ((enumerate o over controllees(app) do

(enumerate i-obj over Import-Area(top-ss) do

(consumer(i-obj) = o) or

(subsystem-obj(find-object('subsystem-obj, o))) --> o in input-set);

(enumerate o-obj over Export-Area(top-ss) do

(producer(o-obj) = o) or

(subsystem-obj(find-object('subsystem-obj, o))) --> o in output-set));

input-output-set<- input-set intersect output-set;

input-set

output-set

<- setdiff(input-set,input-output-set);

<- setdiff(output-set,input-output-set);

while -empty(input-output-set) do

(enumerate i-obj over input-output-set do

let(set-import-obj

no-exports-in-sub

set(import-obj) = {x

(x: import-obj)

(import-obj(x)) &:

(x in Import-Area(top-ss)) &:

(consumer(x) = i-obj)},

boolean= true)

(enumerate o-obj over set-import-obj do

Source-Subsystem(arb(sources(o-obj))) = name(app) &:

(Source-Object(arb(sources(o-obj))) -in sequence-set)

--> (no-exports-in-sub<- false));

no-exports-in-sub

-->(new-statement<- make-object('update-call-obj);

4-14

) ;

operand(new-statement) <- i-obj;

sequence<- append(sequence, new-statement);

t --> i-obj -in input-output-set;

t --> i-obj in sequence-set)

(enumerate o-obj over output-set do

new-statement<- make-object('update-call-obj);

operand(new-statement) <- o-obj;

sequence<- prepend(sequence, new-statement));

¼--
¼ Check where in the update algorithm to place the objects

¼ that have both imports & exports

¼--
(enumerate x over input-output-set do

let(import-set : set(import-obj) = {},

update-flag: boolean= undefined)

¼ ---

¼ Build a set "import-set" of import-objs that connect with

¼ primitive "x"

¼--
(enumerate y over import-area(top-ss) do

(consumer(y) = x) -->yin import-set);

update-flag<- true;

¼--
¼ Build a set "sequence-set" of symbols of objects that are

¼ already in the update algorithm

¼--
(enumerate y over sequence do

t --> operand(y) in sequence-set);

4-15

%---
% Check each import-obj to see if the source of that import is

% already in the update algorithm "sequence"

%---
(enumerate y over import-set do

(Source-Object(arb(Sources(y))) -in sequence-set)

--> (update-flag<- false));

update-flag

--> (new-statement<- make-object('update-call-obj);

operand(new-statement) <- x;

t -->sequence<- append(sequence, new-statement);

t --> x -in input-output-set));

(enumerate i-obj over input-set do

new-statement<- make-object('update-call-obj);

operand(new-statement) <- i-obj;

sequence<- append(sequence, new-statement)));

update(app) <- sequence;

format(debug-on, "-%Exiting the Infer-Update-Algorithm function in edit-applic.re-%")

4.3.3.5 Window Operations Menu. Cossentine's modification that involved

closing all the subwindows simultaneously was extended. The application specialist using

AVSI II could be confused by the fact that to deactivate all the windows simultaneously,

the procedure to invoke the "Window Operations" menu was inconsistent. To invoke the

"Window Operations" menu from the update algorithm window required clicking on the

window border. To invoke the "Window Operations" menu from the Imports/Exports

window and the Composition window required a click on the blue window background.

4-16

AVSI III clears this inconsistency by providing uniformity with regards to the "Window

Operations" menu. To invoke the "Window Operations" menu from the Update Algorithm

window, Imports/Exports window, or the System Composition window now requires a click

on the window background. The following REFINE™ code was inserted to implement this

modification.

diagram-surface(obj)
--> Abbrev-Update-Win-Mouse-Handler(event, obj, pos, dw);

With AVSI III, to edit the application/ subsystem update algorithm the following 5

vice 7 user actions are necessary:

1. Click on the Application/Subsystem icon.

2. Choose YES to automatically build update algorithm. OR

3. Choose NO to manually build update algorithm.

(a) Click on Subsystem/Primitive Icon.

(b) Place in Algorithm Update Sequence.

(c) Repeat steps 3a and 3b for each subsystem/primitive in the application/subsystem.

4. Invoke Window Operations Menu.

5. Select Deactiva,_te.

4.3.4 Application Executive Visualization. AVSI II gave the application special-

ist a before and after view of the behavior of an event-driven-sequential or time-driven-

sequential execution mode application. Visual feedback was limited to displaying the event

4-17

queue before execution and displaying the event queue after execution completed. The en-

hancement implemented in AVSI III gives the user a fuller picture of the behavior that the

defined application exhibits from the instant that execution begins. The enhancements

involved in improving the event queue were made to the app-exe. re source file. A very

simplistic approach was used in this revision of the event queue. The display-queue

function was placed in the portions of the code that affects the state of the event queue.

It was determined that whenever an event was added, modified, or deleted from the event

queue, the event queue should be redisplayed.

4 .4 Conclusion

This chapter described the motivation behind the design of AVSI III and the details

of its implementation. The design goals of AVSI III were to reduce the level of effort and

increase usability for an application specialist building an application with Architect while

preserving the AVSI functionality. The next chapter describes the evaluation criteria, the

evaluation results, and the analysis of the evaluation results.

4-18

V. Testing and Validation of A VSI III

5.1 Introdu_ction

Validation of AVSI III consisted of compatibility and usability testing. The com

patibility and functionality of AVSI III were verified by using the interface to compose

and execute the applications that were constructed prior to AVSI III development. The

usability of the user interface was tested with an objective analysis of the reduction in

workload. This chapter reviews the effort reduction, usability, and functionality testing of

AVSI III, the results of the testing, and an analysis of the test results. Additionally, an

analysis of the strengths and weaknesses of AVSI III is provided.

5. 2 Validation Domains

AVSI III was tested using previous applications developed in the following domains:

1. Digital Logic-Circuits

2. Digital Signal Processing (DSP)

3. Event-Driven Circuits

4. Cruise Missile

The user interface w?'s informally tested throughout its development by other KBSE re

searchers. Because the domains used for testing were previously validated (1, 16, 23, 3,

4, 21, 22, 24), it was not necessary to test the operational capabilities of the domain

primitives. Thus, the test suites were designed to verify the user interface capability.

5-1

5.3 Testing

5.3.1 Compatibility Testing. The purpose of this portion of the testing was to

prove that AVSI III is completely backwards compatible with SAVED applications that

were previously defined using AVSI II, AVSI, and the Architect command-line interface.

All previously defined applications were loaded and viewed in the system-composition

window, the update-algorithm-window, and the imports-exports-window to verify the ap

propriate visual information was displayed and correct behavior of the application was

represented. The applications were then executed and validated against the behavior ex

pected. All the applications were then saved and the resulting save files were compared to

the previously defined files to verify data integrity.

The results of the compatibility testing showed that, with the exception of ap

plications in the Cruise-Missile domain, all previously defined applications could be

composed using the new procedures of AVSI III. The irregularities only occurred in the

Cruise-Missile domain applications when trying to execute the applications. This anomaly

was attributed to an unresolved discrepancy from previous research.

5.3.2 Measuring Usability Improvement. Usability improvement was based on

counting the number of distinct user actions required to build an application. These

distinct actions include, but are not limited to mouse clicks and keyboard inputs. A mouse

click is easily distinguishable from another mouse click, but a distinct keyboard input is

defined as a finite number of keystrokes that is necessary to answer a needed requirement

from Architect. Examples of a distinct keyboard input are:

5-2

1. Name of application

2. Name of subsystem(s)

3. Name of primitive(s)

4. Value for SW-OBJ-POSITION

Several previously defined applications of differing complexity and execution modes

were used for comparison. Each previously defined application was recreated using both

AVSI II and AVSI III to determine the number of user actions required to build that

application. Those results were then analyzed to determine improvements to usability.

5.3.3 Digital Logic Circuits Domain. The Digital logic circuit domain is executed

in the non-event-driven-sequential execution mode.

5.3.3.1 Exclusive-Or. The first test application developed was a four Nand

gate implementation of an Exclusive-OR gate. The component layout and truth table for

the circuit are shown in Figure 5.1. The total number of primitives add up to seven. Table

5.1 shows the number of user actions required to build the application. The results indicate

a 48.8% decrease in level of effort from AVSI II to AVSI III.

A

B

Figure 5.1 Exclusive-OR Circuit and Truth Table

5-3

A B F
1 1 0
1 0 1
0 1 1
0 0 0

Table 5.1 Exclusive-OR Test Results

Sequence of operations AVSI II AVSI III
Create/Edit Application 16 10
Application Update 7 5
Create Subsystems/Build Imports-Exports 79 43
Subsystem Updates 22 5
Execute 1 1

I TOTAL II
125

II
64

II

5.3.3.2 Half Subtracter. The second test application was a seven gate

implementation of a Half Subtracter. The component layout and truth-table for the circuit

are shown in Figure 5.2. The total number of primitives add up to twelve. Table 5.2 shows

the number of user actions required to build the application. The results indicate a 44.9%

decrease in level of effort from A VSI II to AVSI III.

