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Abstract 

Biochemical and biomechanical signals drive cardiac remodeling, resulting in altered heart 

physiology and the precursor for several cardiac diseases, the leading cause of death for 

most racial groups in the USA. Reversing cardiac remodeling requires medication and 

device-assisted treatment such as Cardiac Resynchronization Therapy (CRT), but current 

interventions produce highly variable responses from patient to patient. Mechanistic mod-

eling and Machine learning (ML) approaches have the functionality to aid diagnosis and 

therapy selection using various input features. Moreover, 'Interpretable' machine learning 

methods have helped make machine learning models fairer and more suited for clinical 

application. The overarching objective of this doctoral work is to develop computational 

models that combine an extensive array of clinically measured biochemical and biome-

chanical variables to enable more accurate identification of heart failure patients prone to 

respond positively to therapeutic interventions. In the first aim, we built an ensemble ML 

classification algorithm using previously acquired data from the SMART-AV CRT clinical 

trial. Our classification algorithm incorporated 26 patient demographic and medical history 

variables, 12 biomarker variables, and 18 LV functional variables, yielding correct CRT 

response prediction in 71% of patients. In the second aim, we employed a machine learn-

ing-based method to infer the fibrosis-related gene regulatory network from RNA-seq data 

from the MAGNet cohort of heart failure patients. This network identified significant inter-

actions between transcription factors and cell synthesis outputs related to cardiac fibrosis 

- a critical driver of heart failure. Novel filtering methods helped us prioritize the most crit-

ical regulatory interactions of mechanistic forward simulations. In the third aim, we devel-

oped a logic-based model for the mechanistic network of cardiac fibrosis, integrating the 

gene regulatory network derived from aim two into a previously constructed cardiac 
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fibrosis signaling network model. This integrated model implemented biochemical and bio-

mechanical reactions as ordinary differential equations based on normalized Hill functions. 

The model elucidated the semi-quantitative behavior of cardiac fibrosis signaling complex-

ity by capturing multi-pathway crosstalk and feedback loops. Perturbation analysis pre-

dicted the most critical nodes in the mechanistic model. Patient-specific simulations 

helped identify which biochemical species highly correlate with clinical measures of patient 

cardiac function. 
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Chapter 1 

Literature Review 

1.1 Hypertension, cardiac remodeling, risk factors, and guidelines 

Hypertension is the marked increase in systolic and diastolic blood pressure from 

the normal level. We can classify this increase into different categories based on the meas-

urements of systolic and diastolic pressure, which is applicable for all age groups. Hyper-

tension for a prolonged time results in future health complications and vital organ failures 

such as heart, brain, kidney, and eyes [1]. According to World Health Organization (WHO), 

an estimated 1.28 billion adults aged 30-79 years have hypertension worldwide [2]. An 

estimated 46% of adults with hypertension are unaware of the presence of hypertension. 

Only 1 in 5 adults with hypertension have it under control. WHO targeted hypertension as 

the leading non-communicable disease to eradicate by 2030. Nearly half of the US adults 

(47%) have hypertension. Only 1 in 4 adults with hypertension have their condition under 

control [2]. About 34 million adults in the USA take hypertension medication. Hypertension 

is the contributing factor to nearly half a million death per year in the USA [3]. 

Several factors increase the susceptibility to develop hypertension [4]. The risk of 

hypertension increases in elderly, male, and black individuals more prone to die from hy-

pertension [5]. Individuals' family history also has a role in hypertension susceptibility. The 

presence of co-morbidity in parents risks the offspring developing hypertension. Higher 

BMI, physical inactivity, and a sedentary lifestyle also play a contributing factor in hyper-

tension. Dietary habits such as high sodium, sugar, and alcohol intake are also positively 

correlated with hypertension. Stress and certain kidney diseases also increase the 



2  

probability of dying from hypertension. According to the European Society of Hypertension 

guideline (ESC/ESH guidelines on arterial hypertension (management of), hypertension 

evaluation consists of four categories based on their systolic and diastolic blood pressure 

range: Normal, Elevated, Stage 1, and Stage 2 hypertension. Hypertension evaluation 

also considers the secondary analysis of biochemical panels such as fasting glucose, lipid 

panel, thyroid-stimulating hormone. Several other biomechanical assays used for the as-

sessment include eGFR, electrocardiogram, urinalysis [6]. 

Cardiac remodeling is the biochemical and biomechanical manifestation of the 

heart that results in the heart's change in size, mass, geometry, and function [7]. Cardiac 

remodeling primarily focuses on the heart's left ventricle because this is responsible for 

pumping oxygenated blood throughout the body. Cardiac function follows the simple La-

place formula (T = Pr/2h), where T is LV wall stress, P is pressure, r is the radius of the 

ventricle, and h is the LV wall thickness [8]. Increased blood pressure increases the stress 

on the LV wall so LV wall thickens to offset this pressure and normalize wall stress. This 

thickening results in the development of hypertrophy. There are two types of LV hypertro-

phy: concentric and eccentric. When elevated blood pressure increases LV wall stress, LV 

walls thicken (h) to offset this and normalize the wall stress. This is known as concentric 

hypertrophy. Eccentric hypertrophy develops when high blood volume increases the ra-

dius (r) of the heart chamber (V). The structure of the left ventricle is not only affected by 

pressure or volume overloads. Several other factors such as ethnicity, gender, neurohor-

monal characteristics, environmental and genetic factors are also responsible and may 

have additive effects in the overload of the cardiac chambers. Underlying medical condi-

tions such as diabetes and chronic kidney diseases are the two confounders of cardiac 

remodeling [9]. Cardiac remodeling is reversible by doing regular exercise and lifestyle 
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modification [10]. Some studies have shown a negative correlation between physical ac-

tivity and cardiac hypertrophy development.  

 

Figure 1.1. Pressure on a non-hypertensive heart. Illustration modified from Servier med-

ical art (https://smart.servier.com/) and conceptualized from Elira Maksuti [11] 

 

Figure 1.2. Cardiac remodeling due to hypertension and its clinical manifestation. Illustra-

tion modified from Servier medical art (https://smart.servier.com/) [9]. 

 



4  

1.2 Biochemical markers for predicting cardiac remodeling 

There are several vital biomarkers available for myocardial organ damage in hy-

pertension [11]. Cardiac troponin is the first group of biomarkers that is part of the contrac-

tile apparatus of cardiac myocytes. Myocardial injury and cardiac remodeling increase the 

concentration of cardiac troponin [12]. The most common biomarkers for cardiac damage 

are C-reactive proteins (CRP) [13]. Many studies have shown that CRP concentration is 

associated with the increased risks of myocardial infarction and stroke. Mid-regional pro 

adrenomedullin (MR-proADM) is a peptide hormone generated by multiple tissues [14]. 

This hormone has a natriuretic, vasodilatory, and hypertensive effect. Soluble ST2 (sST2), 

a receptor for Interleukin 33 (IL-33), is also a prognostic marker for cardiac remodeling 

[15]. Several studies have shown that sST2 is associated with cardiac remodeling due to 

volume and pressure overload. The most common biomarker of cardiac damage is the 

low-density lipoprotein (LDL) [16]. Numerous studies have shown the positive correlation 

of LDL with increased atherosclerosis and cardiac remodeling [16]. Natriuretic peptides 

such as brain natriuretic peptide (BNP) and N-terminal proBNP (NT-proBNP) are also di-

agnostic biomarkers for cardiac dysfunction and remodeling [17]. Increased concentration 

of these peptides indicates higher ventricular wall stress, glomerular filtration rate, sodium 

and water extraction, and vasodilation. Another biomarker that also works as an indicator 

of cardiac and kidney damage is creatinine [18]. Copeptin is another biomarker responsi-

ble for the regulation of vascular tone and free water reabsorption [19]. Its lower level 

relates to cardiac remodeling with co-morbidity like diabetes mellitus. 

In addition to circulating biomarkers for heart failure there are groups of biomarkers 

that actively participate in the cardiac remodeling process. Those molecules can be 
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separated into multiple groups such as C-terminal Propeptide of Procollagen Type 

I(PICP), Procollagen Type I N-terminal Propeptide (PINP); Procollagen Type III Amino-

terminal Propeptide (PIINP), C-terminal Telopeptide of Collagen Type I (CITP), Matrix met-

alloproteinases (MMPs), Tissue inhibitors of metalloproteinase (TIMPs), Transforming 

growth factor-β (TGF-β), connective tissue growth factor (CTGF), endothelial to mesen-

chymal transition (EndoMT); Galectin-3 protein (Gal-3), tumor necrosis factor α (TNFα) 

[54]. These biomarkers are described in the later chapters in detail. 

1.3 Predictive modeling for cardiac remodeling  

Electrocardiogram (ECG) is the most common diagnostic tool to determine the bi-

ophysical profile of the heart. ECG is notorious for its low accuracy and sensitivity in diag-

nosing left ventricular hypertrophy [20]. Computational modeling and machine learning 

can help increase the predictive accuracy for left ventricular remodeling. Several studies 

have used machine learning techniques to improve the diagnostic capability to detect left 

ventricular remodeling. Fernando et al. used the C5.0 algorithm to improve the prediction 

of LVH [21]. Their resultant five-level binary decision tree used only six predictive variables 

and had an accuracy of 71.4% (95%CI, 65.5–80.2), a sensitivity of 79.6%, specificity of 

53%. Another group compared different algorithms for predicting the LVH. They found the 

area under curves (AUC) for Logistic Regression (0.81), GLMNet (0.87), Random Forest 

(0.82), Gradient Boosting (0.80). Another interesting study has detected LVH using ECG 

signals based on machine learning techniques [22]. They used pathological attributes 

such as R wave, S wave, inversion of QRS complex, changes in ST-segment noticed in 

the ECG signal as their variables. After feature transformation, they have used the Support 

Vector Machine (SVM), K-Nearest Neighbor (KNN), Ensemble of Bagged Tree, AdaBoost 
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classifiers and compared them with four neural network classifiers including Multilayer 

Perceptron (MLP), Scaled Conjugate Gradient Backpropagation Neural Network (SCG 

NN), Levenberg–Marquardt Neural Network (LMNN) and Resilient Backpropagation Neu-

ral network (RPROP). They have found accuracy in detecting LVH is 86.6%, 84.4%, 

93.3%,75.6%, 95.6%, 97.8%, 97.8%, 88.9% accordingly. 

All the above and other models are not interpretable and therefore need improved 

interpretability. Moreover, none of these models were targeted toward the prediction of 

cardiac remodeling in hypertension. In addition, many research studies adopted interpret-

able machine learning models for hypertension [23]. They rely on easily explainable mod-

els such as linear and decision tree models [24]. The decision tree is easier to use for two 

reasons: Its simple representation of the complex model and readily identifiable features 

from the tree's top. Decomposing neural network into decision trees is another approach 

widely used by clinicians [25]. Some researchers also use a variant of traditional interpret-

able techniques to interpret their models. One such technique is Anchors [26], which is an 

extension of the common interpretable technique local interpretable model-agnostic ex-

planations (LIME). Some rule extraction techniques are also used (MofN algorithm) [27], 

which tries to extract rules that explain single neurons by clustering the least significant 

neurons. Interpretation of the black box models is also used via visualization. Also, these 

visualization tools deal with only specific types of data (image, text, ECG data). However, 

this research used various types of data (ECG, Anthropomorphic, or Biophysical Data), 

very little information is available for their integration with biochemical data such as inflam-

matory mediators and RAAS fingerprinting [28]. This type of data should be a part of an 

interpretable machine model for cardiac remodeling. 
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1.4 Cardiac Resynchronization Therapy (CRT) and its benefit 

The four chambers of our heart (two upper atrium and two lower ventricles) form 

two atrioventricular pairs consisting of one atrium and ventricle. Oxygen-depleted blood 

from the different parts of the body enters the heart by the right atrium and is pumped out 

by the right ventricle to the pulmonary artery to the lung and mixed with the oxygen. This 

oxygen-rich blood enters the heart again in the left atria, then to the left ventricle. Aorta 

then pumps out this blood to the body. This synchronous activity among four heart cham-

bers results in the efficient pumping of oxygen-rich blood. When ventricles do not pump 

out the blood efficiently, it results in a dyssynchronous rhythm in the heart. As a result, 

arrhythmia symptoms start to appear.  This Ventricular dyssynchrony is of three catego-

ries: Atrioventricular dyssynchrony, Interventricular dyssynchrony, and Intraventricular 

dyssynchrony [29]. Therapy aims to bring synchronization among heart chambers to man-

age heart failure signs. There are several methods of treating cardiac resynchronization 

such as medication, surgery, device-assisted ventricular functionality, heart transplant, life-

style modification, and lifestyle management. 

The most common procedure for treating the rhythm is cardiac resynchronization therapy 

(CRT). CRT works are performed by implanting a small device below the collar bone [30]. 

This device works as a pacemaker by monitoring the heart rate to detect abnormal heart 

rhythms and sending a small electric pulse to correct the pumping activity of the ventricles. 

As a result, the lower ventricles have better pumping ability and leak a lower amount of 

blood in the mitral valve. The muscle of the lower ventricles pumps better as a result of 

this coordination. CRT provides some advantages in patients with left ventricular dysfunc-

tion and prolonged QRS duration [31]. It reduces heart failure and hospitalization, and 
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prolonged survival compared with medical treatment such as medication. CRT is also val-

uable for patients to improve the symptoms and quality of life (QOL), increase exercise 

tolerance, and reduce the mechanical change in the left ventricle. Even though CRT pro-

vides many benefits, CRT fails for around 10-15% of the patients [32].  

Patients who undergo CRT have two choices for devices [30].  They can opt for a 

Cardiac Resynchronization Therapy Pacemaker (CRT-P) or a Cardiac Resynchronization 

Therapy Defibrillator (CRT-D). The choice of treatment depends on the heart condition. If 

the heart is miserably failing, then the CRT-D is the only chance for cure [33]. In addition 

to pacemaker activity, CRT-D also serves as a defibrillator. This functionality is significant 

for patients who are at the advanced stage of arrhythmia.  

 

Figure 1.3. CRT-D Device. In addition to providing pacemaker activity, CRT-D provides 

defibrillation. It is taken from Boston scientific (https://www.bostonscientific.com/) 

 

 

https://www.bostonscientific.com/
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1.4.1 Role of biomarkers in the CRT response and cardiac remodeling 

The American Heart Association and American College of Cardiology (AHA/ACC) 

2008 and European Society of Cardiology (ESC) 2007 guidelines recommend some cri-

teria such as patients with sinus rhythm, left ventricular ejection fraction ≤ 35%, QRS > 

120ms, NYHA class III/IV [34]. Even after following all proper guidelines, almost one-third 

of the patients respond unfavorably to the treatment [35]. Biomarkers can help identify the 

patients who will better respond to the treatment [36]. Spinale and colleagues recently 

showed that specific serum protein biomarkers hold predictive power for CRT response. 

Expressly, elevated levels of a soluble suppressor of tumorgenicity-2 (sST-2), soluble tu-

mor necrosis factor receptor-II (sTNFr-II), matrix metalloproteinases-2 (MMP-2), and C-

reactive protein (CRP) indicated a reduced likelihood of benefit across 752 patients from 

the SMART-AV CRT trial. However, many recent clinical studies have tested the utility of 

advanced machine learning algorithms for predicting the response to CRT using various 

patient data, including electronic health records, clinical imaging, and others [36, 37-40]. 

These studies never showed the importance of using biomarkers in their models. There-

fore, a biomarker scoring system is helpful in building predictive modeling for CRT re-

sponse and cardiac remodeling. Thus, combining the biomarker-based matrices with var-

ious features from the SMART-AV trail clinical patient data is helpful in predicting response 

to CRT and cardiac remodeling.  

1.4.2 Predictive Modeling for CRT Patient Selection 

Machine learning can identify risks associated with a CRT implant and identify sig-

nificant risks related to the treatment by finding essential variables. There are several 

studies have been conducted for algorithm-based CRT patient selection. The most recent 
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study included the use of electronic health record data to predict the outcome methods. 

They used gradient boosting algorithms to expect the response but ended up with a low 

recall value. Also, their study has lower accuracy (0.65) compared to other models to date 

[39]. The second study conducted by the Cleveland Clinic and John Hopkins University 

has shown that 690 and 253 patients have found AUC 0.72 for the Naïve Bayes Classifier. 

They have also seen a good result for logistic regression. They also used Adaptive Boost-

ing but did not find satisfactory results like the first study [38]. The third study attempted 

to cluster the patients rather than predict the outcome of the treatment. They have used 

Multiple Kernel Learning for pressing the patients rather than classifying them [37]. 

Kalscheur et al. used the result of the COMPANION trial to predict the outcome of the 

treatment. They have found the best result using the Random Forest Algorithm (AUC 0.76) 

[40]. 

1.4.3 AV delay based clinical trials: SMART-AV clinical trial 

The Atrioventricular (AV) node is situated at the center of the heart's electrical sys-

tem and is responsible for transmitting the heart's electrical impulse from the atria to the 

ventricle. First, the Sinus (S) node generates an electrical signal that travels through the 

atria, resulting in the contraction/beat. Then these signals are collected by the AV node. 

After a brief delay, this signal passes through the ventricles. For normal heart function, 

there should be coordination between these two signals. For a healthy heart to work, we 

need a brief delay between these two signals. Without any coordination, ventricles may 

prematurely fill with blood from the atria and result in premature pumping. Disorder in the 

AV node results in the disruption of cardiac electrical signaling resulting in the fast and 
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slow pacing of the heart. These result in several symptoms due to the failure of the heart's 

electrical system.  

The success of CRT treatment depends on the optimal atrioventricular (AV) delay. 

Therefore, CRT treatment requires import optimization of the AV node. Without proper 

optimization, CRT treatment can see 10-15% less efficiency [32]. The SMART-AV clinical 

trial uses three different algorithms to adjust the AV delay to synchronize the heart's elec-

trical system. The outcome from the three different techniques did not vary significantly. 

The researcher hypothesized that systemic AV delay optimization with echocardiography 

and the SD algorithm is superior to a fixed nominal AV delay. This study showed that LV 

geometry improves after six months regardless of the AV delay method.  

1.5 Interpretable Machine Learning 

Machine learning interpretability entails the transparency and explainability of a 

machine learning model. Most machine learning models are not easily interpretable due 

to the complex internal mechanism of these models [41]. Application of machine Learning 

in large healthcare datasets requires understanding the variable interaction and how they 

interact with the labels or target. The lack of domain knowledge forces the modeler to 

emphasize more on accuracy than interpretability [42]. Complex black box models such 

as Support Vector Machines (SVM), Random Forest (RF), and Artificial Neural Networks 

(ANN) provide more accuracy but are not easy to interpret. Therefore, they are limited in 

the use of clinical decision making. General Data Protection Regulation (GDPR) by Euro-

pean Union (EU) is already limiting the use of Machine Learning in clinical decision-mak-

ing. Model Explainability will be very important for popularizing their use in clinical inter-

ventions [43].  
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Table 1.1. Variable Measured in the SMART-AV Trial [31]. 

Domain Individual Feature 

Demographic (2) Sex, Age 

Physical Characteristics 

(5) 

Height, Weight, Body Mass Index (BMI), Systolic blood pressure 

(BPSYS), Diastolic Blood Pressure (BPDIA), Pulse, Heart Rate at 

Rest (HRREST) 

Co-Morbid Situation (6) Paroxysmal Atrial Fibrillation (PAF), Renal Disease, Chronic Ob-

structive Pulmonary Disease (COPD), History of Left Bundle 

Branch Block (LBBB), History of Right Bundle Branch Block 

(RBBB), Ischemic Cardiomyopathy  

Heart Failure (2) QOL Score, 6 Minute Walk Distance 

Surgical Interventions (3) Sinoatrial (SA) Node Surgery, Coronary Artery Bypass Grafting 

(CABG), Pre-Cutaneous Coronary Intervention (PCI) 

Medication (4) Beta-Blocker (BB), Diuretics, Ace inhibitors or ARBs (ACE-ARB), 

Digoxin 

Circulating Biomarkers (4) Soluble Suppressor of Tumorgenicity-2(sST-2), Soluble Tumor Ne-

crosis Factor Receptor-II (sTNFr-II), Matrix Metalloproteinases-2 

(MMP-2), and C-Reactive Protein (CRP) 

LV Assessment (7) Left Ventricular End Diastolic Volume (LVEDV), Left Ventricular End 

Systolic Volume (LVESV), Left Ventricular Ejection Fraction (LVEF), 

Stroke Volume (SV), EDV/ESV, Cube Root 

ECG (3) AV Interval with Atrial Pacing, PR Interval with Atrial Pacing, QRS 

Width 
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1.6 Techniques used for interpreting machine learning models 

Interpretable machine learning techniques are of two types: model-specific and 

model-agnostic. Model-specific specific interpretable techniques change the interpretabil-

ity with the change of the model [44]. Model agnostic interpretability is not particular to any 

specific models. Therefore, these Explainability does not change with models. We can 

also explain the models on a global or local scale. Global model interpretability techniques 

show the response of individual features to the overall model outcome. Local model inter-

pretation only deals with the small part of the model. For example, if we model the predic-

tion of treatment, individual features have a specific weight toward the overall predictive 

outcome of the treatment. The importance of a particular variable varies for each of the 

patients. In the second case, the local interpretation is the way to explain the model. Local 

model interpretation is crucial for the precision medicine perspective. Table 4 represents 

some of the examples of interpretable techniques. 

Table 1.2. Approaches of the interpretability models with examples [45]. 

 Global Local  

Model 

Specific 

• Decision trees 

• Regression models 

• Naive Bayes classifier 

• Set of rules (for a specific individ-

ual) 

• Decision trees (by tree -decompo-

sition) 

• Most visual analytics-based 

• approaches 

• k-nearest neighbors 
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Model 

Agnostic 

• Different variants of model com-

pression/knowledge distilla-

tion/global surrogate models 

• Partial Dependence Plots (PDP), 

• Individual Conditional Expectation 

(ICE) plots 

• Black Box Explanations through 

Transparent approximations 

(BETA) (Lakkaraju) 

• Model Understanding through 

Subspace Explanations (MUSE) 

[46] 

• Local interpretable model agnostic 

explanations (LIME) 

• Shapley additive explanations 

(SHAP) 

• Anchors 

• Attention map visualization, 

• Model Understanding through 

Subspace Explanations (MUSE) 

All interpretable techniques are not great for their application in the field of clinical data 

science. The following table shows the advantage and disadvantages of using them in 

data science. 

 Table 1.3. Advantages and disadvantages of some common Explainability techniques 

[23] 

Technique Advantage Disadvantage 

Feature Importance A highly compressed inter-

pretation that considers the 

interaction between fea-

tures 

Unclear of usage in training 

or testing dataset 
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Partial Dependence Plot 

(PDP) 

Clear interpretation Assumption of independ-

ence between features 

Individual Conditional 

Expectation (ICE) 

Clear interpretation Plots are overcrowded to 

understand 

Feature Interaction Detect all interactions been 

features 

Computationally expensive 

Global Surrogate Model Easy to measure the good-

ness of the surrogate 

model using R2 

No clear-cut cutoff for R2 

makes trust issue of the 

surrogate model 

Local Surrogate Model A comprehensive explana-

tion for different data types 

Instable and close points 

have completely different 

explanations 

Shapely Value Explana-

tion 

Based on Game Theory 

Theorem 

Computationally very ex-

pensive 

 

1.7 Logic-Based ODE Models in System Biology 

Signaling pathways allow the cells to sense the sudden change in their surrounding 

environment. Cells respond by changing the transcriptional activity, metabolism, and other 

cellular activity inside the cell [47]. Signaling pathways are the interaction of several linear 

biochemical reactions. The combination of all these linear reactions makes signaling net-

works very complicated. Researchers have developed various cellular interaction network 

models. The two kinds of cellular interaction networks are abstract and dynamic models. 

Abstract or conceptual models only capture some static part of the cellular interaction [48]. 
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Dynamic models discover the dynamics of the interaction of different reactions and path-

ways in the cell. Modeling biochemical interaction of the cell helps us to integrate the hy-

pothetical and experimental results into a complete system. These systems are helpful to 

understand, support, or falsify the underlying mechanism of the cellular interaction network 

and understand the biological interaction at the system level.  

Most of the cell signaling networks use standard cellular components. The most 

common element in the cellular signaling network is the receptor, which receives the ex-

tracellular stimuli from the outside environment. Some of these receptors are common 

across different eukaryotic cellular pathways. Therefore, the same receptor can be seen 

in various cellular networks. These interactions in different pathways inside of the cell fi-

nally end in producing or degrading specific proteins. The enzymes that catalyze these 

interactions are also produced by the intermediate proteins products in the cellular net-

works. For cardiac remodeling, most of the interacting proteins are either produced or 

degraded by specific gene-protein interaction networks. These receptors can switch from 

their active state to inactive states resulting is a biochemical reaction cascade inside the 

cell. The field of molecular biology consists of a vast amount of interaction data consisting 

of genomics, proteomics, metabolic, and immunological data. The main challenge of work-

ing with these data is finding interactions in these discrete data types [49]. Knowing the 

exact nature of these interactions is very important for the point of translation biology. 

Suppose anyone wants to design a drug targeting a specific component of the cell signal-

ing network. While the drug might work on a particular target protein, they must know how 

this target protein interacts with all the parts of the cell signaling network. This knowledge 

of detailed interaction networks reduces off-target drug interaction. Therefore, abstract 

and dynamic models are both essential for capturing valuable information in the cell 
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signaling network. Structural or static networks correlate several pathways into an exten-

sive network. Even though these networks are vast, they lack the directionality. Some of 

these static network only provides snapshot of the system at a specific point.  An example 

of such a network is the gene co-expression network which only captures the gene ex-

pression pattern under a particular condition. They are not good at capturing the dynamic 

nature of any biological system [50].  

Ordinary Differential Equations (ODE) are very good at capturing the dynamical 

characteristics of the biological system. Cellular interactions in such systems are a collec-

tion of chemical reactions and follow chemical rate laws. These laws represent better by 

the ODE. The only problem with the ODE model is that they have a vast parameter space. 

This parameter space is problematic for a large-scale network like biological systems. 

Therefore, a combination of such models is the logic-based ODE models. We do not need 

vast knowledge about the parameters for the logic-based ODE models. The only infor-

mation we need here is the directionality. Therefore they are relatively easy to construct 

while they can easily catch the system wide response to perturbation [51].  

The Hill equation is one of the most commonly used mathematical methods for 

studying enzyme reaction kinetics [52]. In biochemical interaction analysis, its primary use 

is for cooperative binding. The Hill equation describes the fraction of macromolecules sat-

urated by ligand as a function of ligand concentration mathematically presented as- 

𝜃 =
[𝑙]𝑛

𝑘𝑑+[𝑙]𝑛
 = 

[𝑙]𝑛

(𝑘𝑎)𝑛+[𝑙]𝑛
 =  

1

(
𝑘𝑎
[𝑙]

)
𝑛

+1
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In this equation, θ is the fraction of occupied sites where the ligand can bind to the 

active site of the receptor protein. [l] is the free(unbound) ligand concentration, kd is the 

apparent dissociation constant derived from the law of mass action, ka is the ligand con-

centration producing half occupation, and n is the Hill Coefficient. When n>1, the cooper-

ative binding is positive. If n<1, the cooperative binding is negative, and n=1 indicates no 

cooperative binding. For any biochemical species x ∈ [0, 1], activation of x, F(x) modeled 

as normalized Hill function of the following form: 

𝐹(𝑥) =
𝐵𝑥𝑛

𝑘𝑛+𝑥𝑛 with 𝐵 =
𝐸𝐶50

𝑛 −1

2𝐸𝐶50
𝑛 −1

 and 𝑘 = (𝐵 − 1)
1

𝑛⁄  

In this equation, n is the Hill Coefficient related to the curve's steepness, and EC50 

is the enzyme concentration at which half-maximal activation occurs. Standard logic gate 

functions capture reaction interactions:  

X AND Y = F(X)F(Y),  

X OR Y = F(X) + F(Y) – F(X)F(Y),  

X AND NOT Y = F(X)(1-F(Y)) 
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Figure 1.4. Fibroblast mechanotransduction network constructed using the logic-based 

ODE models. 

Our lab has expertise in building cardiac cell signaling networks by manually curat-

ing biochemical transduction pathways from existing literature searches and their experi-

mental validation (Figure 1.4). A study by Rogers et al. [53] has expanded a fibroblast 

mechano-chemo signal transduction capable of accurately predicting fibrosis-related pro-

tein expression in response to biochemical and biophysical force. They have shown the 

biochemical dose-response behavior under varying levels of mechanical stimulation. Their 

comprehensive model simulations of fibroblast responses to drugs in low- or high-tension 

contexts and identified several drug combinations that adapted fibrotic activity to the local 

mechanical state.  
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In this dissertation I will conduct the following research: In Aim 1, we will build an 

interpretable ML model for CRT response using biomarker and biomechanical features. 

We will build interpretable ML models using blood derived biochemical markers plus echo-

cardiography-derived biomechanical features. These features will help us identify the pa-

tients who respond positively to CRT treatment before implanting the CRT device. Also, 

our model will show patient-specific features and how these features contribute to CRT.  

In aim 2, we will infer a gene regulatory network using the novel inference algorithm and 

filter them in the context of fibrosis to build a dilated cardiomyopathy specific network. We 

will use RNAseq data from Myocardial Applied Genomic Network (MGNet) study for this. 

