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Abstract

In confocal single-molecule FRET experiments, the joint distribution of FRET efficiency and

donor lifetime distribution can reveal underlying molecular conformational dynamics via deviation

from their theoretical Forster relationship. This shift is referred to as a dynamic shift. In this study,

we investigate the influence of the free energy landscape in protein conformational dynamics on the

dynamic shift by simulation of the associated continuum reaction coordinate Langevin dynamics,

yielding a deeper understanding of the dynamic and structural information in the joint FRET

efficiency and donor lifetime distribution. We develop novel Langevin models for the dye linker

dynamics, including rotational dynamics, based on first physics principles and proper dye linker

chemistry to match accessible volumes predicted by molecular dynamics simulations. By simulating

the dyes’ stochastic translational and rotational dynamics, we show that the observed dynamic

shift can largely be attributed to the mutual orientational dynamics of the electric dipole moments

associated with the dyes and not their accessible volumes.

Furthermore, using nonlinear semi-group convergence methods based on viscosity solutions

to associated Hamilton-Jacobi equations developed by Feng and Kurtz and methods of verifying the

comparison principle for viscosity solutions introduced by Versendaal et al., we prove a large de-

viations principle for dynamical systems on Riemannian manifolds perturbed by vanishing Markov

noise. Further, using the correspondence between the aforementioned nonlinear semigroup and

stochastic control theory, we find explicit representations of the rate function in several cases via a

Legendre - Fenchel transform of a corresponding Hamiltonian functional. This provides a general-

ization of classical Friedlin-Wentzell theory to the case of degenerate general Markov perturbations

on complete Riemannian manifolds.
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Preface

It is my sincere belief that great insight is derived from diversity. Without diversity, knowl-

edge becomes stale and rigid. Unfortunately, it seems that for some reason, the prominent belief is

that a work containing multiple subjects is somehow less than the sum of its parts. I believe this

reasoning is deeply flawed, and that especially now we need to be thinking less in rigid structures and

use tools and ideas from many sources. It is due to this belief that I write the following dissertation

and it is my hope that this document demonstrates not only my flexibility as a mathematician and

scientist, but also the benefit of interdisciplinary thinking.

In this work I have attempted to bring together many subjects and it does indeed cover a

wide breadth of material. In this document you will find mentions of several areas of science and

mathematics. In the first project, biology, chemistry, and physics are studied using computational

and statistical methods. The second contains geometry, analysis, algebra, and optimization. Both

projects are connected with probability theory. In this way I hope to convey that I understand and

can use each of the core areas of mathematics as presented by the department of mathematics at

Clemson, and also that I am capable of learning and understanding many areas of science while

applying these areas of mathematics to them.

One of my favorite mathematics textbooks is “Nonlinear Dynamics and Chaos” by Steven

Strogatz. Not only is the subject interesting, but in the book Dr. Strogatz demonstrates the utility

of the mathematics presented by applying it to several areas from population dynamics, chemical

reactions and physics. This book exemplifies a fundamental idea - mathematics is useful. Moreover,

the same mathematics is helpful in many different contexts. In the following work we will see

that probability theory can be used for several things, from modeling the motion of molecules or

fluorescence processes to being used to understand asymptotic behavior of measures on abstract

path spaces.
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Like Sgt. Colon above, I hope this work constitutes “A Contribution”. Whether or not it

does is not my decision. However, I stand by my decision to study these topics. In doing so I have

broadened my understanding of both mathematics and the universe around me and for that, I will

always be grateful.
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Chapter 1

Introduction

In the following text, you will find a variety of different topics. The nature of this work is

highly interdisciplinary. Throughout the career, mathematical objects are paired with an application

from biophysics. The two main contributions of this work are as follows.

First, mathematical modeling of smFRET experiments. This contribution can be broken

into two sub-parts. One is exploring the influence of the energy landscape geometry on the FRET vs

lifetime distribution. This provided a fruitful discovery area, requiring SDE models to incorporate

the theory of metastability to model protein models and the simulation of a random string polymer.

In this study, features of the energy landscape can be readily seen in the marginal distributions of

the FRET vs lifetime distribution. This provides numerical justification for further energy landscape

analysis using this method. This is extremely important in molecular biology as an understanding

of the energy landscape, and hence, proteins’ structural and dynamic behavior may be understood.

Moreover, a model for the fluorescence dynamics of the dyes used in smFRET is introduced in

exploring smFRET. This model incorporates the rotational dynamics of the dipole moments and

the dyes’ chemical and physical properties. In these models, stochastic geometric mechanics is used

to derive simple models for the dyes’ rotational dynamics and translational motion.

The second contribution is a theorem about large deviations for dynamical systems per-

turbed by vanishing Markov noise on Riemannian manifolds. This work is motivated by under-

standing the fluctuations in the equilibrium that the dipole rotations may undertake. This requires

understanding Friedlin-Wentzell’s theory on Riemannian manifolds, which has yet to be developed.

To keep generality and incorporate any anomalous diffusions or jumps caused by intrinsic anisotropy,

1



we prove the result in much greater generality than needed. Indeed, the result is stated for a general

Markov process on a Riemannian manifold.

In each chapter new information is developed and discussed. New results are given in each

chapter, typically in examples about the topic at hand. Rather than reviewing each new concept

and then returning to the models, the idea is introduced and then the model is presented in parallel.

Further, large deviation results are mentioned in many sections. This is to keep the reader aware of

the connection to large deviation theory and hopefully motivate the studies in the final chapters to

be more engaging and naturally occurring.
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Chapter 2

Markov Processes

“Chaos is found in greatest abundance wherever order is sought. It always defeats

order because it is better organized.”

Terry Pratchett, Interesting Times: The Play

The main probabilistic object of interest in this work is the stochastic process, particularly

the Markov process.

Definition 2.0.1. Let T be a set and (Ω,F ,P) be a probability space and S be a set. A stochastic

process is a function

X : T × Ω→ S

such that for t ∈ T , X(t, ·) is a random variable and ω ∈ Ω, X(·, ω) is a function of t.

The set T is usually descriptive of time but can take the form of a more general topological

space; in that case, the stochastic process is termed a random field. In the following, we are only

concerned with processes such that T ⊆ N, or T ⊆ R+
0 = [0,∞). The set S is called the state space

from which one observes the outcomes of the process.

The Markov process is a stochastic process central to the current endeavor. Markov processes

are a class of stochastic processes with a restriction on the behavior of the process under conditional

expectation concerning the history generated by the process; heuristically, a Markov process is one

for which the future is independent of the past given the present. This means that the next step

in the process only depends on the current location rather than the path it took to get there. The

properties of Markov processes are numerous; hence, they are frequently used as modeling tools in

3



many disciplines such as physics, chemistry, biology, and finance. [43] [65]

Let σ(Xs : s ≤ t) be the sigma-algebra generated by the random variables {Xs}s≤t; this is

frequently called the natural filtration associated with the process X, and can be thought of as the

entire history of the process up to time t. Let σ(Xt) be the sigma-algebra generated by the random

variable Xt.

Definition 2.0.2. A stochastic process is called a Markov process if for all u > t the following

holds [6] [49]

E[Xu|σ(Xs : s ≤ t)] = E[Xu|σ(Xt)]

this property is called the Markov property1.

When T and S are countable, the Markov process is called a discrete time Markov chain

(DTMC). When T is uncountable and S is countable, we call the Markov process a continuous

time Markov chain (CTMC).

Example 2.0.1. [The Förster Resonance Energy Transfer (FRET) CTMC]

Förseter Resonsance Energy Transfer (FRET) is a physical process by which energy is trans-

ferred between dipolar molecules nonradiatively. [13]

The FRET energy transfer rate, the rate at which energy is transferred nonradiatively, can

be expressed as

kET (r) = kD

(
R0

r

)6

.

Where r > 0 represents the distance between the electric dipoles, in this example it will be taken

as static. The parameter R0 is called the Förster radius and will be taken as a collection of

environmental terms for right now. [42]

Define a state space S = {D,A, FD, FA}, such that the state of the CTMC keeps track of

where the excitation energy is:

� State D represents an excited donor

� State A represents an excited acceptor

� State FD represents a fluoresced donor photon.

1A useful way to think of conditional expectation E[Xt|Fs] is as the projection of a measurable function, Xt in
the space L2(Ω,F ,P) to the subspace L2(Ω,Fs,P),where Fs is a sub-sigma algebra of F . [9] This is not always true,
but it is when X is square integrable.
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� State FA represents a fluoresced acceptor photon.

The transition rates kD, kA represent the fluorescence decay times for the donor and acceptor re-

spectively. Now consider a process that transitions between these states according to the following

directed graph:

D A

FD FA

kET

k
D

k
A

Using the Markov property, one can observe that Markov processes can be described based

on their transition probabilities. Moreover, one could view a Markov process as a set of measures

indexed by time and space, which dictates the probability of transferring from one state to another.

By investigating this idea further, one may find the Markov semigroup, a semigroup of operators

acting on a space of functions.

Definition 2.0.3. Let {Xt} be a Markov process. Define the transition or Markov semigroup,

Ptf(x) = E[f(Xt)|X0 = x]

for integrable f . [30] [18]

Markov semigroups completely characterize the process and are fundamental in the theory

of Markov processes. The intuitive explanation of the semigroup is that it tells you the transition

probabilities. Indeed, consider the case when f(x) = 1A(x), the indicator of a measurable set A,

then Ptf(x) = P(Xt ∈ A|X0 = x). Intuitively, the connection between Markov processes and

semigroups provides a lot of information on the nature of Markov processes. Markov processes are

those processes whose transition probabilities are only dependent on the location of the process in

space-time and are independent of anything else. Understanding how one transitions from one state

to another based on the location of the process is enough to completely characterize the process.

Following standard analytic semigroup theory, one can consider an operator associated to

the semigroup and connect operator theory to the theory of Markov processes. In this way, one may

use tools from more familiar differential equations to solve problems, such as deriving transition

probabilities or hitting times, related to the Markov process at hand.
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Definition 2.0.4. Define the linear operator A by the following

Af := lim
t→0+

Ptf − f
t

.

The domain of the operator A is D(A) = {f : limt→0+
Ptf−f

t exists}. This linear operator is called

the infinitesimal generator of the process {Xt}. [4] [30] [9]

Usually, the domain of the generator is smaller than the set of functions that Pt acts on

and may not even be a space of functions. However, we do have that the domain of the generator is

densely contained in the domain of the semigroup. [18] One calls this the generator because Ptf(x)

can be viewed as the solution to the Kolmogorov backward equation, given by

∂

∂t
u(x, t) = Au(x, t), u(x, 0) = f(x)

[18] [21] [3]. In this way, one can formally view Pt = etA. Notice that if one can find a u(x, t) such

that Pt(u(x, 0)) = u(x, t) = u(x, 0), one will have isolated a stationary distribution for the process,

and hence the equilibrium distribution. This is important in statistical mechanics, as when a system

is in thermal equilibrium, it should be distributed according to the stationary distribution of the

stochastic process describing the system.

Example 2.0.2. [FRET CTMC Continued] Consider the FRET CTMC in Example 3.0.1. Using

definition 3.0.4. one can find that the generator for a CTMC is a matrix containing the transition

rates of each state. Using this one can then completely describe the FRET process with the rate

matrix 

−(kD + kET ) kET kD 0

0 −kA 0 kA

0 0 0 0

0 0 0 0


Now, if one wishes to determine the stationary distribution for this process the Kolmogorov

equations may be solved. However, the resulting system of equations is underdetermined and hence

cannot be solved. This is because the CTMC is absorbing, so it will not have a stationary distribution.

Instead one can find the probability of absorption into a particular state.

Consider the probability that the absorbing state is FD. Note that this can only happen if
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energy transfer occurs, i.e., if, in the CTMC, we have a D → A transition. This means that in a

race of exponential random variables, the D → A transition wins. Therefore, denoting τD and τET

as exponential random variables with rates kD and kET respectively

P(min(τD, τET ) = τET ) =
kET

kD + kET
=

kD
(
R0

r

)6
kD + kD

(
R0

r

)6 =
1(

r
R0

)6
+ 1

.

The probability of being absorbed into state FD is the FRET efficiency. It is the main

source of inquiry in FRET experiments.

As seen in the previous example, when the state space is finite, the description of a Markov

process becomes closely related to a linear algebra, wherein the infinitesimal generator of the process

becomes the rate matrix for the CTMC. Then, the Kolmogorov equations can be stated as a system

of linear ordinary differential equations, and many properties of the rate matrix can be exploited to

further understand the process. This makes CTMCs an especially valuable modeling tool, and their

simplicity can provide a way of clearing away conceptual clutter. Now consider a very simple case

of a CTMC, that will yield insights later on.

2.1 Insights From the Two-State CTMC

Consider a system with two states, state 1 and state 2. If the system is in condition 1 it

transitions to state 2 with rate λ1. Similarly, if in state 2, it transitions to state 1 with rate λ2. The

rate diagram for such a system is shown below.

1 2

λ1

λ2

The rate matrix for such a process is

−λ1 λ1

λ2 −λ2

 .

Knowing that the stationary distribution for such a Markov process can be found by solving the
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stationary Kolmogorov equation, πQ = 0. This yields the system of equations:

(
π1 π2

)−λ1 λ1

λ2 −λ2

 = 0→


−λ1π1 + λ2π2 = 0

λ1π1 − λ2π2 = 0.

The solution to this system is given by

π1 =
λ2

λ1 + λ2
, π2 =

λ1
λ1 + λ2

.

From here, we may take two directions of thought. One is that in equilibrium, a system randomly

transitioning between two states will have a stationary distribution that we may use to determine the

transition rates. The second is that we may find the equilibrium distribution by taking an ensemble

average.

2.1.1 Protein Conformational Dynamics

The key application of the two-state CTMC that will be investigated in this section is its ap-

plication to protein conformational dynamics. To understand why and how CTMCs are used in pro-

tein conformational dynamics, we will first need to investigate the nature of a protein. Proteins are

one of the central classes of molecules investigated by molecular biology. They are sequences of amino

acids. The primary structure of a protein is the sequence of amino acids. Depending on the sequence

of amino acids, a protein will develop a secondary structure, a two-dimensional picture of the protein

that categorizes loops and other topological properties. The full three-dimensional shape of the pro-

tein is called the tertiary structure. The structure of this protein dictates its function in the body,

and understanding the shape of proteins is essential to understanding how they work in the body.

Figure 2.1: Cartoon example of a
protein changing between two con-
formations according to the two-
state CTMC

However, due to thermal fluctuations and environmental ef-

fects, the protein will change shape randomly. The act of

changing shape is termed changing conformation. The nature

of these conformational changes is the subject of protein confor-

mational dynamics. In the context of the two-state CTMC, one

imagines a protein changing conformation between two stable

states.

8



With this model under consideration, it becomes ap-

parent that the most valuable information in studying the con-

formation change would be the transition rates of this CTMC

and the equilibrium distribution and fluctuations about that

distribution. The question now is how to estimate these rates

and the distribution. To help answer the question experimentally, one can use the fluorescence

spectroscopy technique known as Förster Resonance Energy Transfer, a phenomenon investigated

in examples 2.0.1 and ??.

2.1.1.1 The Idea of a smFRET Experiment

As mentioned in example 2.0.1, most FRET experiments aim to approximate the FRET

efficiency, E ; a distance estimation may be made once this is estimated. [34] Experiments are de-

lineated first by their sample preparation and composition. In smFRET, the sample, the molecules

of interest, is diluted in a solution so that, on average, there is less than one molecule of interest

in a volume the size of the confocal volume of the microscope used in the experiment. [31] In this

way, one can see the absorbing state of individual FRET processes rather than a mixture of pro-

cesses. When using smFRET, the FRET efficiency estimation can be done in two ways. The first is

the experimental method of intensity-based FRET. [42] [32] This method repeatedly excites the

donor and measures whether an acceptor or donor photon is observed. Effectively, this treats the

experiment as calculating the probability of success of a binomial random variable with p = E . It is

well known that the estimator for this is given by the number of successes observed divided by the

total number of trials. In this experiment, this becomes

EI =
IA

IA + ID
,

where IA, ID are the intensities (photon counts) for the acceptor and donor, respectively.
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The second method, known as lifetime based FRET, comes from the following.