X y D 8 B'
1 1 0 0 1

X 1 0 1 0 1
0 1 1 1 0

8 0 0 0 0 1

y

8'

Figure 5.2 Half Subtracter Circuit and Truth Table

5.3.3.3 Binary Array Multiplier. The third test application was a four gate,

two half-adder implementation of a Binary Array Multiplier. The component layout and

truth-table for the circuit are shown in Figure 5.3. The total number of primitives add up

to fourteen. Table 5.3 shows the number of user actions required to build the application.

The results indicate a 38.3% decrease in level of effort from AVSI II to AVSI III.

5-4

Table 5.2 Half Subtracter Test Results

Sequence of operations AVSI II AVSI III
Create/Edit Application 16 10
Application Update 7 5
Create Subsystems/Build Imports-Exports 102 66
Subsystem Updates 32 5
Execute 1 1

I TOTAL 11 158 11
87 II

I co .

A1
~-~ C s

AO
~-~

C s
81 L_ _ _J---------1 .__ __

81 BO A1 AO C3 C2 C1 CO
00 00 00 0 0
101101 1 0
1101 00 1 1
111110 0 1

Figure 5.3 Binary Array Multiplier Circuit and Truth Table

'J'able 5.3 Binary Array Multiplier Test Results

Sequence of operations AVSI II AVSI III
Create/Edit Application 16 10
Application Update 7 5
Create Subsystems/Build Imports-Exports 107 82
Subsystem Updates 36 5
Execute 1 1

I TOTAL II 167 II 103
11

5-5

5.3.3.4 BCD to Excess-3 Decoder. The fourth test application was an

eleven gate implementation of a BCD-to-Excess-3 Decoder. The component layout and

truth table for the circuit are shown in Figure 5.4. The total number of primitives add up

to nineteen. Table 5.4 shows the number of user actions required to build the application.

The results indicate a 29.3% decrease in level of effort from AVSI II to AVSI III.

BCD
A B C D w
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 0 1 1

z
1 1
0 0
0 1
1 0
1 1
0 0
0 1
1 0
1 1
0 0

Figure 5.4 BCD to Excess-3 Decoder Circuit and Truth Table

5.3.4 Digital Signal Processing Domain. The Digital signal processing domain is

also executed in the non-event-driven sequential execution mode.

5-6

Table 5.4 BCD to Excess-3 Decoder Test Results

Sequence of operations AVSI II AVSI III
Create/Edit Application 16 10
Application Update 7 5
Create Subsystems/Build Imports-Exports 116 107
Subsystem Updates 41 5
Execute 1 1

TOTAL
II

181
II

128
II

5.3.4.1 Signal- With-Noise. The fifth test application was composed of a

sinusoid signal, a noise signal, a signal adder, and a one-input graph display implementation

of a Signal-With-Noise. The component layout for the circuit is shown in Figure 5.5. The

total number of primitives add up to four. Table 5.5 shows the number of user actions

required to build the application. The results indicate a 29.5% decrease in level of effort

from AVSI II to AVSI III.

Figure 5.5 Signal-With-Noise DSP

5.3.4.2 Window-Demo. The sixth application, called Window-Demo, was

composed of a sinusoid signal, a window signal, two Discrete Fourier Transform primitives,

5-7

Table 5.5 Signal-With-Noise Test Results

Sequence of operations AVSI II AVSI III
Create/Edit Application 16 10
Application Update 7 5
Create Subsystems/Build Imports-Exports 26 22
Subsystem Updates 11 5
Execute 1 1

I TOTAL II
61

II
43

II

two complex-to-real converters, and a two-input graph display implementation. The com

ponent layout for the circuit is shown in Figure 5.6. The total number of primitives add

up to seven. Table 5.6 shows the number of user actions required to build the application.

The results indicate a 32.6% decrease in level of effort from AVSI II to AVSI III.

'"'t /\..,_P"~ DFT ~r--Pf [to R+ur
A-WINDOW om C1 \

I :7~■
Li.., ______ ..,p,,~DFT~r---.--f[+ R~
[rT - P 10 U PUT

A-SINUSOID DFT2 C2

Figure 5.6 Window Demo

Table 5.6 Window-Demo Test Results

Sequence of operations AVSI II AVSI III
Create/Edit Application 16 10
Application Update 7 5
Create Subsystems/Build Imports-Exports 48 39
Subsystem Updates 17 5
Execute 1 1

I TOTAL II
89

II
60 II

5-8

5.3,4.3 Four-Sum-Moving-Average. The seventh application was a DSP

application called a moving average, shown in Figure 5.7. This particular application is a

four-sum moving average: each sample of the output is the average of the current output

along with the three previous samples. The multiplier primitive (looks like a triangle) has

a value of 0.25 for its multiply value. The input signal loaded from a file was generated by

a previous application that simply added a sinusoid with some noise. The total number of

primitives add up to eleven. Table 5.7 shows the number of user actions required to build

the application. The results indicate a 33.3% decrease in level of effort from AVSI II to

AVSI III.

0·- ·------·
Z

INPU ... ~II

OB

INPU~T,,,.,..,.......UT L u~PUT1

,a j M '"'\" R "j" "'-•• • """

INP@,__..,@,_,@TPUT

D1
DZ D3

Figure 5.7 Four Sum Moving Average

T1,tble 5.7 Four-Sum-Moving-Average Test Results

Sequence of operations AVSI II AVSI III
Create/Edit Application 16 10
Application Update 7 5
Create Subsystems/Build Imports-Exports 74 65
Subsystem Updates 31 5
Execute 1 1

I TOTAL II 129 II 86 II

5-9

5.3.5 Event-Driven Circuits Domain. The Event-Driven circuit domain is exe-

cuted in the event-driven sequential execution mode.

5.3.5.1 Half Adder. The eighth test application contained one half-adder

component. The component layout for the circuit is shown in Figure 5.8. The total number

of primitives add up to five. Table 5.8 shows the number of user actions required to build

the application. The results indicate a 27.7% decrease in level of effort from AVSI II to

AVSI III.

~"~,,~ ,~"' 1c
~,/" HA-1

SW-1 LED-S

Figure 5.8 Half Adder Event-Driven Circuit

Table 5.8 Half Adder Event-Driven Test Results

Sequence of operations AVSI II AVSI III
Create/Edit Application 16 10
Create Subsystems/Build Imports-Exports 36 27
Execute 2 2

I TOTAL II
54

II
39

II

5.3.5.2 Nand Gate. The ninth test application contained one nand gate.

The component layout for the circuit is shown in Figure 5.9. The total number of primitives

5-10

add up to four. Table 5.9 shows the number of user actions required to build the application.

The results indicate a 30.6% decrease in level of effort from AVSI II to AVSI III.

SW-1

Figure 5.9 Nand Gate Event-Driven Circuit

Table 5.9 Nand Gate Event-Driven Test Results

Sequence of operations AVSI II AVSI III
Create/Edit Application 16 10
Create Subsystems /Build Imports-Exports 31 22
Execute 2 2

TOTAL II
49 II 34 II

5.3.5.3 JK Flip Flop. The tenth test application contained one JK flip-flop

circuit. The component layout for the circuit is shown in Figure 5.10. The total number

of primitives add up to six. Table 5.10 shows the number of user actions required to build

the application. The results indicate a 25.4% decrease in level of effort from AVSI II to

AVSI III.

5.3.6 Cruise-Missile Domain. The Cruise-Missile domain is executed in the

time-driven sequential execution mode.

5-11

SW-1

Figure 5.10 JK Flip Flop Event-Driven Circuit

Table 5.10 JK Flip Flop Event-Driven Test Results

Sequence of operations AVSI II AVSI III
Create/Edit Application 16 10
Create Subsystems/Build Imports-Exports 41 32
Execute 2 2

I TOTAL II 59 II 44 II

5-12

5.3.6.1 Cruise Missile Flight. The eleventh and final application consists

of four subsystems. The Warhead subsystem contains a warhead primitive. The Avionics

subsystem contains a autopilot primitive, a guidance system, and a navigational system.

The Airframe subsystem contains the Airframe primitive. The Propulsion subsystem con-

tains an engine, a throttle, and a fuel tank primitive. The component layout for the cruise

missile application is shown in Figure 5.11. This application contains four subsystems

and eight primitives. Table 5.11 shows the number of user actions required to build the

application. The results indicate a 33.5% decrease in level of effort from AVSI II to AVSI

III.

J

✓~

M
If\

%' 'Z;' (2)
DIUft'-l'WClLU OLOIAL•tllffll

CD n.ctt ~
TMt-WAIINU.O tHt-.wrOPILOT IHl!:..(11.JDNC[TH[41AUOATION TNt-Al•l'AA•t INt-r:NGltt tH!-rHROnu: 1"[-TAMI(

Figure 5.11 Cruise Missile

Table 5.11 Cruise Missile Flight Test Results

Sequence of operations AVSI II AVSI III
Create/Edit Application 37 35
Create Subsystems/Build Imports-Exports 152 90
Execute 2 2

I TOTAL II 191 II 127 II

5-13

5.4 Analysis

The results from the usability improvement test show a significant reduction in the

level of effort an application specialist has to put forth when using AVSI III as opposed

to AVSI II . The average reduction in workload was computed at 34.0% (see Table 5.12).