In aim 3, we will developed a logic-based model for the mechanistic network of cardiac 

fibrosis integrating the gene regulatory network derived from aim 2 into a previously con-

structed cardiac fibrosis signaling network model. This integrated model implemented bi-

ochemical and biomechanical reactions as ordinary differential equations based on nor-

malized Hill functions. The model elucidated the semi-quantitative behavior of cardiac fi-

brosis signaling complexity by capturing multi-pathway crosstalk and feedback loops. Per-

turbation analysis predicted the most important nodes in the mechanistic model and pa-

tient-specific simulations helped identify which molecules are most highly correlated with 

clinical measures of patient cardiac function. 
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Chapter 2 

Interpretable machine learning predicts cardiac resynchroniza-

tion therapy responses from personalized biochemical and bio-

mechanical features 

2.1 Introduction 

Cardiac resynchronization therapy (CRT) is the preferred treatment method for pa-

tients with ventricular desynchrony accompanied by reduced ejection fraction and bundle 

branch block [1]. CRT reduces the risk of sudden heart failure due to the weakening of the 

heart muscle and can help alleviate the symptoms of heart failure and improve the quality 

of life [2]. The American Heart Association and American College of Cardiology 

(AHA/ACC) 2008 and European Society of Cardiology (ESC) 2007 guidelines recommend 

the following criteria for selecting patients for CRT: patients with sinus rhythm, left ventric-

ular ejection fraction ≤ 35%, QRS > 120ms, NYHA class III/IV [3]. Unfortunately, roughly 

one-third of CRT recipients do not respond favorably to the treatment [4]. Given its ex-

pense and surgical risks, the ability to accurately predict individual patient benefits from this 

treatment could hold great clinical value [5]. 

Spinale and colleagues recently showed that specific serum protein biomarkers 

hold predictive power for CRT response [6]. Notably, elevated levels of the soluble sup-

pressor of tumorgenicity-2 (sST-2), soluble tumor necrosis factor receptor-II (sTNFr-II), 

matrix metalloproteinases-2 (MMP-2), and C-reactive protein (CRP) indicated a reduced 

likelihood of benefit across ~800 patients from the SMART-AV CRT trial. Other recent 
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studies have tested the utility of advanced machine learning algorithms for predicting the 

response to CRT using various patient data, including electronic health records, clinical 

imaging, and others [7–11]. These studies have shown modest predictive capabilities but 

have primarily utilized data types that largely ignored biochemical features such as serum 

biomarkers. 

Most machine learning models are not easily interpretable due to their complex 

black-box nature for clinical decision-making [12-13]. A fair application of machine learning 

models in clinical datasets requires understanding the interaction of features with each 

other and target variables. Complex black box models such as Support Vector Machines 

(SVM), Random Forest (RF), and Artificial Neural Networks (ANN) though provide more 

accuracy but are not easy to interpret [14]. Therefore, they are limited in the use of clinical 

decision making. General Data Protection Regulation (GDPR) by European Union (EU) is 

already restricting machine learning in clinical decision-making [15]. Model interpretability 

is very important in clinical data science and should be part of clinical decision-making. 

Interpretable machine learning techniques are of two types: model-specific and model-

agnostic [16]. Model-specific specific interpretable methods change the interpretability 

with the change of the model. Model agnostic interpretability is not particular to any spe-

cific models [17]. Therefore, these explainabilities do not change with a new model. We 

can also interpret machine learning models on a global or local scale. Global model inter-

pretability techniques show the response of individual features to the overall model out-

come. Local model interpretation only deals with a small part of the model. We have used 

model agnostic Global method SHapley Additive exPlanations (SHAP) [19] and Partial 

Dependence Plots (PDP) [20] for this study. We also used Local Interpretable Model ag-

nostic Explanations (LIME) methods [21] for exploring the model locally. 
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In this study, we sought to computationally predict and interpret the patient re-

sponse to CRT using a combination of demographics, physical characteristics, co-morbid-

ities, medication history, circulating biomarker levels, and echo-based LV assessment. 

Building upon the previous work of   Spinale et al., we combined their biomarker-based met-

ric with various features from the SMART- AV clinical patient data [23]. We assessed the 

performance of our resulting ensemble machine learning classification model using re-

ceiver-operating curve analysis for a hold-out patient dataset and comparisons of 6-month 

cardiac measures between model-predicted responder and non-responder groups. We 

also performed SHapley Additive exPlanations (SHAP) analysis to help interpret the global 

importance of all features included in the model. We also demonstrated how the top three 

features affect the overall model outcome. Finally, we have shown the top 10 features for 

two CRT recipients and how these ten features determine their response to CRT. 

2.2 Methods 

2.2.1 Study Population and Data Preparation 

The data source for our model training and testing was the SMART-AV trial pub-

lished previously [22]. In that study, 794 patients with NYHA class II and IV, LVEF ≤ 35%, 

and QRS duration ≥ 120 milliseconds were randomly assigned to different defibrillation 

protocols and evaluated at 0, 3, and 6 months with echocardiography and serum bi-

omarker panels. The complete list of recorded features is organized in Table 1. A positive 

CRT response was defined as a decrease in ESV of at least 15 mL between 0 to 6 months 

post-surgery [23],  and the patient cohort held a nearly equal split of responders (n = 396) 

and non-responders (n=398). 
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Patients with missing data were imputed using two different methods for our study. 

Surgical intervention features, PCI and CABG, were imputed to match the most frequent 

value for each of those features. Categorical data were transformed using one-hot encod-

ing. Non- categorical data/continuous data were mean imputed, followed by the scaling 

using the StandardScaler methods [23]. The patients were split into training and testing da-

tasets, with 80% in the training dataset (n=635) and 20% in the testing dataset (n=159).  

In addition to feature imputation and scaling, continuous variables were compared 

between CRT responders vs. non-responders using the t-test. The mean and the standard 

deviation are reported with respective p-values. Categorical variables were compared us-

ing the chi-square test. The result from the statistical analysis is presented in Table 2. 

2.2.2 Machine Learning Model Development 

Using Python 3.6.4 and scikit-learn 0.23.2, we tested a wide variety of supervised 

classification machine learning algorithms, including K-Nearest Neighbors, Support Vector 

Classifier, Decision Tree Classifier, Random Forest, Adaptive Boosting, Gradient Boosted 

Classifier, Gaussian Naive Bayes classifier, Linear Discriminant Analysis, XGBoost, Cat-

boost, Logistic regression, and Multi-Layer Perceptron Neural Network [24]. In addition, 

we tested Stacked and Voting ensembles with the training dataset [25-27]. Each model 

was tuned using a cross-validated grid search across hyperparameters with parameters 

selected to maximize the area under the receiver-operating characteristic curve (AUC) for 

binary classification of patients in the training set. Notably, the algorithm only used 0-month 

(pre-surgery) feature data to predict the 6-month post-surgery response vs. non-response 

outcome. Model performance was evaluated using 5-fold cross-validation, and the final 

model was selected based on the highest mean AUC. We have only presented the 
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performance of the top 6 models in Table 3. We have also demonstrated the overall model-

predicted response rate for CRT responders vs. non-responders and stratified them based 

on the model-predicted responses probability score. We have also shown how the 

changes in secondary variables are related to the model-predicted response. 

Feature selection was performed using a backward stepwise methodology, elimi-

nating features that did not improve the model training score. A guiding hypothesis for this 

work was that combining the previously identified serum biomarkers with demographic and 

echo-based features would improve predictive capability. To evaluate this hypothesis, we 

trained and tested our ensembled model using three different sets of features, including all 

features listed in Table 1, and (1) no biomarker values, (2) all 12 biomarker values, or (3) 

a biomarker score based on previous analysis by Spinale et al. [6]. The biomarker score is 

calculated for each patient by counting how many of the four critical biomarker analytes 

exceed a risk threshold (MMP-2, sST-2, CRP, sTNFR-II). All these results are presented 

in Table 4.  

2.2.3 Model Interpretation 

We have used several interpretable techniques to describe our model. To help in-

terpret global feature importance, we performed a SHapley Additive exPlanations (SHAP) 

analysis using the Python tool SHAP 0.37.0 KernelExplainer and KernelSHAP [19]. We 

have also shown the partial dependence plot [20] to present the effect of the top three 

features on the overall model. Finally, we picked two examples of CRT recipients to show 

how the model behaves locally for responders and non-responders. To show that local 

behavior, we have used the LIME tool to create the LIME graph [21]. 



35  

2.3 Results 

2.3.1 Model Predictive Performance 

Across all the algorithms tested, a majority-voting ensemble classification model 

demonstrated the best performance. The ensemble consisted of nine equally weighted 

models, each voting with their respective probability of surgical success: a Linear Discri-

minant Analysis classifier, a Catboost Classifier, a Gradient Boosted classifier, a Ran-

dom Forest classifier, an XGBoost classifier, a Support Vector Classifier, a 3-layer Multi-

level Perceptron Neural Network, a Logistic Regression Classifier, and an Adaboost clas-

sifier. Without using biomarker data, our algorithm approach demonstrated modest pre-

dictive performance with an AUC of 0.63 in the training patient set (Table 3). The addition 

of biomarker data substantially improved model performance, with an AUC reaching 0.75 

in the training patient set and almost 0.784 in the test patient set using either all 12 bi-

omarkers or the simplified biomarker composite score (Table              2.1, Figure 1A). Using the 

biomarker score reached the highest AUC in both the training and test patient set, so we 

proceeded with the biomarker score model for the remaining analyses. 

Our binary classification model correctly predicted 71% of patient responses in the 

test set, with 61/88 classified responders and 52/71 classified non-responders matching 

the trial result    (Figure 2.1B). To analyze more detailed patient stratifications, we separated 

patients into five groups according to the model-predicted probability of response (i.e., p 

= 1-0.8, 0.8-0.6, 0.6-0.4, 0.4-0.2, or 0.2-0). Across the stratified patients, the model cor-

rectly identified 96% of patients in the highest and lowest response groups, with 14/15 

patient responders in the high probability score group and 8/8 non-responders in the low 

probability score group (Figure 2.1B). 



36  

In addition to response rate (which is judged by a strict over/under -15mL threshold 

for ESV change over six months), we also explored quantitative changes in left ventricle 

remodeling metrics across the model classification groups (Figure 2.2). Over six months 

after the procedure, patients classified by the model as responders showed significant 

reductions in both ESV and EDV, while patients classified as non-responders showed no 

change in ESV and a slight increase in EDV over six months. Both responders and non-

responders showed increased stroke volumes and ejection fractions, but the model-pre-

dicted responders showed a statistically more significant improvement in ejection fraction 

(~40% compared to ~20%). These discrepancies between groups were amplified further 

across the 5-group patient stratification using the model probability score (Figure 2 . 2B). 

In the most extreme case, the high response probability group exhibited almost a 75% 

improvement in ejection fraction, while the low response probability group exhibited no 

change in ejection fraction over the 6 months after surgery. 

2.3.2 Model Interpretability 

To improve the interpretability of our ensemble classification algorithm, we per-

formed a SHAP analysis and corresponding visualization of feature importance (Figure 

2.3A). Briefly, this technique calculates a collective, global average of how much each 

feature value contributed to each patient’s classification in order to indicate both magni-

tude and direction that each feature contributes to the overall probability of falling on either 

side of the binary classifier (i.e., responders vs. non-responders). SHAP analysis indicated 

that, in general, lower 1D stretch, lower biomarker score, absence of ischemic cardiomyo-

pathy, lower QOL score, and higher age were strong contributors within the algorithm for 

identifying responders. In Figure 2.3B, we have shown the partial dependence between 
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CRT response and the top three features from our fitted Majority Voting model: 1D stretch, 

Biomarker Score, and Ischemic Cardiomyopathy. From the topmost plot, we could see 

that the chance of responding to CRT significantly decreases with increasing 1D Stretch 

between 1.03 to 1.39. The biomarker score follows the same trend. Increased biomarker 

score results in lower response to CRT. Finally, the history of Ischemic Cardiomyopathy 

also decreases the chance of CRT response. 

We also implemented our model locally using the LIME method. We have pre-

sented two local interpretations of our model. These interpretations demonstrated how 

patient-specific biomarkers vary for response vs. non-response to CRT. Figure 2.4A 

showed a patient with a higher probability of responding to CRT (0.81) and the top ten 

features contributing to that. For this patient, 1D Stretch of less than or equal to 1.08 and 

no history of RBBB, Atrial Flutter, Ischemic Cardiomyopathy, AT-PSVT, PAF, and SA are 

helping to move the patient to the response regimen. But No history of VT-SVT, Non-

stained VT, and Biomarker Score of more than 2 contribute to non-responsiveness for this 

patient. Figure 2.4B showed a patient with a higher probability of non-responding to CRT 

(0.75) and the top ten features contributing to that. For this patient, a 1D Stretch of greater 

than 1.14, a history of Ischemic Cardiomyopathy, and no history of variables VT-SVT, Afib, 

and Nonsustained VT are helping to move the patient to the non-response group. But No 

history of RBBB, Atrial Flutter, SA surgery, PAF, and Biomarker Score of zero is responsi-

ble for a small probability of response in this patient. 

2.4 Discussion 

Machine learning has a trust issue in clinical decision-making due to the black-box 

nature of the machine learning algorithms [28]. Most sophisticated black-box algorithms 
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provide a higher accuracy but are impossible to interpret in terms of patient variables. On 

the other hand, the Glassbox machine learning model, such as linear regression, though 

very easy to interpret but comes with a risk of low model accuracy. We need to balance 

accuracy and interpretability to adopt machine learning for therapeutic decision-making 

like CRT [29]. Our majority voting algorithm has higher accuracy and covers a higher area 

under the curve (Figure 2.1, Table 2.3/2.4). Also, in this study, we used a biomarker scoring 

system to improve the predictive capability of our model. The only study that used bi-

omarkers to predict CRT response was the COVERT-HF study [30]. Though they used a 

wide variety of biomarkers, our study showed that a biomarker scoring consisting of four 

biomarkers: MMP-2, sST-2, CRP, and sTNFR-II, is enough to build an interpretable model 

with high accuracy and AUC than using twelve biomarkers (Table 2.4). 

While CRT offers significant clinical benefits for many heart failure patients, a large 

proportion of the population does not respond positively to treatment [4]. This high patient-

to-patient variability presents a need for predictive methods to help identify which patients 

will or will not benefit from CRT based on information obtained prior to the procedure. Sev-

eral studies have developed computational algorithms spanning black-box machine learn-

ing and sophisticated electromechanical finite element modeling to help predict CRT re-

sponse based on varying information, including electronic health records, clinical imaging, 

demographic data, and more [7-11]. Some of the studies have had moderate predictive 

success, but most studies have generally focused their analyses on only one type of data 

source, and very little attention has been given to the predictive capability of circulating 

biomarker panels. We hypothesized that integrating multiple data sources and including 

biochemical levels from serum panels would significantly improve the predictive ability of 

machine learning algorithms. Using previously obtained patient data in the SMART-AV 
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trial, we built a novel algorithm that integrates demographic data, physical characteristics, 

medical history, circulating biomarker levels, and echocardiography data to improve the 

prediction of CRT response prior to surgical intervention. In a previous study, Spinale and 

colleagues showed significant predictive power for identifying CRT response using pre-

surgical levels of specific serum protein biomarkers (sST-2, sTNFr-II, MMP-2, and CRP)[ 

6]. Given the crucial roles of inflammation and extracellular matrix turnover for regulating 

cardiac remodeling related to CRT, it should be no surprise that circulating proteins are as-

sociated with CRT response either as upstream regulators or downstream correlates. We 

combined the Spinale et al. patient biomarker score with 40 other input features spanning 

echo-based LV metrics, medical history, demographic information, and basic clinical as-

sessments. Using these features enabled our ensemble machine learning classifier to cor-

rectly identify 71% of patient response outcomes, achieving an AUC of 0.784 – a substan-

tial improvement over the previous study using the biomarker score alone. 

A significant limitation of many machine learning approaches is their ‘black-box’ 

nature of predictions, or in other words, their un-explainability. Future adoption of artificial 

intelligence into the clinical decision-making process will undoubtedly be affected by an 

ability to explain (to some degree at least) why models predict what they predict and to 

identify the driving variables within the algorithms, especially for high-risk and costly deci-

sions like CRT treatment. In order to improve such interpretability, a growing emphasis is 

being put on ‘glass-box’ or ‘white-box’ techniques . We employed SHAP analysis to eluci-

date the relative contribution of each feature to the patient response probability output of 

our model (Figure 2.3). This analysis revealed that important features came from diverse 

data sources, with the top five features including echo-based data (1D stretch), serum pro-

tein data (biomarker score), co-morbidity data (ischemic cardiomyopathy), clinical 
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evaluation data (QOL score), and demographic data (patient age). In addition, LIME re-

vealed features responsible for personalized prediction and showed diverse feature sets 

responsible for individual response to treatment. All of these interpretable techniques only 

provide a clear picture of the mechanistic insight of the model, not the causality [31]. Of 

course, we must emphasize that the power of these features to predict CRT response is in-

dicative of their correlation to cardiac remodeling and not necessarily indicative of their 

mechanistic causation of cardiac remodeling. Additional notable limitations include a rel-

atively short follow-up time of 6 months and a relatively small patient sample size (com-

pared to thousands of patients’ data used in electronic health record-based algorithms). 

Current clinical guidelines define specific eligibility criteria for physicians to base 

their CRT    recommendations [32]. The increasing accuracy of computational predictions 

suggests that incorporating personalized model-based probabilities could benefit such rec-

ommendation criteria. Encouragingly, our patient stratification demonstrated 96% accuracy 

in the highest and lowest response subgroups with significant differences in volume 

changes and functional changes over six months post-CRT. Our algorithm was built and 

tested using only baseline, pre-CRT measurements, demonstrating that it is feasible for 

machine learning algorithms to harness a composite set of data from the demographic, 

functional, and biomarker domains obtained at the time of patient evaluation for CRT and 

provide predictive value on the ultimate CRT response. As future model developments are 

likely to further improve prediction accuracy across a broader number of patients, future 

clinical and ethical discussions will prove vital to appropriately leverage this predictive infor-

mation into CRT decisions. 
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2.5 Conclusion 

 In this study, we have shown that integrating multiple types of data and biomarkers 

scoring improves the predictive capability of machine learning algorithms to identify CRT 

responders and non-responders. Our ensemble model combining all data types has better 

predictive power than only using cardiac functional markers. We have also shown the 

Global & Local Explainability of our ML model in terms of overall and personalized predic-

tion. These explainabilities will be helpful to understand the response to the treatment in 

depth. They will help understand the nature of response for individual CRT recipients. 

Therefore, this research perfectly aligns with the goal of personalized precision medicine 

in cardiovascular diseases. 
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2.8 Figures Legends  

Figure 2.1. Overall performance of the machine learning model. 

The receiver-Operating Characteristic curve for the supervised, binary classification en-

semble model demonstrates high predictive capability with an area-under-the-curve of 

0.784 for the majority voting classifier. (B) Model-predicted responders exhibited a 69% 

response rate (61/88), while model-predicted non-responders exhibited only a 27% re-

sponse rate (19/71). Further stratification based on the model-predicted responses prob-

ability score demonstrated a greater predictive accuracy. 

Figure 2.2. Cardiac remodeling across patient stratifications. 

Model-predicted responders showed statistically significant differences in left ventricle re-

modeling metrics compared to the model-predicted non-responders. In particular, binary 

classification (A) identified a responder group with substantially greater improvements in 

ESV, EDV and EF from 0-6 months after CRT intervention. (B) More detailed patient strat-

ification further amplified the remodeling differences across groups. 

Figure 2.3. SHAP plot and PDP plot showing the feature importance and marginal 

effect of one feature at a time in the prediction model. (A) SHAP plot showing the 

feature importance in our model. 1D stretch, biomarker score, ischemic cardiomyopathy, 

QOL score, and age were indicated as the top 5 most important features for determining 

patient response probability. The scatter width and separation indicate the feature im-

portance, and the color indicates which direction of that feature value is predictive of high 
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vs. low patient response. (B) An increase in 1D Stretch from (1.03 to 1.39), Biomarker 

Score, and History of Ischemic Cardiomyopathy increases the risk of not responding to 

CRT. 

Figure 2.4. LIME plot showing local approximation and interpreting the model lo-

cally for two patients; responder vs non-responder. LIME plot is also explaining how 

top 10 features contributing for individualized response to CRT. (A) 1D Stretch of ≤ 1.08, 

and no history of RBBB, Atrial Flutter, Ischemic Cardiomyopathy, AT_PSVT, PAF, and SA 

surgery increased probability of responding favorably to CRT treatment. (B) 1D Stretch of 

> 1.14 and no history of VT-SVT, Afib, and Non-sustained VT increased the probability of 

not responding to treatment. On the other hand, history of Ischemic Cardiomyopathy also 

greatly affecting the non-response to CRT. 
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2.9 Tables 

Table 2.1. Variables acquired from the SMART-AV clinical trial. 

Domain Individual Feature 

General 

Character-

istics (9) 

Sex, Age, Height, Weight, Systolic blood pressure (BPsys), Diastolic 

Blood Pressure (BPdia), Heart Rate at Rest (HRrest), QOL Score, 6-Mi-

nute Walk Distance 

Co-Morbidi-

ties (10) 

Atrial Fibrillation (Afib), Paroxysmal Atrial Fibrillation (PAF), Atrial Flut-

ter, Renal Disease, Chronic Obstructive Pulmonary Disease (COPD), 

Premature Ventricular Contractions (PVC), Atrial Tachycardia Paroxys-

mal Supraventricular Tachycardia (AT-PSVT), History of Left Bundle 

Branch Block (LBBB), History of Right Bundle Branch Block (RBBB), Is-

chemic Cardiomyopathy 

Surgical 

History (3) 

Sinoatrial (SA) Node Surgery, Coronary Artery Bypass Graft (CABG), 

Pre-Cutaneous Coronary Intervention (PCI) 

Medications 

(3) 

Diuretics, Ace inhibitors, or ARBs (ACE-ARB), Digoxin 

Echo-based 

Assess-

ment (7) 

Left Ventricular End Diastolic Volume (LVEDV), Left Ventricular End 

Systolic Volume (LVESV), Left Ventricular Ejection Fraction (LVEF), 

Stroke Volume (SV), EDV/ESV, 1-Dimensional Stretch (cube root of 

EDV/ESV), Center size 

ECG (12) AV Interval without Atrial Pacing, PR Interval without Atrial Pacing, 

QRSWidth, VT None,  VT Non-sustained, VT Supraventricular 
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Tachycardia (VT-SVT), Sick Sinus, Paced AV Delay, Echo Optimized 

AV Delay, Iterative AV Delay, Fixed AV Delay, Sensed AV Delay 

Biomarker  Matrix Metalloproteinase 2 (MMP-2), Matrix Metalloproteinase 9 

(MMP9), Suppression of Tumorigenicity 2 (sST-2), C-Reactive Protein 

(CRP), N-terminal pro B-type Natriuretic Peptide (NT- proBNP), Tissue 

Inhibitors of Metalloproteinase 1 (TIMP1), Tissue Inhibitors of Metallo-

proteinase 2 (TIMP2), Tissue Inhibitors of Metalloproteinase 4 (TIMP4), 

Soluble Glycoprotein 130 (sGP130), Soluble Interleukin 2 Receptor Al-

pha (sIL2Ra), Tumor Necrosis Factor Receptor II (sTNFR-II), Interferon 

Gamma (IFNg) 

 

*** All the Biomarkers were used for creating the initial model. MMP-2, sST-2, CRP, and 

sTNFR-II are used for Biomarker Scoring. 
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Table 2.2. Baseline characteristics of CRT Responders and Non-Responders 

Feature Name All 

(n=794) 

CRT Re-

sponder 

(n=396) 

CRT Non-Re-

sponder 

(n=398) 

p-value 

Continuous Variables, unit  

Age, year 65.8±10.8 65.6±10.7 66.1±10.9 0.54 

Height, cm 171.4±10.4 171.6±10.0 171.3±10.7 0.67 

Weight, kg 87.4±20.8 88.2±20.6 86.6±20.9 0.27 

BPSys, mm Hg 123.9±20.3 123.2±19.4 124.6±21.0 0.32 

BPDia, mm Hg 71.4±13.4 71.3±13.5 71.5±13.3 0.84 

HRrest, bpm 71.1±12.3 70.9±12.7 71.3±11.0 0.68 

QOL Score 46.6±24.9 50.0±25.8 43.3±23.5 <0.001 

6MW, m 273.4±124.6 262.3±133.1 284.5±114.6 0.012 

LVEDV, mL 176.7±72.1 162.9±66.9 190.5±74.5 <0.001 

LVESV, mL 131.6±65.6 118.0±60.0 145.1±68.2 <0.001 

LVEF, % 27.7±8.8 29.7±9.3 25.6±7.8 <0.001 

SV, mL 45.1±14.1 44.9±14.6 45.3±13.6 0.65 

EDV/ESV Ratio 1.4±0.2 1.5±0.2 1.4±0.2 <0.001 

1D Stretch/Cube Root 

of EDV/ESV 

1.1±0.0 1.1±0.1 1.1±0.0 <0.001 

AV Interval (Without 

Atrial Pacing), ms 

252.5±69.1 252.7±70.6 252.2±67.6 0.92 
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PR Interval (Without 

Atrail Pacing), ms 

197.2±49.8 200.2±51.3 194.2±48.3 0.09 

QRS Width (Without 

Atrial Pacing), ms 

153.6±27.3 150.6±26.7 156.7±27.6 0.002 

Iterative AV Delay 

(Recommended), ms 

127.7±38.2 131±36.3 123.4±39.6 0.002 

Paced AV Delay (Rec-

ommended), ms 

174.9±39 181.2±41.2 168.6±37.7 <0.001 

Sensed AV Delay 

(Recommended), ms 

127.1±37.3 132.4±39 121.8±34.9 <0.001 

Biomarker CRT Score 

(0,1,2,3,4) 

1.7±1.2 2±1.1 1.4±1.1 <0.001 

Binary Categorical Variables, n (%)  

Sex (Male)  565 (67.4%) 281 (71%) 254 (63.8%) 0.04 

Atrial Fibrillation (Afib) 99 (12.5%) 57 (14.4%) 42 (10.6%) 0.13 

PAF 97 (12.2%) 56 (14.1%) 41 (10.3%) 0.12 

Atrial Flutter 10 (1.3%) 9 (2.3%) 1 (0.3%) 0.03 

Renal Disease 117 (14.7%) 63 (15.9%) 54 (13.6%) 0.41 

COPD 115 (14.5%) 64 (16.2%)) 51 (12.8%) 0.22 

PVC 13 (1.6%) 8 (19.7%) 5 (1.3%) 0.57 

AT-PSVT 12 (1.5%) 8 (2%) 4 (1%) 0.38 

LBBB 611 (77%) 272 (68.7%) 339 (85.2%) <0.001 

RBBB 103 (13%) 78 (19.7%) 25 (6.3%) <0.001 
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Ischemic Cardiomyo-

pathy 

445 (56%) 271 (68.4%) 174 (43.7%) <0.001 

SA Surgery 93 (11.7%) 58 (14.6%) 35 (8.8%) 0.01 

CABG 257 (32.4%) 163 (41.2%) 94 (23.6%) <0.001 

PCI 248 (31.2%) 155 (39.1%) 93 (23.4%) <0.001 

Diuretic 637 (80.2%) 316 (79.8%) 321 (80.7%) 0.83 

ACE-ARB 674 (84.9%) 325 (82.1%) 349 (87.7%) 0.03 

Digoxin 176 (22.2%) 96 (24.2%) 80 (20.1%) 0.19 

Small Centersize 176 (22.2%) 86 (21.7% 90 (22.6%) 0.83 

Sick Sinus 53 (6.7%) 24 (6.1%0 29 (7.3%) 0.58 

VT None 654 (82.4%) 311 (78.5%) 343 (86.2%) 0.006 

VT Non Sustained 95 (12%) 51 (12.9%) 44 (11.1%) 0.5 

VT SVT 3 (0.4%) 2 (0.5%) 1 (0.3%) 0.99 

Echo Optimized AV 

Delay Group 

261 (32.9%) 128 (32.3%) 133 (33.4%) 0.8 

Fixed AV Delay Group 262 (33.0%) 139 (35.1%) 123 (30.9%) 0.24 
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Table 2.3. Comparison of the performance of the top 6 models in our study using Bi-

omarker Scoring 

Model Name Accuracy 

Train 

Accuracy 

Test 

Recall 

Train 

Recall 

Test 

ROC-

AUC 

Test 

F1 

Test 

MCC 

Test 

Voting Classi-

fier 

1.000 0.730 0.997 0.713 0.784 0.726 0.460 

Stacking Clas-

sifier 

0.855 0.723 0.915 0.800 0.772 0.744 0.451 

Gradient Boost-

ing Classifier 

1.000 0.730 1.000 0.625 0.775 0.699 0.470 

Logistic Re-

gression 

0.706 0.692 0.733 0.763 0.766 0.713 0.387 

Random Forest 

Classifier 

0.935 0.679 0.940 0.750 0.757 0.702 0.361 

Adaptive 

Boosting Clas-

sifier 

0.751 0.667 0.802 0.775 0.723 0.701 0.340 
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Table 2.4. Area-Under-the-Curves (AUC) for the ML models with or without the biomarker 

data. 