P(min(τD, τET ) = τET ) + P(min(τD, τET ) = τD) = 1

→ E + kD
kD + kET

= 1

→ E = 1− kD
kD + kET

.

Noting that P(τD > t|min(τD, τET ) = τD) ∼ exp(kD + kET ) [51] we write the following

E = 1− τ ′D
τD
,

where τ ′D = (kD + kET )
−1 is the lifetime of the donor in the presence of the acceptor and τD = k−1

D

is the lifetime in absence of acceptor. In this way, one may measure the mean lifetime of the donor

and estimate the FRET efficiency by approximating the mean of an exponential random variable.

Out of the two, intensity-based is more prevalent due to cost constraints. [32] One only

needs to measure photon counts and not their arrival times to conduct an intensity-based FRET

experiment. Moreover, only FRET in a static sense has been considered so far. However, the energy

transfer rate is dynamic.

2.1.2 The smFRET Dynamic Shift

In the previous section, the measurements presented assumed the underlying protein was

static. However, we embarked on an effort to understand the conformational dynamics of a protein

that transitions between two stable conformations. Consider a smFRET experiment in which the

underlying protein changes conformation according to the two-state CTMC. Assume that during

each fluorescence process, the protein does not change conformation. Then, the outcome of each

fluorescence process is conditional on the state of the CTMC at the time of excitation. Now, let

kD(ri) = ki, i = 1.2 be the fluorescence rate of the donor when the protein is in conformation i during

the fluorescence process. If the protein is in equilibrium, we can consider the probability of the

protein being in conformation i at any given time is πi according to the stationary distribution. [31]

In this way, the distribution of the observed lifetime is a compound distribution of exponential
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distributions combined using the stationary distribution of the two-state CTMC,

f(t) = (k1 + k2)(π1e
−k1t + π2e

−k2t).

Using this distribution one can see that if τ ∼ f as above then

E[τ ] = π1E[τ ′D(r)] + π2E[τ ′D(r′)]

=
π1
k1

+
π2
k2
.

In comparison, one may consider the lifetime distribution for the mean of the rates for when τ ∼

exp(π1k1 + π2k2). Noting that E[τ ] = 1
k for exponential τ is a convex function in k it can said that

the expected lifetime from a static state with fluorescence rate given by π1k1+π2k2 will be less than

the expected value from a dynamic state switching between rates k1 and k2. More specifically, if

τ ′ ∼ exp(π1k1 + π2k2 and τ ∼ f as above, then we have the following

E[τ ′] =
1

π1k1 + π2k2
≤ π1
k1

+
π2
k2

= E[τ ].

Consequently, the expected lifetime of the mixture of distance states is greater than that of a state,

which is the average between the distances. Due to this property, one can detect the presence of

dynamic switching by looking at FRET vs lifetime plots. Recall that the FRET efficiency is related

to the lifetime distribution by

E(τ ′D) = 1− τ ′D
τD

called the static FRET line [2] where τ ′D = k′−1
D is the estimated lifetime of the donor in the

presence of an acceptor. So, data from a static process will be centered on the static FRET line.

Figure 2.2: Example of a dynamic shift caused by
changing conformations according to the two-state
CTMC

If the data arises from a dynamic process, it will

be shifted above the static FRET line. This

shift is called the dynamic shift. [2, 47, 31]

One can define a numerical value for the dy-

namic shift by considering the following. Let

δ = (E ′, τ ′) be a point in the FRET vs Life-

time plane and consider E(τ) as the static FRET
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line running through the plane. [2] The dynamic

shift can be considered the magnitude of the or-

thogonal projection of δ to E(τ). In other words, it is the minimum distance between the point

(E ′, τ ′) and the static line.

The reasoning behind the dynamic shift extends beyond a discrete mixture of states, as

shown. Indeed, let k(r) be the energy transfer rate for a smFRET experiment with distribution

G(r). Then, by Jensen’s inequality it is apparent that

E[τ ′] =
1∫

k(r)dG(r)
≤

∫
1

k(r)
dG(r) = E[τ ]

as above. Therefore, the dynamic shift can capture information from various sources, not just

discrete transitions. In many contexts, one considers a discrete mixture of states and uses photon

counts and hidden Markov models to determine the amount of time in each state and the number

of states. [53] [54] [52] [10] A contribution of the work in future sections is the consideration of a

continuum of states determined by the first principle physics using Langevin equations describing

the conformation process, and other relevant processes. This way, one can examine the influence of

the continuum dynamics on the dynamic shift and explore how slight differences in the structure of

the continuous motion may impact the dynamic shift and FRET vs lifetime distribution. The topic

of understanding continuous potentials using smFRET has recently become of interest. [10] Now, let

the equilibrium distribution for the distance between the dyes be given by G(r); then the lifetime

distribution is

f(t) =

∫
R+

G(r)e−tkET (r)dr.

However, the processes governing the dye motion and conformational process are multidimensional

and, in some cases, may not be analytically tractable. For this reason, simulations are conducted

to create synthetic data from the dynamics. Therefore, one can relate the underlying dynamics to

the observed dynamic shift in FRET vs Lifetime plots. The most important aspect of this line of

thought is that the lifetime distribution in smFRET experiments is susceptible to the structure of

the stationary distribution of the inter-dye displacement.

12



2.1.3 Entropy and Large Deviations

One of the questions regarding the two-state CTMC model for protein conformation dynam-

ics was the equilibrium distribution and how much the system fluctuates about this distribution.

Since the process constantly evolves stochastically, the distribution for an ensemble of proteins will

fluctuate about the equilibrium distribution. The nature of these fluctuations may be of concern in

a biological application. In physics, one would typically investigate the concept of entropy; we will

explore the equivalent notion [60] [58] of large deviations.

The central limit and the laws of large numbers are fundamental results in probability

theory. Large deviations complement these results by giving insight into their rates of convergence.

Heuristically, a sequence of probability measures satisfies a large deviation principle (LDP) with rate

function I if,

Pn(X ≈ x) ≈ e−nI(x)

that is to say, these probabilities will decay exponentially with a rate I. This rate function is also

closely related to the entropy of a process. [58] [19] It can be thought of as a negative entropy in

that the most likely state is the one that minimized the rate function.

Let the state of the ith protein’s conformation CTMC be denoted Yi where i = 1, ..., N . In

this situation, we wish to investigate the behavior of a sum of random variables,

SN =
1

N

N∑
i=1

Xi

where Xi is given by

Xi =


1, Yi = 1

0, Yi = 0.

Hence, we are investigating the proportion of proteins in state 1 at any time in equilibrium. It is

known by the law of large numbers that SN → π1 is N → ∞. However, for finite N , fluctuations

around the equilibrium will represent large deviations in the collection of random variables Xi.

Heuristically, a sequence of probability measures satisfies a large deviation principle (LDP) with

rate function I if,

Pn(X ≈ x) ≈ e−nI(x)
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that is to say, these probabilities will decay exponentially with a rate I. The rate function is also

closely related to the entropy of a process [58] [19] [60] and can be thought of loosely as a negative

entropy in that the most likely state is the one that minimizes the rate function.

To make this definition formal, consider the following. Let (E, d) be a complete separable

metric space. Define a rate function I : E → [0,∞] to be a lower semicontinuous function and a

good rate function to be a rate function such that the level sets {x ∈ E|I(x) ≤ α} are compact

for each α ∈ R. [23]

Note, a lower semicontinuous function is a function I : E → [0,∞] such that for all x ∈ E,

we have

lim inf
xn→x

I(xn) ≥ I(x).

Similarly, an upper semicontinuous function is one such that

lim sup
xn→x

I(xn) ≤ I(x).

As we have seen, rate functions are always lower semicontinuous. Upper semicontinuity will play a

role when we discuss viscosity solutions to the Hamilton - Jacobi equation.

Let {Xn} be a sequence of random variables taking values in E. We say {Xn} satisfies a

large deviations principle (LDP) [23] with rate function I : E → [0,∞] if the following two

conditions hold:
− infx∈A I(x) ≤ lim infn→∞

1
n ln(P{Xn ∈ A}), for open A ⊂ E

lim supn→∞
1
n ln(P{Xn ∈ B}) ≤ − infx∈B I(x), for closed B ⊂ E

(2.1)

In 1938, Harold Cramér proved the following result on these types of central limit sums,

Theorem 2.1.1 (Cramér, 1938). Let SN = 1
N

∑N
j=1Xj with Xj i.i.d. and define

V (θ) = lnE[eθX ].
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Then, SN satisfies an LDP with rate function

I(x) = sup
θ
{θx− V (θ)}.

This theorem relates the fluctuations of a system switching states in equilibrium to the

Legendre-Fenchel transform of the log moment generating function of the stationary distribution.

This fundamental idea will be explored more fully in chapter 9.

In the example of the two-state CTMC, we can see that the rate function will be given by

I(x) = sup
θ
{θx− ln (π1e

θ + π2)}

= x ln

(
π2
π1

)
− ln (π1) + x ln (x) + (1− x) ln (1− x)

Therefore, we may use I(x) above to determine the most likely ensemble state we will

see. Moreover, it provides a way to know the distribution around the equilibrium state. This rate

function is the entropy for the system rotated about the maximum value. It describes how energy is

spread out in the design and how fluctuations in the system behave. In this way, one can estimate

the chances of seeing infrequent events. This becomes particularly important when considering the

continuous case wherein transitions between stable points may be viewed from an entropic or large

deviation perspective.
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Chapter 3

Brownian motion and Stochastic

Analysis

“Individuals aren’t naturally paid-up members of the human race, except

biologically. They need to be bounced around by the Brownian motion of society,

which is a mechanism by which human beings constantly remind one another that

they are...well...human beings.”

Terry Pratchett, Men at Arms

3.1 Brownian Motion

The first accurate account of Brownian motion was by botanist Robert Brown in 1827 while

viewing a spec of pollen drifting on a water surface. He is the namesake for Brownian motion. Louis

Bachelier, in 1900, described Brownian motion in his Ph.D. thesis “On the Theory of Speculation” to

analyze the behavior of stocks. Albert Einstein won the Nobel Prize for his description of Brownian

motion in one of his famous 1905 papers. He did this by characterizing the motion by convergence of a

jump process with normally distributed jumps. A similar work was done by Marian Schmoluchowski

in 1906, and many equations in statistical mechanics bear his name. These theories were then given

experimental proof by Jean Perrin in 1908. Later, in 1923, the first rigorous definition of Brownian

motion was presented by Norbert Wiener, who defined a measure on the Banach space of continuous

paths. Due to his contribution, Brownian motion is often called a Wiener process, which is why we
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will denote Brownian motion by W in this work.

The basic definition of a Brownian motion in R is as follows.

Definition 3.1.1. A Brownian motion on R, starting at point x ∈ R is a stochastic process {Wt}t≥0

such that the following properties hold[4][51]:

1. W0 = x with probability 1.

2. {Wt}t≥0 has independent increments, i.e. Wt+u −Wt, u ≥ 0 is independent of Ws for s ≤ t.

3. The process has normally distributed increments, i.e. Ws+t −Ws ∼ N(0, t).

4. Wt is continuous in t, with probability 1.

An intuitive and rigorous description of a Brownian motion comes from the physical idea

of a particle randomly colliding with other particles. In this way the particle undergoes a simple

random walk in which it moves according to a vector1 Xi for a time, where i is the ith collision and

then once another collision occurs it travels according to Xi+1. From this one can see that the path

is given by the sum
Nt∑
i=1

Xi

with N being the number of collisions. If we consider the number of collisions tending to infinity

while the collision size goes to 0, in the scaling limit

1

N

Nt∑
i=1

Xi ⇒ Bt

will converge weakly to a Brownian motion. This is called Donsker’s theorem. Using this idea it is

possible to consider more general scaling limits allowing for stochastic differential equations, as well

as providing a way in which to simulate Brownian motion as a simple random walk.

3.1.1 Path Entropy: Mogulskii’s Theorem

Here, we will consider another large deviation theorem to understand the fluctuations about

the limiting value of Brownian motion that a random walk approximation will take.

1One can also think that it travels along a geodesic in a random direction
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Theorem 3.1.1 (Mogulskii). Let {Xi} be a collection of i.i.d. random variables in Rd such that

ψ(θ) = lnE[eθX1 ] <∞ then the sum

1

N

Nt∑
i=1

Xi

satisfies a large deviation principle in L∞([0,∞),Rd) with good rate function

I(γ) =

∫ ∞

0

ψ∗(γ̇t)dt

when γ is absolutely condinuous and infinite otherwise.

where ψ∗(x) = supθ∈Rd{⟨θ, x⟩−ψ(θ)} is the Legendre-Fenchel transform of the log moment

generating function ψ. We will see a similar idea present in the document’s final part.

3.2 Stochastic Differential Equations

The main tool used in this work is the stochastic differential equation (SDE). The SDE

will be introduced on a fairly abstract footing, but examples will be brought to attention quickly in

hopes that either the extreme usefulness of the SDE can distract from their abstract footing or that

the abstract nature of SDEs will make the application more interesting.

Let (Ω,F ,P) be a probability space and let {Ft} be a filtration, an increasing sequence of

sigma algebras, of the sigma-algebra F . A stochastic process {Xt} is said to be adapted to {Ft} if

for each t ∈ T , Xt is Ft measurable. [48]

Definition 3.2.1. A real-valued adapted stochastic process {Xt} is called a martingale[48][1] with

respect to the filtration {Ft} if

� Xt ∈ L1(Ω,F ,P).

� If s ≤ t, E[Xt|Fs] = Xs almost surely.

Definition 3.2.2. An Rd valued semi-martingale is a stochastic process X = {Xt} such that for

each t

Xt = X0 +Mt +At

where M = {Mt} is a martingale and A = {At} is an adapted process of finite variation. [1]
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Note, if f ∈ C2(Rd) and Xt is a semi-martingale then f(Xt) is also a semi-martingale. This

fact will be useful in the definition of manifold valued semi-martingales.

An important example of a semi-martingale and the most fundamental object of study in

this work is the stochastic differential equation (SDE). The theory of SDEs has a rich history and

a wealth of applications. These types of equations were first used by Langevin in 1908 to describe

the motion of a particle submerged in a fluid subject to random fluctuations due to interaction with

the surrounding particles. This is why in the physics literature SDEs are commonly referred to as

Langevin equations. This type of equation can be formally written as

ẋ(t) = b(x(t)) + ξ(t)

where b : R → R is a function representing the drift, and ξ is a white noise process, meaning

ξ(t) ∼ N (0, σ) for each t and E[ξ(s)ξ(t)] = δ(t − s). However, despite being useful and producing

accurate results2 the approach used by Langevin was not rigorously founded. Such a function ξ

does not exist in the classical sense; it can be understood in the distributional sense and has been

studied in Hida calculus in recent years. Moreover, due to the irregularity of such an object as ξ, the

function x(t) has no hope of being differentiable so the time derivative cannot exist. This provides

conceptual problems for the notion of a velocity.

Itô is credited as the person who formalized the theory of SDEs, in his 1944 paper. In this

approach, SDEs can be made using stochastic integral equations. Where we formally write

∫ t

0

dxs =

∫ t

0

b(xs)ds+

∫ t

0

σ(xs)dWs

as

dxt = b(xt)dt+ σdWt

where b : Rd → Rd is a vector field, σ : Rd → M(d × d) is a matrix field3 and Ws is a Brownian

motion, and dWt represents the white noise process above. However, it is well known that the paths

of a Brownian motion are almost surely of nonfinite variation. So, the above integral cannot be

defined in the standard Riemann - Steiljes sense. Due to this, a new integral needs to be defined.

2So much so that this formalism is still used
3One can view it as a tensor field and is often called the diffusion tensor. This can be helpful to remember when

we transition to manifold valued SDEs.
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Rigorous development of these types of integrals is too involved for the task at hand, so

what will be said is that roughly, the stochastic integral is defined as a completion of sorts from

the operator acting on simple functions in the following way. Let f(t) be a simple function with

t ∈ [a, b] ⊂ R, and {tj} a partition of the interval [a, b] with mesh size δ. Then,

∫ b

a

f(t)dWt = lim
δ→0

∑
i

f(t∗i )[Wti −Wti−1 ]

where t∗i is a point that is to be decided.

Definition 3.2.3. The two most common choices for t∗i give the common stochastic integrals.