The information gathered also showed that the more connections and primitives needed

to build an application, the higher the savings would be. The most improvement was

attributed to the automatic update algorithm functional area. The other functional area

worth mentioning was the build imports/exports functional area.

Table 5.12 Usability Improvement

Execution Mode Application
Non-event-driven sequential Exclusive-OR
Non-event-driven sequential Half-Subtracter
Non-event-driven sequential Binary Array Multiplier
Non-event-driven sequential BCD to Excess-3 Decoder
Non-event-driven sequential Signal-With-Noise
Non-event-driven sequential Window-Demo
Non-event-driven sequential Four-Sum-Moving-Average
Event-Driven sequential Half-Adder

Event-Driven sequential Nand-Gate

Event-Driven sequential JK Flip-Flop

Time-Driven sequential Cruise Missile

AVERAGE

5.5 AVSI Ill's Shortcomings

% Improvement
48.8
44.9
38.3
29.3
29.5
32.6
33.3
27.7

30.6

25.4

33.5

34.0

II

II
II
II

The visual enhancements of AVSI III and the increased usability of the interface are

significant accomplishments. However, there is always a new feature or a better layout

for any display. The evolutionary development of Architect requires that the graphical

5-14

interface also evolve to incorporate new functionality. The following areas of AVSI III still

require significant research:

1. Extend support for the Architect Application Executive. AVSI III provides only rudi

mentary support for the power of the Executive. The application specialist should

be given the option to compose an Application Executive. Currently, Architect

and AVSI III are designed to support the non-event-driven-sequential, event-driven

sequential, and time-driven-sequential execution modes with a variety of domains,

but the application specialist can only compose applications that are of only one ex

ecution mode. To compose more diversified applications the ability to mix execution

modes would extend the capabilities of Architect to realms currently unattainable.

2. Visualization of application execution. An object's state could be displayed using

color, highlighting, sound, or movement. Color and highlight style are maintained

as attributes of an icon, and an icon is maintained as a functional converse of an

object. The state of an object is simply an attribute or collection of attributes of the

object. Therefore, it is a straight-forward task to monitor the state of an object by

checking its attributes, and set or modify the values of the corresponding icon's color

or highlight style attributes. Movement of an icon can be simulated by repeatedly

re-drawing the icon (and bitmap) at a sequence of positions. The speed at which

the icon is redrawn and the distance between successive points will determine how

smooth the movement appears.

3. Visual support for semantic analysis. AVSI currently uses Architect's semantic anal

ysis reporting, which simply reports semantic errors in the Emacs window in textual

5-15

form. Though this is adequate for the current implementation, using visualization

for semantic error reporting would provide a more user-friendly system. Such a use

of visualization would bring up one or more of AVSI's editors in the "problem area".

For example, if there was a problem with the definition of a subsystem's structure,

the subsystem editor would be invoked, and would contain the subsystem in question,

with the problem area highlighted. If there was a problem with an object's attributes,

the object attribute editor would be invoked, with the attribute highlighted.

4. Incorporate more sophisticated graphical layout routines. The imports/exports win

dow's visual layout algorithm is adequate, but incorporating a more complex icon

layout routine would greatly increase usability.

5. The zooming capabilities of AVSI III only allows the user to set the size of the icons

to one of two different sizes.

5. 6 Conclusion

The Human Computer Interaction concepts applied to this research, and summarized

in Chapter II, have shown that a more usable graphical user interface can. be developed

with a reduced level of effort to support a visual composition process. AVSI III was instru

mental in enhancing the interface to Architect. The improved procedures for automatically

building the update algorithms for non-event-driven-sequential execution applications and

the expanded flexibility of the menu system reduce the user's workload and reduce the

possibility of error from incorrect selection of execution modes. AVSI III proved to be

fully backward compatible with previously designed applications, thus preserving the ef

forts of earlier research. This chapter reviewed the process by which AVSI III was tested

5-16

and validated. Some of AVSI Ill's shortcomings were mentioned. Those shortcomings,

as well as some of the user feedback comments, are addressed in more detail in the next

chapter.

5-17

VI. Conclusion and Recommendations

6.1 Overview

This chapter provides a summary of the accomplishments of this thesis effort. It also

discusses the conclusions which can be drawn from this work and presents some recom

mendations for further research.

6. 2 Results of This Research

AVSI III successfully achieved the original research goals. Design and development

were conducted through rapid prototyping and incremental improvement. This philosophy

proved to be highly successful. Each step in the research built upon earlier accomplishments

and extended the capability of AVSI III. The challenge was to make AVSI III more usable.

Accomplishment of the four research goals are summarized as:

1. Inferencing of the application/subsystem update algorithms by synthesizing a se

quencing algorithm from visual representation of control data was achieved by using

as a basis the import and export connections of the subsystem(s) and primitive(s) of

the model.

2. The integration of displaying intermediate event queue states gives the application

specialist a better behavioral understanding of the application being executed.

3. The modification of AVSI to support multiple domain application definitions (5).

4. Testing of the new interface changes and quantification of AVSI Ill's improvements

was completed, and it validated the proposition that decreasing level of effort for the

application specialist increases user interface usability.

6-1

6. 3 Recommendations for Future Research

l. Explore the use of sounds in the interface. By making LISP calls to the host operat

ing system, an interface developer can incorporate sounds into the interface design.

Sounds are a common part of user interface design, and, although easy to misuse

or abuse, sound can provide strong reinforcement or feedback to a user. Computers

typically beep at a user if an error occurs, or chime upon successful completion of a

task.

2. Incorporate more sophisticated graphical layout routines The imports/exports win

dow's visual layout algorithm is adequate, but incorporating a more complex icon

layout routine would greatly increase usability. This capability would give the ap

plication specialist a means to automatically reposition icons and their links with a

minimum of link crossing. Example: Knowledge Based Software Assistant (KBSA)

of Anderson Consulting(2).

3. Provide A VSI with scalable zoom in and zoom out capabilities The addition of

scalable zooming capabilities would provide the application specialist with a better

facility to review the application.

4. Provide visual support for semantic checks A more complete and user-friendly visual

system would guide the user through finding mistakes when they occur. It would be

• helpful, for example, when a semantic error occurs, that an appropriate window is

opened, and the problem icons or links are visually highlighted.

5. Provide visual support for execution At a minimum however, state information could

be displayed in the icon itself. A good use of this might be changing the appearance

6-2

of a switch icon to simulate its on or off configuration, or changing the color of an

LED icon to simulate its being lit (in the digital circuits domain).

6. Incorporation of a "mixed-mode" execution capability in the subsystems The initial

implementation of events into Architect allows only one mode of execution for a

developed application. There are circumstances where we want some independent

subsystems of an application to execute in a non-event-driven sequential mode while

others execute in an event-driven mode.

7. Concurrent simulation The event-driven and time-driven simulation capabilities

within Architect allow for only a single thread of control within an application.

Expand Architect to include an event-driven and time-driven concurrent simulation

capability with multiple threads of control. A decision will have to be made as to

what level of nesting will be allowed for the concurrent processing of subsystems.

The level of concurrency must determine whether only the top level independent

subsystems execute concurrently, or whether subsystems subordinate to the top level

subsystems execute concurrently.

6.4 Final Comments

The graphical user interface enhanced during this thesis effort is another step in

improving software development techniques. Application specialists will be relying more

on visualizing their applications. The emphasis on user interfaces will need to be more

user centered and less implementer oriented. Keeping the user in the loop will result

in a more usable visual user interface, thus ensuring improved application composition.

6-3

Domain-oriented application composition and generation systems like Architect will be

more commonplace than ever before so, visual user interfaces will be even more important.

6-4

Appendix A. Sample Session for A VS! III

This appendix contains a sample session in which a BCD to Excess-3 Decoder is built

from the primitive objects defined in the logic-circuits domain. The circuit diagram for

the Decoder is shown in Figure A.l.

z

y

AND3

A [I :.'-:_-:_-:__.1--------------_..:==A=ND4==-----~ w

Figure A.1 BCD to Excess-3 Decoder Circuit

A.1 Starting AVSI

REFINE must be loaded in the Emacs window from the Architect directory. Once

this is accomplished enter:

(load "l")

When the prompt returns, enter:

(1)

A-1

It will take several minutes for this file to run because it loads the DIALECT and INTERVISTA

systems as well as the Architect and AVSI III files. When the load is complete, a prompt

appears:

Load complete
Type "(AVSI)" to start AVSI
NIL
.>

Now enter the command:

(avsi)

This action loads the visual specification files for the domains currently defined for

Architect. After the visual information is parsed into the object base, the control panel

(shown in Figure 3.1) appears in the upper left-hand corner of the screen. Across the

top of the window is a row of buttons that are used to invoke many of the application

composition functions of AVSI III. The lower portion of the window is a message area used

to display status and errors.