 

 

 

 

 

Feature Set Biomarker Feature Used Train AUC 

(n=635) 

Test AUC 

(n=159) 

No Biomarkers None 0.63 0.74 

All Biomarkers MMP-2, MMP9, sST-2, CRP, 

NT- proBNP, TIMP1, TIMP2, 

TIMP4, sGP130, sIL2Ra, 

sTNFR-II, IFNg 

0.75 0.77 

Biomarker Score 

(0,1,2,3,4) 

MMP-2 (≥982,000 pg/mL), sST-

2(≥23,721 pg/mL), CRP (≥7381 

ng/mL), sTNFR-II (≥7,090 

pg/mL) 

0.75 0.78 
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2.10 Figures 
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Chapter 3 

Building a Fibrosis Related Gene Regulatory Network in Dilated 

Cardiomyopathy Patients 

3.1 Introduction 

Cardiomyopathies are pathologies of cardiac muscle that result in the change of 

the mechanical and electrical disruption of the heart [1]. Cardiomyopathies have several 

phenotypes, such as Hypertrophic (HCM), Dilated (DCM), Peripartum (PPCM), and Re-

strictive Cardiomyopathy [2]. Some types of cardiomyopathies are common in young 

adults (DCM), while some types of cardiomyopathies may result from physical change due 

to age (restrictive) or pregnancy (PPCM). Dilated cardiomyopathy is non-ischemic cardi-

omyopathy that may result in ventricular dysfunction even without risk factors such as 

coronary artery disease, valvular disease, or congenital disorders. According to American 

Heart Association definitions, DCM can be hereditary and nonhereditary. Genetic cardio-

myopathy involves the mutation of genes vital for cardiac functions. Nonhereditary dilated 

cardiomyopathy results from bacterial infection, protozoal infection, viral infections, auto-

immune reactions, toxin exposure, and adverse neuromuscular changes. Dilated cardio-

myopathy sometimes results in no symptoms, especially in the early stage of the disease. 

As the symptoms progress, cardiomyopathy patients feel fatigued, have shortness of 

breath during physical activity or while lying down, reduced ability to exercise, swelling 

(edema) in the legs, feet, and abdomen, discomfort in the chest, and rapid palpitations. 

Globally the incidence of cardiomyopathy has not drastically decreased even with 
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improved treatment and disease management [3]. According to a CDC study, 1 in 500 

adults have cardiomyopathy-related conditions [4]. 

In the USA, several studies have attempted to identify risk factors for cardiovascu-

lar diseases. Some of these studies have been incredibly successful and have contributed 

to our predictive knowledge of cardiovascular disease [5]. One study, the Myocardial Ap-

plied Genomic Network (MAGNet) [7], collected extensive data from the left ventricle of 

DCM patient. The data of this study has been widely used to investigate the population 

genetics of DCM. Our study is unique in terms of its goal. While other studies aim to in-

vestigate the differential gene expression in dilated cardiomyopathy compared to non-fail-

ing patients, our goal is to identify the fibrotic factors involved in dilated cardiomyopathy. 

A large part of dilated cardiomyopathy involves hereditary changes [8]. Therefore, 

it is important to understand the genetic landscape of cardiac myopathy. Several genes 

are involved in dilated cardiomyopathy phenotypes. The main genetic factors of dilated 

cardiomyopathy are Titin (TTN), Lamin A/C (LMNA), Myosin heavy chain (MYH7), Myosin 

binding protein C (MYBPC3), Myopalladin (MYPN), Sodium Channel alpha unit (SCN5A), 

BaCl2-associated Athano Gene 3 (BAG3), and Phospholamban (PLN). While they are 

important biomarkers for DCM, little efforts have been made to integrate these markers in 

a multipath way network of interactions to mechanistically understand their role in cardiac 

remodeling.  

Myocardial fibrosis, which is defined as the deposition of extracellular matrix in the 

heart, is an important remodeling process and is intrinsically involved with cardiomyopathy 

phenotypes [9]. Therefore, it is important to study cardiomyopathy in the context of fibrosis. 

The very first step is to understand the genomic signature/hallmark signature of cardiac 
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fibrosis to find a link between the genetic signature of DCM and fibrosis. Gene regulatory 

networks are collections of different molecules within cells that work together to activate 

specific target molecules, leading to specific phenotypes. These molecules include DNA, 

RNA, and proteins [10]. Transcription factors (TFs) and their target relationships are im-

portant components of gene regulatory networks. Differential gene regulatory networks 

activate different cellular responses by activating different genes and transcription factors 

in the gene regulatory networks. Therefore, specific disease phenotypes have their own 

network of transcription factors (TFs). In this study, we are studying such networks in the 

context of cardiac fibrosis in dilated cardiomyopathy patients. 

This chapter has these purposes: identifying important genetic modules that differ 

between non-failure controls (NF) and DCM patients, identifying pathways that are in-

volved in this differential expression and finally identifying the transcription factors that 

paly major role in cardiac fibrosis in DCM patients. The purpose of the study is depicted 

in Figure 3.1. The first step involves differential expression analysis, followed by gene set 

enrichment analysis and weighted gene co-expression analysis. This is followed by infer-

ring a large subnetwork in the upregulated and downregulated genes in the differentially 

expressed gene analysis. For the second part, we have built a transcription factor and 

target network and subsequently filtered it to identify the TF factors and targets responsi-

ble for causing fibrosis in DCM patients. These filtered transcription factors will be used 

subsequently to build the composite network in aim 3. 
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3.2 Materials and Methods  

3.2.1 Data Source 

The study was conducted using the Myocardial Applied Genomic Network Study 

(MAGNet) data source. MAGNet aimed to collect human left ventricle tissues for research 

purposes. The left ventricular free-wall tissue was collected from cardiomyopathy patients 

during cardiac surgery for heart transplant. For non-failing controls, samples were col-

lected from unused donor hearts with normal functions [4]. RNA-Sequencing libraries were 

prepared against the hg19/hGRC37 using the STAR aligner. The RNA-seq data from this 

study has been stored in the NCBI GEO database (GSE141910). Two sets of data were 

utilized for this study. Raw read counts from the study were used for differential expression 

analysis, and these counts were obtained from the study's GitHub page 

(https://github.com/mpmorley/MAGNet). To identify important transcription factors, Surro-

gate Variable Analysis (SVA) normalized data from the same GitHub repository was re-

trieved [13]. The dataset consisted of 166 non-failing samples and 166 DCM samples. 

3.2.2 Identification of the Differentially Expressed Genes 

For the differential expression analysis, functional enrichment, and GO analysis, 

we utilized the integrated Differential Expression and Pathway analysis (iDEP) web appli-

cation [11]. This web application comprises 63 R/Bioconductor packages, 2 web services, 

and is connected to several data repositories containing 220 plant and animal species. 

Since the raw data included numerous zero Counts Per Million Values (CPM) rows, we 

filtered the dataset for a minimum CPM of 1 and presence in at least 2 libraries. For clus-

tering and Principal Component Analysis (PCA), we transformed the data using the EdgeR 

log2(CPM+c) transformation [12]. Missing values were imputed using the median method 
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to replace the missing CPM values. To cluster the gene expression data, we employed the 

elbow method to determine the optimal number of clusters. For the differential expression 

analysis, we utilized the limma-voom transformation method to analyze the data. We only 

considered genes whose log2 fold change was at least 2-fold. Due to the large sample 

size, we could not use the DESeq2 method. Furthermore, we performed enrichment anal-

ysis on the differentially expressed genes, both upregulated and downregulated, using the 

GO biological process for pathway enrichment. 

3.2.3 Functional Enrichment Analysis 

We utilized the Generally Applicable Gene-set/Pathway Analysis (GAGE) for path-

way enrichment analysis [14]. A pathway significance cutoff (FDR) of 0.4 was applied, and 

the top pathways were identified. Additionally, we identified the significant KEGG pathways 

that were upregulated in the differentially expressed genes.  

3.2.4 Weighted Gene CO-expression analysis 

We also used the identified the weighted gene expression network WGCNA pack-

age [15]. We have only included the genes that are differentially expressed and shared 

among pathways between the Non Failing and DCM patients. 

3.2.5 Target Gene-TF regulatory network analysis  

3.2.5.1 Gene Regulatory Network Inference 

We applied the method described by Rogers et al. [16] to derive the TF-target gene 

regulatory network using the dataset derived from the MAGNet study. To maintain the re-

producibility of the study, we used the dataset from the MAGNet study to infer the gene 

regulatory network. To normalize the expression levels of the dataset, we employed the 
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counts per million (CPM) method and then transformed the data using the VOOM proce-

dure in the LIMMA R package. Surrogate Variables (SV), which account for latent sources 

of variation such as batch effects, were calculated using the svaseq function from the R 

SVA package [13]. Differential gene expression analysis between races was performed 

using the LIMMA R package. We used a linear model with the following form: Y = β0 + 

β1×race + β2×sex + β3×Age + β4-14×SVA1:SVA11. In this model, Y represents the log2-

transformed gene expression, and race is either African Americans or European Ameri-

cans. We adjusted for gender, age, and 11 other surrogate variables, including etiology, 

weight, height, heart weight (hw), size of left ventricular mass, atrial fibrillation, presence 

of ventricular fibrillation/ventricular flutter, diabetes, hypertension, Left Ventricular Ejection 

Fraction (LVEF), RNA integrity number (RIN), and Transcript Integrity Number (TIN).  

For the gene regulatory network analysis, we implemented the GRNBoost2 algo-

rithm using the Arboretto library in Python [17]. The GRNBoost2 method is based on the 

GENIE3 algorithm [18], which predicts regulatory links between input and target genes 

using a decision tree ensemble method. The expression of a group of input genes is used 

to predict the expression of a target gene through the decision tree ensemble method. We 

chose the GENIE3 algorithm for several reasons [19]: it is widely used as a standard gene 

regulatory network inference algorithm, requires minimal assumptions about the network 

topology, provides directed interactions, and can infer nonlinear and combinatorial regu-

lation compared to other regression-based methods. 

Overall, we used the method by Rogers et al. to construct the TF-target gene reg-

ulatory network using the MAGNet study dataset. We performed preprocessing steps, 

conducted differential gene expression analysis, and employed the GRNBoost2 algorithm 
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based on the GENIE3 algorithm for network inference, taking advantage of its ability to 

infer regulatory interactions in gene networks. 

3.2.5.2 Network Pruning 

The initial network consisted of multiple interactions that may or may not be rele-

vant to the context of cardiac fibrosis. To fit the network to our specific context and dataset, 

we applied three filtering steps, similar to Rogers et al.'s approach. In the first filtering step, 

we only selected interactions that are experimentally validated and involve transcription 

factors. This ensures that our network includes only reliable interactions supported by ex-

perimental evidence. In the second step, we focused on transcription factors that have 

evidence-based connections with mediators of cardiac fibrosis. This step helps refine the 

network by prioritizing transcription factors directly associated with the pathways involved 

in cardiac fibrosis. In the third filtering step, we retained only the interactions that were 

ranked highly by the GRNBoost2 algorithm. GRNBoost2 is used to predict regulatory links, 

and by selecting high-ranking interactions, we aim to prioritize the most influential and 

significant connections in the network.  

For the first pruning step, we specifically chose transcription factors that have been 

validated in the CHIPX and TRANSFAC databases [20]. Transcription factors not found in 

these databases are not considered regulatory elements for our network. In the second 

step, we selected transcription factors that are connected to proteins involved in the ex-

tracellular matrix (ECM) turnover, ECM organization, and acute immune responses during 

cardiac fibrosis. This additional criterion ensures that the network is centered with tran-

scription factors relevant to cardiac fibrosis. In addition, we added top genes that are dif-

ferentially expressed in NF vs DCM patients (MYH6, COL22A1, COL10A1) 
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Figure 3.1. Differential gene expression analysis and integration of the DEGs into Gene 

Regulatory Network to build DCM related network. 

3.3 Results 

3.3.1 Differentially expressed genes in Normal vs Dilated Cardiomyopathy Patients 

After preprocessing and filtering the data to ensure a minimum of 1 Count Per 

Million (CPM) read in at least 2 libraries, we obtained a total of 20,853 genes that passed 

the filter. To handle missing values, we employed the median-based imputation method. 

Following the imputation, we identified 870 genes that were significantly upregulated in 

the DCM tissue samples compared to the non-failing (NF) heart tissues, with a P-value < 

0.05. In contrast, 358 genes were found to be downregulated in the DCM patients com-

pared to NF samples.  

We visualized the log2 fold change of all the genes in the volcano plot, where the 

grey area represents genes with no significant change in expression (neither up nor down-

regulated). The left blue region corresponds to downregulated genes, while the right red 

region indicates upregulated genes. Additionally, we presented a scatter plot illustrating 

the expression levels of the genes across all the samples. 
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Figure 3.2. In the differential expression analysis between Non-Failing (NF) and Dilated 

Cardiomyopathy (DCM) tissue samples, we calculated the total number of differentially 

expressed genes using the limma-voom method. a. The total number of differentially ex-

pressed genes calculated using the limma-voom method. b. The Volcano plot shows the 

distribution of genes across different expression levels between NF and DCM samples. c. 

The Scatter plot demonstrates the total number of genes upregulated vs downregulated 

in Non-Failing and Dilated heart samples. 
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3.3.2 Gene Enrichment Pathways in Differentially Expressed Genes 

Enrichment analysis using the Gene Ontology (GO) process has revealed that significantly 

downregulated genes are prominently enriched (indicated by low adjusted p-values) in 

pathways associated with extracellular matrix and structural organization, external encap-

sulating structure organization, immune response, and cell exterior organization. Con-

versely, upregulated genes are predominantly enriched in pathways related to immune 

response activation. Furthermore, we have individually identified the top upregulated and 

downregulated genes. Additionally, we observed that certain cell signaling pathway mod-

ules were upregulated in our analysis.   

Table 3.1. Enriched pathways and the number of significantly up and down regulate genes 

in those pathways. 

Direction Adjusted 

P-values 

No of the 

Genes 

Pathways that have these genes 

Down 

regulated 

8.8e-17 58 Extracellular matrix organization 

 
8.8e-17 58 Extracellular structure organization 

 
8.8e-17 58 External encapsulating structure organization 

 
2.8e-13 147 Immune response 

 
5.2e-12 118 Regulation of immune system process 

 
6.9e-11 175 Cell surface receptor signaling pathway 

 
4.2e-10 175 Immune system process 

 
6.1e-10 104 Biological adhesion 

 
6.3e-10 111 Defense response 
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8.7e-10 103 Cell adhesion 

 
1.1e-09 48 Leukocyte migration 

 
1.1e-09 160 Response to external stimulus 

 
1.3e-09 23 Collagen fibril organization 

 
3.1e-09 155 Regulation of multicellular organismal process 

 
1.3e-08 48 T cell activation 

Up regu-

lated 

7.2e-06 9 Acute-phase response 

 
7.2e-06 35 Inflammatory response 

 
2.7e-04 11 Acute inflammatory response 

 
3.6e-03 46 Defense response 

 
4.4e-03 5 Leukocyte migration involved in inflammatory re-

sponse 

 
6.6e-03 19 Regulation of inflammatory response 

 
8.6e-03 23 Chemotaxis 

 
8.6e-03 64 Response to external stimulus 

 
8.6e-03 23 Response to wounding 

 
8.6e-03 12 Negative regulation of peptidase activity 

 
8.6e-03 3 Negative regulation of plasminogen activation 

 
8.6e-03 23 Taxis 

 
8.6e-03 40 Secretion 

 
8.6e-03 3 Negative regulation of fibrinolysis 

 
8.6e-03 19 Cellular divalent inorganic cation homeostasis 
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In addition to identifying the pathways enriched by the differentially expressed genes, we 

have listed the top genes in Table 3.2. Most of the genes presented in the table are protein-

coding genes. Additionally, there are several long non-coding RNAs (lncRNAs) among the 

pool of differentially expressed genes. Both genes and lncRNAs are listed based on their 

corresponding p-values, with those having the largest p-values shown. 

Table 3.2. Top genes that are differentially expressed in non-failing vs the dilated cardio-

myopathy tissue samples. 

Ensemble ID log2 

Fold 

Change 

Adjusted P-

value 

Gene 

Symbol 

Type 

ENSG00000115602 4.10 4.19e-70 IL1RL1 Protein Coding 

ENSG00000233485 -3.56 3.19e-79 FHAD1-

AS1 

lncRNA 

ENSG00000188536 -3.53 4.24e-27 HBA2 Protein Coding 

ENSG00000100095 -3.53 1.62e-66 SEZ6L Protein Coding 

ENSG00000106483 -3.46 2.47e-72 SFRP4 Protein Coding 

ENSG00000169436 -3.45 2.02e-54 COL22A1 Protein Coding 

ENSG00000244734 -3.36 4.84e-41 HBB Protein Coding 

ENSG00000181195 -3.32 5.04e-55 PENK Protein Coding 

ENSG00000206172 -3.26 2.65e-27 HBA1 Protein Coding 

ENSG00000169385 3.13 1.66e-56 RNASE2 Protein Coding 

ENSG00000105205 -3.11 2.21e-46 CLC Protein Coding 

ENSG00000100079 -3.10 7.97e-44 LGALS2 Protein Coding 
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ENSG00000198768 -3.06 5.42e-59 APCDD1L Protein Coding 

ENSG00000164694 -3.00 6.27e-85 FNDC1 Protein Coding 

ENSG00000187922 2.97 1.60e-45 LCN10 Protein Coding 

ENSG00000152086 2.89 1.52e-61 TUBA3E Protein Coding 

ENSG00000162383 -2.87 1.36e-46 SLC1A7 Protein Coding 

ENSG00000075886 2.86 7.35e-61 TUBA3D Protein Coding 

ENSG00000179593 2.82 1.10e-33 ALOX15B Protein Coding 

ENSG00000145681 -2.80 1.29e-40 HAPLN1 Protein Coding 

ENSG00000143768 -2.80 2.79e-61 LEFTY2 Protein Coding 

ENSG00000137558 2.77 2.55e-30 PI15 Protein Coding 

ENSG00000197616 2.76 4.33e-65 MYH6 Protein Coding 

ENSG00000254636 -2.75 9.91e-52 ARMS2 Protein Coding 

ENSG00000179639 -2.74 9.07e-52 FCER1A Protein Coding 

ENSG00000248187 2.71 9.33e-30 N/A lncRNA 

ENSG00000150551 -2.70 1.60e-37 LYPD1 Protein Coding 

ENSG00000100450 -2.70 1.27e-47 GZMH Protein Coding 

ENSG00000077274 -2.67 4.46e-34 CAPN6 Protein Coding 

ENSG00000144406 -2.66 1.19e-42 UNC80 Protein Coding 

ENSG00000080644 -2.66 2.07e-39 CHRNA3 Protein Coding 

ENSG00000166428 -2.66 1.71e-49 PLD4 Protein Coding 

ENSG00000169245 -2.65 5.69e-32 CXCL10  Protein Coding 

ENSG00000101825 -2.62 2.31e-56 MXRA5 Protein Coding 

ENSG00000165623 -2.60 8.05e-37 UCMA Protein Coding 



73 
 

ENSG00000198033 2.60 1.13e-45 TUBA3C Protein Coding 

ENSG00000225526 -2.58 3.85e-27 MKRN2O

S 

Protein Coding 

ENSG00000125869 -2.58 9.32e-56 LAMP5 Protein Coding 

ENSG00000124713 2.58 1.95e-43 GNMT Protein Coding 

ENSG00000123500 -2.57 8.37e-33 COL10A1 Protein Coding 

ENSG00000000005 -2.57 5.79e-32 TNMD Protein Coding 

ENSG00000267206 2.54 6.86e-49 LCN6 Protein Coding 

ENSG00000142973 2.53 2.95e-50 CYP4B1 Protein Coding 

ENSG00000121005 -2.52 1.01e-46 CRISPLD

1 

Protein Coding 

ENSG00000261116 2.51 7.99e-33 N/A lncRNA 

ENSG00000233682 -2.51 3.65e-51 N/A lncRNA 

ENSG00000138356 2.50 6.27e-55 AOX1 Protein Coding 

ENSG00000242258 -2.50 4.11e-53 LINC0099

6 

lncRNA 

ENSG00000106236 2.49 1.04e-56 NPTX2 Protein Coding 

ENSG00000267653 2.49 6.11e-41 N/A lncRNA 

 

3.3.3 Overlapping relationships among enriched gene-sets 

We presented a network that illustrates the overlapping number of genes in en-

riched pathways. This network reveals a significant number of genes shared by different 

pathways in DCM samples. 
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3.3.4 Identification of Transcription factors that are import for fibrosis 

We used an extremely stringent filtering process to identify the 23 transcription 

factors (TFs) for the context of our study. Using the GRnBoost2 algorithm we first ended 

up getting almost 2 million interactions. Initial filtering with CHIPX and TRANSFAC re-

duces the total no TFs- target interactions (Edges) to ~ 360,000. Fibrosis related filtering 

then reduces the number of edges to around 1300. In our final step, we used an important 

score >3 and only selected TFs that are only present in at least 8 out of 10 grids of network 

training.  List of the TFs are presented in table 3.3 below. 

 

Figure 3.3. The relationship between two pathways using WGCNA analysis. Here we 

used a 10% edge cutoff to allow connection between two pathways when there is 10% 

similarity. 



75 
 

Table 3.3. List of transcription factors derived from MAGNet Study. These transcription 

factors are connected to 178 edges with an importance score of greater than 3 and present 

in at least 8 out of 10 training datasets. 

Transcription 

Factors 

BCL6, CACYBP, CEBPD, CUX1, EGR1, ETS1, ETS2, HIF1A, LEF1, 

IKZF1, KLF4, MITF, NR5A2, PPARA, RARG, RUNX1, RELA, 

TEAD4, RUNX2, TCF4, TFCP2L1, WT1, ZNF281 

 

3.4 Discussion 

 Cardiac fibrosis is a major pathophysiological manifestation of various heart dis-

eases and can be simply defined as the excessive accumulation of the heart's extracellular 

matrix. As a pathological manifestation, patients may experience changes in the electro-

physiological conduction of the heart. As defined, this process is very complex and in-

volves several pathways and biochemical markers, such as the Matrix Metalloproteases 

(MMPs) and their tissue Inhibitors (TIMPS), renin-angiotensin-aldosterone system 

(RAAS), Transformation Growth Factor Beta (TGFβ) pathway, inflammatory mediators 

(IL1, IL6, and TNFα), and a multitude of long noncoding RNAs (lncRNAs) [21, 22]. More-

over, recent studies have also shown that male-female sex differences result in varying 

manifestations of cardiac fibrosis [23]. Overall, the process of cardiac fibrosis, though it 

may seem well-defined, requires further study to validate new target biomarkers for treat-

ment. 

 Dilated cardiomyopathy is the most prevalent form of cardiomyopathy among the 

elderly. Surprisingly, there are no large-scale studies that have investigated the patho-

genicity, disease manifestation, clinical course of disease, survival analysis, and drug 
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target discovery using genomic data for dilated cardiomyopathy. The purpose of the MAG-

Net study is to shed light on these aspects of cardiomyopathy. In the current study, we 

performed bioinformatics analysis to identify the differentially expressed genes and en-

riched pathways that play an important role in dilated cardiomyopathies. Though further 

experimental validation is required, this study can serve as a primer for further validation 

of biomarker discovery. 

 After analyzing 332 patient tissue samples, the bioinformatics analysis revealed 

359 downregulated and 870 upregulated proteins in DCM tissue samples compared to the 

NF patients. Subsequently, we conducted enrichment analysis and employed Whole Ge-

nome Co-expression network analysis to study potentially enriched pathways and build a 

network among them. From this study, we identified 23 unique transcription factors, which 

we validated using existing literature. This network was used for building the network for 

aim 3. Our differential expression analysis included both protein-coding genes and numer-

ous long non-coding RNAs (lncRNAs). While lncRNAs play essential roles in post-trans-

lational gene modification and self-coding [22], our focus in this study solely centered on 

the cell signaling pathways of proteins, and therefore, we did not include the long non-

coding RNAs in this analysis. 

 Among the differentially expressed genes, several genes seem very important in 

the context of fibrosis. The most differentially expressed gene was the Interleukin receptor 

type 1 gene (IL1RL1), responsible for binding and releasing IL-1α from damaged cardio-

myocytes in the early stage of cardiac remodeling [24]. Downregulated in DCM patients 

were the Hemoglobin Subunit Alpha (HBA1 & HBA2) genes, which has a significant role 

in hypertension [25]. The gene SFRP4 plays a major role in the progression of myocardial 

ischemia [26], while Proenkephalin (PENK) along with IL1RL1 [27], is also differentially 
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expressed in Heart Failure patients. The MYH6 gene is strongly associated with hyper-

trophic cardiomyopathy according to some studies. Additionally, we identified two differ-

entially expressed collagen genes (COL22A1 & COL10A1) [28, 29]. The COL22A1 gene 

encodes a protein found in the myotendinous junction of the heart, skin, and tendons, and 

its knockdown causes muscular dystrophy in animal models. On the other hand, COL10A1 

serves as a biomarker for tumors in prostate cancer. Tubulin alpha genes (TUBA3A, 

TUBA3D, TUBA3E) are also upregulated in dilated cardiomyopathy patients [30]. Regard-

ing the pathways most affected in dilated cardiomyopathy, ECM organization pathways 

were the most impacted, followed by immune response, biological adhesion, and matrix 

migration pathways. Conversely, acute phase inflammatory responses were the most up-

regulated responses in cardiac fibrosis.  

 Among the 23 derived transcription factors, some of them have unique implications 

in cardiac fibrosis. For instance, Bcl6 has been identified as an important transcription 

factor that suppresses cardiac fibroblast activation and function by directly binding to 

Smad4 [31]. EGR1, on the other hand, is involved in regulating cell growth, differentiation, 

and the response to stress and injury, making it crucial to understand its role in fibrosis 

[32]. Additionally, HIF1A, a master regulator of transcription, plays an important role in 

cellular responses to low oxygen levels [33]. Finally, ZNF281, another major player in fi-

brosis [34] has been discovered to be a significant transcription factor in our dataset. 

3.5 Conclusion 

 Though this differential expression and functional enrichment analysis shed light 

on the crucial players of DCM, further validation is necessary to confirm them as potential 

biomarkers. Cell culture and animal model studies are needed to establish their role as 
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viable biomarkers for diagnosis or drug targets. Nevertheless, this study has identified 

several upregulated and downregulated genes that can serve as a starting point for further 

investigation. In addition, we identified important transcription factors that can be used in 

our aim 3 to build a GRN specific to Cardiac fibrosis. Utilizing these biomarkers also entails 

developing blood tests that can correlate with their expression levels, as obtaining left 

ventricle tissue samples poses ethical challenges. 
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Chapter 4 

Building a Composite Gene Regulatory Fibroblast Network Model 

4.1 Introduction 

Cardiac fibrosis is a common manifestation of many cardiovascular diseases and 

can be defined as the excessive accumulation of extracellular matrix by cardiac fibroblasts 

[1]. Cardiac fibroblasts are similar to cells that produce connective tissue but are dissimilar 

to bones and tendons. In the heart, they build an extracellular matrix (ECM) that is dense, 

irregular, and composed of collagen, proteoglycans, and glycoproteins [2]. Cardiac fibrosis 

is the inherent response to any injury to the heart [3]. Cardiac fibroblasts produce a re-

sponse to inflammation, proliferation of nonmyocytes, and scar mutation as a first line of 

defense. Later this response produces excess collagens and other extracellular matrix 

proteins. While the primary purpose of this protective mechanism is to maintain the integ-

rity of the heart, long-time exposure results in the loss of the heart's contractile power [4]. 

Therefore, it is crucial to know the mechanistic regulation of cardiac fibrosis [6]. 

Cardiac fibrosis event consists of different pathways that include the neurohumoral 

pathway [7,8] such as the RAAS system, GPCR/Adrenergic signaling pathway, Endothelin 

-1 pathway, Fibrogenic Growth Pathway, TGFβ signaling pathway, Platelet Derived 

Growth Factor, Inflammatory Pathway such as the TNFα and IL6 pathways. Several bio-

chemical molecule species from these pathways play an essential role in cardiac fibrosis. 

These molecules are from different pathways and are involved in the intricate cycle of 

cardiac fibrosis. These pathways crosslink with each other and crosstalk through cell sig-

naling pathways. There are several modeling approaches for cardiac fibrosis primarily 
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falling into two broad groups: machine learning vs.mechanistic approaches. Each of these 

approaches has its strengths and limitations. Machine learning models are the most con-

venient approach for any domain nowadays due to the availability of many frameworks. 

However, they are limited in capturing biological processes, such as the input-output rela-

tion in cell signaling pathways. [9, 10]  

Mechanistic models have been used for decades to understand the mechanism of 

disease and complex biological networks. These models are primarily dynamic and can 

be used to understand disease networks, drug response, and complex disease network 

analysis. However, the recent advancement of interpretable machine learning methods 

also seems promising for understanding the mechanistic approach of disease modeling. 

Mechanistic models have another significant limitation compared to machine learning ap-

proaches. It is tough to incorporate data from different sources in mechanistic models. 

However, mechanistic models are most usable when we have a small dataset and a single 

data type. It is sometimes tough to obtain large datasets for machine learning for studies 

like MAGNet [11] and SMART-AV clinical trials [12]. In those cases, mechanistic models 

are more accurate in qualitative prediction of the model output because of their determin-

istic nature. 