� If t∗i = ti the stochastic integral is called the Itô integral and is denoted

∫ b

a

f(t)dWt

� If t∗i = (ti− ti−1)/2 the stochastic integral is called the Stratonovich integral and is denoted

∫ b

a

f(t) ◦ dWt

Both notions of integration can be defined as integration with respect to semi-martingales,

but in general, they are not equivalent.[48] However, one can convert between the two integrals.

Further, the Stratonovich integral is favored by physicists due to the fact that it obeys the standard

rules of calculus, i.e. the chain rule and can be seen as a limit of Langevin-type equations with

smooth approximations to the noise.[43] Due to this adherence to the regular rules of calculus

it behaves well under coordinate transformations and is consequently the appropriate notion of

stochastic integration on manifolds. The Itô integral is usually preferred by probabilists due to its

nice probabilistic properties, namely if M is a martingale then

∫ t

0

fdMs

will also be a martingale - a property lost in the Stratonovich case. Note that in the case of constant

noise, the Stratonovich and Itô integrals will yield the same results.

Example 3.2.1. [The Noisy Spring] Consider a point mass, m, attached to a three-dimensional
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spring with spring force matrix K, and equilibrium vector Xeq. The equations of motion for this

system follow Newton’s second law in the form of a linear ordinary differential equation:

m
d2X

dt2
= K(X −Xeq).

This is a simple physical model with wide-reaching applications. However, at the scale we investigate,

this equation will not work. Instead, one must consider the influence of random perturbations from

surrounding molecules. This comes in the form of rewriting the equation above as a linear SDE

mdVt = [K(Xt −Xeq)− γVt]dt+ σ ◦ dWt (3.1)

dXt = Vtdt (3.2)

An important consideration from the physical setting considerably reduces the model’s com-

plexity. In the setting we investigate the Reynolds number is very high. This means that the viscosity

is large, and inertial effects may be ignored. This means that dVt = 0. Therefore, we have

dXt = Vtdt =
1

γ
K(Xt −Xeq)dt+

σ

γ
◦ dWt (3.3)

This SDE can be solved using an integrating factor similar to an ODE, yielding the solution

Xt = eKtX0 +

∫ t

0

σ

γ
eK(t−s)dWs. (3.4)

Since the solution is an integral of a deterministic function with respect to a Brownian motion,

the process Xt is a Gaussian process. Moreover, the process will be stationary and the stationary

distribution will be a Gaussian distribution.

3.2.1 Path Entropy: Freidlin - Wentzell Theory

As before we will consider fluctuations about the limiting value for our processes as a way

of investigating the entropy of the system. Freidlin - Wentzell theory gives the rate function for a

sequence of SDEs with vanishing noise

dXn
t = V0(X

n
t )dt+

1√
n
dWt, n→∞ (3.5)
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meaning that the system tends towards the deterministic part of the SDE, V0(x). In the case of only

Brownian noise, the rate function can be found by using a change of measure on the Brownian rate

function and hence is given by

I(γ) =

∫ ∞

0

∥V0(γt)− γ̇t∥2dt

for absolutely continuous γ. In this way, it is shown that the entropy is related to the action of

a particular path. This means that the more energy it takes to stray from the deterministic path,

the less likely the path is to be taken. In the case of a deterministic process with several local

equilibriums, this can be used to estimate the rate of transfer between each equilibrium.

Example 3.2.2 (The Noisy Spring). Consider a one-dimensional noisy spring with spring constant

k. In the small noise limit using Friedlin-Wentzell theory we can investigate the rate function. It

will be given by

I(γ) =

∫ ∞

0

|k(γt −Xeq) + γ̇t|2dt. (3.6)

To find the most likely path one must find the minimum of the rate function over all possible paths.

In this case it is simple, notice that I(γ) ≥ 0 for all γ. Furthermore, notice that if γt = Xeq for all

time, meaning that γ is a constant function with value Xeq then

I(γ) =

∫ ∞

0

|K(γt −Xeq) + γ̇t|2dt (3.7)

=

∫ ∞

0

|K(Xeq −Xeq) + 0|2dt = 0 (3.8)

and hence the constant function γt = Xeq is the most likely path. However, it is apparent that small

deviations off of this constant path are not unlikely, and quantification of how unlikely can be made

using equation 4.6.

3.2.2 Metastable SDEs and CTMC Approximation

Consider now an SDE in the following form

dXt = −∇Φ(Xt)dt+ σXdBt

where Φ : R3 → R is a smooth function such that lime→∞ Ψ(x) = limx→∞ |∇Ψ(x)| = ∞. These

types of SDEs are well studied. SDEs of this form have very nice properties, provided the potential
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[H]

Figure 3.1: The double well potential used in this example

meets some light conditions. These types of SDEs will be reversible, and will have stationary

distributions related to their potential

P (x) =
1

Z

∫
R3

e−Φ(x)/σXdx

where Z ∈ R is a normalizing constant. These types of distributions are calledGibbs distributions.

Now consider the minimum of Φ. In the deterministic setting, these minima would represent

stable solutions to the differential equation. In the SDE case, the process will transition between the

stable equilibria randomly, based on the noise and the structure of Φ. This phenomenon is called

metastability and is ubiquitous in chemical physics and biophysics. The local minima are referred

to as stable energy wells.

Example 3.2.3 (The Double Well Potential). This example discusses the properties of a gradient

system with the following potential. Let Ψ(x) = E((x − W )2 −
√
r)2 + y2 + z2 be a double well

potential. This potential has minima at (x, y, z) = (r ±W, 0, 0), and a maximum height between the

minima at x = r, a plot of the potential along the x axis is given in figure ?? below,

Intuitively one imagines that the SDE should transition between x = 0, 2 randomly based on

the height of the well, the higher the barrier between the two minima, the more consecutive kicks

up the hill one needs, making it more unlikely. A sample path demonstrating the switching behavior

inherent in these types of systems is shown below.
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Figure 3.2: An example of a metastable transition between two equilibria.

A natural question is to ask how fast these transitions occur and if there is a way of esti-

mating the transition times based on the geometry of the potential landscape. The answer to this

question comes from Kramer’s law and Friedlin-Wentzell theory.

It is well known and shown rigorously in the weak noise limit in[29] and was originally

estimated by Kramers[33] that the transition time between two local minima of the potential function

will depend on the height of the barrier between them, called the activation energy. More specifically,

if x1, x2 are two stable states and z is an index one saddle point between the stable states then the

approximate transition rate between the stable point x1 to x2 is given by[65]

|λs|
2π

√
det(H(x1))

|det(z)|
exp

(
− δΨ

σ

)

where detH(x) represents the determinant of the Hessian matrix of Ψ evaluated at x, λs is the

unique negative eigenvalue of the Hessian matrix at the saddle point, σ is the noise present in the

gradient system; lastly δΨ = Ψ(z)−Ψ(x1) is the activation energy. Note that these types of systems

can be modeled as CTMCs with states related to the stable points and transfer rates given by the

transition rate above. This supports the idea of modeling the conformation processes as a CTMC.[5]

However, while in an equilibrium state, the system is not static but deviates around the equilibrium

according to the geometry of the potential landscape around it; quantifying the deviation and noise

seen in each stable well needs to be calculated with care. While locally, the potential landscape can

be approximated by a quadratic function, leading to Gaussian noise as an approximate perturbation
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around the equilibrium, globally, the double well landscape does not have exact quadratic behavior;

this means that the deviations in equilibrium will skew towards the transition state. In the current

work, an approach of considering the continuum dynamics rather than a CTMC approximation

is taken to investigate the role of the noise and its relationship to the potential function in each

metastable state.
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Chapter 4

Simulation of Confocal smFRET

Experiments

Following the ideas discussed in section 2.1.1.1 in this chapter a more thorough investigation

into confocal smFRET experiments is conducted. In parallel a discussion of the simulation of

such experiments is carried out. These simulations are used in later chapters to investigate how

the structure of the free energy landscape influences the structure of the FRET vs lifetime joint

distribution.

4.1 The Structure of a confocal smFRET Experiment

As mentioned in section 2.1.1.1, a smFRET experiment consists of a sample of interest and a

solution in which it is diluted. The sample of interest is typically a protein with two fluorescent dyes

attached in different locations. These are small molecules that are attached to the target molecule

by a point mutation on the molecule and a methylene bridge of C-C links.
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(a) Alexa 488 (b) Rhodamine B

Figure 4.1: Alexa 488 and Rhodamine B are two common fluorescent. These dyes are attached to a
molecule via a chain of C-C bonds.[25][26]

The fluorescent dyes move as they are subject to the same thermal fluctuations as the

protein. The nature of these dynamics is discussed in chapter 7.

Once the sample is diluted it is placed in a confocal microscope. This is a microscope that

uses convex lenses to focus light on a specific area creating an illumination profile in the sample. The

confocal volume is the region in which the illumination profile has, within a cut-off, the highest

intensity; it represents the region that is “in focus”. The confocal volume is well approximated by

a truncated 3 dimensional Gaussian distribution given by[66]

I = I0 exp

(
−(x2 + y2 + z2/k)

w2

)

where I0 is the maximum intensity, z is the direction of propagation of the light, w is related to the

beam radius in the xy plane and k is a constant dependent on index of refraction of the solution

and the numerical aperture of the lens. This means that the confocal volume is symmetric along

the plane perpendicular to the axis of propagation of the light and asymmetric along the axis of

propagation.

It is important to note that the number of samples collected in a confocal smFRET experi-

ment is random and dependent on the diffusion of the sample and the confocal volume. Moreover,

due to the random diffusion of the sample, useful data is not always being recorded. The samples

come in bursts of photon counts. To simulate the random nature of the number of bursts seen in

a smFRET experiment, we define the time in which the experiment is conducted and generate a

Poisson-distributed random number for each of these seconds. We use λ = 1 to parameterize the ar-
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rival rates of bursts per second. The total number of bursts is defined as the sum of these outcomes.

Let NB denote the total number of bursts in an experiment.

Once in the microscope, a laser of a wavelength such that the photons emitted by this laser

will excite the donor molecule is directed towards the diluted solution and pulsed according to a

preset pulse time.[32] The pulse time is approximately every 50 nanoseconds or 5 × 10−8 seconds.

In the simulations the iteration time of the protein motion is representative of a pulse time.

The light is then passed through a linear polarizer and directed towards the objective. The

beam passes through a dichroic beamsplitter or dichroic. 1

Provided a molecule is in the confocal volume it will be excited by an incoming photon with

a probability based on its orientation relative to the polarization of the photon. Let A be the event

that the photon is absorbed by the donor and let µ̂D be the electric dipole moment of the donor

and Î the unit vector corresponding to the polarization of the incident photon. Then

P(A) = ⟨µ̂D, Î⟩2 = cos2(θ)

where θ is the angle between the two vectors.[37][42] Notice that this distribution is symmetric about

the planes perpendicular to the polarization of the incident photon. In this way, we can see that

the absorption probability increases the more co-linear the dipole moment is with the polarization

of the photon with a maximum probability of absorption when the two are parallel.

Once excited, the donor may transfer its energy via FRET, fluorescence, or decay nonra-

diatively. This nonradiative decay is representative of other energy pathways the absorbed energy

may take, such as increasing vibration between two bonds in the molecule, increasing rotation, or

loss of energy due to interactions with other molecules. The probability of emitting a photon once

excited is called the quantum yield of the molecule.[42] Denote this by QD and QA for the donor

and acceptor quantum yield respectively.

If either dye fluoresces the photon will be emitted in a direction with a distribution dependent

on the electric dipole moment of the emitting dye. Let ê be the unit vector in the direction of

propagation of the emitted photon. Then the density of of the random vector ê is given by

p(e) =
1

π2
(1− ⟨µ̂, ê⟩2)

1Dichroic beamsplitters are types of lenses that allow certain wavelengths of light to pass through where others
are reflected.
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where µ̂ is the dipole moment of the emitting dye, either the acceptor or donor.[37] Note that the

distribution for the direction of emission is symmetric about planes perpendicular to the electric

dipole moment. This shows that the emitted photon is more likely to travel in a direction per-

pendicular to the dipole moment of the dye. In this way we can see that the emitted photon will

have a polarization representative of the dipole moment of the fluorescing dye. This is the basis for

fluorescence anisotropy.[42][37]

To see a photon it must travel in the direction of the detector. So, a great loss of photons

occurs due to the stochastic nature of the emitted direction. Provided a photon travels in the

appropriate direction, it is reflected by the dichroic mirror the incident light passed through earlier.

Once reflected towards the detector it is split based on wavelength and polarization. Once split the

photon travels towards a photon detector which may or may not register a photon based on the

efficiency of the detector.[32] We refer to the detector efficiency by the following probabilities of

detection, SA and SD for the acceptor and donor detectors respectively. Once a photon is registered

is counted and time-stamped with the time after the pulse and the time in the overall experiment.

This is then repeated to gather counts of acceptor, and donor photons as well as their lifetimes.

A schematic of the confocal set up is shown below in figure 1.2.

As one can see there is a great loss of data in these experiments, approximately 99% of

the photons that should be seen are not due to the loss by quantum yield, orientational factors,

or detection efficiency. However, these experiments do create a large pool of data with around

50, 000 photons counted during the course of an experiment. Once these photons are counted one

can estimate the FRET efficiency in each burst and observe any dynamics that may occur in the

underlying molecule of interest, such as conformational changes in a protein.

4.2 Algorithms and Simulations

For each of the NB bursts, a sample path of the chosen model dynamics is simulated with an

iteration step ∆, which is representative of the pulse time. Each sample path is simulated for a total

time T where T is a Gamma-distributed random variable that approximates the burst time and is

generated for each sample path. At each iteration (pulse time) of this sample path, a killed CTMC

is simulated to represent the absorption, energy transfer, emission, and collection of a photon from

a single pulse of the laser. The result of this CTMC gives whether or not the photon was collected,
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Figure 4.2: An example of a confocal microscopy set up for smFRET experiments. Taken from [32],
credit to George Hamiltion.

the color of the photon, and the lifetime associated with the photon. The results from the CTMC

for each pulse are collected for the total burst. Intensity-based FRET and lifetime-based FRET

estimations can be conducted using the results from each burst.

To simulate the paths of an SDE the Euler-Maruyama method is used. A pseudocode for

this algorithm is given below for simulating the general SDE of the form

dXt = b(Xt)dt+ σ(Xt)dWt
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Algorithm 1 Euler - Maruyama Method for SDEs

Require: ∆ - Time step, T - Total time

X(0)← x ▷ x ∼ F for some distribution F is also acceptable.

δW (0)← 0 ▷ Set to 0 since initial distribution is in the previous step.

for n from 1 to N do

δW (n) ∼ N (0,∆)

X(n+ 1)← X(n) + b(X(n))∆ + σ(X(n))δW (n)

end for

This method converges strongly, i.e., in mean square meaning,

max
t∈[0,T ]

E[|X∆
t −Xt|2] ≤ C∆

where X∆
t is the approximating process.[65] This means that the algorithm converges in mean square

with rate O(∆). Moreover the algorithm converges in expectation meaning,

max
t∈[0,T ]

|E[f(X∆
t )]− E[f(Xt)]| ≤ Cf∆

for all f ∈ C∞
b (Rd). So, in both senses, the algorithm converges with a rate O(∆).[65]

An important problem to address is the initial conditions for the SDE simulations. The

physical assumption is that the system is in equilibrium. This means that the initial conditions

should be generated from the model’s stationary distribution. To simulate random variables from

these particular distributions the accept-reject sampling method is used.

Algorithm 2 Accept Reject Sampling [50]

Require: Distributions f, g, U[0,1]. Constant M > 0 such that f(x) ≤Mg(x), ∀x.

Generate X ∼ g and U ∼ U[0,1]

Accept Y = X, if U ≤ f(X)
Mg(X)

Return to state 1 otherwise

For models with non-standard stationary distributions, this algorithm is used with f given

by the associated equilibrium distribution. A multivariate Gaussian simulation is used for spring

models or the equilibrium disordered protein configuration.
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With each iteration, we also calculate the processes dependent on these SDEs. Namely, at

each iteration, calculate the vector displacement L∆
t , the scalar distance r∆t , the energy transfer

rate k∆ET (t) and the FRET efficiency E∆t . Using these processes, a simulation of the energy transfer

and detection processes is conducted using the simulated kET . This process incorporates the loss

of photons via the quantum yield, the detector efficiency and loss by orientational factors. The

pseudocode for this is given below. This is a modified version of the CTMC code in [17]

32



Algorithm 3 Energy Transfer Simulation

Require: ∆, t k∆ET (t) - time step in algorithm and energy transfer rate at a multiple of .

kD, kA - fluorescence rates for donor and acceptor resp.