Object Bue bas been Cleared

Figure A.2 AVSI III Control Panel

A-2

A.2 Create a New Application

To create a new application:

1. Click any mouse button on the button labeled Create New Application.

2. A pop-up window appears and prompts, Select Domain. Click on the menu item

CIRCUITS.

3. A pop-up window appears with the prompt, Enter name of application. Type

bcd-xs3

4. The name can be entered by hitting the "return" key or by clicking on Do It at the

bottom of the pop-up window.

A blue system-composition-window labeled, System Composition Window for

the application BCD-XS3 appears containing a single icon labeled APPLICATION - OBJ .
' ' BCD -XS3

A green window labeled, Technology Base Window for CIRCUITS, also appears and

contains an icon for each primitive-object in the current domain (refer to Figure A.3).

A.3 Edit the Application

Now that the application has been created, the next step is to edit the application's

elements. Editing an application is comprised of two separate operations: editing an

application's components, and editing an application's update algorithm.

A. 3.1 To add a controlling subsystem-obj to the application:

1. Click on the diagram surface (anywhere on the blue surface except within the icon's

boundary) of the window. A pop-up menu will appear.

A-3

HAND-GATE-OBJ COUNTER-OBJ MUX-OBJ

> ¥ n
NOT-GATE-OBJ LED-OBJ JK-FUP-FLOP-OBJ

D-
OR-GATE-OBJ SWITCH-OBJ HALF-ADDER-OBJ

{>- D- D fil
AND-GATE-OBJ NOR-GATE-OBJ DECODER-OBJ

Figure A.3 System Composition Window and Technology Base Window

2. Select Create New Subsystem.

3. A pop-up window appears, with the prompt Enter a name:. Enter driver

4. A box outline of an icon appears, attached to the mouse cursor. Place the icon below

the application-obj icon by moving the cursor to the desired location and clicking.

5. Click any mouse button on the newly created subsystem-obj icon and select the menu

option Link to Source.

6. The mouse cursor changes from an arrow to an oval with a dot in it, signifying that

an object needs to be selected. Place the mouse cursor on the application-obj's icon

and click any mouse button. A link appears between the application-obj's icon and

the subsystem-obj's icon, as in Figure A.5.

A-4

Figure A.4 System-Composition-Window

Figure A.5 System Composition-Window

A-5

A.4 Edit the Subsystems

Building a subsystem is similar to building the application. This section illustrates

instantiating and linking primitive-objs and a nested subsystem-obj to the controlling

subsystem created in the previous section.

The subsystem, DRIVER, will control four switches, four LEDS, and a separate

subsystem (called bcd-excess3), which is the heart of the application. Bcd-excess3 consists

of three not-gates, four and-gates, and four or-gates (refer back to Figure A.1). To add

these objects, perform the following steps:

1. Click on the blue diagram surface and select the Create New Subsystem menu

item.

2. Name the new subsystem bcd-excess3.

3. Place the subsystem-icon somewhere on the blue window.

A.4.1 To add the primitive objects:

1. Click on the icon in the green technology-base-window labeled SWITCH-OBJ, that

looks like a toggle switch.

2. A Switch-icon is created and attached to the mouse cursor. Place this icon on in the

blue edit-subsystem-window near DRIVER.

3. Name the switch by typing A in the pop-up window.

4. Follow the above steps to create and place three more switch objects, named B, C,

andD.

A-6

5. Similarily, create four LED objects named W, X, Y, and Z.

r ==,_ ____,..,. ¥
SUBSVSTIM-OBJ

DRIVER w

A
)(

V

r
SUBSYSTEM- OBJ

~

Figure A.6 Edit-Subsystem-Window

6. Link the primitive objects and BCD-EXCESS3 to DRIVER by clicking a mouse

button on DRIVER, and selecting Link Multiple Targets from the pop-up menu.

7. A pop-up window will appear that lists all the unconnected objects in the System

Composition Window. Select All of the Above, and click on Do It. A link will

appear from DRIVER to each of the other icons. Figure A.6 shows the System

Composition Window at this point.

8. Now click on the Technology Base Window icon that represents a not-gate.

9. Position it near BCD-EXCESS3 and click a mouse button to "drop" it.

10. Name the not-gate by typing notl in the pop-up window.

11. Repeat the process to add not2 and not3.

A-7

12. Select the the appropriate icons from the Technology Base Window and create

andl, and2, and3, and4, orl, or2, or3, and or4.

13. Link the new primitive objects to BCD-EXCESS3 by clicking a mouse button on

BCD-EXCESS3, and selecting Link Multiple Targets from the pop-up menu.

Select All of the Above, and click on Do It.

Note: The window is probably cluttered and disorganized at this point. You can

clean up the display by clicking on the blue background of the System Composition

Window and selecting Redraw. The window is redrawn in an inverted tree-layout

with DRIVER at the root and the other objects arranged underneath. The entire

subsystem will not be visible in the window. You can scroll the window vertically

or horizontally using the scroll-bars on the left and bottom of the window. The

window can be resized by clicking the mouse on the black title bar and selecting

Reshape. You can also change the size of the icons in the window by clicking on the

blue surface and selecting Change Scale Factor from the menu. A new window

will appeir prompting Full Size (1:1) or Half Size {1:2). Select half size and

the window will be redrawn with the icons at half scale. You may, at any time,

pretty-print an object (show its object base representation) by clicking on its icon

and choosing the menu selection Pretty-Print Object.

A.4.2 To connect DRIVER 's Imports and Exports: To connect the import and

export objects perform the following steps:

1. Click a mouse button on the subsystem-obj icon labeled DRIVER in BCD-XS3's

System Composition Window.

A-8

A red window, labeled Imports /Exports will open and contain the two subsystem-

obj OCU-like icons representing the bf BCD-EXCESS3 subsystem and the DRIVER

subsystem. Select Make Internal Connections from the pop-up window. The

import-export-window will reopen and contain the four switch icons, the four led

icons, and an OCU-like icon representing the BCD-EXCESS3 subsystem (as shown

in Figure A.7). The black bars (these bars are actually highlighted subicons attached

to the primitive's icon) on the sides of the primitive icons indicate connections that

need to be made.

6f, ,,
C X

c?I· I~ I~
bl· bl·,~

A D V

Figure A.7 DRIVER's Import-Export Window

2. Icons can be moved to new positions on the screen by clicking on the icon and selecting

Move Icon from the pop-up menu. An square grid, attached to the mouse, appears.

Move the grid to the new icon position and click to "drop" the icon. An example of

the repositioned icons is shown in Figure A.8.

A-9

~,.
C

9-1· ~,.
A

,~
z

19
1¥

X

1¥
w

Figure A.8 Repositioned Icons

3. Click on the part of BCD-EXCESS3's icon labeled Import Area. A white text

window (a msp-window) will appear in the upper right area of the screen. The

window lists the objects in BCD-EXCESS3 that require input (see Figure A.9).

Import Ar~a for HCll-E\.C~.SS3

NaM Catagory Con~UJn.er (Source: Obj, SS, NOll\e)
-------- -------- -----------------------

INl SIGIW. NOTl
IN1 SIOIW. NOT2
INl SIGIW. NOT3
IN2 SIOIW. AN!ll
INl SIGNllL ANDl
IN2 SIGIW. AND2
INl SIGNllL AND2
IN2 SIGIW. AND3
IN1 SIOIW. AND3
IN2 SIGIW. AND4
INl SIOIW. AND4
IN2 SIGIW. ORl
INl SIOIW. ORl
IN2 SIGIW. OR2
INl SIGIW. OR2
IN2 SIGIW. OR3
INl SIONllL OR3
IN2 SIGNllL OR4
INl SIGIW. OR4

Figure A.9 Import Area for BCD-EXCESS3

4. Connect Switch A to gate OR4 by clicking the mouse on the black bar on A and

then clicking on the text entry IN2 SIGNAL OR4 in the msp-window. Notice that

A-10

the black bar changes to a clear box (indicating the switch is connected to an object

not visible on the screen), the msp-window is updated to reflect the connection,

and another msp-window labeled "Export Area for DRIVER" appears. The export

window shows the same connections being made from the switch's perspective.

5. In the same fashion, make the following connections:

switch B connected to INl NOT2
switch B connected to IN2 AND2
switch B connected to IN2 AND4
switch C connected to IN2 ANDl
switch C connected to IN2 ORl
switch D connected to INl NOTl
switch D connected to INl ANDl
switch D connected to INl ORl

In a similar manner, the leds must be connected.

6. Click on the part of BCD-EXCESS3's icon labeled Export Area. A white text

window (a msp-window) will appear in the lower right area of the screen. The window

lists the objects in BCD-EXCESS3 that provide output.

7. Connect Led W to gate OR4 by clicking the mouse on the black bar on W and

then clicking on the text entry OUTl SIGNAL OR4 in the msp-window. Again,

the black bar changes to a clear box (indicating the led is connected to an object

not visible on the screen), the msp-window is updated to reflect the connection,

and another msp-window labeled "Import Area for DRIVER" appears. The import

window shows the same connections being made from the led's perspective.