Understanding the dynamics of large network models requires a complete under-

standing of the network and its parameters [13, 14]. As more parameters get involved, the 

model becomes complex and requires more experimentally measured parameter data to 

validate those models. Some of these chemical reactions are very prompt, and measure-

ment of individual reactions is not feasible. Measurement of such parameters is problem-

atic if multiple crosstalk is involved in the network. Parameter optimization and parameter 

exploration are easy for small biochemical networks but difficult for more extensive 
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networks. For larger systems without knowledge about the parameters, logic-based sys-

tems can provide significant mechanistic insight into any model. The advantage of these 

models is that they can keep the network's magnitude but provide qualitative insight into 

the model by setting a logical relation among the network species. Reactions in which one 

species activates/inhibits another species, along with another species, can be defined us-

ing logical AND, OR, and NOT gates [15]. Since biological reactions are limited to a few 

basic types of reactions (translation, transcription, and replications), we can set basic pa-

rameters related to concentration and time and validate models only using those param-

eters.  

The Myocardial Applied Genomic Network (MAGNet) is a large-scale clinical study 

to collect cardiac tissues [18]. Dilated cardiomyopathy (DCM) tissue samples were col-

lected from patients undergoing heart transplants. On the other hand, healthy heart donor 

tissues are Non-Failing (NF) tissue samples collected from the left ventricle-free walls and 

processed for the RNAseq data for different downstream analyses. MAGNet is one of the 

most significant studies to compare to study the genomic landscape of the DCM. 

In this chapter, we used the gene regulatory network inferred from Chapter 3 to 

build a composite gene regulatory network. We integrated the previously built cardiac fi-

brosis network into our study. We simulated the model to predict the qualitative change in 

the pro-fibrotic molecules. In addition, we will do the perturbation analysis to study the 

most critical nodes in our model. Finally, we will conduct a patient-specific simulation to 

identify the most relevant clinical variables in the MAGNet. 
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4.2 Methods 

4.2.1 Building a composite gene regulatory network for NF and DCM patients 

The previously published signaling network model for cardiac fibrosis relied on a 

manual literature search [19, 20]. They used more than 300 articles to build the cardiac 

fibrosis network. This network has expanded using a gene regulatory network derived from 

different GRN inference algorithms. The Rogers et al. study [21] presented a way to incor-

porate the gene regulatory network into the network. In our study, we have followed a 

similar approach for DCM patients. We build the gene regulatory network using the GRN-

Boost2 [22] algorithm by the approach used by the authors.GRNBoost2 algorithm is a 

regression-based method to predict the regulatory link between the input and the target 

gene. The famous Gene Network Inference with Ensemble of Trees (GENIE3) algorithm 

works in the base GRNBoost2 method. The GENIE3 algorithm performs well in all bench-

marking analyses and is consistently a top performer in inferring gene regulatory interac-

tions. In GENEI3, ensemble trees predict the expression of a given target gene from the 

expression of all other genes. This algorithm is better than other gene regulatory network 

inference algorithms. For example, it does not require understanding network topology 

and can infer directed interactions by comparing the correlation and probability-based 

methods. Moreover, this algorithm can infer nonlinear regulations as well.   For our study, 

we used a different approach to pruning the inferred GRN.  The initially inferred network 

has thousands of non-specific interactions unrelated to fibrosis. Multi-step network pruning 

removes these non-specific interactions. First, we only allowed the literature-supported 

transcription factor target interactions. We used the Chromatin Immune Precipitation 

(CHIP-X) and Transcription Factor (TRANSFAC) database to cover the maximum number 

of transcription factors with experimental evidence. Upon filtering for the transcription 
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factors, we again filtered out the network that is only related to the output of the fibroblast 

mechanotransduction network. We also added genes (MYH6, COL22A1, COL10A1) sig-

nificantly different between nonfailing vs. dilated cardiomyopathy tissue samples. Finally, 

we used a depth-first search (DFS) algorithm to prune the network edges. This algorithm 

helps us to identify possible pathways between each primary transcription factor and tar-

get and check whether each interaction meets the required importance score. Only highly 

ranked interactions are allowed here. Interactions are only allowed if the importance score 

of each edge is higher than the 90th percentile. These filtering steps help to reduce the 

noises by non-specific interactions. Since our dataset has a lot of replicates, we, trained 

the network model by dividing the dataset into ten folds. We only selected the edges de-

rived from network inference , pruning, and, present in at least 8/10 fold of data. Finally, 

we filtered the gene regulatory network using literature/articles that validate the presence 

of those TF in at least one article. 

4.2.2 Building the Logic Based ODE model. 

We integrated this transcription factor and target network into the cardiac fibroblast 

mechanotransduction network, a logic-based ODE model. This model is logic-based be-

cause the approach allows logical interaction between the biochemical species/model 

components. For any cell signaling species x, the activation and inhibition can be modeled 

as a Normalized Hill Equation [23] as – 

𝑓𝑎𝑐𝑡(𝑥) =
𝐵𝑥𝑛

𝑘𝑛 + 𝑥𝑛
 

𝑓𝑖𝑛ℎ𝑖𝑏(𝑥) = 1 −
𝐵𝑥𝑛

𝑘𝑛 + 𝑥𝑛
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Here n is the Hill coefficient related to the gradient of the activation or inhibition dose-

response. The constant B and K are additional constants characterizing the dose-re-

sponse curves and can be expressed as - 

𝐵 =
𝐸𝐶50

𝑛 − 1

2𝐸𝐶50
𝑛 − 1

 

𝑘 = (𝐵 − 1)
1
𝑛 

Where EC50 is the value of x when half maximum activation occurs. The primary logics 

here are ‘AND’, ‘OR’, ‘ANDNOT’ involved in two types of reaction (activation/inhibition). If 

two biochemical species involved in an activation/inhibition reaction, the equations can be 

written as -  

𝑥𝐴𝑁𝐷𝑦 = 𝑓𝑎𝑐𝑡(𝑥) ∗ 𝑓𝑎𝑐𝑡(𝑦) 

𝑥𝑂𝑅𝑦 = 𝑓𝑎𝑐𝑡(𝑥) + 𝑓𝑎𝑐𝑡(𝑦) − 𝑓𝑎𝑐𝑡(𝑥) ∗ 𝑓𝑎𝑐𝑡(𝑦) 

𝑥𝐴𝑁𝐷𝑁𝑂𝑇𝑦 = 𝑓𝑎𝑐𝑡(𝑥)(1 − 𝑓𝑎𝑐𝑡(𝑦)) 

Complex logical reactions can be used for complex reactions involving 2 or 3 species. As 

we can see these reactions are only dependent on the reactants not the product. In addi-

tion to these n and EC50, which are specific to any specific biochemical reactions, another 

parameter Reaction Weight (w) can be used to better for the quantitative experiments. 

Besides these three reaction parameters, there are three different species/node specific 

parameters. Each node has a decay timescale tau (𝜏) and a maximal activity level, ymax 

∈ [0,1]. For any reaction an ymax value of 1 is used by default. We can use a different 

value if we want to lower the maximum activation level of any node (between 0 and 1) or 

knockdown of any node (ymax = 0). In our model we have set specific value for these 



89 
 

parameters. We set the initial activation level y0 = 0 for all species, 𝜏 is set to 1, 0.1, 10 

based on the type of reaction. For translation it is set to 0.1, 1, 10 based on the type of 

translation reactions. On the other hand, 𝜏 for all GRN transcription reactions are set to 1. 

We used normalized RNASeq data between 0 and 1, and set that as ymax values. For 

our model we used ymax value for all the input reactions as w, all internal and output 

reaction weights are set to 1, n is set to 1.4, EC50 set to 0.6. These logics are implemented 

into a dynamical model where change of each species is integrated into the differential 

equations presented in the supplemental table S4.1 & S4.2. The implementation of these 

models is done in MATLAB package Netflux [23]. The model was created using Cytoscape 

and PowerPoint.  

4.2.3 Model Validation 

In all previous studies, the network validation steps consist of literature validation. 

However, for this current study, we have the RNASeq dataset to compare the input-output 

relation in the dataset. We normalized the RNAseq data to compare the NF and DCM 

tissue samples. To do that validation, we have normalized the SVA samples. We exclude 

the outliers in each gene. To do that, we excluded the data that spread between 10-90% 

of the data. We have excluded the dataset above these spreads and replaced them with 

the top 90 or 10% percentile data points. Then each gene expression data was normalized 

between 0-1. Since we removed the data's outliers, we included a change in gene expres-

sions at a minimum of 1%. Since this is our logical model, we compared the qualitative 

outcome of the model rather than the numerical aspect of the model. We compare the 

model output in response to the input values as RNASeq. The output of the model com-

pared with the bulk RNAseq data. These differences have three categories increase, de-

crease, and no change. Instead of predicting like machine learning algorithms, this model 
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represents the mechanical aspects of cardiac fibrosis. The matching and mismatching 

model predictions are presented as a matrix in Figure 4.2. All the simulation data were 

generated in MATLAB, and all the graphs were prepared using the Python package Mat-

plotlib. 

4.2.4 Network Perturbation Analysis 

Network perturbation analysis was conducted to identify the influential signaling 

node in the DCM tissue samples. First, the model was simulated using the baseline pa-

rameter values. To do that we first set the ymax for each node from normalized RNAseq 

data then set the ymax of all the nodes to 10% of the set  ymax. We then also set all the 

input reaction weights (w) equivalent to the baseline ymax value. We ran the simulation 

using this baseline values and saved as. Then, we simulated the model using the ymax 

and input weight value derived from RNASeq. We recorded the change of value as Δ(Ac-

tivity). The changes are plotted in a heatmap in Figure 4.3. 

4.2.5 Correlation between Model Predicted output clinical variables. 

We also used the patient's clinical and demographic variables, such as age, 

weight, height, heart weight, left ventricular mass, and left ventricular ejection fraction 

(LVEF), to find a correlation with the model-predicted outputs. To do that, we first simulated 

the model for all patients. We measured the output of the model. We then filtered the data 

that has all clinical variables present. We then used Pearson correlation coefficient for this. 

This correlation matrix is presented in Figure 4.4.   
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4.3. Results 

4.3.1 Integration of gene regulatory network to the fibroblast signaling network 

After inferring the gene regulatory network using the GRNBoost2 algorithm, we 

found around 1300 unique edges. These edges are further filtered for the nodes that are 

connected to either the list of transcription factors or connected to the output of the 

mechanistic pathway of the cardiac fibrosis model. All these final edges were again vali-

dated with the literature supporting the interaction. Moreover, we had to add connection 

reactions to the intermediates to the network. This results in total addition of 142 more 

edges.  

Figure 4.1. The combined gene regulatory network. The model consists of two parts. The 
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top one is adopted from the previous fibroblast mechanotransduction network. The bottom 

green part is inferred from the MAGNet gene regulatory network. 

4.3.2 Model Accuracy after integration of the gene regulatory network 

To validate whether the model still shows the same performance as the original 

fibroblast mechanotransduction model [20]. We have added 142 more edges and made 

the model show a similar level of accuracy. The final accuracy of the model was relatively 

the same after adding those edges to the model (Figure 4.2). The simulations ran for only 

100 sec to validate the expression change in the input, intermediates, and output of the 

model.

 

Figure 4.2. Validation of the composite model. Addition of the Gene Regulatory Network 

did not change the accuracy of the model compared to the previously reported models. 

The model showed better performance in predicting the qualitative changes in Non Failing 

to Dilated Cardiomyopathy tissue samples.  
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4.3.3 Perturbation analysis identifies important network drivers 

Perturbation analysis showed the most important nodes in our model. Tension is 

the most important factor here. Its knockdown showed the single most effect in the net-

work. The second most effected node is the activator protein (AP1) which regulates gene 

expression in the presence of various stimuli, such as stress/mechanical tension, cyto-

kines, growth factors, and infections [24]. The third most perturbed node is the Nuclear 

factor kappa-light-chain-enhancer of activated B cells (NFKB) is the third most perturbed 

node. During cardiac remodeling, NFKB exerts cytotoxic effect by prolonging inflammatory 

response, which is a hallmark of cardiac fibrosis. Early growth response 1 (EGR1) is the 

only transcription factor that can be included in the top perturbed node [25, 26]. This tran-

scription factor is activated with the onset of cardiac hypertrophy in the left ventricle of the 

heart. Among the receptors, Angiotensin II type 1 receptor (AT1R) is the most perturbed. 

Angiotensin II activates mechanotransduction through the receptor AT1R, increases the 

intracellular Ca2+ concentration and promotes hypertrophic cardiac remodeling [27]. Nu-

clear Factor of Activated T-cells (NFAT) is also perturbed to the highest degree [28].  

4.3.4 Correlation among clinical variables and model outputs 

Correlation analysis showed the relationship between cardiac function variables 

Left Ventricular Mass (LV_Mass), Heart Weight, and Left Ventricular Ejection Fraction 

(LVEF). There is no strong correlation found in this correlation analysis except for the Tis-

sue Inhibitors for Metalloprotease 2 (TIMP2).  
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Figure 4.3. Perturbation analysis showed the most important nodes in the network. We 

simulated the model with baseline ymax values (0.2) for each of the nodes. 



95 
 

 

Figure 4.5. Pearson correlation among the model predicted output and clinical variables. 

We ran the simulation for each patients who has complete clinical variables. A. Correlation 

between simulated proCI and Left Ventricular Ejection Fraction (LVEF). B. Correlation 
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between simulated proCI and Left Ventricular Mass. C. Correlation among the outputs and 

numerical measurements. All of these simulated data have some outliers values due to 

reaching into steady state or not expressing the fibrotic outputs.  

4.4 Discussion 

Cardiac fibrosis is a complex disease that involves crosslinking multiple pathways 

from cell development and growth to immune responses. Developing a proper therapeutic 

target requires a complete understanding of the complex network. Gene regulatory net-

works, though insufficient to elucidate the intracellular dynamics, play an essential role in 

how cellular effectors interact. Therefore disease-specific gene regulatory networks are 

essential to infer and integrate into the mechanistic model of cardiac fibrosis. With the 

availability and ease of machine learning algorithms, modelers are more prone to machine 

learning models. However, with a limited amount of patient-specific data and a large num-

ber of variables, it is more rational to use mechanistic models instead of machine learning 

to understand diseases. Mechanistic models are more accurate and applicable to patient-

specific modeling [29]. 

In this chapter, we integrated fibrosis related gene regulatory networks into our 

model. Upon comparing them with the experimental data, we found the most similarities 

in output nodes, followed by the input and intermediate nodes. The accuracy in predicting 

the qualitative change in output is very encouraging (77%) which is almost similar to the 

original fibroblast models.This is interesting since we did not fit it to experimental data, 

rather used them as input. This also validate that gene expression does not equate protein 

expression in intracellular signalling models. Therefore, further proteomics study needs to 

validate the qualitative output change of the model [30]. 
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The perturbation study analysis uncovered tension as the most influential node in 

the DCM patient. Tension is the mechanical stimulant for left ventricular hypertrophy. The 

heart must work hard to counteract tension and maintain its pumping capability. This re-

sults in the thickening of the heart , which is responsible for pumping oxygen-rich blood to 

the organs. Therefore, tension is the most critical node in our model. In cardiac diseases, 

AP1, NFKB, and EGR1 are important intermediates crosslinking different pathways, re-

sulting in left ventricular hypertrophy development. Due to mechanical stress, several ki-

nase pathways get activated and activate NFKB, AP1, and EGR1. Activation of these 

crosslinking molecules, a cascade of transcriptional programming starts and induce the 

transcription of Platelet-Derived Growth Factors (PDGFs), Transforming Growth Factors 

(TGFs), tissue factors, matrix metalloproteinases (MMPs), and collagens (such as COL1, 

COL3) [25-27,31]. These start a cascade of physiological changes such as atherosclero-

sis, angiogenesis, ischemic disease, and cardiac hypertrophy. All of these are potential 

triggers for cardiac remodeling. The Angiotensin II receptor ATR1 plays a vital role in car-

diac hypertrophy. Its activation results in the activation of the TGFβ1 pathway through its 

receptor. The activation of TGFβ1 activates Extracellular Signal-Regulated Kinase 1 and 

2 (ERK1 and 2) pathways. Phosphorylated ERK1/ERK2 stimulate overexpression of 

growth factors and neurohormonal mediators. All these lead to left ventricular hypertrophy 

[32]. 

Though we did patient-specific simulations to show the relation between clinical 

variables and model outputs, we did not find a strong correlation. This is somewhat ex-

pected because of the lack of different data types. In our study, we have used RNASeq 

data as model input as well as to validate the model. But the correlation between 

mRNA/RNASeq and protein is not straightly correlated. This is due to the different half-life 
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for different transcript and protein, post transcriptional modifications of the mRNA tran-

scripts [30]. Therefore, we need a proteomic data set to fit and train the model for more 

accurate qualitative prediction of the change in model intermediates and outputs. Another 

factor that is strongly contributing to this low correlation is the outlier data derived from the 

simulation. This is because we have a small panel of complete patient data. After imputing, 

we ended up getting only 99/332 patients who has complete set of clinical data. Extensive 

studies should be conducted on such relations to find relations among pro-fibrotic outputs 

and cardiac function variables. 

4.5 Conclusion 

In this chapter we integrated the gene regulatory network derived from the previous 

chapter into previously built fibroblast mechanotransduction network. These combined 

mechanistic models showed very similar qualitative prediction of the mediators of fibrosis, 

especially in terms of predicting the qualitative change in input. Further analysis of the 

clinical variables has shown how they correlate with the model outputs. Due to ethical 

issues, it is very hard to obtain real tissue samples from actively pumping hearts left ven-

tricles. MAGNet study has given us the opportunity to compare the dynamics of tran-

scriptomics between the Non Failing donor heart and Dilated Cardiomyopathy patients. 

We leveraged this opportunity to build a logic based model. Future direction of this study 

will be building a most robust model by integrating an efficient parameter estimation 

method and adding a drug perturbation study.  
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Chapter 5 

Conclusion, Limitation, and Future Direction 

5.1 Summary of Findings 

In this dissertation, we utilized interpretable mechanistic and machine learning 

models to predict cardiac remodeling based on biochemical and biomechanical features. 

Aim 1 demonstrated the effectiveness of integrating multiple data types, such as de-

mographics, comorbidities, therapy history, circulating biomarker levels, and echo-based 

left ventricular function data. This integration significantly improved the predictive capabil-

ity of our machine learning algorithms in identifying responders and non-responders to 

cardiac resynchronization therapy (CRT). By leveraging this diverse set of features, we 

achieved an identification rate of 71% for patient response, with an area under the curve 

(AUC) of 0.784. In Aim 2, we focused on identifying differentially expressed genes upreg-

ulated in the non-failing (NF) versus dilated cardiomyopathy (DCM) left ventricle tissue 

samples obtained from donors and recipients. We employed a gene regulatory network 

inference algorithm called GRNBoost2 to achieve this and incorporated these identified 

genes into the analysis. We identified 23 unique transcription factors connected to 17 pro-

fibrotic biochemical species and other cellular intermediates through a novel multistep fil-

tering algorithm. These connections represent 158 activation/inhibition reactions (edges). 

Aim 3 integrated the 158 GRN edges into an existing logic-based ordinary differential 

equation (ODE) model to predict the qualitative changes in model input, intermediate, and 

output components. Our model demonstrated comparable predictive capability to the 
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previously established fibroblast mechanistic network. Furthermore, we conducted pa-

tient-specific simulations to illustrate the relevance of clinical variables in our findings. 

 

Overall, our research contributes to a better understanding of cardiac remodeling predic-

tion by applying both interpretable mechanistic models and machine learning algorithms. 

By combining various data types and integrating gene regulatory networks, we have 

gained valuable insights into identifying responders to CRT and analyzing key transcrip-

tional factors involved in cardiac remodeling. These findings have significant implications 

for advancing personalized cardiac disease treatment and management approaches.  

5.2 Study limitations 

Our aims in this study have certain limitations stemming from the nature of the 

research and the data availability. Firstly, the SMART-AV clinical trial data used in Aim 1 

had a relatively short follow-up period of only six months for the patients. This limited 

timeframe prevented us from conducting a comprehensive survival analysis of the pa-

tients. It would have been valuable to have access to long-term follow-up studies [1] as 

well, as they could have aided in identifying patient-specific variables that contribute to 

long-term survival analysis. In Aim 2, we employed the GRNBoost2 algorithm to identify 

crucial interactions between transcription factors and biochemical species. However, to 

further refine the gene regulatory network, conducting a perturbation analysis to identify 

upstream regulatory signaling pathways from downstream gene expression (GEX) would 

have been beneficial [2]. 
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Additionally, exploring patient-specific gene regulatory networks could have pro-

vided more profound insights into individual variations. For the final aim, we utilized the 

GRN network obtained from Aim 2 and used RNASeq data to fit both the input and output 

of the mechanistic model. Since our model comprises multiple parameters (y0, ymax, tau, 

w, n, and EC50), employing a parameter optimization method could have significantly en-

hanced the accuracy of model predictions. Some studies have successfully employed pa-

rameter optimization methods, such as nonlinear programming [3], genetic algorithms [4], 

and uncertainty quantification [5], to refine their models. Furthermore, it would have been 

valuable to modify the original fibroblast mechanistic model by adding or removing nodes 

not pertinent to dilated cardiomyopathy. This refinement could have resulted in more pa-

tient-specific and disease-specific mechanistic models. 

In conclusion, while our research has contributed valuable insights into cardiac 

remodeling, it is essential to acknowledge these limitations. The short follow-up period of 

the clinical trial data, the need for further analyses in the gene regulatory network, and the 

potential for parameter optimization in the final model could be addressed in future studies 

to enhance our findings' robustness and applicability. 

5.3 Future Direction 

The limitations encountered in our aims have provided valuable opportunities for 

future research. In the first aim, further biochemical exploration of CRT patients can com-

plement our machine learning models. By incorporating mechanistic models alongside 

machine learning, we could gain deeper insights into the input-output relationships through 

an extended study. Such an exploration would offer mechanistic insights into the effects 

of CRT treatment on patients, such as changes in pressure and volume in the left ventricle. 
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Understanding these aspects could enhance our comprehension of CRT treatment out-

comes. We can extend the study for the second and third aims by incorporating additional 

data types beyond RNASeq data. Integrating proteomic studies would add another layer 

of information and potentially lead to more comprehensive findings. Moreover, implement-

ing an efficient parameter estimation method would refine our models and improve the 

accuracy of predictions. 

Expanding the scope of this study to include different types of cardiomyopathies, 

such as Dilated, Hypertrophic, and Peripartum, in patients would be worthwhile. Before 

extending to such studies, constructing a mechanistic network specific to cardiomyopa-

thies would be paramount. The overarching goal of this study is to build interpretable mod-

els for cardiac remodeling using either machine learning or mechanistic modeling, both of 

which have their strengths and limitations. By combining these approaches, we have the 

potential to uncover new insights and enrich our current knowledge base. This integration 

may lead to more accurate and comprehensive models, ultimately advancing our under-

standing of cardiac remodeling and its associated complexities. 

In conclusion, the limitations encountered in our study present exciting possibilities 

for future research. By exploring additional biochemical factors, employing mechanistic 

modeling alongside machine learning, integrating diverse data types, and extending the 

study to include different cardiomyopathies, we can advance our understanding of cardiac 

remodeling and pave the way for improved therapeutic approaches in cardiac mechano-

biology. 
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Chapter 6 

Supplementary Materials 

6.1 Supplementary Tables 

Table S4.1 Biochemical reactions and their parameter values used in Chapter 4. 

Reaction Information 
     

module ID Rule Weigh
t 

n EC5
0 

source notes 

input i1 => AngII 0.45 1.4 0.6 neonatal rat 
cardiac fibro-
blasts 

increased via RAS in 
hypertension and 
heart failure 

input i2 => TGFB 0.37 1.4 0.6 
 

increased in re-
sponse to injury 

input i3 => tension 0.10 1.4 0.6 
 

increased with integ-
rin stimulation 

input i4 => IL6 0.42 1.4 0.6 
 

increased in hyper-
tension 

input i5 => IL1 0.27 1.4 0.6 
  

input i6 => TNFa 0.25 1.4 0.6 
  

input i7 => NE 0.25 1.4 0.6 
 

most likely NE signal-
ing 

input i8 => PDGF 0.36 1.4 0.6 
 

increased post-MI 

input i9 => ET1 0.43 1.4 0.6 
 

increased from 
stretch of vascular 
endothelial cells 

input i10 => NP 0.29 1.4 0.6 
 

increased in pressure 

fback r1 proMMP9 & 
latentTGFB => 
TGFB 

1.00 1.4 0.6 in vitro release of latent pro-
tein 

fback r2 proMMP2 & 
latentTGFB => 
TGFB 

1.00 1.4 0.6 in vitro release of latent pro-
tein 

fback r3 ACE & AGT => 
AngII 

1.00 1.4 0.6 neonatal car-
diac fibro-
blasts 

enzymatic modifica-
tion 

output/fback r4 CREB & CBP => 
IL6 

1.00 1.4 0.6 neonatal rat 
cardiac fibro-
blasts 

txn 

output/fback r5 NFKB => IL6 1.00 1.4 0.6 neonatal rat 
cardiac fibro-
blasts 

txn 

output/fback r6 AP1 => IL6 1.00 1.4 0.6 neonatal car-
diac fibro-
blasts 

txn 

output/fback r7 AP1 => ET1 1.00 1.4 0.6 neonatal rat 
cardiac fibro-
blasts 

txn 

middle r8 AngII => AT1R 1.00 1.4 0.6 neonatal car-
diac fibro-
blasts 

receptor binding 
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middle r9 AT1R => NOX 1.00 1.4 0.6 adult rat car-
diac fibroblast 

- 

middle r10 NOX => ROS 1.00 1.4 0.6 adult rat car-
diac fibroblast 

enzymatic production 

middle r11 IL6 => gp130 1.00 1.4 0.6 neonatal rat 
cardiac fibro-
blasts 

receptor binding 

middle r12 ROS => p38 1.00 1.4 0.6 neonatal rat 
cardiac fibro-
blasts 

activation 

middle r13 ROS => JNK 1.00 1.4 0.6 neonatal rat 
cardiac fibro-
blasts 

activation 

middle r14 IL1RI => NFKB 1.00 1.4 0.6 neonatal rat 
cardiac fibro-
blasts 

release of blocking 
and increased abun-
dance 

middle r15 gp130 => STAT 1.00 1.4 0.6 neonatal 
mouse fibro-
blasts 

activation (via JAK) 

middle r16 TNFaR => PI3K 1.00 1.4 0.6 human car-
diac fibro-
blasts 

activation 

middle r17 !AT1R & !JNK & 
p38 => AGT 

1.00 1.4 0.6 neonatal rat 
cardiac fibro-
blasts 

txn 

middle r18 TGFB1R  & 
!PKG & !smad7 
=> smad3 

1.00 1.4 0.6 adult rat car-
diac fibroblast 

activation 

output r19 smad3 & CBP & 
ERK => CTGF 

1.00 1.4 0.6 neonatal rat 
cardiac fibro-
blasts 

txn 

output r20 STAT => 
proMMP2 

1.00 1.4 0.6 neonatal rat 
cardiac fibro-
blasts 

txn 

output r21 STAT => 
proMMP9 

1.00 1.4 0.6 mouse car-
diac fibro-
blasts 

txn 

output r22 smad3 & CBP 
=> periostin 

1.00 1.4 0.6 adult rat car-
diac fibro-
blasts 

txn 

output r23 CREB & CBP => 
periostin 

1.00 1.4 0.6 adult rat car-
diac fibro-
blasts 

txn 

middle r24 ERK => NFKB 1.00 1.4 0.6 human car-
diac fibroblast 

activation 

middle r25 p38 => NFKB 1.00 1.4 0.6 human car-
diac fibroblast 

activation 

output r26 NFKB & AP1 & 
!smad3 => 
proMMP1 

1.00 1.4 0.6 human car-
diac fibroblast 

txn 

middle r27 ETAR => ROS 1.00 1.4 0.6 neonatal rat 
cardiac fibro-
blasts 

activation 

middle r28 ERK => AP1 1.00 1.4 0.6 neonatal rat 
cardiac fibro-
blasts 

activation 
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output r29 AP1 => 
proMMP2 