QD, QA - Quantum yield of donor and acceptor resp.

SD, SA - Detector efficiency for donor and acceptor channels.

PND - a probability based on the photon loss due to orientation.

state ← D

while t < ∆ state ̸= ND,FD, FA do2

if state = D then

Generate two Bernoulli random variables with probabilities (1−QD) and

PND if either is 1 state ← ND and τ = 0.

Generate τDF ∼ exp(kD) and τET ∼ exp(kET (t))

end if

if min(τD, τET ) = τD then

τ = τD

state ← FD, break

else

τ = τET

state ← A

end if

if state = FD then

Generate Bernoulli random variable with probability of success (1− SD)

if 1 then state ← ND.

end if

if state = A then

Generate Bernoulli random variable with probability of success (1−QA)

if 1 then state ← ND.

Generate τAF ∼ exp(kA).

τ = τ + τAF

State ← FA, break

end if

if state = FA then

Generate Bernoulli random variable with probability of success (1− SA)

if 1 then state ← ND.

end if

end while

Collect the outcome:

color[t] = state

lifetime[t] = τ
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For each time step t, the output is a lifetime and color for the associated photon with lifetimes

of 0 corresponding to non-detection. From here, conduct intensity-based and lifetime-based FRET

analysis on the data generated. This analysis consists of plotting the FRET vs lifetime distributions

compared against the static line, as well as plotting the difference in the first and second moments

of the lifetime distribution vs the FRET efficiency. Moreover, using the definition of the dynamic

shift, dynamic shift histograms are generated for each set of data generated.
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Chapter 5

Free Energy Landscape Geometry

and smFRET

5.1 Metastable Proteins

Here, we consider introducing dynamics to the underlying protein by modeling the motion of

the equilibrium position in the static model as a stochastic process. We simplify the complex protein

dynamics by considering two reaction coordinates: the anchor points for the dyes. Hence, the protein

dynamics are projected onto the dynamics of these two locations. The reaction coordinates, denoted

P d and PA, evolve according to a nonlinear SDE with additive noise and drift according to the

gradient of a potential function[28]. For more information on these types of SDEs review chapter 3

and section 3.2.2 in particular. The reaction coordinate processes are given by

dPD
t = −∇Φ(PD

t )dt+ σPDdBt, (5.1)

dPA
t = −∇Ψ(PA

t )dt+ σPAdBt, . (5.2)

We consider several cases of a double well potential wherein the system exhibits transitions

between two metastable states occurring only along the x - axis for the acceptor anchor only, without

loss of generality. The donor behaves as a noisy spring similar to the dye model. Hence, there are

only two possible stable locations for the system corresponding to the acceptor anchor transition
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along the x-axis. The three cases of potential landscape geometry are:

1. The symmetric Double Well: Ψ(x, y, z) = E((x−W )2 −W )2 + y2 + z2

2. Asymmetric Height Double Well: Ψ(x, y, z) = E((x−W )2 −W )2 + Cx+ y2 + z2

3. Asymmetric Width Double Well: A cubic spline approximation to an asymmetric width double

well.

Here we investigate the properties of the joint distribution of FRET and donor lifetime and

see how the transition rate between states and the geometry of the energy landscape impacts this

distribution.
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Figure 5.1: Example of moderate transition rates

In the above plot one can notice that each geometry has a different-looking distribution

despite having approximately the same transition rates. Notice that the symmetric potential and

the Asymmetric width potential are very different despite the fact that the equilibrium points are the

same. The asymmetric width plot is reminiscent of the asymmetric height distribution, implying

that the width of the energy landscape can influence the structure of the distribution. In the

lifetime distribution there seems to be no real difference between having an asymmetry in the width

or the hight of the energy landscape. The difference between the two can be seen in the FRET

distribution wherein the asymmetric height presents a FRET distribution more skewed towards the

lower equilibrium point. In the asymmetric width case the FRET efficiency peaks slightly at one

well and then is mostly uniformly distributed as we approach the well with the sharper barrier.

Figure 5.2: Dynamic shift histogram comparison between the different energy landscapes in the
moderate transition regime.

In the case of a fast transition geometry still plays an important role. As seen in the figure
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below the symmetric double well produces a distribution that has a higher average FRET and is

oriented differently with respect to the static line.

Figure 5.3: Fast Transitions

The main differences become apparent in the asymmetric double wells. The asymmetric

height double well provides a slightly lower mean lifetime and an orientation that shows a tendency

towards the deeper stable state. Interestingly the asymmetric width case provides the same mean

lifetime as the asymmetric height but presents a skewing in both the lifetime and FRET distributions

caused by the slower diffusion and larger volume of exploration in the wider well than can be seen

in the other two models.

Figure 5.4: Dynamic shift histogram comparison between the different energy landscapes in the fast
transition regime.
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5.2 Disordered Landscapes

Here, the underlying protein is considered a flexible polymer modeled by a system of C

overdamped springs with equal spring constants k. Each spring represents a part of the protein, and

the location of this part is given by an SDE governed by the neighbors in the chain. We consider each

spatial coordinate to evolve independently of the others. Consequently the ith coordinate of each

component of the chain is governed by a linear system of C SDEs dU i
t = KU i

tdt+σσσdBt, i = 1, 2, 3,

where K ∈ RC×C is the tridiagonal spring constant matrix with −k on the diagonal and k on the

off-diagonal. Independent thermal fluctuations drive the noise component. Hence, σσσ = σI, where σ

is the standard thermal noise coefficient and I is the identity matrix.

Since each component is a linear SDE in RC driven by Gaussian noise, the solution is readily

available in terms of a matrix exponential and the stationary distribution will be a multivariate

Gaussian with covariance given by the solution to the Lyaponov equation, Kωωω+ωωωKT = σσσσσσT . Since

KKK is symmetric and σσσσσσT = σ2I, the solution is given by ωωω = −σ2KKK. Consequently, the stationary

distribution for the system of equations is a multivariate Gaussian with mean vector 0 and covariance

matrix −σKKK. Note that this is a C dimensional space; this does not mean that the mean length of

the chain is 0.

In this section, we will only investigate how the placement of the linkers on the chain

affects measurements. However, once some auxiliary information is discussed in regard to dye linker

models and dipole moment dynamics, another discussion on disordered landscapes and the smFRET

dynamic shift will be held.

Figure 5.5: Samples of the above IDP model using the smFRET simulations

Notice here that the placement of the dye along the chain does not cause serious differences;

moreover, the lifetime and FRET are both very uniformly distributed. However, there is a light

tendency towards low FRET, as expected. Notice at a lower noise level, the strong dependence of

the FRET lifetime distribution on the static line becomes more pronounced. In addition, with lower
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noise, low FRETs are observed more frequently.
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Chapter 6

Stochastic Geometric Mechanics

6.1 Rotational Dynamics

When considering the motion of a particle, such as a protein or a fluorescent dye, subject

to thermal fluctuations, one considers the translational diffusion of the particle. This is how it

moves in space, similar to how the reaction coordinates for the protein models moved in space.

Mathematically, the state space for such models is Rn. However, an important aspect of a particle’s

state is its orientation. The notion of orientational or rotational dynamics complicates the picture

considerably.

To consider rotations of rigid bodies, one works with the Lie group SO(3). This is the group

of orthogonal matrices with determinant 1. This group represents all rigid rotations of Euclidean

space. So, by considering a motion on this space, when starting with an initial configuration one

obtains the rotational dynamics of a rigid body. Let ω ∈ so(3) be the rotational velocity of a curve

in SO(3), and the Lie bracket [X,Y ] = XY − Y X, and define I ∈M(3× 3) to be the inertia tensor

of the rigid body. Then, the Euler equations tell us classically[64],

Iω̇ = [Iω, ω] + TBt (6.1)

Where TBt in the equation above is a Brownian motion added following the direction from section

6.2.1, this gives the stochastic equation of motion for a freely rotating body subject to white noise.[11]

Notice now that if I is a multiple of the identity, then [Iω, ω] = 0, and hence Iω̇ = TBt. Therefore,
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a Brownian motion will be the rotational dynamics of a particle with a multiple of the identity for

its inertia tensor. Such rigid bodies are uniform spheres.

Example 6.1.1. [Electric Dipole Dynamics] Consider a rigid body, Γ in three-dimensional space

with inertia tensor I. Set an initial configuration for Γ, Γ0. Let µ0 be a unit vector centered in

Γ0. If one considers ωt a process on SO(3) given by the Euler equations above, then a problem of

interest is to track the motion of ωtµ0. This is equivalent to tracking the diffusion of the electric

dipole moment for a fluorophore.

In FRET is particularly important. This is because the Förster radius is dependent on the

mutual dipole orientations,

κt = µA
t · µD

t − 3(µA
t · R̂)(µD

t · R̂) (6.2)

and R6
0 = κ2t R̄0. While the influence may not seem to be so large since the magnitude of R0 only

fluctuates by κ
1/3
t . However, the main issue to be concerned with is the fact that κt is often close to

0. This causes a skew in the energy transfer rate, and since κ dynamics happen in a fast time scale

[59, 16], the rapid fluctuations in the Förster radius may cause additional variance in the lifetime

distributions.

If we consider the fluorophore as a spherical molecule, then as shown above the Euler equa-

tions will give that the rotational diffusion of the dye is a Brownian motion. Let Xi be an orthonormal

basis for the Lie algebra so(3) of SO(3). Then, the rotational Brownian motion can be expressed as

TBt =

9∑
i=1

Xt ◦ dBt (6.3)

with Bt being a Euclidean Brownian motion. More information on what these Stratonovich SDEs

mean is shown in section 6.2. Now, the path of operators TBt acts as a map P(SO(3))→ P(S2) by

considering the path µt = TBtµ0 ∈ S2. Let µ̂0 denote the operator taking the path TBt and applying

it to the vector µ0. Then µ̂0 is a diffeomorphism [40] and hence by proposition 1.2.4 in [35] we see

that since TBt solves the SDE for Brownian motion on SO(3), then µt = µ̂0(TBt) solves the SDE

for Brownian motion on S2.
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The equations of motion for a spherical Brownian motion are given in the following SDEs,

dθt =
σ2
θ

tan θt
◦ dBσ

t

dϕt =
σϕ

sin (θt)
◦ dBϕ

t

This simplification is useful as a full simulation of more complicated dynamics on SO(3) can be

difficult. However, it can be done see for instance, [11, 12].

Further, in considering the rotational dynamics of a particle, one may also consider any

constraints the particle is placed under. For example, the spherical pendulum is constrained to only

move along the sphere. Hence, an understanding of the geometry of the sphere is needed. More

generally, constraints and rotational dynamics highlight the need for a study on the interaction

between geometries and processes

6.2 Differential Geometry

Differential geometry is a vast area of mathematics, and we will only review the tools needed

to show the following results.

Heuristically speaking, a manifold is a topological space that locally looks like an Euclidean

space. What is meant by this is that a topological space M is a manifold if for each x ∈ M

there exists an open neighborhood Ux ⊂ M and a homeomorphism, called a coordinate chart,

ϕUx
: Ux → Rd. It is further required that these coordinate charts behave well on overlaps. Meaning

if U, V ⊂M such that U ∩ V ̸= ∅ then the map

ϕV ◦ ϕ−1
U : ϕU (U ∩ V )→ Rd

is differentiable. [27]1

1Note that ϕV ◦ ϕ−1
U is a mapping from Rd to Rd, so we know what differentiability means.
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Figure 6.1: An Illustration of the Coordinate Charts on a Manifold. Taken from [27]

The manifold is called a CK manifold if these transition maps are at least K times differ-

entiable and smooth if K = ∞. The collection of coordinate charts is referred to as an atlas and

if there exists an atlas that is countable, the manifold is called second countable. Moreover, the

dimension of the manifold is the dimension of the Euclidean space it is locally homeomorphic to. For

the purposes of this work we always consider the manifoldM to be smooth and second countable.

This eases our considerations.

A fundamental object in the study of differential geometry is the tangent space, TxM,

at each point x ∈ M. This is the set of all tangent vectors at the point x. Loosely, this means

that for a smooth curve p : [−1, 1] → M such that p(0) = x the velocity vector of p at time t,

ṗ(0) is an element in the tangent space of x. This space can also be seen as a space of operators

on smooth functions f : M → R by considering the directional derivative of f in the direction of

v ∈ TxM.[27][44] In this way tangent vectors are often written in coordinates as

v =

d∑
i=1

vi
∂

∂xi

and can be thought of as a first order differential operator. Elements of this space are sometimes

called contravariant vectors or just vectors. The tangent bundle ofM is denoted TM and is the
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disjoint union of each tangent space,

TM =
⋃

x∈M
{x} × TxM

meaning an element in the tangent bundle is expressed as (x, v) where x ∈M and v ∈ TxM. Vector

fields onM are smooth sections 2 of the tangent bundle. This means a vector field V onM is an

assignment of a vector v(x) at each point x ∈ M. The space of all vector fields will be denoted

Γ(TM).

The tangent space at x is easily seen to be a finite-dimensional vector space. So, it is natural

and useful to consider the dual to this space. This is the cotangent space and consists of all the

linear functionals on the tangent space. This space is denoted T ∗
xM. Elements in this space are

sometimes called 1-forms or covariant vectors. In a similar way to the tangent bundle, one can

consider the cotangent bundle

T ∗M =
⋃

x∈M
{x} × T ∗

xM

and the set of covariant vector fields is denoted Γ(T ∗M).

An important class of covariant vectors are those of differentials of functions. These are

those covariant vectors defined by the following; for a function f :M→ R let df(x) ∈ T ∗
xM be the

covariant vector such that for any v ∈ TxM,

df(x)(v) := v(f)(x).

[27][44] Note, that there are many different ways of defining this idea, but this seems to be the

simplest and most clear explanation for the current work.

6.2.0.1 Riemann Geometry

So far everything that has been mentioned works for any differentiable manifold. However,

the setting of this work is in a Riemann manifold. A Riemann manifold is a manifold such that

each tangent space TxM has an inner product - symmetric, positive definite, bilinear form, gx. We

2Note, we will not get involved with the existence of a global section or anything like this. It is assumed that these
vector fields are defined as local sections that can be smoothly stitched together.
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denote for v, w ∈ TxM,

gx(v, w) = ⟨v, w⟩g(x).

If the bilinear form is smooth alongM, meaning for each V,W ∈ Γ(TM) the function ⟨V (x),W (x)⟩g(x)

is smooth, then it is called the Riemann metric tensor.[44] A manifoldM equipped with a metric

tensor is called a Riemann manifold and is denoted (M, g). Further using the Riemann metric

tensor one can define an analogue of the Laplace operator on manifolds, the Laplace - Beltrami

operator, ∆M written in coordinates it is given by[27][35]

∆Mf =

d∑
i=1

d∑
j=1

1√
det(g)

∂

∂xi

(√
det(g)(g−1)i,j

∂f

∂xj

)
.

It will be beneficial to identify the cotangent space and tangent space at a point. Since

TxM is a finite dimensional inner product space, we may identify it with its dual space, T ∗
xM. In

this way we can define the so called musical isomorphisms.[44] Define for p ∈ T ∗
xM, p♯ ∈ TxM to

be the unique element in TxM such that

p(v) = ⟨p♯, v⟩g(x).

This is sometimes referred to as a sharp. Similarly, define for w ∈ TxM, w♭ ∈ T ∗
xM to be the unique

element in T ∗
xM such that

w♭(v) = ⟨w, v⟩g(x).

For Riemann manifolds there is a particular covariant derivative that works well with the

metric tensor. This is called the Levi-Civita connection.

Definition 6.2.1. The Levi - Civita Connection on (M, g) is the unique covariant derivative,

∇ that satisfies the following[44];

� For all X,Y, Z ∈ Γ(TM),

X⟨Y,Z⟩g(x) = ⟨∇XY,Z⟩g(x) + ⟨Y,∇XZ⟩g(x)
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� For all X,Y ∈ Γ(TM) we have for the lie bracket [X,Y ](f) = X(Y (f))− Y (X(f)),

∇XY −∇YX = [X,Y ]

The Levi-Civita connection is perferred and will be the connection we use from now on be-

cause it makes parallel transport an isometry. Meaning, that parallel translation of vectors perserves

their inner product.[44] This is very important in the construction of Brownian motion and its in-

finitesimal generator on a Riemann manifold.