8. In the same fashion, make the following connections:

led X connected to
led Y connected to
led Z connected to

OUTl OR3
OUTl OR2
OUTl NOTl

A-11

When the connections have been made, the import-export-window should look some-

thing like Figure A.10 and BCD-EXCESS3's msp-windows should look like Fig

ure A.11.

6~.
D

6~.
C

9~·
6~.

A

~~
z

~~
~9
~~

w

Figure A.10 DRIVER's Import-Export Window

9. Close the import-export-window and the msp-windows by clicking on the red surface

and selecting Deactivate, or by selecting Deactivate from each window's title bar

menu. The System Composition Window is again displayed.

A.4.3 To create the application-obj's update-algorithm:

1. Click a mouse button on the application-obj icon bcd-xs3.

2. A pop-up menu appears prompting you to answer YES if you want to automat-

ically build an update algorithm or NO if you want to build it manually. Three

windows will appear (refer to Figure A.12). One contains a graphical view of the

update algorithm, one contains a textual view of the algorithm, and the third (the

Controllee Window) shows the icons that represent the application-obj's controllees

A-12

Imp011 Area for BCD-EXCESS3

NaJne Catagory Consumer (Source: Obj, SS, NaJne)
-------- -------- -----------------------

INl SIGNAL NOTl (D, DRIVER, OUTl)
INl SIGNAL NOT2 (B, DRIVER, OUTl)
INl SIGNAL NOT3
IN2 SIGNAL ANDl (C, DRIVER, OUTl)
INl SIGNAL ANDl (D, DRIVER, OUTl)
IN2 SIGNAL AND2 (B, DRIVER, OUTl)
INl SIGNAL AND2
IN2 SIGNAL AND3
INl SIGNAL AND3
IN2 SIGNAL AND4 (B, DRIVER, OUTl)
INl SIGNAL AND4
IN2 SIGNAL ORl (C, DRIVER, OUTl)
INl SIGNAL ORl (D, DRIVER, OUTl)
IN2 SIGNAL OR2
INl SIGNAL OR2
IN2 SIGNAL OR3
INl SIGNAL OR3
IN2 SIGNAL OR4 (A, DRIVER, OUTl)
INl SIGNAL OR4

Exp011 Area for BCD- EXCESS3

NaJne Catagory Producer (Target: Obj, ss, NaJne)
-------- -------- -----------------------

OUTl SIGNAL NOTl (Z, DRIVER, INl)
OUTl SIGNAL NOT2
OUTl SIGNAL NOT3
OUTl SIGNAL ANDl
OUTl SIGNAL AND2
OUTl SIGNAL AND3
OUTl SIGNAL AND4
OUTl SIGNAL ORl
OUTl SIGNAL OR2 (Y, DRIVER, INl)
OUTl SIGNAL OR3 (X, DRIVER, INl)
OUTl SIGNAL OR4 (W, DRIVER, INl)

Figure A.11 Import-Export MSP-Windows

A-13

(with two extra icons for if-then and while-do constructs). The graphical update

window contains two icons, "Start" and "End," with a dotted arrow pointing from

the start-icon to the end-icon. If you choose to automatically build an update al-

gorithm, the subsystem-obj labeled DRIVER will appear in the graphical update

window between the "Start" and "End" icons.

3. If building the update algorithm manually follow the following steps:

(a) Click a mouse button on the icon in the controllee window labeled suBsYSTEM - oBJ
DRIVER

The cursor changes to an oval with a dot in it indicating that an object needs

to be selected.

(b) Click on the "nub" on the dotted line midway between the start and end icons.

This will cause the update sequence to redraw with the subsystem-obj included

(see Figure A.13). Note the textual representation is automatically updated to

reflect each change in the diagram window.

4. Close the edit-update-algorithm windows by clicking either on the black title bar at

the top of the graphical update window, or in the green background of the window

labeled, Application Update Algorithm and selecting Deactivate from the pop-

up menu.

A.4.4 To build DRIVER 's Update Algorithm: After the edit-update-algorithm

windows have been closed, the blue System Composition Window and the green

Technology Base Window will again be visible. Building the update algorithm

A-14

-

~
0::

"' ., ..,
"' ""' §' -

-
1!
w

.&
I
I

t
I
I
I

q Sc r~· ~
:::; a:

w wW
::E .-r::
w ~ a:
~ Cl),:, '
~ Ill

~~ ~
.&

r~ Q,{

I
I

U
~ I,

I

w ::Ea: I

:::; I!:~
I -

~
I

~a: I

Cl),:,

Ill Ill
j .. ~ .Jt Cl)

Figure A.12 Edit-Update-Algorithm Windows

A-15

,~
Start ____ -. __ ►SUBSYSTEM-OBJ ____ -._. ► End

~

Figure A.13 Edit-Update-Algorithm

for DRIVER is similar to building the update algorithm for the application, and

requires the following steps:

(a) To build the update algorithm automatically:

(b) A pop-up menu appears, answer YES. Three windows will appear (refer to

Figure A.12). One contains a graphical view of the update algorithm, one

contains a textual view of the algorithm, and the third (the Controllee Window)

shows the icons that represent the subsystem-obj's controllees (with two extra

icons for if-then and while-do constructs).

(a) To build the update algorithm manually:

(b) Click the mouse on the subsystem-obj icon labeled, DRIVER in the system

composition window and select Edit Update Algorithm. The three windows

that were ·seen in Figure A.12 are exposed, except the controllee window now

contains the switches, leds, and subsystem controlled by DRIVER.

(c) Add each controllee to the update sequence by clicking on the controllee icon and

then clicking on the "nub" in the graphical update window that represents the

A-16

proper sequence position for the controllee. The order in which the controllees

must appear is:

A B C D BCD-EXCESS3 w X y z

Figure A.14 DRIVER's Update Algorithm

When the fifth icon is added to the sequence, the window will automatically

resize to keep the entire sequence visible.

Figure A.14 shows the completed update algorithm. Note that the textual update

description is updated as the graphical update is built.

5. Close the windows by either clicking on the graphical update window title bar or

clicking on the green background of the Update Algorithm and selecting Deacti-

vate from the pop-up menu.

A.4.5 To con'T}ect BCD-EXCESS3 's Imports and Exports: So far, the appli-

cation has been created, the controlling subsystem (DRIVER) has been created, and

DRIVER's components, import-export connections, and update algorithms have been

defined. The definition process for DRIVER now needs to be repeated for BCD-

A-17

EXCESS3. Begin by defining BCD-EXCESS3's import-export connections in the fol-

lowing way:

1. Click a mouse button on subsystem-obj icon labeled BCD-EXCESS3.

2. Select Make Connections from the pop-up window. An Imports/Exports window

as in Figure A.15 will be displayed. As with the earlier import-export-window, the

black bars (again, actually subicons) represent connections to be made, and the

clear boxes (also subicons) represent connections made to objects not visible in the

window.

W?I· ~I·
.lf'-->.I, Ir>;,. !t>,ll
f ~n vi ~" B OR4 u

Figure A.15 BCD-EXCESS3's Import-Export Window

3. Reposition the)cons to resemble the circuit diagram in Figure A.1. The icons are

repositioned by clicking on the icon, selecting Move Icon from the pop-up menu,

moving the grid to the desired location, and clicking to "drop" the icon. The repo-

sitioned icons will probably look something like Figure A.16.

A-18

Figure A.16 BCD-EXCESS3's Import-Export Window

4. Connect ANDI-to OR2 by clicking on the black bar labeled OUTl on ANDI and

then clicking on the black bar labeled INl on OR2. Note that a line (a link) appears

5.

between the icons and the black bars disappear. The subicons of the primitives are

still present, and are highlighted by a thin white line when the mouse is over one.

Make the remaining connections as described below:

ANDI OUTl connected to OR2 INl
ORl OUTl connected to NOT3 INl
ORl OUTl connected to AND3 INl
ORl OUTl connected to AND4 INl

NOT2 OUTl connected to AND3 IN2
NOT3 OUTl connected to OR2 IN2
NOT3 OUTl connected to AND2 INl
AND2 OUTl_ connected to OR3 INl
AND3 OUTl connected to OR3 IN2
AND4 OUTl connected to OR4 INl

Once the connections have been made, the import-export window should resemble

Figure A.17. If desired, the links, once made, can be "hand-drawn" by clicking on

the link's nub and selecting Re-Draw Path. The existing link will be deleted, the

A-19

mouse cursor will change to a "pencil," and a dashed line will connect the icon to the

cursor. Draw the link by moving the cursor to a new position and clicking the mouse

button. To finish drawing the link, click the mouse button on a subicon. Also, if

you find the labels on the subicons intrusive, they can be suppressed by clicking on

the window surface and selecting Clip Icon Labels from the pop-up menu. Note:

Although NOTl doesn't appear to have any connections, it is actually connected to

the export of D and the import of Z.

6. Close the import-export-window by clicking on the red surface and selecting Deac

tivate from the menu.