1.00 1.4 0.6 human car-
diac fibro-
blasts 

txn 

output r30 AP1 & NFKB => 
proMMP9 

1.00 1.4 0.6 human car-
diac fibro-
blasts 

txn 

output r31 AP1 => TIMP1 1.00 1.4 0.6 human car-
diac fibro-
blasts 

txn 

output r32 AP1 => TIMP2 1.00 1.4 0.6 human car-
diac fibroblast 

txn 

middle r33 PKC & tension 
=> B1int 

1.00 1.4 0.6 adult rat car-
diac fibro-
blasts 

activation 

middle r34 cAMP => PKA 1.00 1.4 0.6 adult rat car-
diac fibro-
blasts 

activation 

output r35 smad3 & CBP 
=> fibronectin 

1.00 1.4 0.6 human lung fi-
broblast 

txn 

middle r36 !smad3  => CBP 1.00 1.4 0.6 adult rat car-
diac fibro-
blasts 

depletion of txn factor 
binding partner 

middle r37 !CREB => CBP 1.00 1.4 0.6 adult rat car-
diac fibro-
blasts 

depletion of txn factor 
binding partner 

middle r38 tension => B1int 1.00 1.4 0.6 neonatal rat 
cardiac fibro-
blasts 

activation 

output r39 NFAT => 
EDAFN 

1.00 1.4 0.6 neonatal mice 
cardiac fibro-
blast 

txn activation 

middle r40 TGFB1R => 
ACE 

1.00 1.4 0.6 rat cardiac fi-
broblasts 

increased txn 

middle r41 TGFB & !BAMBI 
=> TGFB1R 

1.00 1.4 0.6 mice cardiac 
fibroblast 

binding to receptor 

middle r42 AP1 => prolifer-
ation 

1.00 1.4 0.6 adult rat car-
diac fibro-
blasts 

via activation of 
Kca3.1 channels 

middle r43 PKA => CREB 1.00 1.4 0.6 rat cardiac fi-
broblasts 

activation 

middle r44 CREB => prolif-
eration 

1.00 1.4 0.6 rat cardiac fi-
broblasts 

 

middle r45 NE => BAR 1.00 1.4 0.6 rat cardiac fi-
broblasts 

receptor binding 

middle r46 ET1 => ETAR 1.00 1.4 0.6 neonatal rat 
cardiac fibro-
blasts 

receptor binding 

middle r47 CTGF  => prolif-
eration 

1.00 1.4 0.6 human car-
diac fibroblast 

 

middle r48 IL1 => IL1RI 1.00 1.4 0.6 mouse cell 
line 

receptor binding 

middle r49 PKC => prolifer-
ation 

1.00 1.4 0.6 adult rat car-
diac fibro-
blasts 

activation 

output r50 smad3 & CBP &  
!epac => proCI 

1.00 1.4 0.6 adult rat car-
diac fibro-
blasts 

txn 



112 
 

output r51 smad3 & CBP & 
!epac => proCIII 

1.00 1.4 0.6 adult rat car-
diac fibro-
blasts 

txn 

output r52 AP1 => 
proMMP14 

1.00 1.4 0.6 mouse car-
diac fibro-
blasts 

correlated increase 
with cFOS 

middle r53 PDGF => 
PDGFR 

1.00 1.4 0.6 adult rat car-
diac fibro-
blasts 

receptor binding 

middle r54 BAR => AC 1.00 1.4 0.6 adult rat car-
diac fibro-
blasts 

activation 

middle r55 BAR & AT1R => 
AC 

1.00 1.4 0.6 adult rat car-
diac fibro-
blasts 

activation with poten-
tiation 

middle  r56 AC => cAMP 1.00 1.4 0.6 adult rat car-
diac fibro-
blasts 

activation 

middle r57 FAK =>MEKK1 1.00 1.4 0.6 mouse embry-
onic fibro-
blasts 

activation 

output r58 AP1 => 
latentTGFB 

1.00 1.4 0.6 mouse lung fi-
broblasts 

txn activation 

middle r59 cAMP => epac 1.00 1.4 0.6 adult rat car-
diac fibro-
blasts 

activation 

middle r60 Rho => ROCK 1.00 1.4 0.6 rat embryonic 
fibroblasts 

activation 

middle r61 TNFa => 
TNFaR 

1.00 1.4 0.6 human car-
diac fibroblast 

receptor binding 

middle r62 NP => NPRA 1.00 1.4 0.6 human car-
diac fibroblast 

receptor binding 

middle r63 NPRA => cGMP 1.00 1.4 0.6 adult rat car-
diac fibroblast 

activation 

middle r64 cGMP => PKG 1.00 1.4 0.6 adult rat car-
diac fibroblast 

 

middle r65 Ras => Raf 1.00 1.4 0.6 neonatal rat 
cardiac fibro-
blast 

possibly via recruit-
ment and Src phos-
phorylation 

middle r66 Raf & !ERK => 
MEK1 

1.00 1.4 0.6 adult rat car-
diac fibroblast 

 

middle r67 MEK1 & !PP1=> 
ERK  

1.00 1.4 0.6 adult rat car-
diac fibroblast 

 

middle r68 p38 => PP1 1.00 1.4 0.6 3T3 cells, 
adult and neo-
natal human 
dermal fibro-
blast 

via activation 

middle r69 MKK3 => p38 1.00 1.4 0.6 3T3 cells, 
adult and neo-
natal human 
dermal fibro-
blast 

activation 

middle r70 TGFB1R => 
TRAF 

1.00 1.4 0.6 adult mouse 
cardiac fibro-
blast 

activation 

middle r71 Rac1 => 
MEKK1 

1.00 1.4 0.6 NIH-3T3, 
HeLa 

activation 
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middle r72 MEKK1 => 
MKK4 

1.00 1.4 0.6 NIH-3T3, 
HeLa 

activation 

middle r73 MKK4 & !NFKB 
=> JNK 

1.00 1.4 0.6 NIH-3T3, 
HeLa 

activation 

middle r74 PDGFR => abl 1.00 1.4 0.6 3T3 activation 

middle r75 abl => Rac1 1.00 1.4 0.6 3T3 activation 

middle r76 JNK => cmyc 1.00 1.4 0.6 3T3 activation 

middle r77 cmyc => prolif-
eration 

1.00 1.4 0.6 3T3 activation 

middle r78 TNFaR => 
TRAF 

1.00 1.4 0.6 293 cells activation 

middle r79 TRAF => ASK1 1.00 1.4 0.6 293 cells activation - most 
likely binding allows 
the receptor to even-
tually activate ASK1 

middle r80 ASK1 => MKK3 1.00 1.4 0.6 COS7 cells activation 

middle r81 ASK1 => MKK4 1.00 1.4 0.6 COS7 cells activation 

middle r82 IL1RI => ASK1 1.00 1.4 0.6 fibroblast-like 
synoviocytes 

assumed activation 

middle r83 smad3 => PAI1 1.00 1.4 0.6 adult mouse 
cardiac fibro-
blast 

transcription  

output r84 NFKB => 
proMMP14 

1.00 1.4 0.6 human dermal 
fibroblast 

transcription 

middle r85 Ras => p38  1.00 1.4 0.6 adult rat car-
diac fibroblast 

unknown 

middle r86 TGFB1R => 
PI3K  

1.00 1.4 0.6 adult rat car-
diac fibroblast 

activation 

middle r87 PDGFR => PI3K 1.00 1.4 0.6 3T3 activation 

middle r88 FAK => PI3K 1.00 1.4 0.6 human lung fi-
broblast 

activation 

middle r89 TGFB1R => 
NOX 

1.00 1.4 0.6 human car-
diac fibroblast 

activation 

middle r90 Akt => NFKB 1.00 1.4 0.6 human car-
diac fibroblast 

activation by removal 
of IKK 

output r91 NFKB => fibron-
ectin 

1.00 1.4 0.6 human car-
diac fibroblast 

transcription 

middle r92 JNK => AP1 1.00 1.4 0.6 human perio-
dontal liga-
ment fibro-
blast 

activation 

middle r93 IL1RI & TGFB 
=> BAMBI 

1.00 1.4 0.6 mice cardiac 
fibroblast 

increased transcrip-
tion (unsure of tran-
scription factor) 

middle r94 STAT => smad7 1.00 1.4 0.6 UA4 cell line STAT necessary for 
smad expression 

output r95 SRF => proCI 1.00 1.4 0.6 10t1/2 cells, 
cardiac fibro-
blasts 

MRTF directly acti-
vates the expression 
of COL1 

middle r96 Rho & !Rac1 => 
p38 

1.00 1.4 0.6 neonatal rat 
cardiac fibro-
blast 

 

middle r97 MKK4 & !Rho => 
JNK 

1.00 1.4 0.6 neonatal rat 
cardiac fibro-
blast 
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output r98 SRF => proCIII 1.00 1.4 0.6 mouse car-
diac fibro-
blasts 

 

middle r99 calcineurin => 
NFAT 

1.00 1.4 0.6 mouse car-
diac fibro-
blasts 

activation/nuclear 
translocation 

middle r10
0 

AT1R => Ras 1.00 1.4 0.6 neonatal car-
diac fibro-
blasts 

 

output r10
1 

smad3 & CBP 
=> aSMA 

1.00 1.4 0.6 human car-
diac fibroblast 

txn activation 

output r10
2 

SRF => aSMA 1.00 1.4 0.6 rat cardiac fi-
broblasts 

transcription 

middle r10
3 

ETAR => DAG 1.00 1.4 0.6 rat embryonic 
fibroblasts 

production 

middle r10
4 

AT1R => DAG 1.00 1.4 0.6 CHO cells production 

middle r10
5 

DAG => TRPC 1.00 1.4 0.6 human car-
diac fibroblast 

activation 

middle r10
6 

TRPC => Ca 1.00 1.4 0.6 human car-
diac fibroblast 

channel opening 

middle r10
7 

Ca => calcineu-
rin 

1.00 1.4 0.6 adult rat car-
diac fibroblast 

activation 

middle r10
8 

TGFB1R => 
Rho 

1.00 1.4 0.6 human gingi-
vial fibroblasts 

  

middle r10
9 

B3int => Src 1.00 1.4 0.6 human lung fi-
broblasts 

dephosphorylation: 
Y530, autophosphor-
ylation: Y419 

middle r11
0 

B1int => FAK 1.00 1.4 0.6 mouse embry-
onic fibro-
blasts, COS7 

autophosphorylation: 
Y397 

middle r11
1 

FAK & Src => 
Grb2 

1.00 1.4 0.6 mouse embry-
onic fibro-
blasts 

activation via Src 

middle r11
2 

Grb2 => Ras 1.00 1.4 0.6 rat cardiac fi-
broblasts 

activation via SOS 

middle r11
3 

FAK & Src => 
RhoGEF 

1.00 1.4 0.6 mouse embry-
onic fibro-
blasts 

activation 

middle r11
4 

!Src => RhoGDI 1.00 1.4 0.6 mouse embry-
onic fibro-
blasts, HeLa 

phorphorylation: de-
creases binding Rho 
binding affinity 

middle r11
5 

FAK & Src => 
p130Cas 

1.00 1.4 0.6 mouse embry-
onic fibro-
blasts 

activation via Src 

middle r11
6 

PDGFR => Src 1.00 1.4 0.6 mouse embry-
onic fibro-
blasts 

activation 

middle r11
7 

tension & Src => 
p130Cas 

1.00 1.4 0.6 mouse embry-
onic fibro-
blasts 

activation 

middle r11
8 

p130Cas & abl 
=> Rac1 

1.00 1.4 0.6 HEK293 activation 

middle r11
9 

Factin => YAP 1.00 1.4 0.6 mouse embry-
onic fibro-
blasts 

dephosphorylation + 
translocation 
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middle r12
0 

PKA => RhoGDI 1.00 1.4 0.6 rat cardiac fi-
broblasts 

phosphorylation 

middle r12
1 

RhoGEF & 
!RhoGDI & 
!PKG => Rho 

1.00 1.4 0.6 mouse embry-
onic fibro-
blasts 

activation 

output r12
2 

YAP => CTGF 1.00 1.4 0.6 mouse embry-
onic fibro-
blasts 

txn via TEAD 

middle r12
3 

syndecan4 => 
PKC 

1.00 1.4 0.6 rat embryonic 
fibroblasts 

activation 

middle r12
4 

!PKC => 
RhoGDI 

1.00 1.4 0.6 rat embryonic 
cardiomyo-
cytes 

phosphorylation 

middle r12
5 

NFAT & !Gactin 
=> MRTF 

1.00 1.4 0.6 mouse car-
diac fibro-
blasts 

translocation 

middle r12
6 

ROCK & Gactin 
=> Factin 

1.00 1.4 0.6 rat cardiac fi-
broblasts 

polymerization 

middle r12
7 

!Factin => Gac-
tin 

1.00 1.4 0.6 mouse embry-
onic fibro-
blasts 

polymerization 

middle r12
8 

MRTF => SRF 1.00 1.4 0.6 human lung fi-
broblasts 

  

fback r12
9 

!TNC & tension 
=> syndecan4 

1.00 1.4 0.6 mouse car-
diac fibro-
blasts 

dephosphorylation 

middle r13
0 

Akt => mTORC1 1.00 1.4 0.6 HEK293 activation via 
TSC1/2, PRAS40 in-
hibition 

middle r13
1 

mTORC1 => 
p70S6K 

1.00 1.4 0.6 mouse embry-
onic fibro-
blasts 

activation 

middle r13
2 

!mTORC1 => 
EBP1 

1.00 1.4 0.6 mouse embry-
onic fibro-
blasts 

phosphorylation 

middle r13
3 

!EBP1 & 
p70S6K => pro-
liferation 

1.00 1.4 0.6 rat cardiac fi-
broblasts 

mRNA translation 

middle r13
4 

Akt => smad3 1.00 1.4 0.6 mouse car-
diac fibro-
blasts 

activation via GSK3B 
inhibition 

output r13
5 

NFKB => TNC 1.00 1.4 0.6 human car-
diac fibro-
blasts 

txn 

output r13
6 

MRTF => TNC 1.00 1.4 0.6 mouse embry-
onic fibro-
blasts 

txn 

middle r13
7 

!p70S6K => 
mTORC2 

1.00 1.4 0.6 mouse embry-
onic fibro-
blasts 

phosphorylation via 
Rictor 

middle r13
8 

mTORC2 & 
PI3K => Akt 

1.00 1.4 0.6 mouse embry-
onic fibro-
blasts 

activation 

middle r13
9 

mTORC2 & 
DAG => PKC 

1.00 1.4 0.6 HEK293 activation 

output r14
0 

YAP => PAI1 1.00 1.4 0.6 human lung fi-
broblasts 

txn 
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middle r14
1 

smad3 => 
thrombospon-
din4 

1.00 1.4 0.6 human dermal 
fibroblasts 

txn 

fback r14
2 

!thrombospon-
din4 & tension 
=> B3int 

0.80 1.4 0.6 mouse car-
diac fibro-
blasts 

receptor binding 

output r14
3 

NFKB & AP1 & 
!smad3 => 
proMMP8 

1.00 1.4 0.6 mouse car-
diac fibro-
blasts 

txn 

output r14
4 

NFKB & AP1 & 
!smad3 => 
proMMP3 

1.00 1.4 0.6 mouse car-
diac fibro-
blasts 

txn 

output r14
5 

AP1 => osteo-
pontin 

1.00 1.4 0.6 rat cardiac fi-
broblasts 

txn 

fback r14
6 

osteopontin => 
B3int 

0.80 1.4 0.6 rat cardiac fi-
broblasts 

receptor binding 

output r14
7 

CREB => 
proMMP12 

1.00 1.4 0.6 human dermal 
fibroblasts 

txn 

middle r14
8 

AP1 & !YAP => 
smad7 

1.00 1.4 0.6 human dermal 
fibroblasts 

txn: YAP/TAZ knock-
down required for 
smad7 expression 

middle r14
9 

FAK & Src & 
MLC => paxillin 

1.00 1.4 0.6 human fore-
skin fibro-
blasts 

activation 

middle r15
0 

vinculin & !paxil-
lin => FA 

1.00 1.4 0.6 human fore-
skin fibro-
blasts 

stabilization: paxillin 
increases FA turno-
ver for increased mi-
gration 

middle r15
1 

B1int => talin 1.00 1.4 0.6 mouse embry-
onic fibro-
blasts 

activation 

middle r15
2 

B3int => talin 1.00 1.4 0.6 mouse embry-
onic fibro-
blasts 

activation 

middle r15
3 

talin & tension 
=> vinculin 

1.00 1.4 0.6 mouse embry-
onic fibro-
blasts 

activation 

middle r15
4 

Factin & MLC & 
vinculin => con-
tractility 

1.00 1.4 0.6 mouse embry-
onic fibro-
blasts 

binding via vinculin 
tail region 

fback r15
5 

contractility & 
FA => tension 

0.80 1.4 0.6 human fore-
skin fibro-
blasts 

force generation via 
molecular clutch the-
ory 

middle r15
6 

ROCK => MLC 1.00 1.4 0.6 mouse embry-
onic fibro-
blasts 

activation via MLCK 
activation, MBS inhi-
bition 

middle r15
7 

tension => 
TRPC 

1.00 1.4 0.6 mouse embry-
onic fibro-
blasts 

activation 

middle r15
8 

tension => 
AT1R 

1.00 1.4 0.6 rat cardiac fi-
broblasts 

activation 

middle r15
9 

AT1R => YAP 1.00 1.4 0.6 rat cardiac fi-
broblasts 

dephosphorylation + 
translocation 

middle r16
0 

YAP => aSMA 1.00 1.4 0.6 rat cardiac fi-
broblasts 

txn 

middle r16
1 

AngII => AT2R 1.00 1.4 0.6 human car-
diac fibro-
blasts 

activation 
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middle r16
2 

ROS & !AT2R 
=> ERK 

1.00 1.4 0.6 neonatal rat 
cardiac fibro-
blasts 

activation 

middle r16
3 

!abl => BCL6 1.00 1.4 0.6 GRN inhibition 

output r16
4 

!BCL6 => proCI 1.00 1.4 0.6 GRN inhibition 

output r16
5 

!BCL6 => 
proCIII 

1.00 1.4 0.6 GRN inhibition 

output r16
6 

!BCL6 => CTGF 1.00 1.4 0.6 GRN inhibition 

middle r16
7 

!BCL6 => NFKB 1.00 1.4 0.6 GRN inhibition 

output r16
8 

!BCL6 => peri-
ostin 

1.00 1.4 0.6 GRN inhibition 

output r16
9 

!CEBPD => 
CTGF 

1.00 1.4 0.6 GRN inhibition 

output r17
0 

!EGR1 => IL6 1.00 1.4 0.6 GRN inhibition 

output r17
1 

!EGR1 => 
proMMP2 

1.00 1.4 0.6 GRN inhibition 

output r17
2 

!EGR1 => 
TIMP2 

1.00 1.4 0.6 GRN inhibition 

output r17
3 

!ETS2 => 
proMMP2 

1.00 1.4 0.6 GRN inhibition 

output r17
4 

!HIF1A => PAI1 1.00 1.4 0.6 GRN inhibition 

middle r17
5 

!AP1 => KLF4 1.00 1.4 0.6 GRN inhibition 

middle r17
6 

!AP1 => RARG 1.00 1.4 0.6 GRN inhibition 

output r17
7 

!KLF4 => proCI 1.00 1.4 0.6 GRN inhibition 

output r17
8 

!LEF1 => proCI 1.00 1.4 0.6 GRN inhibition 

output r17
9 

!LEF1 => peri-
ostin 

1.00 1.4 0.6 GRN inhibition 

output r18
0 

!LEF1 => throm-
bospondin4 

1.00 1.4 0.6 GRN inhibition 

output r18
1 

!MITF => TIMP2 1.00 1.4 0.6 GRN inhibition 

middle r18
2 

!cmyc => EGR1 1.00 1.4 0.6 GRN inhibition 

middle r18
3 

!cmyc => ETS2 1.00 1.4 0.6 GRN inhibition 

middle r18
4 

!cmyc => AP1 1.00 1.4 0.6 GRN inhibition 

middle r18
5 

!cmyc => HIF1A 1.00 1.4 0.6 GRN inhibition 

middle r18
6 

!cmyc => KLF4 1.00 1.4 0.6 GRN inhibition 

middle r18
7 

!cmyc => NFAT 1.00 1.4 0.6 GRN inhibition 

middle r18
8 

!cmyc => RELA 1.00 1.4 0.6 GRN inhibition 

middle r18
9 

!cmyc => 
RUNX1 

1.00 1.4 0.6 GRN inhibition 
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output r19
0 

!cmyc => PAI1 1.00 1.4 0.6 GRN inhibition 

middle r19
1 

!NFKB => EGR1 1.00 1.4 0.6 GRN inhibition 

middle r19
2 

!NFKB => 
RUNX1 

1.00 1.4 0.6 GRN inhibition 

middle r19
3 

!NFKB => 
TFCP2L1 

1.00 1.4 0.6 GRN inhibition 

output r19
4 

!NR5A2 => 
proCIII 

1.00 1.4 0.6 GRN inhibition 

output r19
5 

!PPARA => 
proMMP9 

1.00 1.4 0.6 GRN inhibition 

output r19
6 

!RARG => proCI 1.00 1.4 0.6 GRN inhibition 

output r19
7 

!RARG => 
proMMP2 

1.00 1.4 0.6 GRN inhibition 

middle r19
8 

!RELA => CE-
BPD 

1.00 1.4 0.6 GRN inhibition 

output r19
9 

!RUNX1 => 
CTGF 

1.00 1.4 0.6 GRN inhibition 

middle r20
0 

!RUNX1 => 
KLF4 

1.00 1.4 0.6 GRN inhibition 

middle r20
1 

!RUNX1 => 
LEF1 

1.00 1.4 0.6 GRN inhibition 

output r20
2 

!RUNX1 => 
PAI1 

1.00 1.4 0.6 GRN inhibition 

output r20
3 

!RUNX1 => 
TNC 

1.00 1.4 0.6 GRN inhibition 

output r20
4 

!RUNX2 => 
CTGF 

1.00 1.4 0.6 GRN inhibition 

output r20
5 

!RUNX2 => 
PAI1 

1.00 1.4 0.6 GRN inhibition 

output r20
6 

!smad3 => 
CTGF 

1.00 1.4 0.6 GRN inhibition 

middle r20
7 

!smad3 => 
ETS2 

1.00 1.4 0.6 GRN inhibition 

middle r20
8 

!SRF => LEF1 1.00 1.4 0.6 GRN inhibition 

output r20
9 

!SRF => PAI1 1.00 1.4 0.6 GRN inhibition 

output r21
0 

!STAT => CTGF 1.00 1.4 0.6 GRN inhibition 

middle r21
1 

!STAT => ETS1 1.00 1.4 0.6 GRN inhibition 

middle r21
2 

!STAT => MITF 1.00 1.4 0.6 GRN inhibition 

output r21
3 

!STAT => 
proMMP2 

1.00 1.4 0.6 GRN inhibition 

middle r21
4 

!STAT => NFAT 1.00 1.4 0.6 GRN inhibition 

output r21
5 

!STAT => peri-
ostin 

1.00 1.4 0.6 GRN inhibition 

middle r21
6 

!STAT => 
RARG 

1.00 1.4 0.6 GRN inhibition 

output r21
7 

!STAT => PAI1 1.00 1.4 0.6 GRN inhibition 
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middle r21
8 

!STAT => TCF4 1.00 1.4 0.6 GRN inhibition 

middle r21
9 

!STAT => 
TEAD4 

1.00 1.4 0.6 GRN inhibition 

middle r22
0 

!STAT => 
TFCP2L1 

1.00 1.4 0.6 GRN inhibition 

middle r22
1 

!STAT => WT1 1.00 1.4 0.6 GRN inhibition 

middle r22
2 

!STAT => 
ZNF281 

1.00 1.4 0.6 GRN inhibition 

middle r22
3 

!TCF4 => CTGF 1.00 1.4 0.6 GRN inhibition 

middle r22
4 

!TCF4 => KLF4 1.00 1.4 0.6 GRN inhibition 

middle r22
5 

!TCF4 => MITF 1.00 1.4 0.6 GRN inhibition 

output r22
6 

!TEAD4 => 
CTGF 

1.00 1.4 0.6 GRN inhibition 

middle r22
7 

!TEAD4 => AP1 1.00 1.4 0.6 GRN inhibition 

middle r22
8 

!TEAD4 => 
NFAT 

1.00 1.4 0.6 GRN inhibition 

output r22
9 

!TFCP2L1 => 
PAI1 

1.00 1.4 0.6 GRN inhibition 

middle r23
0 

!YAP => NFKB 1.00 1.4 0.6 GRN inhibition 

middle r23
1 

!YAP => PPARA 1.00 1.4 0.6 GRN inhibition 

output r23
2 

!ZNF281 => 
proCI 

1.00 1.4 0.6 GRN inhibition 

output r23
3 

!ZNF281 => 
PAI1 

1.00 1.4 0.6 GRN inhibition 

middle r23
4 

abl => AP1 1.00 1.4 0.6 GRN activation 

output r23
5 

BCL6 => proCI 1.00 1.4 0.6 GRN activation 

output r23
6 

BCL6 => proCIII 1.00 1.4 0.6 GRN activation 

output r23
7 

BCL6 => CTGF 1.00 1.4 0.6 GRN activation 

middle r23
8 

BCL6 => cmyc 1.00 1.4 0.6 GRN activation 

output r23
9 

BCL6 => perios-
tin 

1.00 1.4 0.6 GRN activation 

output r24
0 

CACYBP => 
TIMP2 

1.00 1.4 0.6 GRN activation 

output r24
1 

CEBPD => 
CTGF 

1.00 1.4 0.6 GRN activation 

middle r24
2 

CREB => AP1 1.00 1.4 0.6 GRN activation 

middle r24
3 

CREB => 
NR5A2 

1.00 1.4 0.6 GRN activation 

output r24
4 

EGR1 => 
proMMP14 

1.00 1.4 0.6 GRN activation 

output r24
5 

EGR1 => 
proMMP2 

1.00 1.4 0.6 GRN activation 
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output r24
6 

EGR1 => PDGF 1.00 1.4 0.6 GRN activation 

output r24
7 

EGR1 => TIMP2 1.00 1.4 0.6 GRN activation 

output r24
8 

EGR1 => TNFa 1.00 1.4 0.6 GRN activation 

output r24
9 

ETS2 => 
proMMP2 

1.00 1.4 0.6 GRN activation 

output r25
0 

ETS2 => 
proMMP9 

1.00 1.4 0.6 GRN activation 

middle r25
1 

ETS2 => cmyc 1.00 1.4 0.6 GRN activation 

output r25
2 

HIF1A => PAI1 1.00 1.4 0.6 GRN activation 

output r25
3 

IKZF1 => 
proMMP9 

1.00 1.4 0.6 GRN activation 

middle r25
4 

AP1 => KLF4 1.00 1.4 0.6 GRN activation 

middle r25
5 

AP1 => RUNX2 1.00 1.4 0.6 GRN activation 

output r25
6 

KLF4 => proCI 1.00 1.4 0.6 GRN activation 

output r25
7 

LEF1 => proCI 1.00 1.4 0.6 GRN activation 

output r25
8 

LEF1 => perios-
tin 

1.00 1.4 0.6 GRN activation 

output r25
9 

LEF1 => throm-
bospondin4 

1.00 1.4 0.6 GRN activation 

middle r26
0 

MITF => AP1 1.00 1.4 0.6 GRN activation 

middle r26
1 

MITF => HIF1A 1.00 1.4 0.6 GRN activation 

output r26
2 

MITF => TIMP2 1.00 1.4 0.6 GRN activation 

middle r26
3 

cmyc => EGR1 1.00 1.4 0.6 GRN activation 

middle r26
4 

cmyc => ETS2 1.00 1.4 0.6 GRN activation 

middle r26
5 

cmyc => AP1 1.00 1.4 0.6 GRN activation 

middle r26
6 

cmyc => HIF1A 1.00 1.4 0.6 GRN activation 

middle r26
7 

cmyc => KLF4 1.00 1.4 0.6 GRN activation 

middle r26
8 

cmyc => NFAT 1.00 1.4 0.6 GRN activation 

middle r26
9 

cmyc => RELA 1.00 1.4 0.6 GRN activation 

middle r27
0 

cmyc => 
RUNX1 

1.00 1.4 0.6 GRN activation 

output r27
1 

cmyc => PAI1 1.00 1.4 0.6 GRN activation 

middle r27
2 

NFAT => CA-
CYBP 

1.00 1.4 0.6 GRN activation 

middle r27
3 

NFAT => LEF1 1.00 1.4 0.6 GRN activation 



121 
 

middle r27
4 

NFKB => IKZF1 1.00 1.4 0.6 GRN activation 

middle r27
5 

NFKB => 
RUNX1 

1.00 1.4 0.6 GRN activation 

middle r27
6 

NFKB => 
TFCP2L1 

1.00 1.4 0.6 GRN activation 

output r27
7 

NR5A2 => 
proCIII 

1.00 1.4 0.6 GRN activation 

output r27
8 

PPARA => PAI1 1.00 1.4 0.6 GRN activation 

output r27
9 

RARG => proCI 1.00 1.4 0.6 GRN activation 

output r28
0 

RARG => 
proMMP2 

1.00 1.4 0.6 GRN activation 

middle r28
1 

RELA => CE-
BPD 

1.00 1.4 0.6 GRN activation 

middle r28
2 

RELA => NFKB 1.00 1.4 0.6 GRN activation 

middle r28
3 

RUNX1 => AP1 1.00 1.4 0.6 GRN activation 

output r28
4 

RUNX1 => 
CTGF 

1.00 1.4 0.6 GRN activation 

middle r28
5 

RUNX1 => 
KLF4 

1.00 1.4 0.6 GRN activation 

middle r28
6 

RUNX1 => 
LEF1 

1.00 1.4 0.6 GRN activation 

output r28
7 

RUNX1 => PAI1 1.00 1.4 0.6 GRN activation 

output r28
8 

RUNX1 => TNC 1.00 1.4 0.6 GRN activation 

output r28
9 

RUNX2 => 
CTGF 

1.00 1.4 0.6 GRN activation 

output r29
0 

RUNX2 => PAI1 1.00 1.4 0.6 GRN activation 

output r29
1 

smad3 => 
CTGF 

1.00 1.4 0.6 GRN activation 

middle r29
2 

smad3 => ETS2 1.00 1.4 0.6 GRN activation 

middle r29
3 

SRF => AP1 1.00 1.4 0.6 GRN activation 

middle r29
4 

STAT => AP1 1.00 1.4 0.6 GRN activation 

middle r29
5 

STAT => HIF1A 1.00 1.4 0.6 GRN activation 

middle r29
6 

STAT => 
PPARA 

1.00 1.4 0.6 GRN activation 

middle r29
7 

STAT => BCL6 1.00 1.4 0.6 GRN activation 

middle r29
8 

STAT => ETS1 1.00 1.4 0.6 GRN activation 

middle r29
9 

STAT => MITF 1.00 1.4 0.6 GRN activation 

middle r30
0 

STAT => NFAT 1.00 1.4 0.6 GRN activation 

output r30
1 

STAT => perios-
tin 

1.00 1.4 0.6 GRN activation 
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middle r30
2 

STAT => RARG 1.00 1.4 0.6 GRN activation 

output r30
3 

STAT => PAI1 1.00 1.4 0.6 GRN activation 

middle r30
4 

STAT => TCF4 1.00 1.4 0.6 GRN activation 

middle r30
5 

STAT => 
TEAD4 

1.00 1.4 0.6 GRN activation 

middle r30
6 

STAT => 
TFCP2L1 

1.00 1.4 0.6 GRN activation 

middle r30
7 

STAT => WT1 1.00 1.4 0.6 GRN activation 

middle r30
8 

STAT => 
ZNF281 

1.00 1.4 0.6 GRN activation 

output r30
9 

TCF4 => CTGF 1.00 1.4 0.6 GRN activation 

output r31
0 

TEAD4 => 
CTGF 

1.00 1.4 0.6 GRN activation 

middle r31
1 

TEAD4 => AP1 1.00 1.4 0.6 GRN activation 

middle r31
2 

TEAD4 => 
NFAT 

1.00 1.4 0.6 GRN activation 

output r31
3 

TFCP2L1 => 
PAI1 

1.00 1.4 0.6 GRN activation 

middle r31
4 

WT1 => AP1 1.00 1.4 0.6 GRN activation 

middle r31
5 

YAP => NFKB 1.00 1.4 0.6 GRN activation 

middle r31
6 

YAP => PPARA 1.00 1.4 0.6 GRN activation 

output r31
7 

ZNF281 => 
proCI 

1.00 1.4 0.6 GRN activation 

output r31
8 

ZNF281 => 
PAI1 

1.00 1.4 0.6 GRN activation 

output r31
9 

!CUX1 => CTGF 1.00 1.4 0.6 GRN inhibition 

middle r32
0 

!STAT => CUX1 1.00 1.4 0.6 GRN inhibition 

middle r32
1 

!TEAD2 => 
CUX1 

1.00 1.4 0.6 GRN inhibition 

output r32
2 

CUX1 => CTGF 1.00 1.4 0.6 GRN activation 

middle r32
3 

STAT => CUX1 1.00 1.4 0.6 GRN activation 

middle r32
4 

TEAD2 => 
CUX1 

1.00 1.4 0.6 GRN activation 

 

 

 

Table S4.2 Species and Species parameters used in Chapter 4. 