Using the Riemann metric tensor we can define the Riemann distance between two points

on the manifold. First, note for v ∈ TxM we can use the inner product to define a norm in the

usual fashion,

|v|g(x) = ⟨v, v, ⟩
1/2
g(x)

and from this we may define the length, or total variation, of a differentiable curve γ such that

γ(0) = x and γ(1) = y in the usual way to be[44]

∥γ∥TV =

∫ 1

0

|γ̇(t)|g(γ(t))dt.

The Riemann distance is defined for x, y ∈M to be

d(x, y) = inf{∥γ∥TV : γ(0) = x, γ(1) = y}.

It can be shown that the definition of geodesics being those paths that minimize the distance

between two points coincides with the geodesics defined by the Levi-Civita connection.

Next we define the Riemann exponential map and define geodesic completness of a manifold.

Properties that arise from the exponential map will also be important in proofs later on.

Definition 6.2.2. Let γV be the geodesic starting at x ∈ M with velocity V ∈ TxM. Define

D(Expx) ⊂ TxM as the set {V ∈ TxM|γV is defined on the interval [0, 1]}. The exponential

map[44] is the operator Expx : D(Expx) :→M such that

Expx(V ) = γV (1)
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If the domain of the exponential map for each x ∈M is the entire tangent space TxM, then

the manifold is called geodesically complete. By the Hopf - Rinow theorem, this is equivalent to

the manifold being a complete metric space with respect to the Riemann metric, d. [44] Together

with second countability, this makes the manifold a complete separable metric space. This is the

type of space required for the theory in [23] to be applicable. From here on out, we assume thatM

is a geodesically complete manifold.

It is important to note that the exponential map need not be injective; many different

geodesics can end at the same point. For example, there are infinite geodesics connecting antipodal

points on the sphere. However, a ball exists around each x ∈ M such that inside this ball, the

exponential map is injective and, in fact, a diffeomorphism. [44] Define the injectivity radius of

Expx as

i(x) = inf{δ > 0|Expx is injective on B(0, δ)}

note that i(x) ∈ (0,∞]. Inside this ball, geodesics connecting points will be unique; this will be

used later. Another important property gained from the exponential map is the scaling property of

geodesics. The following proposition will be useful later.

Proposition 6.2.1. Let c ∈ R+ and V ∈ TxM. Define γcV as the geodesic starting at x with

velocity cV . Then

γcV (t) = γV (ct).

In other words, scaling the velocity is equivalent to scaling the time. [44] In particular,

lim
c→0

γcV (t) = γV (0).

Moreover, observe that if xn, yn → z such that d(xn, yn)→ 0 then the sequence of minimal geodesics

connecting xn and yn will converge to the constant geodesic. This implies that parallel transport

along such a geodesic converges to the identity map on TzM. [44][8]

The following property was first defined in [61] and involves the notion of a measure being

consistent along the manifold. It was initially developed in the context of a geodesic random walk

to establish the independent increment properties and later extended to a condition to define a good

containment function in [38].

As each tangent space is different depending on the point, each measure on each tangent
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space is different. So, we need a way of translating a measure on those spaces in a way that does not

alter this measure in any significant fashion, similar to the parallel transport of a vector along the

manifold. Let {µx}x∈M be a collection of measures such that µx ∈ P(TxM). We say this collection

satisfies the consistency property if for any smooth curve γ : [a, b]→M such that γ(a) = x and

γ(b) = y we have

µy = µx ◦ τ−1
x,y;γ = (τx,y;γ)#µx

i.e. for any smooth curve connecting two points on the manifold that the pushforward measure of

the parallel transport map along that curve gives us the proper measure on the tangent space at the

endpoint. Importantly, the normal distribution satisfied this property.

6.2.1 Stochastic Processes on Manifolds

In this section, we mostly follow [35] in the description of manifold-valued SDEs. We

will discuss the construction of Brownian motion on a manifold by considering an SDE on the

orthonormal frame bundle and the martingale problem for Bochner’s Laplacian.

It is counterintuitive to find that the definition of a semi-martingale on a manifold is much

simpler than that of a martingale.

Definition 6.2.3. Let Z = {Zt} be an Rd valued continuous semi-martingale. Further, define

V0, V1, ..., Vd to be smooth vector fields on a d dimensional manifold M. We call X = {Xt} a

solution to the SDE

dXt = V0(Xt)dt+

d∑
i=1

Vi(Xt) ◦ dZi
t

if for each f ∈ C∞(M), f(Xt) the following holds

f(Xt) = f(X0) + V0f(Xt) +

d∑
i=1

∫ t

0

Vif(Xt) ◦ dZi
t .

Note that these processes are only defined up to a (possibly finite) stopping time, τ , called

an explosion time. If P(τ =∞) = 1, i.e., if this stopping time is almost surely infinite, the manifold

is called stochastically complete. There are many sufficient conditions 3 for a Manifold to be

stochastically complete with respect to Brownian motion4 Hence, SDE is driven by Brownian motion.

3As far as I am aware there are no necessary conditions known.
4Note, we have yet to define Brownian motion on M yet. However, starting this next theorem will relieve some

technicalities when we do.
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The following criteria is a work of Grigorian as the following[35]

Proposition 6.2.2. Let M be a Riemannian manifold with distance d. Define the radial function

r(x) = d(x, o) for an arbitrary point o ∈M. Further, let V ol(B(r)) be the volume of a geodesic ball

around o of radius r. If ∫ ∞

c

r

|ln(V ol(B(r)))|
dr =∞

thenM is stochastically complete.

We can see from this that stochastic completeness relies on the manifold’s curvature. Indeed,

this condition can be related to the Ricci curvature of the manifold, and it is true (but is a much

more strict assumption) that if RicM ≥ L for some L ∈ R then the manifold is stochastically

complete.[35][38] However, the claim above provides much more freedom in our choice of geometry.

Essentially, it requires that the volume of a geodesic ball is bounded by DeAr2 for some constants

A,D. From now on, we assume we work on a stochastically complete manifold.

Having the definition of a M valued SDE, it is natural to wonder about the case when

Z =W is a Brownian motion. In this case, we return to the theory of diffusion processes. It is well

known there is a deep connection between second-order elliptic operators and diffusion processes,

so one would like this to extend to the manifold setting. Indeed, this is the case. It can be shown

[55][35] that theM valued diffusion process

dXt = V0(Xt)dt+

d∑
i=1

Vi(Xt) ◦ dW i
t

solves the martingale problem for the second order elliptic operator

A = V0 +
1

2

d∑
i=1

V 2
i

where V 2
i (f) = Vi(Vi(f)). Such operators are called Hörmander form operators[55][35] due to their

relation to Hörmander’s theorem.

Note that this type of operator is a different notation for the second-order elliptic differential

operator we expect from working on Rd. We can investigate V 2
i in coordinates to see how this is the

case. Let

Vi(x) =

d∑
j=1

aj(x)
∂

∂xj
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then we have

Vi(Vi(f)) =

d∑
k=1

ak(x)
∂

∂xk

( d∑
j=1

aj(x)
∂

∂xj

)

=

d∑
k=1

d∑
j=1

(
ak(x)

∂aj(x)

∂xk

∂

∂xj

)
+ ak(x)aj(x)

∂2

∂xk∂xj

So, adding V 2
i in our generator slightly augments the drift term while including the diffusion term.

Note that this augmentation of the drift is similar to the augmenting of the drift when converting

from Stratonovich to Ito SDEs. Since the Stratonovich integral is used, the noise should be expected

to be reflected in the drift term. Further, the geometry of the space can present a “virtual” drift in

the generator.

This operator is technically an element of the double tangent bundle ofM and is sometimes

called a “diffusor”. These types of vector fields are a vital element in the theory of second-order

differential geometry.[20] This is an area of geometry that is inspired by stochastic differential geom-

etry and, in many ways, generalizes stochastic differential geometry. However, this topic is beyond

the scope of the current work and will not be discussed further.

One of the main difficulties in defining Brownian motion on a manifold is that one would

expect a Riemann Brownian motion to be a process Xt defined by some Euclidean-driven SDE as

above. However, this would include some constant vector fields onM. It is well known that ifM

is not parallelizable, such vector fields do not exist. This presents a problem. Moreover, one could

expect to characterize Brownian motion by the Lévy characterization, but this leads to the problem

of defining quadratic variation for Manifold-valued processes. It turns out that for each (0, 2) tensor

field onM one can define a quadratic variation.[35][20]

6.3 Path Entropy: Schilder’s Theorem

The last part of this section is to recall a large deviation result in the context of under-

standing the fluctuations of a randomly rotating electric dipole with a spherical molecule. We know

that this molecule rotates according to a spherical Brownian motion. In a law of large numbers type

scaling, we can ask what the rate function for such a process is. This generalizes Schilder’s theorem

to manifolds. The extension was recently carried out by Versendaal et al. in [62]. We see that the
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rate function for a Brownian motion under the scaling W (nt) as n→∞ is given by

I(γ) =

∫ ∞

0

|γ̇t|2g(γt)
dt. (6.4)

However, it turns out that the extension of the same theory for stochastic differential equa-

tions or general Markov processes has not been completed yet. So, analysis of the rate function for

rotational dynamics of nonspherical molecules needs to be done. This is the topic of chapter 10
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Chapter 7

Fluorescence Dynamics in

smFRET

The term fluorescence dynamics has been coined recently to describe the study of processes

influencing fluorescent measurements.[45] As mentioned in previous sections, FRET is very sensitive

to changes in inter-dye displacement; as such, the motion of the fluorescent probes will influence

FRET measurements. As the field currently stands, most uncertainty quantification for FRET

measurements involves molecular dynamics (MD) simulations, in which a deterministic simulation

is conducted considering all known forces on each atom. These simulations are costly and do not

simulate an extended amount of time; usually, the time is less than a burst time in a smFRET

experiment. The next chapter will outline a modeling approach using SDEs and ideas from stochastic

geometric mechanics as an alternative to all-atom MD simulations.

The first section concerns different mechanical models for the dye and how they are derived

and considered. The next chapter details simulations conducted to investigate the model behavior

in a smFRET experiment. It discusses the simulation methods and what variables are considered

when simulating the smFRET experiment. The final chapter examines different results from the

dye models using smFRET as a benchmark by which to study the dye models. As we have seen in

previous sections, when one collects FRET data, the data is altered by the underlying system being

in a mixture of states rather than just one. This section considers the mix of states imposed on the

system by the dye motion. Therefore, an understanding of the dye dynamics is needed.
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7.1 Spring Models

The first model considered is the noisy spring, as in example 3.2.1. The spring force is

modeled by considering the linker’s chemical structure, with effective spring forces from the C − C

bonds calculated by their vibrational bond frequency and interpreting the linker as a series of springs

with this spring constant.

As mentioned in example 3.2.1 as a linear SDE this process is a Gaussian process and hence

will produce Gaussian inter-dye displacement distributions. Further, the model shows an exponen-

tial correlation decay, allowing for almost independent sampling from the steady-state Gaussian

distribution during a burst time. These match assumptions that would be beneficial in a smFRET

environment. Gaussian inter-dye displacements are a common assumption, moreover influences from

noise are easier to manage if one can consider them uncorrelated to some degree. This provides a

simple mechanical model. However, in general, the dye linker dynamics could not be considered as

a single isotropic potential well. This produces a spherical equilibrium distribution about the mean

vector Xeq. Asymmetry in the distribution will lead to more of a dynamic shift. We also consider

an anisotropic spring to account for possible anisotropic behavior in the dye linker spring force. The

model is similar to the isotropic spring above. Still, the spring force matrix is not a scalar multiple

of the identity but instead a diagonal matrix with different weights on the diagonal.

In other words the matrix K is no longer taken to be diagonal, but instead K = [ki,j ]
3
i,j=1

is a 3 × 3 matrix with positive coefficients representing the spring force in the ith direction when

pulled in the jth direction. In this case, the stationary distribution is still a multivariate Gaussian

distribution with mean Xeq and covariance Σ given by the solution to the Lyapunov equation

ωK +KTω = 2σI3×3. (7.1)

Weakening the tether resistance in different coordinates introduces an asymmetry in the AV that is

representative of the excluded volume introduced by the underlying molecule. The damping in the

spring constant along certain directions will be proportional to the force imparted on the molecule

via the underlying molecule, either by electronic interactions or thermodynamic forces. This way,

certain directions may be more favorable and others more constrained.

This model will still produce Gaussian inter-dye displacement distributions with a more

complicated covariance. This allows for greater flexibility in the dye motion while keeping the
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original assumptions. Based on the matrix K, the stationary distribution can be altered to produce

many different elliptic geometries; moreover, the spring constant matrix should depend on the dye

linker composition, and thus, the coefficients should be readily found.

7.2 Elastic Pendulum

The second model we consider is the case of an elastic pendulum subject to noise. This

model accounts for the greater angular flexibility of C −C bonds versus their radial flexibility. This

is done in a different manner than in the anisotropic spring model. Indeed, this model has a restoring

force on the polar angle to the equilibrium angle where the line between the linker and the dye is

perpendicular to the surface below. However, there is no restorative force on the azimuthal angle,

allowing the dye to freely rotate around the linker axis. The model views the dye motion in spherical

coordinates with coupled stochastic differential equations evolving on the angles and radius,

drt = −kr(rt − req) +
1

rt
dt+ σr ◦ dBr

t

dθt = −kθ sin (θt) +
σ2
θ

r2t tan θt
◦ dBσ

t

dϕt =
σϕ

rt sin (θt)
◦ dBϕ

t

where σ is the polar angle from the axis along the linker and attachment point, and ϕ is the azimuthal

angle. Each component of the model is subject to a different amount of noise and the radial spring

constant is different from the polar spring constant. By adjusting each of the parameters one can

produce a motion similar to the classical wobble in a code model in which the dye linker rotates

about the linker axis.

Figure 7.1: Sample path of the elastic pen-
dulum model

In our model, the linker will transition across

the wobble stochastically as the polar component is

subject to a force and random perturbations. Fur-

ther, the radial component may change. Due to the

interaction between Brownian motion on a sphere

and the sphere’s radius, a change in the radial com-

ponent of the diffusion will result in changes in the

angular parts. More specifically, if the radial com-
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ponent is particularly noisy, so will the angular com-

ponents. The elastic pendulum model does not have

Gaussian inter-dye displacements and, depending on

the parameters will show dependence between exci-

tation times. Still, as shown in section 8.1, these

features are essential to producing an accurate model for dye motion.

7.3 κ2 and Dipole Orientation Dynamics

The last section of this chapter considers the dynamics of the electric dipole moments of the

two fluorescent dyes. As seen in example 6.1.1 FRET is sensitive to the orientational dynamics of

the electric dipoles via the κ2 parameter. Typically, this value is taken as its mean value in the case

of isotropically distributed moments. However, the approach taken is the approach seen in example

6.1.1.

Figure 7.2: Example of a spherical Brownian
motion

It is important to mention that for other shapes of

molecules, the Brownian motion approximation will

not be true, and more delicate considerations will

need to be taken. Further, if the interaction between

the rigid body orientation and its translational mo-

tion is considered, a new approach must be taken -

the equivalent process on the sphere may not be a

Brownian motion.

In light of the above, we only consider the

electric dipole moments to evolve as spherical Brownian motions seen in example 6.1.1

dθt =
σ2
θ

tan θt
◦ dBσ

t

dϕt =
σϕ

sin (θt)
◦ dBϕ

t

Using this motion the process

κt = µA
t · µD

t − 3(µA
t · R̂)(µD

t · R̂)
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to monitor the change of κ2 over time. Then, using the κ2 dynamics, the fluorescence CTMC

representing FRET is no longer time-homogeneous, and the energy transfer rate is conditional on

κt during the energy exchange process. The fluorescence CTMC no longer being time-homogeneous

changes the simulation method as well.

Algorithm 4 Non-homogeneous FRET CTMC

Require: RT , {κt}, kD

Generate X,Y ∼ U([0, 1]).

Define τX = inf{t > 0 :
∫ t

0
kD

(
κ2
t R̄0

RT
dt

)
= X} and τY = inf{t > 0 : kDt = Y }.