Figure A.17 BCD-EXCESS3's Import-Export Window

A.4.6 To build BCD-EXCESS3 's Update Algorithm: When the import-export-

window closes, the subsystem window will be visible. To build the update algorithm for

BCD-EXCESS3 do the following:

A-20

1. Click the mouse on the SUBSYSTEM-OBJ icon labeled, BCD-EXCESS3 in the

System Composition Window. The three update windows will be exposed, and

the controllee window will contain the controllees defined for BCD-EXCESS3.

2. Create the update sequence by clicking the mouse on an icon in the controllee window

and then clicking on the nub in the graphical update window as was done with the

application and DRIVER update algorithms. Add the controllees to the update

algorithm in the following sequence:

NOT1 AND1 OR1 NOT2 NOT3 □R2 AND2 AND3 AND4 OR3 OR4

The completed sequence is shown in Figure A.18.

Figure A.18 BCD-EXCESS3's Update Algorithm

3. Close the update windows by selecting Deactivate from the title bar menu of the

graphical update window.

A.5 Perform Semantic Checks

Semantic checks are performed by Architect as part of the import-export connection

process. However, the semantic checks may be run at any time by clicking on the control

panel button labeled Check Semantics or clicking on any of the composition's icons and

A-21

selecting Check Semantics. The results of the semantic checks may be viewed in the

EMACS window.

A-22

A.6 Execute the Application

Now that the application has been fully defined, it can be executed. The truth table

for the BCD-XS3 decoder is shown in Table A.l.

Table A.1 BCD to Excess-3 Decoder Truth Table

II A I B I C I D II w I X I y I z II
0 0 0 0 0 0 1 1
0 0 0 1 0 1 0 0
0 0 1 0 0 1 0 1
0 0 1 1 0 1 1 0
0 1 0 0 0 1 1 1
0 1 0 1 1 0 0 0
0 1 1 0 1 0 0 1
0 1 1 1 1 0 1 0
1 0 0 0 1 0 1 1
1 0 0 1 1 1 0 0

The default position for a switch is "on," however 1 1 1 1 is not a defined input for a

BCD to Excess3 Decoder. Therefore, the switch attributes have to be set to a meaningful

input in order to get a valid output from the execution. To set the switch attributes, do

the following: •

1. Click on the switch icon labeled A in the System-Composition Window.

2. Choose View /Edit attributes from the pop-up window. A window appears, listing

the switch attributes for A.

3. Click on the attribute, Position. A pop-up window appears, listing the current value

of the switch.

4. Enter a new value for the switch position by typing

avsi: :off

A-23

(The "avsi::" prefix is the package name and is required for symbols. It is not

required for other data types such as numbers and strings)

5. Change the values for any other switches in the same manner as above.

Figure A.19 shows the application.

Once a valid input state has been achieved, click on the control panel button labeled

Execute Application or click on any icon in the System Composition Window and

select Execute Application from the pop-up menu. The results are displayed in the

EMACS window. A new set of switch positions can be established, and the application

re-executed.

A-24

Figure A.19 BCD-XS3 Application

A-25

Appendix B. REFINE™ Code Listings for A VS! Ill

This appendix contains a listing of the Lisp files required to run Architect and AVSI

III. The order in which the files are listed below also indicates the required compilation

order.

¼ Load system files for Dialect and Intervista

(load-system "dialect" "1-0")
(load-system "intervista" "1-0")
(load "AVSI-pkg.fasl4")

¼ Load Architect files

(in-package 'AVSI)
(load "DSL/lisp-utilities.fasl4")
(load "0CU-dm/dm-ocu.fasl4")
(load "EXECUTIVE-TECH-BASE/dm-executive.fasl4")
(load "DSL/globals.fasl4")
(load "DSL/obj-utilities. fasl4")
(load "DSL/read-utilities. fasl4")
(load "DSL/menu.fasl4")
(load "DSL/display-files.fasl4")
(load "DSL/modify-obj")
(load "DSL/save.fasl4")
(load "DSL/generic.fasl4")
(load "DSL/build-generic.fasl4")
(load "DSL/complete.fasl4")
(load "DSL/set-globals.fasl4")
(load "0CU/descriptor-tools.fasl4")
(load "0CU/eval-expr.fasl4")
(load "0CU/execute.fasl4")
(load "0CU/iniports-exports.fasl4")
(load "0CU/semantic-checks.fasl4")

¼ Load Executive Domain

(load "EXECUTIVE-TECH-BASE/var-executive.fasl4")
(load "EXECUTIVE-TECH-BASE/ED-SEQ/ed-seq-event-man.fasl4")
(load "EXECUTIVE-TECH-BASE/ED-SEQ/event-driven-clock.fasl4")

B-1

'I.

'I.

(load "EXECUTIVE-TECH-BASE/ED-SEQ/connection-manager.fasl4")
(load "EXECUTIVE-TECH-BASE/TD-SEQ/td-clock.fasl4")
(load "EXECUTIVE-TECH-BASE/TD-SEQ/td-seq-event-man.fasl4")

(load 11 0CU-dm/gram-ocu.fasl4 11
)

(load "lisp-file-utils. fasl4 11
)

(load "vsl-dm.fasl4 11
)

(load "vsl-gr.fasl4")
(load "vsl-globals.fasl4")
(load 11 vsl-utils.fasl4")
(load "viz-utils.fasl4")
(load "edit-expression.fasl4")
(load "edit-update.fasl4")
(load "edit-attr.fasl4")
(load "create-obj.fasl4")
(load "edit-ss.fasl4")
(load 11 app-exe.fasl4 11

)

(load 11 edit-applic.fasl411
)

(load "tech-base.fasl4")
(load 11 imp-exp.fasl4 11

)

(load "test-primitive.fasl411
)

(load 11viz.fasl4 11
)

Load Logic Circuits Domain

(load 11 CIRCUITS-TECH-BASE/dm-logic.fasl4 11
)

(load 11 CIRCUITS-TECH-BASE/var-circuits.fasl4")
(load 11 CIRCUITS-TECH-BASE/or-gate.fasl4")
(load 11 CIRCUITS-TECH-BASE/and-gate.fasl4 11

)

(load 11 CIRCUITS-TECH-BASE/nand-gate.fasl4 11
)

(load 11 CIRCUITS-TECH-BASE/nor-gate.fasl411
)

(load "CIRCUITS-TECH-BASE/not-gate.fasl4")
(load "CIRCUITS-TECH-BASE/switch.fasl4")
(load "CIRCUITS-TECH-BASE/jk-flip-flop.fasl4 11

)

(load "CIRCUITS-TECH-BASE/led.fasl4 11
)

(load "CIRCUITS-TECH-BASE/counter.fasl4")
(load "CIRCUITS-TECH-BASE/decoder.fasl4")
(load "CIRCUI_TS-TECH-BASE/half-adder .fasl4")
(load "CIRCUITS-TECH-BASE/mux.fasl4")
(load "CIRCUITS-TECH-BASE/gram-logic.fasl4")

Load EVENT-DRIVEN Logic Circuits Domain

(load "ED-CIRCUITS-TECH-BASE/dm-circuits.fasl411
)

(load "ED-CIRCUITS-TECH-BASE/var-ed-circuits.fasl411
)

B-2

(load "ED-CIRCUITS-TECH-BASE/or-gate.fasl4")
(load "ED-CIRCUITS-TECH-BASE/and-gate.fasl4")
(load "ED-CIRCUITS-TECH-BASE/nand-gate.fasl4")
(load "EO-CIRCUITS-TECH-BASE/nor-gate.fasl4")
(load "ED-CIRCUITS-TECH-BASE/not-gate.fasl4")
(load "ED-CIRCUITS-TECH-BASE/switch.fasl4")
(load "ED-CIRCUITS-TECH-BASE/jk-flip-flop.fasl4")
(load "ED-CIRCUITS-TECH-BASE/led.fasl4")
(load "ED-CIRCUITS-TECH-BASE/counter.fasl4")
(load "ED-CIRCUITS-TECH-BASE/decoder.fasl4")
(load "ED-CIRCUITS-TECH-BASE/half-adder.fasl4")
(load "ED-CIRCUITS-TECH-BASE/mux.fasl4")
(load "ED-CIRCUITS-TECH-BASE/one-shot.fasl4")
(load "ED-CIRCUITS-TECH-BASE/clock.fasl4")
(load "ED-CIRCUITS-TECH-BASE/gram-ed-logic.fasl4")
(load "ED-CIRCUITS-TECH-BASE/ed-circuits-semantic-checks.fasl4")

% Load TIME-DRIVEN Cruise-Missile Domain

(excl::run-shell-command "setenv KHOROS_HOME /apps/Khoros")
(load "CRUISE-MISSILE-TECH-BASE/dm-cm")
(load "CRUISE-MISSILE-TECH-BASE/airframe")
(load "CRUISE-MISSILE-TECH-BASE/autopilot")
(load "CRUISE-MISSILE-TECH-BASE/fueltank")
(load "CRUISE-MISSILE-TECH-BASE/guidance")
(load "CRUISE-MISSILE-TECH-BASE/jetengine")
(load "CRUISE-MISSILE-TECH-BASE/navigation")
(load "CRUISE-MISSILE-TECH-BASE/throttle")
(load "CRUISE-MISSILE-TECH-BASE/warhead")
(load "CRUISE-MISSILE-TECH-BASE/gram-cm")
(load "CRUISE-MISSILE-TECH-BASE/var-cm.fasl4")
(load "CRUISE-MISSILE-TECH-BASE/cm-semantic-checks.fasl4")