Species information 

module ID name Yinit Ymax tau type gene name 
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g-cou-
pled 

AngII angiotensin II 0 0.45 1 protein AGT 

g-cou-
pled 

AT1R angiotensin II receptor type 
1 

0 0.49 0.1 protein AGTR1 

g-cou-
pled 

AGT angiotensinogen 0 0.45 10 protein AGT 

g-cou-
pled 

ACE angiotensin converting en-
zyme 

0 0.32 0.1 protein ACE; ACE2 

g-cou-
pled 

NOX NAD(P)H oxidase 0 0.34 0.1 protein NOX4; 
NOX5 

g-cou-
pled 

ROS reactive oxygen species 0 0.50 0.1 protein 
 

g-cou-
pled 

ET1 endothelin 1 0 0.43 1 protein EDN1 

g-cou-
pled 

ETAR endothelin 1 receptor A 0 0.27 0.1 protein EDNRA 

g-cou-
pled 

DAG diacyl-glycerol 0 0.50 0.1 small 
 

g-cou-
pled 

PKC protein kinase C  0 0.41 0.1 protein PRKCA; 
PRKCE;  

pres-
sure/stre
tch 

TRPC transient receptor potential 
canonical 

0 0.41 0.1 protein TRPC6;TR
PC3 

g-cou-
pled 

NE norepinephrine 0 0.50 1 small 
 

g-cou-
pled 

BAR beta adrenergic receptor 1 
or 2 

0 0.45 0.1 protein ADRB1; 
ADRB2 

g-cou-
pled 

AC adenylate cyclase 0 0.42 0.1 protein ADCY6 

g-cou-
pled 

cAMP cyclic adenosine monophos-
phate 

0 0.50 0.1 small 
 

g-cou-
pled 

PKA protein kinase A 0 0.46 0.1 protein PRKACA 

g-cou-
pled 

CREB cAMP response-element 
binding protein 

0 0.48 0.1 protein CREB1; 
CREB3 

g-cou-
pled 

CBP CREB - binding protein 0 0.42 0.1 protein CREBBP 

growth 
factor 

TGFB transforming growth factor 
beta 1 

0 0.37 1 protein TGFB1 

growth 
factor 

TGFB1R TGFB receptor 0 0.47 0.1 protein TGFBR1; 
TGFBR2 

growth 
factor 

smad3 small mothers against 
decapentaplegic 2 and 3 

0 0.45 0.1 protein SMAD2; 
SMAD3 

growth 
factor 

smad7 small mothers against 
decapentaplegic 7 

0 0.40 10 protein SMAD7 

growth 
factor 

latentTG
FB 

TGFB1 with latent protein 
complex 

0 0.37 10 protein TGFB1 

growth 
factor 

BAMBI BMP and activin bound in-
hibitor 

0 0.32 0.1 protein BAMBI 

growth 
factor 

PDGF platelet derived growth fac-
tor 

0 0.36 1 protein PDGFA; 
PDGFB; 
PDGFD 

growth 
factor 

PDGFR platelet derived growth fac-
tor receptor 

0 0.50 0.1 protein PDGFRA; 
PDGFRB 

g-cou-
pled 

NP natriuretic peptide 0 0.29 1 protein NPPA; 
NPPB 
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g-cou-
pled 

NPRA natriuretic peptide receptor 0 0.32 0.1 protein NPR1; 
NPR2; 
NPR3 

g-cou-
pled 

cGMP cyclic guanosine monophos-
phate 

0 0.60 0.1 small 
 

g-cou-
pled 

PKG protein kinase G 0 0.49 0.1 protein PRKG1 

pres-
sure/stre
tch 

tension stretch 0 0.25 1 process 
 

pres-
sure/stre
tch 

B1int beta 1 integrin 0 0.42 0.1 protein ITGB1 

pres-
sure/stre
tch 

Rho a Rho-dependent GTPase  0 0.50 0.1 protein RHOA 

pres-
sure/stre
tch 

ROCK rho associated protein ki-
nase 

0 0.50 0.1 protein ROCK1 

pres-
sure/stre
tch 

Ca calcium 0 0.50 0.1 small 
 

pres-
sure/stre
tch 

calcineu-
rin 

calcineurin 0 0.55 0.1 protein PPP3CA; 
PPP3CB 

pres-
sure/stre
tch 

NFAT nuclear factor of activated T-
cells 

0 0.33 0.1 protein NFATC1 

cytokine IL6 interleukin-6 0 0.42 1 protein IL6 

cytokine gp130 IL-6 receptor complexed to 
gp130 for signal transduc-
tion 

0 0.47 0.1 protein IL6ST; IL6R 

cytokine STAT signal transducers and acti-
vators of transcription 1 and 
3 

0 0.37 0.1 protein STAT1; 
STAT3 

cytokine IL1 interleukin-1 alpha and beta 0 0.27 1 protein IL1B; IL1A 

cytokine IL1RI IL1 receptor type I  0 0.51 0.1 protein IL1R1 

cytokine TNFa tissue necrosis factor alpha 0 0.50 1 protein TNF 

cytokine TNFaR TNF alpha receptor 0 0.45 0.1 protein TNFRSF1A
;TNFRSF1
B 

cytokine NFKB nuclear factor kappa-light-
chain-enhancer of activated 
B cells 

0 0.45 0.1 protein NFKB1 

cytokine PI3K phosphoinositide 3-kinase 0 0.47 0.1 protein PIK3CA 

cytokine Akt protein kinase B 0 0.44 0.1 protein AKT1; 
AKT2; 
AKT3 

MAPK p38 a MAP kinase 0 0.52 0.1 protein MAPK14 

MAPK TRAF tnf receptor associated fac-
tor either 2/6 

0 0.53 0.1 protein TRAF6 

MAPK ASK1 apoptosis signal related ki-
nase 1 

0 0.49 0.1 protein MAP3K5 

MAPK MKK3 mitogen activated protein ki-
nase kinase 

0 0.38 0.1 protein MAP2K3 
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MAPK PP1 protein phosphatase 1 0 0.55 0.1 protein PPP1CA; 
PPP1CB; 
PPP1CC 

MAPK JNK a MAP kinase 0 0.44 0.1 protein MAPK8 

MAPK abl abl tyrosine kinase 0 0.50 0.1 protein ABL1; 
ABL2 

MAPK Rac1 a Rho-dependent GTPase  0 0.51 0.1 protein RAC1 

MAPK MEKK1 a MAP3K associated with 
p38 and JNK 

0 0.55 0.1 protein MAP3K1 

MAPK MKK4 a MAP2K associated with 
p38 and JNK 

0 0.54 0.1 protein MAP2K4 

MAPK ERK a MAP kinase 0 0.46 0.1 protein MAPK1; 
MAPK3 

MAPK Ras representing the family of 
GTPases 

0 0.53 0.1 protein KRAS 

MAPK Raf family of raf protein ser-
ine/threonine kinases 

0 0.58 0.1 protein RAF1 

MAPK MEK1 a MAP2K mainly specific to 
ERK  

0 0.43 0.1 protein MAP2K1 

adhe-
sion 

FAK  focal adhesion kinase 0 0.34 0.1 protein PTK2 

g-cou-
pled 

epac exchange protein activated 
by cAMP 1 

0 0.53 0.1 protein RAPGEF3 

adhe-
sion 

Factin polymerized actin 0 0.42 1 
 

ACTG1 

adhe-
sion 

FA stabilization of focal adhe-
sions  

0 0.50 1 complex 
 

growth cmyc myc transcription factor 0 0.45 0.1 protein MYC 

ECM CTGF connective tissue growth 
factor 

0 0.36 0.1 protein CTGF 

growth prolifera-
tion 

proliferation 0 0.50 10 event 
 

adhe-
sion 

SRF serum response factor 0 0.36 0.1 protein SRF 

ECM EDAFN extra domain A of fibronectin 0 0.33 10 protein FN1 

adhe-
sion 

aSMA alpha-smooth muscle actin 0 0.40 10 protein ACTA2 

MAPK AP1  activator protein 1 0 0.26 0.1 protein JUN; FOS 

ECM TIMP1 tissue inhibitor of metallo-
proteinase 1  

0 0.41 10 protein TIMP1 

ECM TIMP2 tissue inhibitor of metallo-
proteinase 2 

0 0.26 10 protein TIMP2 

ECM PAI1 plasminogen activator inhib-
itor 1 

0 0.35 10 protein SERPINE1 

ECM proMMP1
4 

inactive MMP14 0 0.27 10 protein MMP14 

ECM proMMP1 inactive MMP1 0 0.50 10 protein MMP1 

ECM proMMP2 inactive MMP2 0 0.21 10 protein MMP2 

ECM proMMP9 inactive MMP9 0 0.29 10 protein MMP9 

ECM fibron-
ectin 

fibronectin 0 0.33 10 protein FN1 

ECM periostin periostin 0 0.27 10 protein POSTN 

ECM proCI procollagen I 0 0.21 10 protein COL1A1 
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ECM proCIII procollagen III 0 0.24 10 protein COL3A1 

pres-
sure/stre
tch 

B3int beta 3 integrin 0 0.50 0.1 protein ITGB3 

adhe-
sion 

Src proto-oncogene tyrosine-
protein kinase Src 

0 0.35 0.1 protein SRC 

MAPK Grb2 growth factor receptor-
bound protein 2 

0 0.57 0.1 protein GRB2 

adhe-
sion 

p130Cas breast cancer anti-estrogen 
resistance protein 1 

0 0.28 0.1 protein BCAR1 

pres-
sure/stre
tch 

YAP yes-associated protein 1 0 0.38 0.1 protein YAP1 

adhe-
sion 

MRTF myocardin-related transcrip-
tion factor A 

0 0.47 0.1 protein MRTFA; 
MKL1 

adhe-
sion 

Gactin monomeric actin 0 0.42 1 protein ACTG1 

ECM TNC tenascin-c 0 0.37 10 protein TNC 

growth mTORC1 mammalian target of ra-
pamyocin complex 1 

0 0.50 0.1 complex   

growth mTORC2 mammalian target of ra-
pamyocin complex 2 

0 0.50 0.1 complex   

growth p70S6K p70-S6 kinase 1 0 0.54 0.1 protein RPS6KB1 

growth EBP1 eukaryotic translation initia-
tion factor 4E-binding pro-
tein 1 

0 0.45 0.1 protein EIF4EBP1 

pres-
sure/stre
tch 

syndecan
4 

syndecan 4 0 0.48 0.1 protein SDC4 

ECM proMMP3 inactive MMP3 0 0.50 10 protein MMP3 

ECM proMMP8 inactive MMP8 0 0.50 10 protein MMP8 

ECM proMMP1
2 

inactive MMP12 0 0.50 10 protein MMP12 

ECM throm-
bospon-
din4 

thrombospondin 4 0 0.19 10 protein THBS4 

ECM osteo-
pontin 

osteopontin 0 0.38 10 protein SPP1 

adhe-
sion 

contractil-
ity 

intracellular tension 0 0.50 10 event   

pres-
sure/stre
tch 

RhoGEF a Rho guanine nucleotide 
exchange factor 

0 0.50 0.1 protein   

pres-
sure/stre
tch 

RhoGDI a Rho GDP-dissociation in-
hibitor 

0 0.50 0.1 protein   

adhe-
sion 

talin talin 1 0 0.59 0.1 protein TLN1 

adhe-
sion 

vinculin vinculin 0 0.55 0.1 protein VCL 

adhe-
sion 

paxillin paxillin 0 0.34 0.1 protein PXN 

adhe-
sion 

MLC myosin regulatory light chain 0 0.31 0.1 protein MYL2 
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g-cou-
pled 

AT2R angiotensin II receptor type 
2 

0 0.51 0.1 protein AGTR2 

txn BCL6 B-Cell Lymphoma 6 Protein 0 0.48 1 transcrip-
tion factor 

BCL6 

txn CACYBP Calcyclin Binding Protein 0 0.30 1 transcrip-
tion factor 

CACYBP 

txn CEBPD CCAAT Enhancer Binding 
Protein Delta 

0 0.42 1 transcrip-
tion factor 

CEBPD 

txn CUX1 Cut Like 1 Homebox 0 0.50 1 transcrip-
tion factor 

CUX1 

txn EGR1 Early Growth Response 1 0 0.29 1 transcrip-
tion factor 

EGR1 

txn ETS1 ETS Proto-Oncogene 1, 
Transcription Factor 

0 0.46 1 transcrip-
tion factor 

ETS1 

txn ETS2 ETS Proto-Oncogene 2, 
Transcription Factor 

0 0.51 1 transcrip-
tion factor 

ETS2 

txn HIF1A Hypoxia Inducible Factor 1 
Subunit Alpha 

0 0.45 1 transcrip-
tion factor 

HIF1A 

txn LEF1 LEF1 0 0.15 1 transcrip-
tion factor 

LEF1 

txn IKZF1 IKZF1 0 0.24 1 transcrip-
tion factor 

IKZF1 

txn KLF4 KLF4 0 0.39 1 transcrip-
tion factor 

KLF4 

txn MITF Melanocyte Inducing Tran-
scription Factor 

0 0.53 1 transcrip-
tion factor 

MITF 

txn NR5A2 Nuclear Receptor Subfamily 
5 Group A Member 2 

0 0.46 1 transcrip-
tion factor 

NR5A2 

txn PPARA Peroxisome Proliferator Ac-
tivated Receptor Alpha 

0 0.47 1 transcrip-
tion factor 

PPARA 

txn RARG Retinoic Acid Receptor 
Gamma 

0 0.23 1 transcrip-
tion factor 

RARG 

txn RUNX1 RUNX1 0 0.28 1 transcrip-
tion factor 

RUNX1 

txn RELA RELA Proto-Oncogene, NF-
KB Subunit 

0 0.45 1 transcrip-
tion factor 

RELA 

txn TEAD4 TEA Domain Transcription 
Factor 4 

0 0.36 1 transcrip-
tion factor 

TEAD4 

txn RUNX2 RUNX Family Transcription 
Factor 2 

0 0.29 1 transcrip-
tion factor 

RUNX2 

txn TCF4 Transcription Factor 4 0 0.32 1 transcrip-
tion factor 

TCF4 

txn TFCP2L1 TFCP2L1 0 0.42 1 transcrip-
tion factor 

TFCP2L1 

txn WT1 WT1 Transcription Factor 0 0.21 1 transcrip-
tion factor 

WT1 

txn ZNF281 Zinc Finger Protein 281 0 0.46 1 transcrip-
tion factor 

ZNF281 

 

6.2 Codes 

Code C.3.1 Gene Regulatory Network Inference. Modified from Rogers et. al. [1] (.py) 

""" 

Scripts for inferring GRNs, including: 

- Single inference 
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- k-fold cross validation 

- Conversion to Netflux models 

""" 

 

import os 

# import time 

import pandas as pd 

import numpy as np 

import asyncio 

 

from distributed import Client, LocalCluster 

from arboreto.algo import grnboost2 

 

from src.GRNrefinement import refineGRN 

import src.GRNvalidation as gv 

 

asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPol-

icy()) 

 

 

 

 

def importData(filepath): 

    data = pd.read_csv(filepath, index_col=0, header=1).dropna() 

    return data 

 

 

def importTFs(dirpath, libraryname, both=True): 

    """ 

    Imports list of TFs from specified top-level directory 

    (dirpath) and library string (libraryname). Optionally 

    adds a second library to create composite list for  

    wider coverage of TFs. 

    """ 

    from src.GRNrefinement import getLibPath 

    libextension = "_attribute_list_entries.txt.gz" 

    libfile = getLibPath(dirpath, libraryname, filter_exten-

sion=libextension) 

    tf_all = pd.read_table(libfile) 

    if both: 

        libname = "TRANSFACpredicted" 

        libfile = getLibPath(dirpath, libname, filter_exten-

sion=libextension) 

        tf_2 = pd.read_table(libfile) 

        tf_all = pd.concat([tf_all, tf_2], axis=0).drop_duplicates() 

    return tf_all 

 

 

def processData(data, cutoff=1, num_samples=2): 

    """Given a pandas dataframe, returns a transposed numpy array 

    of values and associated gene names for input into grnboost2.  



129 
 

    Additionally applies a threshold to data as used for EdgeR. 

     

    Note: assumes data is CPM data for thresholding purposes""" 

    data_t = data.transpose() 

    # apply threshold via EdgeR method 

    data_threshold = data_t >= cutoff 

    data_keep = data_t.loc[:, (data_threshold.sum(axis=0) >= num_sam-

ples).values] 

    data_array = data_keep.values 

    data_genes = data_keep.columns.values 

    return data_array, data_genes 

 

 

def saveGRN(grn, savedir, fold=None,  

            trainingset=None, testingset=None,  

            suffix=None): 

    if suffix is not None: 

        ext_csv = "_"+suffix+".csv" 

        ext_txt = "_"+suffix+".txt" 

    else: 

        ext_csv = ".csv" 

        ext_txt = ".txt" 

    if fold is not None: 

        filename_grn = "GRN_CV_fold"+str(fold)+ext_csv 

        if trainingset and testingset is not None: 

            filename_sets = "datasets_CV_fold"+str(fold)+ext_txt 

            with open(savedir+filename_sets, "w") as output: 

                output.write("_Training_\n") 

                for train in trainingset[fold]: 

                    output.write(train + "\n") 

                output.write("_Testing_\n") 

                for test in testingset[fold]: 

                    output.write(test + "\n") 

    else: 

        filename_grn = "GRN_single"+ext_csv 

    grn.to_csv(savedir+filename_grn) 

    return 

 

 

 

# runtime scripts 

def inferGRN(filename,  

            libpath, libname, lib_both=True, 

            savedir=None, suffix=None, seed=None): 

    """ 

    Top-level script for inferring gene regulatory network 

    from a given dataset using the Arboreto GRNboost2 algorithm. 

    :filename:  path to CSV file containing gene expression data. 

    :libpath:   path to directory containing sub-folders for TF-target 

                libraries. 

    :libname:   string of TF-target library used for inference. 
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    :lib_both:  (optional) Boolean operator determining use of addi-

tional 

                library (TRANSFACpredicted) for wider TF coverage 

    :savedir:   (optional) path to directory for saving final CSV. 

    :seed:      (optional) integer for inference algorithm seed 

    """ 

 

    # import cpm + library data 

    cpm = importData(filename) 

    cpm_array, cpm_genes = processData(cpm) 

 

    tf_all = importTFs(libpath, libname, lib_both) 

    tf_names = tf_all["GeneSym"].to_list() 

 

 

    # setup Dask cluster 

    client = Client(LocalCluster()) 

    print(client.dashboard_link) 

     

 

 

    # infer + refine GRN 

    grn = grnboost2(expression_data=cpm_array, 

                    gene_names=cpm_genes, 

                    tf_names=tf_names, 

                    client_or_address=client, 

                    seed=seed) 

    grn_refined = refineGRN(grn, libname, dir_path=libpath) 

 

    if savedir is not None: 

        saveGRN(grn_refined, savedir, suffix=suffix) 

 

    client.shutdown() 

    return grn_refined 

 

 

def crossvalidateGRN(filename,  

                    libpath, libname, k, lib_both=True, 

                    savedir=None, suffix=None, seed=None): 

    """ 

    Top-level script for k-fold cross validation of gene regulatory  

    network inference using the Arboreto GRNboost2 algorithm. 

    :filename:  path to CSV file containing gene expression data. 

    :libpath:   path to directory containing sub-folders for TF-target 

                libraries. 

    :libname:   string of TF-target library used for inference. 

    :k:         integer specifying number of folds for CV 

    :lib_both:  (optional) Boolean operator determining use of addi-

tional 

                library (TRANSFACpredicted) for wider TF coverage 

    :savedir:   (optional) path to directory for saving final CSV. 
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    :seed:      (optional) integer for inference algorithm seed 

    """ 

 

    # import cpm + library data 

    cpm = importData(filename) 

 

    tf_all = importTFs(libpath, libname, lib_both) 

    tf_names = tf_all["GeneSym"].to_list() 

 

    # create and assign CV folds 

    folds = gv.makeFolds(cpm, k) 

    training, testing = gv.assignFolds(folds) 

 

    # setup Dask cluster 

    client = Client(LocalCluster()) 

    print(client.dashboard_link) 

 

    # infer + refine GRN for each fold 

    fold = 0 

    while fold < k: 

        cpm_fold = cpm.loc[:, training[fold]] 

        cpm_array, cpm_genes = processData(cpm_fold) 

 

        grn = grnboost2(expression_data=cpm_array, 

                        gene_names=cpm_genes, 

                        tf_names=tf_names, 

                        client_or_address=client, 

                        seed=seed) 

        grn_refined = refineGRN(grn, libname, dir_path=libpath) 

 

        if savedir is not None: 

            saveGRN(grn_refined, savedir, fold=fold, suffix=suffix,  

                    trainingset=training, testingset=testing) 

         

        # store all refined GRNs 

        grn_refined["fold"] = fold 

        if fold == 0: 

            grn_all = grn_refined 

        else: 

            grn_all = grn_all.append(grn_refined) 

 

        fold = fold + 1 

 

    client.shutdown() 

    return grn_all 

 

Code C.3.2 Gene Regulatory Network Refinement. Modified from Rogers et. al. [1](.py) 

""" 

Functions for refining GRN as inferred from Arboreto 
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""" 

import os 

import pandas as pd 

import numpy as np 

# Library filtering functions 

def getLibPath(start_directory, sub_directory, filter_exten-

sion=None): 

    """ 

    Using top-level and subdirectory, returns  

    string of filename matching extension 

    """ 

    for root, _, files in os.walk(start_directory+sub_directory): 

        for file in files: 

            if filter_extension is None or file.lower().endswith(fil-

ter_extension): 

                return os.path.join(root, file) 

def importLibraries(dirpath, libraryname, both=True): 

    """ 

    Using filename of GRN, imports libraries of TF-target interac-

tions. 

    :dirpath:   name of top-level directory containing library fold-

ers. 

    :filename:  name of library to use  

                    Library options: CHEA, TRANSFAC, ENCODE 

    """ 

    libextension = "_gene_attribute_edges.txt.gz" 

    libfile = getLibPath(dirpath, libraryname, filter_exten-

sion=libextension) 

    library = pd.read_csv(libfile,  

                        index_col=None, header=0,  

                        low_memory=False, sep=r"\s+") 

    if both: 

        libname = "TRANSFACpredicted" 

        libfile = getLibPath(dirpath, libname, filter_exten-

sion=libextension) 

        library2 = pd.read_csv(libfile,  

                        index_col=None, header=0,  

                        low_memory=False, sep=r"\s+") 

        library = pd.concat([library,library2], axis=0).drop_dupli-

cates() 

    return library.drop(index=0) 

def filterWithLibrary(grn, library): 

    """given a grn df and library df, finds edges matching 

    the library and returns filtered grn with matching edges""" 

    grn_pairs = grn["TF"]+"-"+grn["target"] 

    lib_pairs = library["target"]+"-"+library["source"] 

    inLibrary = grn_pairs.isin(lib_pairs) 

    grn_filtered = grn.loc[inLibrary, :] 

    return grn_filtered 

# ========================= 

# Input-output filtering functions 
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def findOutputs(grn, *regs, indivregs=None): 

    """Given regex strings for output gene families,  

    finds outputs included in full GRN""" 

    if indivregs is not None: 

        reg_list = "|".join((regs) + indivregs) 

    else: 

        reg_list = "|".join((regs)) 

    outputs = grn.loc[grn["target"].str.contains(reg_list, re-

gex=True).values,"target"].unique() 

    return outputs 

def findInputsOrOutputs(grn,values,column): 

    """ 

    Given a list of gene names,  

    finds names located in either TF or target columns in GRN 

    """ 

    vals_any = [] 

    for val in values: 

        val_any = grn[column].isin([val]).any() 

        vals_any.append(val_any) 

    vals_dict = dict(zip(values,vals_any)) 

    # filter dictionary for true items 

    keys = [] 

    for item in vals_dict.items(): 

        if item[1] == True: 

            keys.append(item[0]) 

    return keys 

def filterInputsOrOutputs(grn,keys,column): 

    """Given a list of gene names and the corresponding 

    column, returns a filtered GRN containing only 

    elements in the list.""" 

    for key in keys: 

        grn_key = grn.loc[grn[column]==key,:] 

        # remove 'index' column if necessary  

        # (in order to avoid issues with concatenation) 

        if grn.columns.isin(["index"]).any(): 

            grn_key = grn_key.drop(columns=["index"]) 

        if key == keys[0]: 

            grn_filt = grn_key 

        else: 

            grn_filt = pd.concat([grn_filt, grn_key], axis=0) 

    return grn_filt 

def filterInOutNetwork(grn_in, grn_out, grn_targets, include_interme-

diates=False): 

    """Given GRNs filtered for inputs TFs only, outputs targets only, 

    and those included in libraries, function returns a subnetwork 

    containing edges leading from inputs to outputs via intermediate 

    TFs, with optional inclusion of indermediate (TF-TF) edges""" 

    tfs = grn_targets["TF"].unique() 

    in_tf = grn_in.loc[grn_in["target"].isin(tfs), :] 

    tf_out = grn_out        # assumed b/c of TF column 

    if include_intermediates: 
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        # find tf-tf edges connected to "input-tf" or "tf-output" 

edges 

        grn_tfs = grn_targets.loc[grn_targets["target"].isin(grn_tar-

gets["TF"].unique()), :] 

        inclInput = grn_tfs["TF"].isin(in_tf["target"]) 

        inclOutput = grn_tfs["target"].isin(tf_out["TF"]) 

        tftf_in = grn_tfs.loc[inclInput, :] 

        tftf_out = grn_tfs.loc[inclOutput, :] 

        tftf = tftf_in.loc[tftf_in.index.isin(tftf_out.index), :] 

        grn_filtered = pd.concat([in_tf, tftf, tf_out], axis=0) 

    else: 

        grn_filtered = pd.concat([in_tf, tf_out], axis=0) 

    return grn_filtered 

# ========================= 

# Simultaneous top-down + bottom-up DFS scripts 

def testPathInv(path,grn,rules): 

    """Test that a found path meets bottom-up search requirements""" 

    meetsRules = [] 

    for item in range(len(path)): 

        if item < len(path)-1: 

            target = path[item] 

            TF = path[item+1] 

            toTest = grn.loc[(grn["target"]==target) & 

(grn["TF"]==TF),"importance"] 

            neighbors_all = grn.loc[grn["target"]==target,:] 

            quant = neighbors_all["importance"].quantile(q=rules[1]) 

            if ((toTest >= rules[0]).bool()) | ((toTest >= 

quant).bool()): 

                meetsRules.extend([True]) 

            else: 

                meetsRules.extend([False]) 

    return all(meetsRules) 

def findPathsBoth(grn,start,output_keys,rules=[1,0.5]): 

    """ 

    Given a network of pairwise TF-target interactions, a  

    starting TF, and a set of output genes, 1) uses a top-down  

    search algorithm to find paths between the input and outputs,  

    and 2) checks that found paths meets the same rules for a  

    bottom-up search. 