If τX > τY then D → FD in FRET CTMC otherwise D → A.

Using this algorithm an exploration of the effect of dipole moment dynamics on smFRET

measurements can be conducted.
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Chapter 8

Influence of Dye Motion on

smFRET Dynamic Shift

“It doesn’t stop being magic just because you know how it works.”

Terry Prachett, Wee Free Men

8.1 Dye Models and Properties

Now to understand which dye model provides the best and most physically accurate picture

of the underlying dynamics. To do this, we consider the dynamic shift induced by dye motion in

a DNA standard experiment. In this type of experiment, the DNA can be taken as static along

the burst time duration. Therefore the only dynamics seen will be those from the fluorescent dye

motion.

Figure 8.1: Comparison of dye models
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From the above plot, one can notice that the isotropic spring shows the least amount of a

dynamic shift, whereas the elastic pendulum with a dynamic κ shows the most dynamic shift. This

is due to the fact that the isotropic spring model oscillates too frequently, providing an averaging

effect during the burst time. From this the lifetime and FRET distributions are averaged in each

burst, meaning that there is no real deviation between the average of the lifetimes or the lifetime

of the averages. However, a dynamic shift can be seen to form in the anisotropic spring case,

wherein the stationary distributions are ellipses with large cross-sectional areas in a plane and small

perpendicular to that, like a coin. The stationary distributions are oriented, so the large areas are on

perpendicular planes. This asymmetry and slower diffusion times provide the mixture needed for a

dynamic shift. However, the volume of the stationary distribution can be quite large, with the longer

axes being roughly 3 orders of magnitude greater than that of the shorter. The elastic pendulum

model allows for enough freedom and slower times to produce a dynamic shift while keeping with

appropriate volumes. However, the final push for an experimentally accurate dynamic shift comes

from the inclusion of the κ2 parameter.

Figure 8.2: Dynamic shift histogram comparison between the different dye models

In the dynamic shift histogram above one can see that the elastic pendulum model with κ2

dynamics included provides the highest dynamic shift. Moreover, it also provides the highest spread

in the dynamic shift distribution.
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8.1.1 Impact of Linker Length and Rigidity

In this section, we take the elastic pendulum model and compare different dye linker com-

positions to determine how the composition will influence the resulting dynamic shift. This is useful

to understand so that appropriate linkers can be chosen for each experiment.

Figure 8.3: Dye linker compositions arraged from smallest dye size and shortest length to largest
dye size and longest length

One can see that the dynamic shift in each example remains mostly the same; this is due to

the dynamic shift from the dipole orientations since, at this stage, it is not linked to the linker compo-

sition.

It can be noted that the variance in the distribution

does change depending on linker composition. When

the dye is medium size with a long linker, the variance

is smaller than with a short linker. This is due to the

extra freedom of movement the long linker gives the

dye. Note that this is not a freedom of greater area to explore, but a freedom in exploration speed.

With the smaller spring constant from the longer linker and the lower drag from being a medium

dye vs a large dye, this provides enough freedom to effectively lower the relaxation time and average

out some of the noise. This is not the case in the large dye setting due to the drag on the dye

overpowering the lowering of the spring constant.

8.1.2 The Role of Azimuthal Diffusion

Finally considering the influence of the spring constant in the dye linker composition above

we consider the role of the Azimuthal diffusion of the dyes. This is due to the fact that the dye is

most free to move along the azimuthal coordinate; there is no force there. From the speed of the

wobble along this coordinate, averaging could take place. If the dye wobbles rapidly during a burst

time, then the distance between the dyes will average out to be the equilibrium distance and reduce
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the dynamic shift or variance of the distribution.1

Figure 8.4: Azimuthal diffusion relationships

One can see that when the angular diffusion is increased, there is a slight increase in the

dynamic shift, but the moment difference plot shows the most change in behavior. Notice that the

variance is greatly increased in the very fast angular diffusion. However, at slower diffusion, the

variance does not change much depending on the parameter. This result is most likely due to the

parallel lowering of the polar spring constant. In this plot, we are seeing the results from having

complete angular freedom rather than just azimuthal freedom.

1It should be noted in the above plot that the same factor also reduces the polar spring constant due to an old
simulation method. A newer plot is being prepared.
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Chapter 9

Large Deviations Theory

“THAT’S MORTALS FOR YOU, Death continued. THEY’VE ONLY GOT A FEW

YEARS IN THIS WORLD AND THEY SPEND THEM ALL IN MAKING

THINGS COMPLICATED FOR THEMSELVES. FASCINATING.”

Terry Pratchett, Mort

Recall the definition of a rate function and a large deviation principle from section 3.1.3. The

conditions given in (3.2) are similar to conditions in the Portmanteau theorem from the theory of

weak convergence. [7] A third condition states that a sequence of random elements {Xn} converges

in distribution to a random element X if and only if for every bounded continuous function f ,

E[f(Xn)] → E[f(X)]. The approach taken by Feng and Kurtz, as well as this dissertation begins

with a large deviation version of this result known as the Bryc formula. Building on the Bryc

formula, Feng and Kurtz develop a methodology for developing large deviations results for a broad

class of Markov processes.

Originally, techniques in large deviations theory involved change of measure techniques

combined with weak convergence results, such as in [19][29]. In this work, we consider processes

on Riemannian manifolds and we wish to consider these objects globally. To date there is no

nice transformation for diffusion-type processes on general Riemann manifolds, only for compact

manifolds as seen in [68]. This limitation leads us to consider a different route. Namely, the route of

nonlinear semigroup convergence that was introduced in [23]. As shown in [38] this approach greatly

simplifies the task of analyzing LDP on Riemann manifolds.
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Proving a large deviation principle for Markov processes is similar in spirit to showing the

convergence of a sequence of Markov processes {X(n)
t } to a Markov process Xt. To show the latter,

let An be the generator of X
(n)
t and let A be that of Xt. Then An generates the semigroup Tn

t ,

where Tn
t f(x) = Ex[f(X

(n)
t )] and similarly for A. If An converges to A, then one can show that Tn

t

converges to Tt. And hence one has Ex[f(X
(n)
t )] → Ex[f(Xt)]. Thus, for fixed t, X

(n)
t converges

in distribution to Xt. Convergence in distribution of the finite-dimensional distributions will follow

from the semigroup or Markov property. Convergence in distribution of the processes follows once

the sequence of processes {X(n)
t } is shown to be tight.

In demonstrating the former, one starts with a sequence of nonlinear dissipative operators

Hnf =
1

n
e−nfAne

nf .

We refer to this generator as the exponential tilt of An.
1 Each Hn generates a nonlinear semigroup

V n
t f(x) =

1

n
ln(E(enf(Xt))|X0 = x) =

1

n
ln(Tte

nf ), f ∈ B(M).

Suppose that there exists a nonlinear operator H for which Hn converges to H. At this point, one

would like to proceed as in the case of convergence in distribution. First, we would like H to be

the generator of a semigroup V (t). If V nt converges to Vt, one almost has the Bryc formula and

a one-dimensional LDP result. From here one can extend to a finite dimensional LDP and then a

functional LDP.

While all of this seems reasonable enough it is fraught with difficulties. The operator H

may not have a domain that is large enough to generate the necessary limiting semigroup. For this

to be the case, H must satisfy a range condition: there exists an α0 > 0 such that

D(H) ⊂ R(I − αH)

for all 0 < α < α0. Then, from the Crandall - Liggett Theorem [15] the operator H will generate a

nonlinear semigroup and one can show that the semigroups generated by Hn will converge to this

1This is because of the similarity between martingale exponential tilting and the nonlinear semigroup defined
above.
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semigroup. [23] However, this requires solutions to the equation

(I − λH)f = g

which in general require regularity results that are not available. [23] Due to this concern we consider

a weaker notion of solution to this equation. Namely, a viscosity solution and a comparison principle.

Having V n
t f(x) converge to Vtf(x) is not enough for the Bryc formula to hold.

Definition 9.0.1. A sequence of probability measures Pn is called exponentially tight[23] if for

each a > 0 there exists a compact set Ka ⊂M such that

lim sup
n→∞

1

n
ln(Pn(K

c
a)) ≤ −a.

One can proceed to develop finite dimensional LDP and finally function. and then functional

LDP. However, the obtained rate function will typically not be in a convenient form. At this point,

some ideas from control theory are used to put the rate function in a more tractable form.

Feng and Kurtz [23] demonstrate how to overcome these issues and present a roughly four-

part approach to finding to LDPs breaks:

� Verify the convergence of a sequence of nonlinear operators Hn to an operator H.

� Verify exponential tightness of the sequence of measures.

� Verify the comparison principle for viscosity solutions of the Hamiltion-Jacobi equation for the

limiting operator H.

� Construct a variational representation of H and find the rate function by the Legendre-Fenchel

transform of H.

9.0.1 Viscosity Solutions and Stochastic Optimal Control

Viscosity solutions are weak solutions to operator equations and are mainly applied to

nonlinear equations. [14] These types of solutions have appeared in the context of calculus of

variations and control theory. [24][22] These results were only applied to nonlinear differential

operators, but in [23], this notion of solution was generalized for general operators.
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Definition 9.0.2. Viscosity Solution Let H : D(H) ⊂ C(M)→ B(M). Fix h ∈ C(M), and α > 0.

Let f ∈ B(M) and consider the equation

(I − λH)f = h. (9.1)

� f is a viscosity subsolution of (9.1) if and only if f is upper semicontinuous and for each

f0 ∈ D(H) there exists x0 ∈M such that

f(x0)− f0(x0) = ∥f − f0∥∞

and

1

λ
(f(x0)− λHf(x0)− h(x0)) ≤ 0

� f is a viscosity supersolutionof (9.1) if and only if f is upper semicontinuous and for each

f0 ∈ D(H) there exists x0 ∈M such that

f0(x)− f(x0) = ∥f − f0∥∞

and

1

λ
(f(x0)− λHf(x0)− h(x0)) ≥ 0

A function f is a viscosity solution if it is both a subsolution and a supersolution.

To provide a unique viscosity solution knowing the subsolutions and supersolutions one

verifies the comparison principle.

Definition 9.0.3. The Hamilton - Jacobi equation (9.1) satisfies the comparison principle if f

is a subsolution and f is a supersolution implies f ≤ f .[23]

As we have seen in the outline, if the sequence of measures is exponentially tight, and the

sequence of generators converge to a limiting operator that satisfies the comparison principle then

the sequence of processes satisfies an LDP.[23] What remains is to find a representation for the rate

function of this LDP. This can be done by considering a variational form for the limiting operator

H.
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In many cases one can show that this operator is the generator for a Nisio semigroup, a

semigroup arising in stochastic control theory. [46][23] If we have this representation we are able to

represent the rate function in terms of the Legendre - Fenchel transform of the variational form of

H. The variational form of H, in this work, is a function H : T ∗M→ R such that H is continuous

and fixing x ∈ M the map H : T ∗
xM → R is convex and for all x ∈ M and f ∈ C∞

c (M) we

have Hf(x) = H(x, df(x)).[38] We often refer to the variational form of H as the Hamiltonian in

reference to its connection to statistical mechanics.

The main result used is the following[38][63][23],

Theorem 9.0.1. Let {Pn} be a sequence of measures on D([0,∞),M). Suppose this sequence is

exponentially tight and for each n, there exists an operator An that satisfies the martingale problem

for Pn. Define Hnf = 1
ne

−nfAne
nf and suppose Hn → H uniformly on compact sets. Further

assume for each λ > 0 and h ∈ Cb(M) the comparison principle is satisfied for (I − λH)f = h.

Then Pn satisfies an LDP in D([0,∞),M) with good rate function

I(γ) =

∫ ∞

0

L(γt, γ̇t)dt (9.2)

for γ ∈ H1
0 (M) and ∞ otherwise. Where L : TM→ [0,∞] is given by

L(x, v) = sup
p∈T∗

xM
{p(v)−H(x, p)}

is the Lengendre - Fenchel transform of the variational form of H.

The function L is sometimes referred to as a Lagrangian.

9.0.2 Useful Facts

Now we will discuss some results that simplify the task of determining exponential tightness

and the comparision principle for processes on manifolds considerably. The following two proposi-

tions will be instrumental to our task.

First we define a compact containment function.

Definition 9.0.4. First we define a compact containment function. A good containment func-

tion is a function Υ :M→ R+
0 satisfying the first three properties below and a good containment

function for H if it satisfies all of the properties.
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� There exists a point x0 ∈M such that Υ(x0) = 0.

� Υ ∈ C2(M).

� ∀c ∈ R+
0 the set {x ∈M : Υ(x) ≤ c} is compact.

� supz∈M(H(z, dΥ(z))) <∞.

It is shown in [38][39] that if H has a good containment function then the sequence Pn is

exponentially tight. Further, this containment function is used in the following condition to show

the comparision principle. This is again shown in [38][39].

Proposition 9.0.1. If H has a good containment function that satisfies the following condition,

then the viscosity solutions satisfy the comparison principle.

Let f and f be sub and super viscosity solutions to (I − λH)f = h for fixed λ > 0 and

h ∈ Cb(M) and let Υ be a good containment function for H. Define the sequences {yα,ϵ} and {xα,ϵ}

for α, ϵ > 0 by the following

f(xα,ϵ)

1− ϵ
−
f(yα,ϵ)

1 + ϵ
− α

2
d(xα,ϵ, yα,ϵ)−

ϵ

1− ϵ
Υ(xα,ϵ)−

ϵ

1 + ϵ
Υ(yα,ϵ)

= sup
x,y∈M

(
f(x)

1− ϵ
−
f(y)

1 + ϵ
− α

2
d(x, y)− ϵ

1− ϵ
Υ(x)− ϵ

1 + ϵ
Υ(y)

)
(9.3)

Then, if

lim inf
ϵ→0

lim inf
α→∞

{
H
(
xα,ϵ,

α

2
d(d2(·, yα,ϵ)(xα,ϵ))

)
−H

(
yα,ϵ,

−α
2
d(d2(xα,ϵ, ·)(yα,ϵ)

)}
≤ 0 (9.4)

then H satisfies the comparison principle.

This is a modification of conditions 9.10 and 9.11 for verifying the comparison principle in

Feng and Kurtz [23] adapted to manifolds. These conditions are based upon Lemma 9.3 in Feng

and Kurtz [23] where it is essentially shown that

sup
x,y∈M

(
f(x)

1− ϵ
−
f(y)

1 + ϵ
− α

2
d(x, y)− ϵ

1− ϵ
Υ(x)− ϵ

1 + ϵ
Υ(y)

)
≤ lim inf

α→∞

{
H
(
xα,ϵ,

α

2
d(d2(·, yα,ϵ)(xα,ϵ))

)
−H

(
yα,ϵ,

−α
2
d(d2(xα,ϵ, ·)(yα,ϵ)

)}
.
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Letting ϵ→ 0 and applying (9.3) and (9.4) implies that

f − f ≤ 0

which is the comparison principle. A similar condition can be found in [39] where the penalizing

function is introduced. Here the penalizing function is the Riemannian distance. By [38][39], we

know that d(xα,ϵ, yα,ϵ)→ 0 as α→∞. It will become of interest to know how fast this happens.

Proposition 9.0.2.

d(xα,ϵ, yα,ϵ) ≤
C

α

for any ϵ > 0 and a constant C ∈ R+
0 .

Proof. To see the above, let y ∈M such that Υ(y) = 0 and 0 < ϵ < 1 define

L(y) =
f(y)

1− ϵ
−
f(y)

1 + ϵ
− ϵ

1− ϵ
Υ(y)− ϵ

1 + ϵ
Υ(y)

=
f(y)

1− ϵ
−
f(y)

1 + ϵ

Then, since L(y) is a special case of the function

f(x)

1− ϵ
−
f(y)

1 + ϵ
− α

2
d(x, y)− ϵ

1− ϵ
Υ(x)− ϵ

1 + ϵ
Υ(y)

when x = y it must be that the supremum value attained at xα,ϵ and yα,ϵ is greater than L(y).