% Load DSP Domain

(excl::run-shell-command "setenv KHOROS_HOME /apps/Khoros")
(load "DSP-TECH:-BASE/dm-dsp.fasl4")
(load "DSP-TECH-BASE/var-dsp.fasl4")
(load "DSP-TECH-BASE/sinusoid.fasl4")
(load "DSP-TECH-BASE/print-signal.fasl4")
(load "DSP-TECH-BASE/graph-1-signal. fasl4")
(load "DSP-TECH-BASE/graph-2-signal.fasl4")
(load "DSP-TECH-BASE/graph-3-signal.fasl4")
(load "DSP-TECH-BASE/graph-4-signal.fasl4")
(load "DSP-TECH-BASE/save-signal.fasl4")

B-3

(load "DSP-TECH-BASE/signal-adder.fasl4")
(load "DSP-TECH-BASE/signal-multiplier.fasl4")
(load "DSP-TECH-BASE/signal-subtractor.fasl4")
(load "DSP-TECH-BASE/signal-divider.fasl4")
(load "DSP-TECH-BASE/signal-abs-dif.fasl4")
(load "DSP-TECH-BASE/dft.fasl4")
(load "DSP-TECH-BASE/idft.fasl4")
(load "DSP-TECH-BASE/scale-signal.fasl4")
(load "DSP-TECH-BASE/unit-sample-sequence.fasl4")
(load "DSP-TECH-BASE/unit-step-sequence.fasl4")
(load "DSP-TECH-BASE/noise.fasl4")
(load "DSP-TECH-BASE/piecewise-linear.fasl4")
(load "DSP-TECH-BASE/stored-signal.fasl4")
(load "DSP-TECH-BASE/adder.fasl4")
(load "DSP-TECH-BASE/delay.fasl4")
(load "DSP-TECH-BASE/multiplier.fasl4")
(load "DSP-TECH-BASE/input-buffer.fasl4")
(load "DSP-TECH-BASE/output-buffer.fasl4")
(load "DSP-TECH-BASE/real-to-complex.fasl4")
(load "DSP-TECH-BASE/complex-to-real.fasl4")
(load "DSP-TECH-BASE/convolution.fasl4")
(load "DSP-TECH-BASE/pad-signal.fasl4")
(load "DSP-TECH-BASE/truncate-signal.fasl4")
(load "DSP-TECH-BASE/reverse-signal.fasl4")
(load "DSP-TECH-BASE/window-signal.fasl4")
(load "DSP-TECH-BASE/time-filter.fasl4")
(load "DSP-TECH-BASE/frequency-filter.fasl4")
(load "DSP-TECH-BASE/user-designed-filter.fasl4")
(load "DSP-TECH-BASE/gram-dsp.fasl4")
(load "AVSI.fasl4")

B-4

The REFINE source code for AVSI III may be obtained, upon request, from:

Maj Paul Bailor
AFIT/ENG
2950 P Street
Wright-Patterson AFB, OH 45433-7765

(513)255-6565 Ext. 4304
DSN 785-6565 Ext. 4304
email: pbailor@afit.af.mil

B-5

Bibliography

1. Anderson, Cynthia. Creating and Manipulating Formalized Software Architec-
tures to- Support a Domain-Oriented Application Composition System. MS thesis,
AFIT /GCS/ENG/92D-01, School of Engineering, Air Force Institute of Technol
ogy(AU), Wright-Patterson AFB, OH, December 1992.

2. Anderson Consulting, "Knowledge Base Software Architecture," 1994.

3. Cossentine, Jay A. Developing a Sophisticated User Interface to Support
Domain-Oriented Application Composition and Generation System. MS thesis,
AFIT /GCS/ENG/93D-04, School of Engineering, Air Force Institute of Technol
ogy(AU), Wright-Patterson AFB, OH, December 1993.

4. Gool, Warren E. Alternative Architectures for Domain-Oriented Application Com
position and Generation Systems. MS thesis, AFIT/GCS/ENG/93D-11, School of
Engineering, Air Force Institute of Technology(AU), Wright-Patterson AFB, OH, De
cember 1993.

5. Harris, Alfred W., Jr. A Multiple Domain Capability For Domain-Oriented Applica
tion Composition Systems. MS thesis, AFIT/GCS/ENG/94D-11, School of Engineer
ing, Air Force Insitute of Technology (AU), Wright-Patterson AFB, OH, December
1994.

6. Hix, Deborah & H. Rex Hartson. Developing User Interfaces, Ensuring Usability
Through Product & Process. Technical Report, John Wiley & Sons, Inc., 1993.

7. Jeffries, R., & Miller J.R., & Wharton, C., & Uyeda, K.M. "User Interface Evaluation
in the Real World: A Comparison of Four Techniques." In Proceedings of CHI'91.
119-124. New York: ACM, 1991.

8. Kang, Kyo C. and others. Feature-Oriented Domain Analysis (FODA) Feasibility
Study. Technical Report (AD-A235785), Software Engineering Institute, November
1990.

9. Lee, Kenneth J. and others. Model-Based Software Development. Technical Report
CMU /SEI-92-SR-00, Software Engineering Institute, December 1991.

10. Lewis, C., & Polson, 0., & Wharton, C., & Rieman, J. "Testing a walkthrough
methodology for theory-based design of walk-up-and-use interfaces." In Proceedings
of CHI'90. 235-242. New York: ACM, 1990.

11. Marcus, Aaron. "Human communications issues in advanced Uls.," Communication
of the ACM, 36(4) (April 1993).

12. Miller, G.A. "The Magical Number Seven, Plus or Minus Two: Some limits on our
capability for procesgin information," Psychological Science, 63:81-97 (1956).

13. Myers, Brad A. Why are Human-Computer Interfaces Difficult to Design and Imple
ment?. Technical Report CMU-CS-93-183, Computer Science Department, Carnegie
Mellon University Pittsburgh, PA 15213: Carnegie Mellon University, July 1993.

14. Nielsen, J., & Molich, R. "Heuristic evaluation of user interfaces." In Proceedings of
CHI'90. 249-256. New York: ACM, 1990.

BIB-1

15. Quest Windows Corporation, 5200 Great America Parkway, Santa Clara, CA 95054.
OSF/Motif'M Style Guide (January 1992 Edition), January 1992.

16. Randour, Mary Anne. Creating and Manipulating a Domain-Specific Formal Ob
ject Bas-e to Support a Domain-Oriented Application Composition System. MS the
sis, AFIT/GCS/ENG/92D-13, School of Engineering, Air Force Institute of Technol
ogy(AU), Wright-Patterson AFB, OH, December 1992.

17. Reasoning Systems Inc. INTERVISTA TM User's Guide. Palo Alto, CA, 1991. For
INTERVISTA TM Version 1.0.

18. Shneiderman, Ben. Designing the User Interface: Strategies for Effective Human
Computer Interaction, Second Edition. New York: Addison-Wesley Publishing Co.,
1992.

19. Smith, Sidney L. & Mosier, Jane N. Guidelines for Designing User Interface Software.
Technical Report ESD-TR-86-278, Electronic Systems Division, AFSC Hanscom AFB,
MA 01731-5000: The MITRE Corporation, August 1986.

20. Tognazzini, Bruce. Tog on Interface. Reading, Massachusetts: Addison-Wesley Pub
lishing Company, Inc., 1992.

21. Waggoner, Robert W. Domain Modeling of Time-Dependent Systems. MS thesis,
AFIT/GCS/ENG/93D-23, School of Engineering, Air Force Institute of Technol
ogy(AU), Wright-Patterson AFB, OH, December 1993.

22. Warner, Russel M. A Method for Populating the Knowledge Base of AFIT's Do
main Oriented Application Composition System. MS thesis, AFIT/GCS/ENG/93D-
24, School of Engineering, Air Force Institute of Technology(AU), Wright-Patterson
AFB, OH, December 1993.

23. Weide, Timothy. Development of a Visual System Interface to Support a Domain
oriented Application Composition System. MS thesis, AFIT/GCS/ENG/93M-05,
School of Engineering, Air Force Institute of Technology(AU), Wright-Patterson AFB,
OH, March 1993.

24. Welgan, Robert L. Domain Analysis and Modeling of a Model-Based Software Execu
tive. MS the~is, AFIT/GCS/ENG/93D-25, School of Engineering, Air Force Institute
of Technology(AU), Wright-Patterson AFB, OH, December 1993.