    """ 

    stack = [(start,[start])] 

    while stack: 

        (vertex,path) = stack.pop() 

        neighbors_all = grn.loc[grn["TF"]==vertex,:] 

        quant = neighbors_all["importance"].quantile(q=rules[1]) 

        toKeep = ((neighbors_all["importance"]>rules[0]) | (neigh-

bors_all["importance"]>quant)) 

        neighbors = neighbors_all.loc[toKeep,"target"] 

        for neigh in neighbors: 

            if neigh not in path: 

                if neigh in output_keys: 
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                    meetsInvRules = testPathInv(list(reversed(path + 

[neigh])),grn,rules) 

                    if meetsInvRules: 

                        yield path + [neigh] 

                else: 

                    stack.append((neigh, path + [neigh])) 

def findPathImps(grn,pathlist): 

    """ 

     

    """ 

    tot_imp = [] 

    vars_imp = [] 

    for paths in pathlist: 

        path_imp = [] 

        for item in range(len(paths)): 

            if item < len(paths)-1: 

                TF = paths[item] 

                target = paths[item+1] 

                criteria = ((grn["TF"] == TF) & (grn["target"] == tar-

get)) 

                imp = grn.loc[criteria, "importance"] 

                if item == 0: 

                    path_imp = [float(imp)] 

                else: 

                    path_imp = path_imp + [float(imp)] 

        tot_imp.extend([np.sum(path_imp)]) 

        vars_imp.extend([np.std(path_imp)]) 

    paths_imp = pd.DataFrame(data=[pathlist, tot_imp, vars_imp],  

                             index=["path", "importance_total", "im-

portance_sd"]).transpose() 

     

    # add additional metrics + metadata 

    paths_imp["importance_mean"] = paths_imp["importance_total"] / 

paths_imp["path"].str.len() 

    paths_imp["importance_cv"] = paths_imp["importance_sd"] / 

paths_imp["importance_mean"] 

    paths_str = [] 

    for _, series in paths_imp.iterrows(): 

        paths_str.extend([''.join('->'+str(i) for i in se-

ries["path"])[2:]]) 

    paths_imp["path_string"] = paths_str 

    paths_imp["input"] = paths_imp["path"].str[0] 

    paths_imp["output"] = paths_imp["path"].str[-1] 

    paths_imp["TF"] = paths_imp["path"].str[-2] 

    return paths_imp 

def findPathRows(grn,pathlist): 

    """Extract interaction pairs from paths""" 

    idxs = [] 

    for paths in pathlist: 

        for item in range(len(paths)): 

            if item < len(paths)-1: 
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                TF = paths[item] 

                target = paths[item+1] 

                criteria = ((grn["TF"]==TF) & (grn["target"]==tar-

get)) 

                idx = grn.loc[criteria,:].index 

                idxs.extend(idx) 

    paths_idx = grn.loc[idxs,:].sort_values("importance", ascend-

ing=False).drop_duplicates() 

    return paths_idx 

# ========================= 

# Runtime function 

def refineGRN(grn,  

            libraryname,  

            dir_path="D:\\Research\\Aim3\\data_TFdatabases\\",  

            lib_both=True,  

            output_regex=False): 

    """ 

    Top-level function for GRN refinement. 

    :grn:           n x 3 pandas dataframe containing "TF", "target" 

and "importance" 

    :libraryname:   string containing TF-target database used for 

pruning 

                        Current options:    "CHEA", "TRANSFACpre-

dicted",  

                                            "TRANSFACcurated", "EN-

CODE" 

    :dir_path:      string containing top-level directory for all 

databases, 

                    libraries should be located in folders matching 

libraryname 

    :lib_both:      Boolean determining 'both' argument in importLi-

braries fcn 

    :output_regex:  Boolean determining whether regex should be used 

in  

                    choosing gene outputs (i.e. gene families) 

    :grn_final:     n x 3 pandas datafram containing refined edges 

    """ 

    # import df 

    # db_path = "CHEA\\" 

    # file_name = "CHEA_both_GRN_09012020_EdgeR.csv" 

    # grn = pd.read_csv(dir_path+db_path+file_name, header=0, in-

dex_col=0) 

    # grn = grn.reset_index() 

    # print(grn.shape) 

    # filter for edges contained in librar(ies) 

    library = importLibraries(dir_path, libraryname, both=lib_both) 

    grn_targets = filterWithLibrary(grn, library) 

    print(grn_targets.shape) 

    # filter for edges connected to desired inputs/outputs 

    if output_regex: 

        reg_col = r"^COL\d{1,2}A\d$" 
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        reg_mmp = r"^MMP\d" 

        reg_timp = r"TIMP\d" 

        reg_cts = r"CTS+[A-Z]" 

        reg_tgfb = r"TGFB\d$" 

        reg_thbs = r"THBS\d" 

        reg_lox = r"^LOX" 

        reg_others = ("SPP1","POSTN","^FN1","SPARC$", 

                    "TNC","CTGF","SERPINE1","ACTA2", 

                      "HBA1","HBA2","HBB","SFRP4","PENK","COL22A1", 

                      "LGALS2","FNDC1","MYH6") 

        outputs = findOutputs(grn,  

                            reg_col, reg_mmp, reg_timp, reg_cts,  

                            reg_tgfb, reg_thbs, reg_lox,  

                            indivregs=reg_others) 

    else: 

        outputs = ["CTGF","FN1","ACTA2","TIMP1","TIMP2","SER-

PINE1","MMP12", 

                

"MMP14","MMP1","MMP2","MMP3","MMP8","MMP9","POSTN","COL1A1", 

                "COL1A2","COL3A1","TNC","THBS4","SPP1"] 

     

    inputs = 

["STAT1","STAT3","JUN","FOS","NFKB1","RELA","CREB1","CREBBP", 

            

"SMAD3","MYC","NFATC1","NFATC3","SRF","TEAD2","TEAD4","YAP1","WWTR1"

] 

     

    input_keys = findInputsOrOutputs(grn_targets, inputs, "TF") 

    output_keys = findInputsOrOutputs(grn_targets, outputs, "target") 

    grn_outputs = filterInputsOrOutputs(grn_targets, output_keys, 

"target") 

    grn_inputs = filterInputsOrOutputs(grn_targets, input_keys, "TF") 

    paths_all_inout = filterInOutNetwork(grn_inputs, grn_outputs, 

grn_targets) 

    print(paths_all_inout.shape) 

    # find input-output paths via modified DFS algorithm 

    paths_found_bothsearch = [] 

    for inp in input_keys: 

        paths_found_bothsearch.extend(list(find-

PathsBoth(paths_all_inout,  

                                                        inp, out-

put_keys,  

                                                        

rules=[1,0.90]))) 

    paths_found_bothsearch_imp = findPathImps(paths_all_inout,  

                                            paths_found_bothsearch) 

    grn_final = findPathRows(paths_all_inout.reset_index(),  

                            paths_found_bothsearch_imp["path"]) 

    print(grn_final.shape) 

    return grn_final 
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Code C.3.3 Gene Regulatory Network Validation. Modified from Rogers et. al. [1] (.py) 

""" 

Scripts for generating cross validation folds and datasets 

""" 

 

import random 

 

def makeFolds(data, k): 

    """ 

    Given a dataframe of cpm values, randomly  

    creates k folds and returns nested list of  

    column names. 

    """ 

    # randomize columns 

    order = data.columns.tolist() 

    random.shuffle(order) 

    # split into folds (specified by k) 

    folds = [] 

    fold = 0 

    dist = len(order) / k 

    while fold < k: 

        start = int(round(fold * dist)) 

        end = int(round(start + dist)) 

        folds.append(order[start:end]) 

        fold = fold + 1 

    return folds 

 

def assignFolds(folds): 

    """ 

    Given a nested list of strings from makeFolds,  

    assigns testing sets from each list(fold) and  

    assigns rest to training set for each fold. K 

    is determined from length of nested list as the 

    number of folds. 

    """ 

    training = [] 

    testing = [] 

    k = len(folds) 

    fold=0 

    while fold < k: 

        testing.append(folds.pop(fold)) 

        training.append([y for x in folds for y in x]) 

        folds.insert(fold, testing[fold]) 

        fold = fold+1 

    return training, testing 

 

 

Code C.3.4 Gene Regulatory Network Execution in Dask (.py) 

from src.GRNinference import inferGRN, crossvalidateGRN 
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# Specify data and library arguments: 

# - `path_to_data`: address of CSV file containing gene expression 

data (formatted as genes x samples) 

# - `lib_dir`: address of directory containing sub-directories for all 

TF-target databases (included in repository as `data`) 

# - `lib_name`: string specifying the desired library to use for 

inference and refinement 

#   - Here, the [CHEA](https://pubmed.ncbi.nlm.nih.gov/20709693/) da-

tabase of transcription factor targets is used 

path_to_data = "data\\expression\\CPMS_SVA_corrected_geneid_re-

paired_06022023.csv" 

lib_dir = "data\\" 

lib_name = "CHEA" 

k = 10 

path_to_save = "data\\networks\\" 

grn_all = crossvalidateGRN(path_to_data, lib_dir, lib_name, k, 

savedir=path_to_save) 

grn_all.to_csv('grn_all_MAGNet_DE.csv', index=False) 

 

Code C.4.1 Logic based ODE Model (.m) 

function dydt=NetfluxODE_DCM_07122023(t,y,params)  

% NetfluxODE_DCM_07122023.m  

 

% Assign names for parameters  

[rpar,tau,ymax,speciesNames]=params{:};  

AngII = 1;  

AT1R = 2;  

AGT = 3;  

ACE = 4;  

NOX = 5;  

ROS = 6;  

ET1 = 7;  

ETAR = 8;  

DAG = 9;  

PKC = 10;  

TRPC = 11;  

NE = 12;  

BAR = 13;  

AC = 14;  

cAMP = 15;  

PKA = 16;  

CREB = 17;  

CBP = 18;  

TGFB = 19;  

TGFB1R = 20;  

smad3 = 21;  

smad7 = 22;  

latentTGFB = 23;  

BAMBI = 24;  
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PDGF = 25;  

PDGFR = 26;  

NP = 27;  

NPRA = 28;  

cGMP = 29;  

PKG = 30;  

tension = 31;  

B1int = 32;  

Rho = 33;  

ROCK = 34;  

Ca = 35;  

calcineurin = 36;  

NFAT = 37;  

IL6 = 38;  

gp130 = 39;  

STAT = 40;  

IL1 = 41;  

IL1RI = 42;  

TNFa = 43;  

TNFaR = 44;  

NFKB = 45;  

PI3K = 46;  

Akt = 47;  

p38 = 48;  

TRAF = 49;  

ASK1 = 50;  

MKK3 = 51;  

PP1 = 52;  

JNK = 53;  

abl = 54;  

Rac1 = 55;  

MEKK1 = 56;  

MKK4 = 57;  

ERK = 58;  

Ras = 59;  

Raf = 60;  

MEK1 = 61;  

FAK = 62;  

epac = 63;  

Factin = 64;  

FA = 65;  

cmyc = 66;  

CTGF = 67;  

proliferation = 68;  

SRF = 69;  

EDAFN = 70;  

aSMA = 71;  

AP1 = 72;  

TIMP1 = 73;  

TIMP2 = 74;  

PAI1 = 75;  
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proMMP14 = 76;  

proMMP1 = 77;  

proMMP2 = 78;  

proMMP9 = 79;  

fibronectin = 80;  

periostin = 81;  

proCI = 82;  

proCIII = 83;  

B3int = 84;  

Src = 85;  

Grb2 = 86;  

p130Cas = 87;  

YAP = 88;  

MRTF = 89;  

Gactin = 90;  

TNC = 91;  

mTORC1 = 92;  

mTORC2 = 93;  

p70S6K = 94;  

EBP1 = 95;  

syndecan4 = 96;  

proMMP3 = 97;  

proMMP8 = 98;  

proMMP12 = 99;  

thrombospondin4 = 100;  

osteopontin = 101;  

contractility = 102;  

RhoGEF = 103;  

RhoGDI = 104;  

talin = 105;  

vinculin = 106;  

paxillin = 107;  

MLC = 108;  

AT2R = 109;  

BCL6 = 110;  

CACYBP = 111;  

CEBPD = 112;  

CUX1 = 113;  

EGR1 = 114;  

ETS1 = 115;  

ETS2 = 116;  

HIF1A = 117;  

LEF1 = 118;  

IKZF1 = 119;  

KLF4 = 120;  

MITF = 121;  

NR5A2 = 122;  

PPARA = 123;  

RARG = 124;  

RUNX1 = 125;  

RELA = 126;  
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TEAD4 = 127;  

RUNX2 = 128;  

TCF4 = 129;  

TFCP2L1 = 130;  

WT1 = 131;  

ZNF281 = 132;  

dydt = zeros(132,1);  

dydt(AngII) = 

(OR(rpar(1,1),AND(rpar(:,13),act(y(AGT),rpar(:,13)),act(y(ACE),rpar(

:,13))))*ymax(AngII) - y(AngII))/tau(AngII);  

dydt(AT1R) = (OR(act(y(AngII),rpar(:,18)),act(y(ten-

sion),rpar(:,168)))*ymax(AT1R) - y(AT1R))/tau(AT1R);  

dydt(AGT) = (AND(rpar(:,27),in-

hib(y(AT1R),rpar(:,27)),act(y(p38),rpar(:,27)),in-

hib(y(JNK),rpar(:,27)))*ymax(AGT) - y(AGT))/tau(AGT);  

dydt(ACE) = (act(y(TGFB1R),rpar(:,50))*ymax(ACE) - y(ACE))/tau(ACE);  

dydt(NOX) = 

(OR(act(y(AT1R),rpar(:,19)),act(y(TGFB1R),rpar(:,99)))*ymax(NOX) - 

y(NOX))/tau(NOX);  

dydt(ROS) = 

(OR(act(y(NOX),rpar(:,20)),act(y(ETAR),rpar(:,37)))*ymax(ROS) - 

y(ROS))/tau(ROS);  

dydt(ET1) = (OR(rpar(1,9),act(y(AP1),rpar(:,17)))*ymax(ET1) - 

y(ET1))/tau(ET1);  

dydt(ETAR) = (act(y(ET1),rpar(:,56))*ymax(ETAR) - y(ETAR))/tau(ETAR);  

dydt(DAG) = 

(OR(act(y(ETAR),rpar(:,113)),act(y(AT1R),rpar(:,114)))*ymax(DAG) - 

y(DAG))/tau(DAG);  

dydt(PKC) = 

(OR(act(y(syndecan4),rpar(:,133)),AND(rpar(:,149),act(y(DAG),rpar(:,

149)),act(y(mTORC2),rpar(:,149))))*ymax(PKC) - y(PKC))/tau(PKC);  

dydt(TRPC) = (OR(act(y(DAG),rpar(:,115)),act(y(ten-

sion),rpar(:,167)))*ymax(TRPC) - y(TRPC))/tau(TRPC);  

dydt(NE) = (rpar(1,7)*ymax(NE) - y(NE))/tau(NE);  

dydt(BAR) = (act(y(NE),rpar(:,55))*ymax(BAR) - y(BAR))/tau(BAR);  

dydt(AC) = 

(OR(act(y(BAR),rpar(:,64)),AND(rpar(:,65),act(y(AT1R),rpar(:,65)),ac

t(y(BAR),rpar(:,65))))*ymax(AC) - y(AC))/tau(AC);  

dydt(cAMP) = (act(y(AC),rpar(:,66))*ymax(cAMP) - y(cAMP))/tau(cAMP);  

dydt(PKA) = (act(y(cAMP),rpar(:,44))*ymax(PKA) - y(PKA))/tau(PKA);  

dydt(CREB) = (act(y(PKA),rpar(:,53))*ymax(CREB) - y(CREB))/tau(CREB);  

dydt(CBP) = (OR(inhib(y(smad3),rpar(:,46)),in-

hib(y(CREB),rpar(:,47)))*ymax(CBP) - y(CBP))/tau(CBP);  

dydt(TGFB) = 

(OR(rpar(1,2),OR(AND(rpar(:,11),act(y(latentTGFB),rpar(:,11)),act(y(

proMMP9),rpar(:,11))),AND(rpar(:,12),act(y(latentTGFB),rpar(:,12)),a

ct(y(proMMP2),rpar(:,12)))))*ymax(TGFB) - y(TGFB))/tau(TGFB);  

dydt(TGFB1R) = (AND(rpar(:,51),act(y(TGFB),rpar(:,51)),in-

hib(y(BAMBI),rpar(:,51)))*ymax(TGFB1R) - y(TGFB1R))/tau(TGFB1R);  
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dydt(smad3) = (OR(AND(rpar(:,28),act(y(TGFB1R),rpar(:,28)),in-

hib(y(smad7),rpar(:,28)),in-

hib(y(PKG),rpar(:,28))),act(y(Akt),rpar(:,144)))*ymax(smad3) - 

y(smad3))/tau(smad3);  

dydt(smad7) = 

(OR(act(y(STAT),rpar(:,104)),AND(rpar(:,158),act(y(AP1),rpar(:,158))

,inhib(y(YAP),rpar(:,158))))*ymax(smad7) - y(smad7))/tau(smad7);  

dydt(latentTGFB) = (act(y(AP1),rpar(:,68))*ymax(latentTGFB) - 

y(latentTGFB))/tau(latentTGFB);  

dydt(BAMBI) = 

(AND(rpar(:,103),act(y(TGFB),rpar(:,103)),act(y(IL1RI),rpar(:,103)))

*ymax(BAMBI) - y(BAMBI))/tau(BAMBI);  

dydt(PDGF) = (OR(rpar(1,8),act(y(EGR1),rpar(:,259)))*ymax(PDGF) - 

y(PDGF))/tau(PDGF);  

dydt(PDGFR) = (act(y(PDGF),rpar(:,63))*ymax(PDGFR) - 

y(PDGFR))/tau(PDGFR);  

dydt(NP) = (rpar(1,10)*ymax(NP) - y(NP))/tau(NP);  

dydt(NPRA) = (act(y(NP),rpar(:,72))*ymax(NPRA) - y(NPRA))/tau(NPRA);  

dydt(cGMP) = (act(y(NPRA),rpar(:,73))*ymax(cGMP) - 

y(cGMP))/tau(cGMP);  

dydt(PKG) = (act(y(cGMP),rpar(:,74))*ymax(PKG) - y(PKG))/tau(PKG);  

dydt(tension) = 

(OR(rpar(1,3),AND(rpar(:,165),act(y(FA),rpar(:,165)),act(y(contrac-

tility),rpar(:,165))))*ymax(tension) - y(tension))/tau(tension);  

dydt(B1int) = (OR(AND(rpar(:,43),act(y(PKC),rpar(:,43)),act(y(ten-

sion),rpar(:,43))),act(y(tension),rpar(:,48)))*ymax(B1int) - 

y(B1int))/tau(B1int);  

dydt(Rho) = (OR(act(y(TGFB1R),rpar(:,118)),AND(rpar(:,131),in-

hib(y(PKG),rpar(:,131)),act(y(RhoGEF),rpar(:,131)),in-

hib(y(RhoGDI),rpar(:,131))))*ymax(Rho) - y(Rho))/tau(Rho);  

dydt(ROCK) = (act(y(Rho),rpar(:,70))*ymax(ROCK) - y(ROCK))/tau(ROCK);  

dydt(Ca) = (act(y(TRPC),rpar(:,116))*ymax(Ca) - y(Ca))/tau(Ca);  

dydt(calcineurin) = (act(y(Ca),rpar(:,117))*ymax(calcineurin) - 

y(calcineurin))/tau(calcineurin);  

dydt(NFAT) = (OR(act(y(calcineurin),rpar(:,109)),OR(in-

hib(y(cmyc),rpar(:,198)),OR(inhib(y(STAT),rpar(:,226)),OR(in-

hib(y(TEAD4),rpar(:,240)),OR(act(y(cmyc),rpar(:,281)),OR(act(y(STAT)

,rpar(:,314)),act(y(TEAD4),rpar(:,326))))))))*ymax(NFAT) - 

y(NFAT))/tau(NFAT);  

dydt(IL6) = 

(OR(rpar(1,4),OR(AND(rpar(:,14),act(y(CREB),rpar(:,14)),act(y(CBP),r

par(:,14))),OR(act(y(NFKB),rpar(:,15)),OR(act(y(AP1),rpar(:,16)),in-

hib(y(EGR1),rpar(:,181))))))*ymax(IL6) - y(IL6))/tau(IL6);  

dydt(gp130) = (act(y(IL6),rpar(:,21))*ymax(gp130) - 

y(gp130))/tau(gp130);  

dydt(STAT) = (act(y(gp130),rpar(:,25))*ymax(STAT) - 

y(STAT))/tau(STAT);  

dydt(IL1) = (rpar(1,5)*ymax(IL1) - y(IL1))/tau(IL1);  

dydt(IL1RI) = (act(y(IL1),rpar(:,58))*ymax(IL1RI) - 

y(IL1RI))/tau(IL1RI);  
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dydt(TNFa) = (OR(rpar(1,6),act(y(EGR1),rpar(:,261)))*ymax(TNFa) - 

y(TNFa))/tau(TNFa);  

dydt(TNFaR) = (act(y(TNFa),rpar(:,71))*ymax(TNFaR) - 

y(TNFaR))/tau(TNFaR);  

dydt(NFKB) = 

(OR(act(y(IL1RI),rpar(:,24)),OR(act(y(ERK),rpar(:,34)),OR(act(y(p38)

,rpar(:,35)),OR(act(y(Akt),rpar(:,100)),OR(in-

hib(y(BCL6),rpar(:,177)),OR(in-

hib(y(YAP),rpar(:,242)),OR(act(y(RELA),rpar(:,295)),act(y(YAP),rpar(

:,329)))))))))*ymax(NFKB) - y(NFKB))/tau(NFKB);  

dydt(PI3K) = 

(OR(act(y(TNFaR),rpar(:,26)),OR(act(y(TGFB1R),rpar(:,96)),OR(act(y(P

DGFR),rpar(:,97)),act(y(FAK),rpar(:,98)))))*ymax(PI3K) - 

y(PI3K))/tau(PI3K);  

dydt(Akt) = 

(AND(rpar(:,148),act(y(PI3K),rpar(:,148)),act(y(mTORC2),rpar(:,148))

)*ymax(Akt) - y(Akt))/tau(Akt);  

dydt(p38) = 

(OR(act(y(ROS),rpar(:,22)),OR(act(y(MKK3),rpar(:,79)),OR(act(y(Ras),

rpar(:,95)),AND(rpar(:,106),act(y(Rho),rpar(:,106)),in-

hib(y(Rac1),rpar(:,106))))))*ymax(p38) - y(p38))/tau(p38);  

dydt(TRAF) = 

(OR(act(y(TGFB1R),rpar(:,80)),act(y(TNFaR),rpar(:,88)))*ymax(TRAF) - 

y(TRAF))/tau(TRAF);  

dydt(ASK1) = 

(OR(act(y(TRAF),rpar(:,89)),act(y(IL1RI),rpar(:,92)))*ymax(ASK1) - 

y(ASK1))/tau(ASK1);  

dydt(MKK3) = (act(y(ASK1),rpar(:,90))*ymax(MKK3) - 

y(MKK3))/tau(MKK3);  

dydt(PP1) = (act(y(p38),rpar(:,78))*ymax(PP1) - y(PP1))/tau(PP1);  

dydt(JNK) = (OR(act(y(ROS),rpar(:,23)),OR(AND(rpar(:,83),in-

hib(y(NFKB),rpar(:,83)),act(y(MKK4),rpar(:,83))),AND(rpar(:,107),in-

hib(y(Rho),rpar(:,107)),act(y(MKK4),rpar(:,107)))))*ymax(JNK) - 

y(JNK))/tau(JNK);  

dydt(abl) = (act(y(PDGFR),rpar(:,84))*ymax(abl) - y(abl))/tau(abl);  

dydt(Rac1) = 

(OR(act(y(abl),rpar(:,85)),AND(rpar(:,128),act(y(abl),rpar(:,128)),a

ct(y(p130Cas),rpar(:,128))))*ymax(Rac1) - y(Rac1))/tau(Rac1);  

dydt(MEKK1) = 

(OR(act(y(FAK),rpar(:,67)),act(y(Rac1),rpar(:,81)))*ymax(MEKK1) - 

y(MEKK1))/tau(MEKK1);  

dydt(MKK4) = 

(OR(act(y(MEKK1),rpar(:,82)),act(y(ASK1),rpar(:,91)))*ymax(MKK4) - 

y(MKK4))/tau(MKK4);  

dydt(ERK) = (OR(AND(rpar(:,77),in-

hib(y(PP1),rpar(:,77)),act(y(MEK1),rpar(:,77))),AND(rpar(:,172),act(

y(ROS),rpar(:,172)),inhib(y(AT2R),rpar(:,172))))*ymax(ERK) - 

y(ERK))/tau(ERK);  

dydt(Ras) = 

(OR(act(y(AT1R),rpar(:,110)),act(y(Grb2),rpar(:,122)))*ymax(Ras) - 

y(Ras))/tau(Ras);  
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dydt(Raf) = (act(y(Ras),rpar(:,75))*ymax(Raf) - y(Raf))/tau(Raf);  

dydt(MEK1) = (AND(rpar(:,76),in-

hib(y(ERK),rpar(:,76)),act(y(Raf),rpar(:,76)))*ymax(MEK1) - 

y(MEK1))/tau(MEK1);  

dydt(FAK) = (act(y(B1int),rpar(:,120))*ymax(FAK) - y(FAK))/tau(FAK);  

dydt(epac) = (act(y(cAMP),rpar(:,69))*ymax(epac) - 

y(epac))/tau(epac);  

dydt(Factin) = (AND(rpar(:,136),act(y(ROCK),rpar(:,136)),act(y(Gac-

tin),rpar(:,136)))*ymax(Factin) - y(Factin))/tau(Factin);  

dydt(FA) = (AND(rpar(:,160),act(y(vinculin),rpar(:,160)),inhib(y(pax-

illin),rpar(:,160)))*ymax(FA) - y(FA))/tau(FA);  

dydt(cmyc) = 

(OR(act(y(JNK),rpar(:,86)),OR(act(y(BCL6),rpar(:,250)),act(y(ETS2),r

par(:,264))))*ymax(cmyc) - y(cmyc))/tau(cmyc);  

dydt(CTGF) = 

(OR(AND(rpar(:,29),act(y(CBP),rpar(:,29)),act(y(smad3),rpar(:,29)),a

ct(y(ERK),rpar(:,29))),OR(act(y(YAP),rpar(:,132)),OR(in-

hib(y(BCL6),rpar(:,176)),OR(inhib(y(CEBPD),rpar(:,179)),OR(in-

hib(y(CUX1),rpar(:,180)),OR(inhib(y(RUNX1),rpar(:,210)),OR(in-

hib(y(RUNX2),rpar(:,215)),OR(inhib(y(smad3),rpar(:,217)),OR(in-

hib(y(STAT),rpar(:,221)),OR(inhib(y(TCF4),rpar(:,235)),OR(in-

hib(y(TEAD4),rpar(:,238)),OR(act(y(BCL6),rpar(:,249)),OR(act(y(CE-

BPD),rpar(:,253)),OR(act(y(CUX1),rpar(:,256)),OR(act(y(RUNX1),rpar(:

,297)),OR(act(y(RUNX2),rpar(:,302)),OR(act(y(smad3),rpar(:,304)),OR(

act(y(TCF4),rpar(:,323)),act(y(TEAD4),rpar(:,324))))))))))))))))))))

*ymax(CTGF) - y(CTGF))/tau(CTGF);  

dydt(proliferation) = 

(OR(act(y(AP1),rpar(:,52)),OR(act(y(CREB),rpar(:,54)),OR(act(y(CTGF)

,rpar(:,57)),OR(act(y(PKC),rpar(:,59)),OR(act(y(cmyc),rpar(:,87)),AN

D(rpar(:,143),act(y(p70S6K),rpar(:,143)),in-

hib(y(EBP1),rpar(:,143))))))))*ymax(proliferation) - y(prolifera-

tion))/tau(proliferation);  

dydt(SRF) = (act(y(MRTF),rpar(:,138))*ymax(SRF) - y(SRF))/tau(SRF);  

dydt(EDAFN) = (act(y(NFAT),rpar(:,49))*ymax(EDAFN) - 

y(EDAFN))/tau(EDAFN);  

dydt(aSMA) = 

(OR(AND(rpar(:,111),act(y(CBP),rpar(:,111)),act(y(smad3),rpar(:,111)