Therefore

L(y) ≤ f(xα,ϵ)

1− ϵ
−
f(yα,ϵ)

1 + ϵ
− α

2
d(xα,ϵ, yα,ϵ)−

ϵ

1− ϵ
Υ(xα,ϵ)−

ϵ

1 + ϵ
Υ(yα,ϵ)

→ α

2
d(xα,ϵ, yα,ϵ) ≤

f(xα,ϵ)

1− ϵ
−
f(yα,ϵ)

1 + ϵ
− ϵ

1− ϵ
Υ(xα,ϵ)−

ϵ

1 + ϵ
Υ(yα,ϵ)− L(y)

Since sub and super viscosity solutions are bounded and the distance cannot be less than 0,

the sequences Υ(xα,ϵ) and Υ(yα,ϵ) are also bounded one can take the supremum of the right hand

side over alpha and calling this value C
2 we see that

d(xα,ϵ, yα,ϵ) ≤
C

α
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hence as α→∞ the sequences of distances must also go to 0 at a rate proportional to 1
α .
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Chapter 10

Fluctuations of Vanishing Markov

Perturbations

“Questions don’t have to make sense, Vincent,” said Miss Susan. ”But answers do.”

Terry Pratchett, Theif of Time

Let (M, g) be a d dimensional Riemannian manifold. First, we will define several required

objects. Let c : M → [0,∞) be a measurable function, b = (bi)
d
i=1 ∈ Rd, σ = (σi,j)

d
i,j=1 be a

positive semi-definite d × d matrix, and V = {Vk}dk=0 a collection of complete vector fields on M

such that any linear combination of the vector fields is also complete. Further, we will make use of

the exponential map from complete vector fields to diffeomorphisms defined by

Exp(V )(x) = γV (x, 1)

where γV (x, t) is the integral curve associated to the one-parameter semigroup of diffeomorphisms

generated by the vector field V starting at x ∈ M and evaluated at time t ∈ [0, T ]. To simplify

notation, we denote

Exp

( d∑
i=1

yiVi

)
(x) = γ(y,V)(x)

for vectors y ∈ R and collections of complete vector fields V, in a similar way to Lee and Kunita.

[44, 41] Finally, let η be a Lévy kernel such that for each x ∈M, η(x, ·) is a Lévy measure on Rd.

Consider a large deviation principle for a sequence of Feller processes Xn(t) such that the
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generator for Xn(t) is given by

Anf(x) = −c(x) + V0(f)(x) +

d∑
i=1

biVi(f)(x) +
1

2n

d∑
i,j=1

σi,jVi(Vj(f))(x)

+n

∫
Rd

[
f(γ(z, n−1V)(x))− f(x)− 1

n
IB1

(z)

d∑
i=1

ziVi(f)(x)
]
η(x, dz).

Notice that in the Euclidean case, this is equivalent to the central limit scaling 1
nX(nt).

However, since Markov processes generally do not have a uniform scaling property, there is no direct

analog for this type of space-time scaling in the general Riemannian case. As we will see in later

sections, specific cases such as Brownian motion, Riemannian valued Marcus SDEs, or geodesic

random walks will allow for a process-level scaling interpretation. Usually, this scaling will lead

to a deterministic limit and be interpreted as a dynamical system perturbed by a general Markov

process.

Theorem 10.0.1. Let Xn be a sequence of Markov processes generated by the operators An such

that for any g ∈ C∞(M) such that r0(x) we have ∥g − r∥ ≤ 1 and |dg| < 2 we have

gVj(g)(x) ≤ Kj(1 + g2(x)),

for all x ∈ M and j = 0, 1, ..., d. Further, let η(x, dz) be a Lévy measure on Rd indexed byM such

that there exists a measure µ on Rd such that for any x ∈ M η(x, dz) = K(x, z)µ(dz) with K(x, ·)

continuous onM. Further, for any x ∈M and c ∈ Rd the Lévy measures satisfy

∫
Rd

exp
( d∑
i=1

cizi
)
η(x, dz) <∞.

. Then, Xn satisfied a LDP with good rate function

I(γ) =

∫ ∞

0

L(γ(t), γ̇(t))dt

We will prove the result as a consequence of several lemmas.

Lemma 10.0.1 (Operator Convergence). The sequence of operators Hnf = 1
ne

−nfAne
nf converges
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to the operator

Hf(x) = V0(f)(x) +

d∑
i=1

biVi(f)(x) +
1

2

d∑
i,j=1

σi,jVi(f)(x)Vj(f)(x)

+

∫
Rd

[
exp

( d∑
i=1

ziVi(f)(x)
)
− 1− IB1(z)

d∑
i=1

ziVi(f)(x)

]
η(x, dz)

in the buc - LIM sense.

Proof. Let Hnf = 1
ne

−nfAne
nf . Then,

Hnf(x) = −
c(x)

n
+

1

n
e−nf(x)

(
V0(e

nf(x)) +

d∑
i=1

biVi(e
nf(x))

)
+
e−nf(x)

2n2

d∑
i,j=1

σi,jVi(Vj(e
nf(x)))

+
1

n

∫
Rd

[
exp(nf(γ(z, n−1V)− nf(x))− 1− e−nf(x)

n
IB1

(z)

d∑
i=1

ziVi(e
nf(x))

]
η(x, dz)

=
−c(x)
n

+ V0(f)(x) +

d∑
i=1

biVi(f)(x) +
1

2

d∑
i,j=1

(
σi,jVi(f)(x)Vj(f)(x) +

1

n
Vi(Vj(f))(x)

)

+

∫
Rd

[
exp(n(f(γ(z, n−1V)− f(x)))− 1− IB1

(z)

d∑
i=1

ziVi(f(x))

]
η(x, dz)

Now we show limn→∞Hnf(x) = Hf(x) where

Hf(x) = V0(f)(x) +

d∑
i=1

biVi(f)(x) +
1

2

d∑
i,j=1

σi,jVi(f)(x)Vj(f)(x)

+

∫
Rd

[
exp

( d∑
i=1

ziVi(f)(x)
)
− 1− IB1(z)

d∑
i=1

ziVi(f)(x)

]
η(x, dz)

Lemma 10.0.2 (Variational Form and Compact Containment). The operator H as above has a

variational form H : TM → R such that for each f , Hf(x) = H(x, df) and further, the function

Υ(x) = ln(1 + g2(x)) is a good containment function.

Proof. For clarity, we will show that the function is a good containment function in two parts. The
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first for the continuous part of the generator and the second for the discontinuous part.

Hc(x, dΥ) = dΥ(V0)(x) +

d∑
i=1

bidΥ(Vi)(x) +
1

2

d∑
i=1

σi,jdΥ(Vi)(x)dΥ(Vj)(x)

=
2g(x)

1 + g2(x)
V0(g)(x) +

d∑
i=1

bi

(
2g(x)

1 + g2(x)
Vi(g)(x)

)

+
1

2

d∑
i=1

σi,j

(
g(x)

1 + g2(x)
Vi(g)(x)

)(
g(x)

1 + g2(x)
Vj(g)(x)

)

≤ K0 +

d∑
i=1

biKi +
1

2

d∑
i=1

σi,j(x)KiKj <∞

by the assumptions on the vector fields Vi. For the discontinuous part,

HJ(x, dΥ) =

∫
Rd

[
exp

( d∑
i=1

zidΥ(Vi)
)
− 1− IB1(z)(

d∑
i=1

zidΥ(Vi)

]
η(x, dz)

≤
∫
Rd

exp(
∑
i=1

ziKi)η(x, dz) <∞

Therefore, Υ is a good containment function for H, and so the sequence of measures is

exponentially tight.

Lemma 10.0.3 (Comparison Principle). The operator H satisfies the comparision principle for

viscosity solutions.

Proof. This is done by showing H satisfies proposition 12.0.1 Since H(x, p) = Hc(x, p) + HJ(x, p)

we will show proposition 2.2 for each operator separately.

Using the fact that

τyxd(d
2(x, ·))(y) = −d(d2(·, y))(x)
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and vice versa we can see the following,

Hc

(
x,
α

2
d(d2(·, y)(x))

)
−Hc

(
y,
−α
2
d(d2(x, ·)(y)

)
≤ α

2
d2(x, y)|V0(x)− τyxV0(y)|2 −

α2

8
d2(x, y)

d∑
i=1

|(|Vi(x)|2 − |τyxVi(y)|2)

=
α

2
d2(x, y)|V0(x)− τyxV0(y)|2 −

α2

8
d2(x, y)

d∑
i=1

(|Vi(x)| − |τyxVi(y)|)(|Vi(x)|+ |τyxVi(y)|)

≤ α

2
d(x, y)|V0(x)− τyxV0(y)| −

α2

8
d2(x, y)

d∑
i=1

(|Vi(x)− τyxVi(y)|)(|Vi(x)|+ |τyxVi(y)|)

Where the second line denotes the use of the Cauchy-Schwarz inequality and the combination of

terms from the parallel transport. Note that Vi(x) ∈ TXM as the evaluation of the vector field Vi

at x ∈M. So, since each Vj , j = 0, 1, ..., d is smooth and d(xα, yα)→ 0 as in proposition 9.0.1 and

αd(xα, yα)→ C as α→∞, we have that the above also goes to 0 as α→∞.

Now,

HJ

(
x,
α

2
d(d2(·, y)(x))

)
−HJ

(
y,
−α
2
d(d2(x, ·)(y)

)
=

∫
Rd

[
exp

(α
2

d∑
i=1

zid(d
2(·, y)(Vi)(x)

)
− 1− IB1(z)(

α

2

d∑
i=1

bid(d
2(·, y)(Vi)(x)

]
η(x, dz)

−
∫
Rd

[
exp

(
− α

2

d∑
i=1

zid(d
2(x, ·)(Vi)(y)

)
− 1 + IB1

(z)(
α

2

d∑
i=1

bid(d
2(x, ·)(Vi)(y)

]
η(y, dz)

=

∫
Rd

[
exp

(α
2

d∑
i=1

zid(d
2(·, y)(Vi)(x)

)
− 1− IB1(z)(

α

2

d∑
i=1

bid(d
2(·, y)(Vi)(x)

]
η(x, dz)

−
∫
Rd

[
exp

(α
2

d∑
i=1

zid(d
2(·, y)(Vi)(x)

)
− 1− IB1

(z)(
α

2

d∑
i=1

bid(d
2(·, y)(Vi)(x)

]
η(y, dz)

Now substituting η(·, dz) with K(·, z)µ(dz) and factoring the expression we obtain,

∫
Rd

[
exp

(α
2

d∑
i=1

zid(d
2(·, y)(Vi)(x)

)
− 1− IB1

(z)(
α

2

d∑
i=1

bid(d
2(·, y)(Vi)(x)

]
(K(x, z)−K(y, z))µ(dz)

≤
∫
Rd

[
exp

(C
2

d∑
i=1

zi∥Vi∥g(x)
)
− 1− IB1(z)(

C

2

d∑
i=1

bi∥Vi∥g(x))
]
(K(x, z)−K(y, z))µ(dz).

Letting d(x, y)→ 0 using dominated convergence and noting that K(·, z) is continuous, we see that

the integral above converges to 0. Consequently, the comparison principle holds.
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Proof of Theorem. The result follows from combining the three lemmas above and theorem 9.0.1.

10.1 A Corollary

“Coming back to where you started is not the same as never leaving.”

Terry Pratchett, A Hat Full of Sky

When investigating the variational form H of the operator H in the theorem one can notice

that there is a similarity between the H operator and the symbol of a Markov process in Rd. Recall

that the generator of any Markov process in Rd can be expressed as a psuedodifferential operator,

Ag(x) =

∫
Rd

ei⟨x,ξ⟩ϕ(ξ)ĝ(ξ)dξ

with a symbol,

ψ(ξ) = i

d∑
i=1

biξi +
1

2

d∑
i,j=1

σi,jξiξj +

∫
Rd

[
exp

(
i

d∑
i=1

ziξi
)
− 1− iIB1(z)

d∑
i=1

ziξi

]
η(ξ, dz)

Using the fact that the above theorem requires that the integral

∫
Rd

[
exp

( d∑
i=1

ziξi
)
− 1− IB1(z)

d∑
i=1

ziξi

]
η(ξ, dz) <∞

then we know that ψ(ξ) exists for ψ ∈ iRd. Hence, by defining,

V(f)(x)i = (Vi(f)(x)), i = 1, ..., d

we can express the variational form of the operator H as

H(x, df) = ψ(−iV(f)(x))
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10.2 Examples

”When you really need them the most,” he said, ”million-to-one chances always crop

up. Well-known fact.”

Terry Pratchett, Guards! Guards!

10.2.1 Brownian Motion

The generator for a Brownian motion is given by the Laplace Beltrami operator. In Rd

with inner product given by the Riemann metric, the Laplace-Beltrami operator can be expressed,

at x ∈ M as a pseudodifferential operator with symbol ∥ξ∥2g(x). Therefore, the Lagrangian is given

by the Legendre-Fenchel transform

L(x, q) = sup
p∈T∗

xM
{p(q)−H(x, p)}

= sup
p∈T∗

xM
{p(q)− ∥p∥2g(x)}

= ∥q∥2g(x)

which then gives us Schilder’s theorem with rate function

I(γ) =

∫ ∞

0

∥γ̇t∥2g(γt)
dt

10.2.2 Stochastic Differential equations

Consider the sequence of SDEs

dXt = V0(Xt)dt+
1√
n

d∑
i=1

Vi(Xt) ◦ dWt

we know that the symbol for the generator for such a process will be given by ϕ(ξ) = i⟨V0, ξ⟩g(x) −∑d
i=1⟨Vi, σi,jVj⟩. Hence the variational form is

H(x, df) = ψ(−iV(f)(x)) = V0(f)(x)−
d∑

i,j=1

σi,jVi(f)(x)Vj(f)(x)
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To finally calculate the rate function

I(γ) =

∫ ∞

0

L(γt, γ̇t)dt

where

L(x, v) = sup
p∈T∗

xM
(⟨p, v⟩ − H(x, p))

when σ = Id×d. Let A(x) : TxM → TxM be the linear operator and is defined by the sum of the

tensor products Vi(x) ∈ TxM with themselves,

A(x) =
d∑

i=1

Vi(x)⊗ Vi(x).

This operator is then extended to a tensor field in the sane way the Riemann metric tensor is

extended. Let A be this tensor field on M. Since the vector fields Vi are smooth, A will also be

smooth, and it is defined for each x ∈M.

The next step is to consider A−1(x) for each x ∈ M as the inverse of the linear operator

A(x) in TxM. For this to exist conditions on A(x) are needed. Namely, we need the linear operator

to be invertible and to extend A−1(x) to the whole ofM we need A(x) to be invertible for each x.

This is the case if for each x ∈ M the set of vectors Vi(x) span the tangent space TxM. In other

words, if for each x ∈M, the linear operator A(x) is positive definite. Let A(x) be positive definite

for each x ∈M. Define A−1(x) as above.

Then, with that in mind consider

L(x, v) = sup
p∈T∗

xM
(⟨p, v⟩ − H(x, p))

= sup
p∈T∗

xM
(⟨p, v⟩ − ⟨p, V0⟩g(x) −

1

2

d∑
i=1

(p(Vi))
2)

= sup
p∈T∗

xM
(⟨p, v − V0⟩g(x) − ⟨p,Av⟩g(x))

this is a common Legendre - Fenchel transform in linear algebra and using this the Lagrangian is

give by

L(x, v) = 1

2
⟨A−1(x)(v − V0), (v − V0)⟩g(x).
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Therefore by theorem 2.1.1, the rate function is given by

I(γ) =
1

2

∫ ∞

0

⟨A−1(γt)(γ̇t − V0(γt)), γ̇t − V0(γt))⟩g(γt)dt.

This is the form of the rate function we would expect from classical Freidlin- Wentzell theory, now

the inner product is changed to the Riemann inner product and the matrix is instead given by the

tensor field defined by A−1.