BIB-2

Vita

Captain Richard Anthony Guinto

graduated from Pearl City High School in Pearl City, Hawaii in June, 1978. He enlisted

in the Air Force in March 1980 and completed technical training for general accounting at

Shephard AFB, Texas in September 1980. He completed technical training for computer

programming at Keesler AFB, Mississippi in December 1983. He spent twenty months as

an IBM Mainframe Hardware Configuration Manager at Strategic Air Command Head

quarters at Offutt AFB, Nebraska. By way of the Airmen Educational Commissioning

Program, he was awarded a Bachelor's Degree in Computer Science at New Mexico State

University in December 1988 and commissioned in the United States Air Force through

the Air Force Officer Training School in May 1989. After attending the Communications

Computer Systems Officer School at Keesler AFB, Mississippi from May to August 1989,

he served as a training systems software evaluator with the 3907th Systems Evaluation

Squadron and a training systems test director with the Detachment 1, 31st Test and Eval

uation Squadron at Castle AFB, California until July 1992. He was then assigned as the

Small Computer Acquisition Manager for Air Force Materiel Command Headquarters at

Wright-Patterson AFB, Ohio from July 1992 to May 1993. In May, 1993, he entered the

Air Force Institute of Technology at Wright-Patterson AFB, Ohio to pursue a Master of

Science degree in Computer Science. Upon graduation, Captain Guinto will be assigned

to the Low Altitude Night Terrain InfraRed Navigation System Program Office at the

Aeronautical System Center, Wright-Patterson AFB, Ohio.

VITA-I

REPORT DOCUMENTATION PAGE
Form Approved

0MB No 0704-0188

1. AGHKY U~E ON_Y ,Leave blank) I 2:o:~:~;e~~;~
4

I 3, REPORT TYPE AND DATES COVERED
I Master's Thesis

/ 4. •:··.:: .'.\'-1'.:l <;,;~-T Tc£ S. FUNDING NUMBERS

i ENHANCED VISUAL USER INTERFACE
I .
j SUPPORT FOR DOMAIN-ORIENTED
i APPLICATION COMPOSITION SYSTEMS -----~~•-=------------------------1
j 5. AUT~CR(S)

l Richard A. Guinto
j

l
7. PERFORMING CRGANIZA TION NAME(S} AND ADDRESS(ES}

Air Force Institute of Technology, WPAFB OH 45433-6583

9. SPONSORING MONITORING AGENCY NAME(S) AND ADDRESS(ES}

Capt Rick Painter
2241 Avionics Circle, Suite 16
WL/ AAWA-1 BLD 620
Wright-Patterson AFB, OH 45433-7765

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/ AVAILABILITY STATEMENT

Distribution Unlimited

13. ABSTRACT (Maximum'200 words)

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT / GCS /ENG /94D-06

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

12b. DISTRIBUTION CODE

This research refined the functionality and usability of a previously developed visual interface for a domain-oriented
application composition system. The refinements incorporated more sophisticated user interface design concepts
to reduce user workload. User workload was reduced through window reordering, menu redesign, and Human
Computer Interaction techniques such as; combining repetitive procedures into single commands, reusing composition
information whenever possible and deriving new information from existing information. The Software Refinery
environment, including its visual interface tool INTERVISTA, was used to develop techniques for visualizing and
manipulating objects contained in a formal knowledge base of objects. The interface was formally validated with
digital logic-circuits, digital signal processing, event-driven logic-circuits, and cruise-missile domains. A comparative

1 analysis of the application composition process with the previous visual interface was conducted to quantify the

1

1
1

: workload reduction realized by the new interface. Level of effort was measured as the number of user interactions
(mouse or keyboard) required to compose an application. On average, application composition effort was reduced
34.0% for the test cases.

I

14. SUBJECT TERMS

! Human Computer Interface, Interfaces, Software Engineering, Computer Graphics

i
' ' '

15. NUMBER OF PAGES
120

16. PRICE CODE

l
j 17. SECURITY CLASSIFICATION
; OF REPORT

18. SECURITY CLASSIFICATION
OF THIS PAGE

19. SECURITY CLASSIFICATION
OF ABSTRACT

20. LIMITATION OF ABSTRACT I
1 UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

'JSN 7540-01-280-5500

UL I
Star,dard r=orm 298 (Rev 2-89)
;)~~5cr'oi'!'d b•~ J.~-ISi St,j z:3'3- 1 8
298- 1 :,2

GENERAL !NSTRUCTlONS FOR COMPLETING SF 298

: r·0 ·~.-20c=-: 'J(:<~,rr.-=r-a~:o·7 Jage {qDP) is used in announcing and (ataiog:ng tepc...-•~:
t~,,;,t :r, s ,,.,:c-~'-.i:'..:_:·' >c CO:'S,ster,t with the rest of the report, particu;ar/y :he :,c .,e,
r:·;~:·:_;C -y·s ·,:r •• • ~g n eacii biock of the form follow it is ;mportant to stay with;c; -'.:",

ootical s"'·,::nning requirements.

;:.;ii pu~iication date
• , ,: :; . .-, c ,, , 1 a • d ye a r, 1 f av a i ! ab I e (e g.

;}oc:, 3. _,:cf __ c'_5epv: and Dates Covered.
0

;, :i ... ~ iv'•; i:.r ,·ecc--: :5 ,,ter,rn, finai, etc. If
2c:.~-. i":_:z'J -:?. >:'~ter t~c:us1·/e report dates {e.g. iO

:J!cck <l. 1 i t:e ard Subtitle. A title is taken from
•:--:2 oar·::;/ :H: report that provides the most
n~ea,~,r·;f:.: 3r-d comp!e:e ,nforrnat:on. When a
,-,~::,or: is ore::::a·ed ·n more than one volume,
reoe2t tr•e p,irrary title, add volume number, and
inc:ude subtltie for the specific volume. On
ciass:fied doc.;rr12r~ts enter the title classification
i:: 2arentf1eses.

B!o(k 5. ;:ur,dina Numbers. To include contract
ar·d gra::,. numbers; may include program
ele'.i'1er:, number(s), oroject number(s), task
nurnr.:er(s), and work unit number(s) Use the

C Contract PR - Project
G Grant TA - Task
PE rrogr:3;77 WU - Work Unit

E:ernent Accession No.

Block 6. Autho;(s) Name(s) of person(s)
respons1bi2 for writing the report, performing
the research, or credited with the content of the
report. !f editor or compiler, this should follow
the name(s)

Block 7. Performing Organization Name(s) and
Acdress(es) Self-explanatory.

Block 8. ;:,erformir:g Organization Report
Number. enter the unique alphanumeric report
nurnber(s) ass1gr.ed by the organization
performing ':he report. -

Block 9. ~porsori nq/Monitoring Agency Name(s)
and Address(es) Seif-explanatory.

Block 10. Sponsoring/Monitoring Agency
Reoort Number. (If known)

Block 11. Suoolementary Notes. Enter
information not included elsewhere such as:
?r 02·::Jcred 1,1 cooperation with ... ; Trans. of ... ; To be
p.:bi:sred ,'7 'N'r:en a report is revised, include
a s 'J 'err en' :,,,e :rer :he riew report supersedes
,y ·, . -~ ;;: ,~--- ,~,- '.", ~r· e or-:: e report.

Block 12a. o,str;b,Jt,or;/L.-.ai_,:',)i_ :,_c .'-'.~::.: ____ _
Oer:otes pubiic ava !abii•,:y :;.,: ,.,.. a·
availabiiity to the pL;blic E:-,~e
limitations or special mark:ngs .. "'
NOFOR:\J, REL, ITAR)

DOD · See Do OD S2 3 ~ 2.:
Staternen:s on ~-~c:--:·~, _....,

Docurr:errts."
DOE - See author;~;es
NASA - See Handbook ~,Jf.JB 7::,~,~
NTIS - Leave blank

Block 12b. Distribution Code.

DOD - Leave blank.
DOE - Entei DOE distribution catecr:> 2s

from the Standard D1strib1.;·;,-::r- "or
Unclassified Scient;fic :rnd -:-ec-,r,,c,:;
Reports.

NASA - Leave blank.
NTIS - Leave blank

Block 13. Abstract. Include a br;ef (M-,x:mur::
200 words) factual summary of ti1e ,res,
significant information contained n :i-.e ·cpor~

Block 14. Subject Terms. Keywords or p'"'; 2:;=:s

identifying major subjects in the repon

Block 15. Number of Pages. Enter the totei!
number of pages.

Block 16. Price Code. Enter appropr1ar.e price
code (NTIS only).

Blocks 17. -19. Security Classifications Serf.
explanatory. Enter U.S. Security Ciass,ficat,00 ,"
accordance with U.S. Security Regu!at,o,,s (e.
UNCLASSIFIED) If form contains class;f:ed
information, stamp classification on the to:J 2,·c

bottom ofthe page.

Block 20. Limitation of Abstract. This biocK ,.,,,,st
be completed to assign a !imitation to the
abstract. Enter either UL (unlimited) or S,-'.'.IR (sa,~1"°

as report). An entry in this block is recesv.r;:'
the abstract is to be limited If blank ~ne 30s'.· ::;r:t
is assumed to be unlimited.

	Enhanced Visual User Interface Support for Domain-Oriented Application Composition Systems
	Recommended Citation

	tmp.1704907972.pdf.yY3Sp