)),OR(act(y(SRF),rpar(:,112)),act(y(YAP),rpar(:,170))))*ymax(aSMA) - 

y(aSMA))/tau(aSMA);  

dydt(AP1) = 

(OR(act(y(ERK),rpar(:,38)),OR(act(y(JNK),rpar(:,102)),OR(in-

hib(y(cmyc),rpar(:,195)),OR(in-

hib(y(TEAD4),rpar(:,239)),OR(act(y(abl),rpar(:,246)),OR(act(y(CREB),

rpar(:,254)),OR(act(y(MITF),rpar(:,273)),OR(act(y(cmyc),rpar(:,278))

,OR(act(y(RUNX1),rpar(:,296)),OR(act(y(SRF),rpar(:,306)),OR(act(y(ST

AT),rpar(:,307)),OR(act(y(TEAD4),rpar(:,325)),act(y(WT1),rpar(:,328)

)))))))))))))*ymax(AP1) - y(AP1))/tau(AP1);  

dydt(TIMP1) = (act(y(AP1),rpar(:,41))*ymax(TIMP1) - 

y(TIMP1))/tau(TIMP1);  
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dydt(TIMP2) = (OR(act(y(AP1),rpar(:,42)),OR(in-

hib(y(EGR1),rpar(:,183)),OR(inhib(y(MITF),rpar(:,192)),OR(act(y(CA-

CYBP),rpar(:,252)),OR(act(y(EGR1),rpar(:,260)),act(y(MITF),rpar(:,27

5)))))))*ymax(TIMP2) - y(TIMP2))/tau(TIMP2);  

dydt(PAI1) = 

(OR(act(y(smad3),rpar(:,93)),OR(act(y(YAP),rpar(:,150)),OR(in-

hib(y(HIF1A),rpar(:,185)),OR(inhib(y(cmyc),rpar(:,201)),OR(in-

hib(y(RUNX1),rpar(:,213)),OR(inhib(y(RUNX2),rpar(:,216)),OR(in-

hib(y(SRF),rpar(:,220)),OR(inhib(y(STAT),rpar(:,229)),OR(in-

hib(y(TFCP2L1),rpar(:,241)),OR(in-

hib(y(ZNF281),rpar(:,245)),OR(act(y(HIF1A),rpar(:,265)),OR(act(y(cmy

c),rpar(:,284)),OR(act(y(PPARA),rpar(:,291)),OR(act(y(RUNX1),rpar(:,

300)),OR(act(y(RUNX2),rpar(:,303)),OR(act(y(STAT),rpar(:,317)),OR(ac

t(y(TFCP2L1),rpar(:,327)),act(y(ZNF281),rpar(:,332))))))))))))))))))

)*ymax(PAI1) - y(PAI1))/tau(PAI1);  

dydt(proMMP14) = 

(OR(act(y(AP1),rpar(:,62)),OR(act(y(NFKB),rpar(:,94)),act(y(EGR1),rp

ar(:,257))))*ymax(proMMP14) - y(proMMP14))/tau(proMMP14);  

dydt(proMMP1) = (AND(rpar(:,36),in-

hib(y(smad3),rpar(:,36)),act(y(NFKB),rpar(:,36)),act(y(AP1),rpar(:,3

6)))*ymax(proMMP1) - y(proMMP1))/tau(proMMP1);  

dydt(proMMP2) = 

(OR(act(y(STAT),rpar(:,30)),OR(act(y(AP1),rpar(:,39)),OR(in-

hib(y(EGR1),rpar(:,182)),OR(inhib(y(ETS2),rpar(:,184)),OR(in-

hib(y(RARG),rpar(:,208)),OR(in-

hib(y(STAT),rpar(:,225)),OR(act(y(EGR1),rpar(:,258)),OR(act(y(ETS2),

rpar(:,262)),act(y(RARG),rpar(:,293))))))))))*ymax(proMMP2) - 

y(proMMP2))/tau(proMMP2);  

dydt(proMMP9) = 

(OR(act(y(STAT),rpar(:,31)),OR(AND(rpar(:,40),act(y(NFKB),rpar(:,40)

),act(y(AP1),rpar(:,40))),OR(in-

hib(y(PPARA),rpar(:,206)),OR(act(y(ETS2),rpar(:,263)),act(y(IKZF1),r

par(:,266))))))*ymax(proMMP9) - y(proMMP9))/tau(proMMP9);  

dydt(fibronectin) = 

(OR(AND(rpar(:,45),act(y(CBP),rpar(:,45)),act(y(smad3),rpar(:,45))),

act(y(NFKB),rpar(:,101)))*ymax(fibronectin) - y(fibronectin))/tau(fi-

bronectin);  

dydt(periostin) = 

(OR(AND(rpar(:,32),act(y(CBP),rpar(:,32)),act(y(smad3),rpar(:,32))),

OR(AND(rpar(:,33),act(y(CREB),rpar(:,33)),act(y(CBP),rpar(:,33))),OR

(inhib(y(BCL6),rpar(:,178)),OR(inhib(y(LEF1),rpar(:,190)),OR(in-

hib(y(STAT),rpar(:,227)),OR(act(y(BCL6),rpar(:,251)),OR(act(y(LEF1),

rpar(:,271)),act(y(STAT),rpar(:,315)))))))))*ymax(periostin) - y(per-

iostin))/tau(periostin);  

dydt(proCI) = 

(OR(AND(rpar(:,60),act(y(CBP),rpar(:,60)),act(y(smad3),rpar(:,60)),i

nhib(y(epac),rpar(:,60))),OR(act(y(SRF),rpar(:,105)),OR(in-

hib(y(BCL6),rpar(:,174)),OR(inhib(y(KLF4),rpar(:,188)),OR(in-

hib(y(LEF1),rpar(:,189)),OR(inhib(y(RARG),rpar(:,207)),OR(in-

hib(y(ZNF281),rpar(:,244)),OR(act(y(BCL6),rpar(:,247)),OR(act(y(KLF4

),rpar(:,269)),OR(act(y(LEF1),rpar(:,270)),OR(act(y(RARG),rpar(:,292
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)),act(y(ZNF281),rpar(:,331)))))))))))))*ymax(proCI) - 

y(proCI))/tau(proCI);  

dydt(proCIII) = 

(OR(AND(rpar(:,61),act(y(CBP),rpar(:,61)),act(y(smad3),rpar(:,61)),i

nhib(y(epac),rpar(:,61))),OR(act(y(SRF),rpar(:,108)),OR(in-

hib(y(BCL6),rpar(:,175)),OR(in-

hib(y(NR5A2),rpar(:,205)),OR(act(y(BCL6),rpar(:,248)),act(y(NR5A2),r

par(:,290)))))))*ymax(proCIII) - y(proCIII))/tau(proCIII);  

dydt(B3int) = (OR(AND(rpar(:,152),act(y(tension),rpar(:,152)),in-

hib(y(thrombospondin4),rpar(:,152))),act(y(osteopon-

tin),rpar(:,156)))*ymax(B3int) - y(B3int))/tau(B3int);  

dydt(Src) = 

(OR(act(y(B3int),rpar(:,119)),act(y(PDGFR),rpar(:,126)))*ymax(Src) - 

y(Src))/tau(Src);  

dydt(Grb2) = 

(AND(rpar(:,121),act(y(FAK),rpar(:,121)),act(y(Src),rpar(:,121)))*ym

ax(Grb2) - y(Grb2))/tau(Grb2);  

dydt(p130Cas) = 

(OR(AND(rpar(:,125),act(y(FAK),rpar(:,125)),act(y(Src),rpar(:,125)))

,AND(rpar(:,127),act(y(ten-

sion),rpar(:,127)),act(y(Src),rpar(:,127))))*ymax(p130Cas) - 

y(p130Cas))/tau(p130Cas);  

dydt(YAP) = (OR(act(y(Fac-

tin),rpar(:,129)),act(y(AT1R),rpar(:,169)))*ymax(YAP) - 

y(YAP))/tau(YAP);  

dydt(MRTF) = (AND(rpar(:,135),act(y(NFAT),rpar(:,135)),inhib(y(Gac-

tin),rpar(:,135)))*ymax(MRTF) - y(MRTF))/tau(MRTF);  

dydt(Gactin) = (inhib(y(Factin),rpar(:,137))*ymax(Gactin) - y(Gac-

tin))/tau(Gactin);  

dydt(TNC) = 

(OR(act(y(NFKB),rpar(:,145)),OR(act(y(MRTF),rpar(:,146)),OR(in-

hib(y(RUNX1),rpar(:,214)),act(y(RUNX1),rpar(:,301)))))*ymax(TNC) - 

y(TNC))/tau(TNC);  

dydt(mTORC1) = (act(y(Akt),rpar(:,140))*ymax(mTORC1) - 

y(mTORC1))/tau(mTORC1);  

dydt(mTORC2) = (inhib(y(p70S6K),rpar(:,147))*ymax(mTORC2) - 

y(mTORC2))/tau(mTORC2);  

dydt(p70S6K) = (act(y(mTORC1),rpar(:,141))*ymax(p70S6K) - 

y(p70S6K))/tau(p70S6K);  

dydt(EBP1) = (inhib(y(mTORC1),rpar(:,142))*ymax(EBP1) - 

y(EBP1))/tau(EBP1);  

dydt(syndecan4) = (AND(rpar(:,139),act(y(tension),rpar(:,139)),in-

hib(y(TNC),rpar(:,139)))*ymax(syndecan4) - 

y(syndecan4))/tau(syndecan4);  

dydt(proMMP3) = (AND(rpar(:,154),in-

hib(y(smad3),rpar(:,154)),act(y(NFKB),rpar(:,154)),act(y(AP1),rpar(:

,154)))*ymax(proMMP3) - y(proMMP3))/tau(proMMP3);  

dydt(proMMP8) = (AND(rpar(:,153),in-

hib(y(smad3),rpar(:,153)),act(y(NFKB),rpar(:,153)),act(y(AP1),rpar(:

,153)))*ymax(proMMP8) - y(proMMP8))/tau(proMMP8);  
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dydt(proMMP12) = (act(y(CREB),rpar(:,157))*ymax(proMMP12) - 

y(proMMP12))/tau(proMMP12);  

dydt(thrombospondin4) = (OR(act(y(smad3),rpar(:,151)),OR(in-

hib(y(LEF1),rpar(:,191)),act(y(LEF1),rpar(:,272))))*ymax(thrombos-

pondin4) - y(thrombospondin4))/tau(thrombospondin4);  

dydt(osteopontin) = (act(y(AP1),rpar(:,155))*ymax(osteopontin) - 

y(osteopontin))/tau(osteopontin);  

dydt(contractility) = (AND(rpar(:,164),act(y(Fac-

tin),rpar(:,164)),act(y(vincu-

lin),rpar(:,164)),act(y(MLC),rpar(:,164)))*ymax(contractility) - 

y(contractility))/tau(contractility);  

dydt(RhoGEF) = 

(AND(rpar(:,123),act(y(FAK),rpar(:,123)),act(y(Src),rpar(:,123)))*ym

ax(RhoGEF) - y(RhoGEF))/tau(RhoGEF);  

dydt(RhoGDI) = (OR(in-

hib(y(Src),rpar(:,124)),OR(act(y(PKA),rpar(:,130)),in-

hib(y(PKC),rpar(:,134))))*ymax(RhoGDI) - y(RhoGDI))/tau(RhoGDI);  

dydt(talin) = 

(OR(act(y(B1int),rpar(:,161)),act(y(B3int),rpar(:,162)))*ymax(talin) 

- y(talin))/tau(talin);  

dydt(vinculin) = (AND(rpar(:,163),act(y(ten-

sion),rpar(:,163)),act(y(talin),rpar(:,163)))*ymax(vinculin) - y(vin-

culin))/tau(vinculin);  

dydt(paxillin) = 

(AND(rpar(:,159),act(y(FAK),rpar(:,159)),act(y(Src),rpar(:,159)),act

(y(MLC),rpar(:,159)))*ymax(paxillin) - y(paxillin))/tau(paxillin);  

dydt(MLC) = (act(y(ROCK),rpar(:,166))*ymax(MLC) - y(MLC))/tau(MLC);  

dydt(AT2R) = (act(y(AngII),rpar(:,171))*ymax(AT2R) - 

y(AT2R))/tau(AT2R);  

dydt(BCL6) = (OR(in-

hib(y(abl),rpar(:,173)),act(y(STAT),rpar(:,310)))*ymax(BCL6) - 

y(BCL6))/tau(BCL6);  

dydt(CACYBP) = (act(y(NFAT),rpar(:,285))*ymax(CACYBP) - y(CA-

CYBP))/tau(CACYBP);  

dydt(CEBPD) = (OR(in-

hib(y(RELA),rpar(:,209)),act(y(RELA),rpar(:,294)))*ymax(CEBPD) - 

y(CEBPD))/tau(CEBPD);  

dydt(CUX1) = (OR(in-

hib(y(STAT),rpar(:,222)),act(y(STAT),rpar(:,311)))*ymax(CUX1) - 

y(CUX1))/tau(CUX1);  

dydt(EGR1) = (OR(inhib(y(cmyc),rpar(:,193)),OR(in-

hib(y(NFKB),rpar(:,202)),act(y(cmyc),rpar(:,276))))*ymax(EGR1) - 

y(EGR1))/tau(EGR1);  

dydt(ETS1) = (OR(in-

hib(y(STAT),rpar(:,223)),act(y(STAT),rpar(:,312)))*ymax(ETS1) - 

y(ETS1))/tau(ETS1);  

dydt(ETS2) = (OR(inhib(y(cmyc),rpar(:,194)),OR(in-

hib(y(smad3),rpar(:,218)),OR(act(y(cmyc),rpar(:,277)),act(y(smad3),r

par(:,305)))))*ymax(ETS2) - y(ETS2))/tau(ETS2);  

dydt(HIF1A) = (OR(in-

hib(y(cmyc),rpar(:,196)),OR(act(y(MITF),rpar(:,274)),OR(act(y(cmyc),
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rpar(:,279)),act(y(STAT),rpar(:,308)))))*ymax(HIF1A) - 

y(HIF1A))/tau(HIF1A);  

dydt(LEF1) = (OR(inhib(y(RUNX1),rpar(:,212)),OR(in-

hib(y(SRF),rpar(:,219)),OR(act(y(NFAT),rpar(:,286)),act(y(RUNX1),rpa

r(:,299)))))*ymax(LEF1) - y(LEF1))/tau(LEF1);  

dydt(IKZF1) = (act(y(NFKB),rpar(:,287))*ymax(IKZF1) - 

y(IKZF1))/tau(IKZF1);  

dydt(KLF4) = (OR(inhib(y(AP1),rpar(:,186)),OR(in-

hib(y(cmyc),rpar(:,197)),OR(inhib(y(RUNX1),rpar(:,211)),OR(in-

hib(y(TCF4),rpar(:,236)),OR(act(y(AP1),rpar(:,267)),OR(act(y(cmyc),r

par(:,280)),act(y(RUNX1),rpar(:,298))))))))*ymax(KLF4) - 

y(KLF4))/tau(KLF4);  

dydt(MITF) = (OR(inhib(y(STAT),rpar(:,224)),OR(in-

hib(y(TCF4),rpar(:,237)),act(y(STAT),rpar(:,313))))*ymax(MITF) - 

y(MITF))/tau(MITF);  

dydt(NR5A2) = (act(y(CREB),rpar(:,255))*ymax(NR5A2) - 

y(NR5A2))/tau(NR5A2);  

dydt(PPARA) = (OR(in-

hib(y(YAP),rpar(:,243)),OR(act(y(STAT),rpar(:,309)),act(y(YAP),rpar(

:,330))))*ymax(PPARA) - y(PPARA))/tau(PPARA);  

dydt(RARG) = (OR(inhib(y(AP1),rpar(:,187)),OR(in-

hib(y(STAT),rpar(:,228)),act(y(STAT),rpar(:,316))))*ymax(RARG) - 

y(RARG))/tau(RARG);  

dydt(RUNX1) = (OR(inhib(y(cmyc),rpar(:,200)),OR(in-

hib(y(NFKB),rpar(:,203)),OR(act(y(cmyc),rpar(:,283)),act(y(NFKB),rpa

r(:,288)))))*ymax(RUNX1) - y(RUNX1))/tau(RUNX1);  

dydt(RELA) = (OR(in-

hib(y(cmyc),rpar(:,199)),act(y(cmyc),rpar(:,282)))*ymax(RELA) - 

y(RELA))/tau(RELA);  

dydt(TEAD4) = (OR(in-

hib(y(STAT),rpar(:,231)),act(y(STAT),rpar(:,319)))*ymax(TEAD4) - 

y(TEAD4))/tau(TEAD4);  

dydt(RUNX2) = (act(y(AP1),rpar(:,268))*ymax(RUNX2) - 

y(RUNX2))/tau(RUNX2);  

dydt(TCF4) = (OR(in-

hib(y(STAT),rpar(:,230)),act(y(STAT),rpar(:,318)))*ymax(TCF4) - 

y(TCF4))/tau(TCF4);  

dydt(TFCP2L1) = (OR(inhib(y(NFKB),rpar(:,204)),OR(in-

hib(y(STAT),rpar(:,232)),OR(act(y(NFKB),rpar(:,289)),act(y(STAT),rpa

r(:,320)))))*ymax(TFCP2L1) - y(TFCP2L1))/tau(TFCP2L1);  

dydt(WT1) = (OR(in-

hib(y(STAT),rpar(:,233)),act(y(STAT),rpar(:,321)))*ymax(WT1) - 

y(WT1))/tau(WT1);  

dydt(ZNF281) = (OR(in-

hib(y(STAT),rpar(:,234)),act(y(STAT),rpar(:,322)))*ymax(ZNF281) - 

y(ZNF281))/tau(ZNF281);  

 

% utility functions  

function fact = act(x,rpar)  

% hill activation function with parameters w (weight), n (Hill coeff), 

EC50  
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    w = rpar(1);  

    n = rpar(2);  

    EC50 = rpar(3);  

    beta = (EC50.^n - 1)./(2*EC50.^n - 1);  

    K = (beta - 1).^(1./n);  

    fact = w.*(beta.*x.^n)./(K.^n + x.^n);  

    if fact>w,                 % cap fact(x)<= 1  

        fact = w;  

    end 

  

function finhib = inhib(x,rpar)  

% inverse hill function with parameters w (weight), n (Hill coeff), 

EC50  

    finhib = rpar(1) - act(x,rpar); 

  

function z = OR(x,y)  

% OR logic gate  

    z = x + y - x*y; 

  

function z = AND(rpar,varargin)  

% AND logic gate, multiplying all of the reactants together  

    w = rpar(1);  

    if w == 0,  

        z = 0;  

    else  

        v = cell2mat(varargin);  

        z = prod(v)/w^(nargin-2);   

    end 

 

 

Code C.4.2 Logic based ODE Model Parameters (.m) [2] 

function [params,y0] = NetfluxODE_DCM_07122023_loadParams()  

% Automatically generated by Netflux on 11-Jul-2023 

  

% species parameters  

speciesNames = {'An-

gII','AT1R','AGT','ACE','NOX','ROS','ET1','ETAR','DAG','PKC','TRPC',

'NE','BAR','AC','cAMP','PKA','CREB','CBP','TGFB','TGFB1R','smad3','s

mad7','latentTGFB','BAMBI','PDGF','PDG-

FR','NP','NPRA','cGMP','PKG','ten-

sion','B1int','Rho','ROCK','Ca','calcineu-

rin','NFAT','IL6','gp130','STAT','IL1','IL1RI','TNFa','TNFaR','NFKB'

,'PI3K','Akt','p38','TRAF','ASK1','MKK3','PP1','JNK','abl','Rac1','M

EKK1','MKK4','ERK','Ras','Raf','MEK1','FAK','epac','Fac-

tin','FA','cmyc','CTGF','proliferation','SRF','EDAFN','aS-

MA','AP1','TIMP1','TIMP2','PAI1','proMMP14','proMMP1','proMMP2','pro

MMP9','fibronectin','perios-

tin','proCI','proCIII','B3int','Src','Grb2','p130Cas','YAP','MRTF','

Gactin','TNC','mTORC1','mTORC2','p70S6K','EBP1','syndecan4','proMMP3
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','proMMP8','proMMP12','thrombospondin4','osteopontin','contractili-

ty','RhoGEF','RhoGDI','talin','vinculin','paxil-

lin','MLC','AT2R','BCL6','CACYBP','CE-

BPD','CUX1','EGR1','ETS1','ETS2','HIF1A','LEF1','IKZF1','KLF4','MITF

','NR5A2','PPA-

RA','RARG','RUNX1','RELA','TEAD4','RUNX2','TCF4','TFCP2L1','WT1','ZN

F281',};  

tau = [1, 1.000000e-01, 10, 1.000000e-01, 1.000000e-01, 1.000000e-01, 

1, 1.000000e-01, 1.000000e-01, 1.000000e-01, 1.000000e-01, 1, 

1.000000e-01, 1.000000e-01, 1.000000e-01, 1.000000e-01, 1.000000e-01, 

1.000000e-01, 1, 1.000000e-01, 1.000000e-01, 10, 10, 1.000000e-01, 1, 

1.000000e-01, 1, 1.000000e-01, 1.000000e-01, 1.000000e-01, 1, 

1.000000e-01, 1.000000e-01, 1.000000e-01, 1.000000e-01, 1.000000e-01, 

1.000000e-01, 1, 1.000000e-01, 1.000000e-01, 1, 1.000000e-01, 1, 

1.000000e-01, 1.000000e-01, 1.000000e-01, 1.000000e-01, 1.000000e-01, 

1.000000e-01, 1.000000e-01, 1.000000e-01, 1.000000e-01, 1.000000e-01, 

1.000000e-01, 1.000000e-01, 1.000000e-01, 1.000000e-01, 1.000000e-01, 

1.000000e-01, 1.000000e-01, 1.000000e-01, 1.000000e-01, 1.000000e-01, 

1, 1, 1.000000e-01, 1.000000e-01, 10, 1.000000e-01, 10, 10, 1.000000e-

01, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1.000000e-01, 

1.000000e-01, 1.000000e-01, 1.000000e-01, 1.000000e-01, 1.000000e-01, 

1, 10, 1.000000e-01, 1.000000e-01, 1.000000e-01, 1.000000e-01, 

1.000000e-01, 10, 10, 10, 10, 10, 10, 1.000000e-01, 1.000000e-01, 

1.000000e-01, 1.000000e-01, 1.000000e-01, 1.000000e-01, 1.000000e-01, 

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

];  

ymax = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ]; 

  

% reaction parameters  

w = [1.000000e-01, 1.000000e-01, 1.000000e-01, 1.000000e-01, 

1.000000e-01, 1.000000e-01, 1.000000e-01, 1.000000e-01, 1.000000e-01, 

1.000000e-01, 8.000000e-01, 8.000000e-01, 8.000000e-01, 8.000000e-01, 

8.000000e-01, 8.000000e-01, 8.000000e-01, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8.000000e-

01, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8.000000e-01, 1, 1, 1, 

8.000000e-01, 1, 1, 1, 1, 1, 1, 1, 1, 8.000000e-01, 1, 1, 1, 1, 1, 1, 

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
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1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

];  

n = [1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 
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1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 1.400000e+00, 

1.400000e+00, 1.400000e+00, 1.400000e+00, ];  

EC50 = [6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 
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6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 6.000000e-01, 

6.000000e-01, 6.000000e-01, 6.000000e-01, ];  

rpar = [w;n;EC50]; 

  

params = {rpar,tau,ymax,speciesNames}; 

  

y0 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ];  

 

Code C.4.3 Running Logic Based ODE Model (.m) [2] 

% NetfluxODE_DCM_07122023_run.m 

 % Load parameters 

 [params,y0] = NetfluxODE_DCM_07122023_loadParams(); 
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 % Run single simulation 

 tspan = [0 10]; 

 options = []; 

 [t,y] = ode23(@NetfluxODE_DCM_07122023,tspan,y0,options,params); 

 

 

Code C.4.4 Sensitivity Analysis (.m) [3, 4] 
% Loading all default parameters 

[params, y0] = MAGNet_DCM_ODE_loadParams(); 

 

% Save baseline simulation in a table 

baselineTable = table('Size', [1, numel(params{4})+1], 'Variable-

Types', [{'string'}, repmat({'double'}, 1, numel(params{4}))], 'Var-

iableNames', [{'Species Name'}, params{4}]); 

baselineTable(:, 1) = params{4}'; 

 

% Running baseline simulation 

tspan_baseline = [0 10]; 

options_baseline = []; 

[t_baseline, y_baseline] = ode23(@MAGNet_DCM_ODE, tspan_baseline, y0, 

options_baseline, params); 

 

baselineTable(1, 2:end) = num2cell(real(y_baseline(end, :))); 

 

% Save simulation in another table 

resultsTable = table('Size', [numel(params{3}), numel(params{3})+1], 

'VariableTypes', [{'string'}, repmat({'double'}, 1, nu-

mel(params{3}))], 'VariableNames', [{'Species Name'}, params{4}]); 

resultsTable(:, 1) = params{4}'; 

 

% Simulate with ymax = 0.1 

for i = 1:numel(params{3}) 

    % Setting ymax to 0.1 for current species 

    ymax_modified = params{3}; 

    ymax_modified(i) = 0.1; 

     

    % Updating parameters with modified ymax 

    params_modified = params; 

    params_modified{3} = ymax_modified; 

     

    % Running single simulation 

    tspan = [0 100]; 

    options = []; 

    [t, y] = ode23(@MAGNet_DCM_ODE, tspan, y0, options, params_modi-

fied); 

     

    % Saving real part of the simulation result (extracting real part) 

    resultsTable(i, 2:end) = num2cell(real(y(end, :))); 

end 
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% Subtracting baseline result 

for i = 1:size(resultsTable, 1) 

    resultsTable(i, 2:end) = num2cell(cell2mat(resultsTable(i, 

2:end)) - cell2mat(baselineTable(1, 2:end))); 

end 

 

% Saving the data as a CSV file 

writetable(resultsTable, 'perturbation.csv'); 

 

Code C.4.4 Sensitivity Analysis plotting (.py) [3, 4] 

import pandas as pd 

import matplotlib.pyplot as plt 

import numpy as np 

from matplotlib import font_manager 

data = pd.read_csv('perturbation.csv') 

species_names = data['Species Name'] 

data = data.drop(columns='Species Name') 

 

# High Resolution image 

fig, ax = plt.subplots(figsize=(36, 30)) 

 

# using mild color (Blues) 

cmap = plt.cm.get_cmap('Blues') 

 

# Heatmap 

heatmap = ax.imshow(data, cmap=cmap, aspect='auto') 

 

# y-axis tick labels as the species names 

ax.set_yticks(range(len(species_names))) 

ax.set_yticklabels(species_names) 

 

# x-axis tick labels 

ax.set_xticks(range(data.shape[1])) 

ax.set_xticklabels(data.columns, rotation=45, ha='right') 

 

# heatmap colorbar 

cbar = plt.colorbar(heatmap) 

cbar.set_label('Activation', fontname='Arial', fontsize=18) 

 

# Plot title setup 

ax.set_title('Perturbation Analysis (DCM)', fontname='Arial', font-

size=24) 

 

# Setting font size and properties 

font_properties = font_manager.FontProperties(family='Arial', 

size=12) 

ax.tick_params(axis='both', which='major', labelsize=12) 

ax.tick_params(axis='both', which='minor', labelsize=12) 
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ax.set_yticklabels(species_names, fontproperties=font_properties) 

ax.set_xticklabels(data.columns, rotation=45, ha='right', fontproper-

ties=font_properties) 

 

font_properties_cbar = font_manager.FontProperties(family='Arial', 

size=18) 

cbar.ax.tick_params(labelsize=18) 

cbar.ax.set_xticklabels(cbar.ax.get_xticklabels(), fontproper-

ties=font_properties_cbar) 

cbar.ax.set_yticklabels(cbar.ax.get_yticklabels(), fontproper-

ties=font_properties_cbar) 

 

# Setting tight layout 

plt.tight_layout() 

 

# Showing the heatmap 

plt.show() 

 

 

Code C.4.5 Pearson correlation plotting (.py) [3, 4] 

import pandas as pd 

import seaborn as sns 

import matplotlib.pyplot as plt 

 

# Group 2 and Group 3 (excluding 'proMMP1')are numerical data  

group2_columns = ['Age', 'Weight (Kg)', 'Height (cm)', 'Heart Weight 

(gm)', 'LV_Mass (gm)', 'LVEF'] 

group3_columns = ['proMMP14', 'latentTGFB', 'periostin', 'IL6', 

'proCIII', 'ET1', 'fibronectin', 'CTGF', 

                  'TNC', 'proCI', 'proMMP2', 'AGT', 'osteopontin', 

'TIMP1', 'TIMP2', 'PAI1', 'aSMA'] 

 

# Correlation matrix for Group 2 and Group 3 

correlation_matrix = final_df[group2_columns + group3_col-

umns].corr(method='pearson') 

 

sns.set(font="Arial", font_scale=2) 

 

# Big image 

plt.figure(figsize=(24, 20)) 

annot_font_size = 14 

annot_kws = {'fontsize': annot_font_size, 'fontweight': 'bold'} 

 

# Correlation heatmap in seaborn 

sns.heatmap(correlation_matrix, annot=True, cmap='seismic', center=0, 

annot_kws=annot_kws) 

plt.title('Correlation between Clinical Variables and Model Output') 

plt.show() 
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