When the linear operator A(x) is not invertible for all x ∈ M we need to consider a

different approach. Namely, we need to delve into the variational representation for H. Note that if

L(x, v) = |v|2g(x)

2 and we define σ(x) : TxM→ TxM as the square root of A(x), i.e. σ(x)σT (x) = A(x)

then if we define

Af(x, u) = (σ(x)u)(f)(x) + V0(f)(x)

where u ∈ TxM then we have that for all f ∈ C∞(M),

Hf(x) = sup
u∈TxM

{Af(x, u)− L(x, u)}

and A : f → Af(x, u) satisfies conditions 8.9, 8.10 and 8.11 in Feng and Kurtz. So,

I(x) = inf
(x,λ)∈J t

{∫
TM×[0,∞)

L(x, u)λ(du× ds)
}

(x, λ) ∈ J t implies ∀f ∈ C∞(M) we have

f(Xt)− f(X0) =

∫
TM×[0,t]

(σ(Xs)u)(f)(Xs)− V0(f)(Xs)λ(du× ds)

if we then decompose λ(du× ds) = µs(du)× ds (using the admissible controls such that µs is only

supported on {TXsM} ⊂ TM) we can let us =
∫
TM uµs(du) so that the above then becomes

f(Xt)− f(Xs) =

∫ t

0

[σ(Xs)us](f)(Xs)− V0(f)(Xs)ds ⋆

and therefore setting Λ = {η ∈ H2
1 (M) : η̇ satisfies ⋆} we have

I(γ) =
1

2
inf
η∈Λ

∫ ∞

0

|η̇s|2g(γs)
ds
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Chapter 11

Conclusion

It is hard to close such a document. In reality, it will never quite be done. It will definitely

never quite be the document that was planned. Throughout the document the interplay between

mathematics, physics, and biology has been shown. However, there are still many open problems in

this area. Still projects to be worked on and ideas to be had. Here I will mention a few areas that

this work did not cover.

The first area is the nature of more than two energy wells in the metastable protein tran-

sitions. Moreover, more general energy landscapes could be constructed, and more detailed infor-

mation on the relationship between their geometry and the FRET vs lifetime distribution could

be understood. Further, a full SE(3) model for the IDPs could be implemented [12]. This would

provide a better approximation to the IDP movement while also incorporating rotational dynamics.

There are several areas not covered in the fluorescent dye models. One big issue is the inter-

play between the rotational dynamics and the translational dynamics. It is known that classically

the rigid body attached to an elastic pendulum exhibits nontrivial coupling between the rotational

motion and translational motion. In this work we took the motions to be independent. Moreover,

the dye is taken to be spherical, so that the dipole motion evolves according to a spherical Brown-

ian motion. More elaborate simulations detailing the motion of non-spherical dyes still need to be

implemented to study the impact of dye molecular geometry.

The interplay between the previous two topics is also not investigated very much. The

nature of rotation of the underlying protein is seen to be important as the dynamic shift in the IDP

models demonstrates. However, the coupling between dye motion and protein rotation has yet to
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be explored outside of the IDP case mentioned in this work.

While there is a lot of work to be done in the field of stochastic differential geometry, it is

the applications need to be explored. It is with the hope that this document has given a contribution

to the scientific community as a whole, and has shown the benefit and interest of interdisciplinary

thinking.
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Appendix A Physics of FRET

First recall that atoms and molecules possess electron orbitals with discrete energy levels.

Upon interaction with photons of specific energy electrons can change energy levels and bring the

molecule to an “excited” state. This electron can then “relax” and the molecule emits a photon -

the molecule fluoresces. The mechanism of FRET is stating that a molecule, the donor, may enter

an excited state, but instead of fluorescing the energy is transferred to another nearby molecule, the

acceptor making this molecule enter an excited state. This energy exchange is due to the interaction

between the electric fields of the molecules, which is based on the interaction between electric dipoles.

The electric dipole is a vector which measures charge distribution ρ : R3 → R to be[67]

µ =

∫
R3

ρ(r)rdr.

In probabilistic terms, if ρ was a multivariate probability distribution, the dipole would be the mean

vector. The electric dipole moment is the direction of the electric dipole[67],

µ̂ =
µ

∥µ∥R3

.

Here we are concerned with molecular dipole-dipole interaction.

Quantum mechanical FRET can be described using the dipole operator[13]:

Ĥ =
κ∥µA∥R3∥µD∥R3

R3

where R = ∥D −A∥R3 is the scalar distance between the donor and acceptor position vectors and

κ = (µ̂D · µ̂A)− 3(R̂ · µ̂D)(R̂ · µ̂A)

is an orientation factor for the electric field induced by the electric dipoles for the acceptor and

donor, µA and µD respectively.[13] From this one can use Fermi’s “golden rule”,

kET =
2π

ℏ
β2ρ̃(E),

to describe the transition rate. Here, ρ̂ represents the density of states with energy E, β is an
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interaction term between states ψD∗A and ψAD∗ given by the dipole operator

β = ⟨ψD∗A|Ĥ|ψAD∗⟩.

The states ψD∗A and ψAD∗ represent the donor excited state and the acceptor excited state respec-

tively. From this one arrives at the energy transition rate

kET = Cρ̃(E)κ2
(
2π

ℏ

)(
∥µA∥R3∥µD∥R3

R3

)2(
⟨χD∗ |χD⟩⟨χA|χA∗⟩

)2
where the last terms are the Frank Condon factors [13] representing the intensity of vibrational

states in each molecule when excited or relaxed.
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Appendix B Martingale Problem

A natural question to ask is if starting with an operator is it possible to define a process

with such that the operator is its generator? The answer is yes. 1 This relationship is given by

the martingale problem. Martingales can be thought of as stochastic constants and solving the

martingale problem can be thought of as the stochastic equivalent to finding integral curves of a

first-order differential operator.[55] Where in the case of first-order differential operators integral

curves are paths yt such that for each f ∈ C∞
b (Rd) we have

f(yt)−
∫ t

0

d∑
i=1

vi(x)
∂

∂xi
f(yt),

which is constant. The martingale problem extends this reasoning to more general operators by

replacing the constant requirement with a stochastic constant, or a martingale.[55]

Let (Ω,F ,P) be a probability space and let {Ft} be a filtration, an increasing sequence of

sigma algebras, of the sigma-algebra F . A stochastic process {Xt} is said to be adapted to {Ft} if

for each t ∈ T , Xt is Ft measurable. [48]

Definition B.1. A real-valued adapted stochastic process {Xt} is called a martingale[48][1] with

respect to the filtration {Ft} if

� Xt ∈ L1(Ω,F ,P).

� If s ≤ t, E[Xt|Fs] = Xs almost surely.

Notice that deterministic constants are martingales, so finding integral curves of a first-order

differential operator can be viewed as solving the martingale problem for that operator. Now, the

martingale problem is defined as follows.[56][55]

Definition B.2. Let A be a linear operator. A stochastic process X = {Xt} is said to solve the

martingale problem for A if for all f : S → R such that f ∈ D(A),

f(Xt)− f(X0)−
∫ t

0

Af(Xs)ds

is a martingale with respect to the natural filtration of X.

1Note that usually one wants to verify that an operator will generate a semigroup using the Hille - Yosida theorem,
we will not mention this.

84



It is shown in [56][18] that if X solves the martingale problem for A then X is a Markov

process with infinitesimal generator A. It is of some interest to note that many times one is in-

terested in the flow of diffeomorphisms that are induced by first-order differential operators. This

line of reasoning can also be extended to more general settings by considering stochastic flows of

diffeomorphisms, see [40][41] for more information. However, as we have seen Markov processes do

not need to have a state space that admits differentiation, and can exist on very general structures.

A key note in this work is the exploration of the behavior of Markov chains on different state spaces

with differing properties.
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Appendix C The Orthonormal Frame Bundle

The last tool needed from differential geometry is the orthonormal frame bundle. This

topic is required as it is used in the definition of a Riemannian Brownian motion through stochastic

development, and will also be used to define the process studied in section 2.2.

A frame is a is a linear isometry u : Rd → TxM from Euclidean space to the tangent space

at a point x ∈ M.[35][55] In this way an orthogonal basis {ei} ⊂ Rd can be taken to an orthogonal

basis {uei} ⊂ TxM in the tangent space at x. Denote the set of all frames at x by O(M)x. Define

the orthonormal frame bundle by

⋃
x∈M
{x} × O(M)x.

Notice that the set O(M)x is acted on by the orthogonal group O(d) by right multiplication i.e. if

g ∈ O(d) and u ∈ O(M)x then ug ∈ O(M)x. This makes the orthonormal frame bundle a principle

fiber bundle on M with fibers given by the Lie group O(d).[35][55] Let π : O(M) → M be the

canonical surjection given by π(x, u) = x.

The orthonormal frame bundle is a d+ d2 dimensional manifold, which means that one can

consider the tangent space at a frame u ∈ O(M), TuO(M).[35][55] A tangent vector v ∈ TuO(M)

is called vertical if it is tangent to the fiber O(M)πu. [35] Denote this space as VuO(M). Note

that moving in a vertical direction amounts to a group action by O(d), in this way vertical vectors

are like infinitesimal rotations of the frame u.[55] Vertical vectors do not comprise the entirety

of the tangent space TuO(M), indeed the space of vertical vectors has only d2 dimensions.[35]

However there is not canonical assignment of a space to the other d dimensions. This choice of linear

complement to VuO(M) actually constitutes a connection on the manifold.[35][27][55] However,

working in Riemannian geometry one already has the Levi-Civita connection so let us see how this

manifests itself as the linear complement to VuO(M).

Let ut be a curve in O(M), meaning it is a smooth choice of frames along πut a smooth

curve in M. The curve ut is called horizontal if for each e ∈ Rd the vector field ute ∈ Tπut
M

is parallel along the curve πut ∈ M.[35][55] Then a tangent vector in h ∈ TuO(M) is called a

horizontal vector if it is tangent to a horizontal curve at u. Denote the space of all horizontal

vectors at u as HuO(M). This induces an isomorphism π∗ : HuO(M)→ TπuM.[35][55] Moreover,
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for each V ∈ TπuM there is a unique horizontal vector V ∗ ∈ HuO(M) given by π∗V
∗ = V , this is

called the horizontal lift of V . Horizontal vectors describe a parallel transport in the sense that

horizontal curves are parallel transports of frames along curves in M. Parallel transport along a

curve πut can then be expressed very cleanly as

τt0,t1V = ut1u
−1
t0 V

noting that u−1
t0 : Tπut0

M → Rd and ut1 : Rd → Tπut1
M.[35] In this way it is very clear that if

t1 → t0 then τt0,t1 → I.

Now given a vector e ∈ Rd one can construct an entire horizontal vector field, He, on O(M).

This is done by horizontal lifts,

He(u) = (ue)∗.

In this way one can define the fundamental horizontal vector fields on O(M).[35]

Definition C.1. Let {ei}di=1 ⊂ Rd be an orthonormal basis for Rd. Define the fundamental hori-

zontal vector fields by

Hi = Hei , i = 1, .., d.

The fundamental horizontal vector fields define an orthonormal basis on the horizontal

tangent space at each u ∈ O(M). [35]. Using these tangent vectors one can define an object that is

central to the study of Brownain motion on manifolds, Bochner’s horizontal Laplacian,

∆O(M) =

d∑
i=1

H2
i

While there is much theory behind the study of Riemann Brownian motion, we will only

briefly outline how it is constructed. Riemann Brownian motion is defined on the orthonormal frame

bundle of M. This is because one generalizes the notion of development of a curve to stochastic

paths. The intuitive idea of the development of a curve to a manifold a “rolling without slipping”

proceedure. Imagine rolling a sphere over a curve of wet ink, the ink will trace a path on the sphere,

the path traced is the development of the path to the sphere. This process is conducted for smooth

paths by solving an ordinary differential equation in the orthonormal frame bundle. However, it

can be generalized to nonsmooth paths by considering a SDE in the orthonormal frame bundle.
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This idea was first recommeded by Bochner and carried out in the case of Brownian motion and a

sphere by Itô. [36] Figure 2.1 gives a picture of the process. One raises the continuous Euclidean

semi-martingale Z to O(M) by solving the SDE

dUt =
∑
i=1

Hi(Ut) ◦ dZi
t

where Hi are the fundamental vector fields in H(O(M)).[35] The process, Ut defined by this SDE

in O(M) can then be projected on to the manifold by using the natural surjection, π on O(M) so

that Xt = πUt defines a process onM.[35][55]

Figure 1: A representation of Stochastic Development. Here T (OM) is used instead of O(M). This
picture was created by Anton Thalmaier in his lecture notes on Stochastic Riemannain Geometry.
[57]

When Z = W is a Euclidean Brownian motion, one can carry out this procedure and

construct a Riemann Brownian motion. Consequently, an O(M) valued Brownian motion is given
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by the solution to

dUt =

d∑
i=1

Hi(Ut) ◦ dW i
t

and thus the generator of an O(M) valued Brownian motion is given by

1

2

d∑
i=1

H2
i =

1

2
∆O(M).

So, the generator for a orthonormal frame bundle valued Brownian motion is Bochner’s horizontal

Laplacian and a Riemann Brownian motion, Xt is given by πUt.[35] To relate this to the generator

of a Riemann Brownian motion onM, one uses the following proposition

Proposition C.1. Let x = πU and f ∈ C∞(M). Note that f ◦π : O(M)→ R is a smooth function

on O(M). Further, let ∆M be the Laplace - Beltrami operator onM. Then,

∆O(M)(f ◦ π)(U) = ∆Mf(x).

Using this proposition one relate a Riemann Brownian motion to the Laplace-Beltrami

operator via the martingale problem, this is taken as the definition of a Riemann Brownian motion

in this work.

Definition C.2. An semi-martingale X = {Xt} onM is called a Riemann Brownian Motion if

it solves the martingale problem for ∆M. In other words, a Riemann Brownian motion is a diffusion

process onM with infinitesimal generator ∆M. [35][55]

It is worth mentioning that general M valued SDE can be formulated as an SDE on the

orthonormal frame bundle similarly to Brownian motion. Define the O(M) valued SDE

dUt = V ∗
0 (Ut)dt+

d∑
k=1

V ∗
k (Ut) ◦ dW k

t

where V ∗
i is the horizontal lift of the vector fields Vi. Then Xt = πUt will be the solution to the

SDE

dXt = V0(Xt)dt+

d∑
k=1

Vk(Xt) ◦ dW i
t

and consequently have the same generator. [35]

This gives an interesting comparison between the processes and a glimpse into the nature of
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horizontal vector fields. There are no vector fields in TM such that their horizontal lift will become

Hi. The fundamental horizontal vector fields, while being defined as horizontal lifts, change along

the fibers of O(M), meaning π∗Hi(u) ̸= π∗Hi(ũ) for u ̸= ũ with both in O(M)x i.e. the horizontal

vector fields are not invariant under the group action of O(M). Whereas the horizontal lift of a

vector field V will remain constant along these fibers, meaning for any x ∈M the projection of the

horizontal lift to TxM is invariant under choice of u in the fiber above x, i.e. π∗V
∗
x (u) = Vx no matter

what u ∈ O(M)x the vector Vx is lifted to - this is a part of the definition of the horizontal lift.

In this way the fundamental horizontal vector fields can only live in O(M), outside of this bundle

they lose their structure. Vertical lifts, however, are “embedded” into a bigger space and given more

structure. This speaks to the fundamental difference between the two processes. While they are

very similar they come from two subtly different contexts. Brownian motion needs the frame bundle

to exist while other processes do not. In this way, defining a process that is augmented by solely

white noise requires more tools than defining a process that has a nontrivial diffusion tensor.
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Tahara, Ioannis Sgouralis, and Steve Pressé. Single-photon smfret. iii. application to pulsed
illumination. Biophysical Reports, 2(4):100088, 2022.

[53] Ayush Saurabh, Mohamadreza Fazel, Matthew Safar, Ioannis Sgouralis, and Steve Pressé.
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Single-photon smfret: Ii. application to continuous illumination. Biophysical Reports,
3(1):100087, 2023.

93



[55] Daniel W. Stroock. An Introduction to the Analysis of Paths on a Riemannain Manifold.
American Mathematical Society, 2000.

[56] Daniel W. Stroock and S.R.Srinivasa Varadhan. Multidimensional Diffusion Processes. Springer
- Verlag, 1997.

[57] Anton Thalmaier. Stochastic riemannian geometry. 2021.

[58] Hugo Touchette. The large deviation approach to statistical mechanics. Physics Reports, 478(1-
3):1–69, 2009.

[59] BW Van der Meer. Kappa-squared: from nuisance to new sense. Reviews in Molecular Biotech-
nology, 82(3):181–196, 2002.

[60] SRS Varadhan. Large deviations and entropy. Entropy, 47:199, 2003.

[61] Rik Versendaal. Large deviations for geodesic random walks, 2019.

[62] Rik Versendaal. Large deviations for brownian motion in evolving riemannian manifolds. arXiv
preprint arXiv:2004.00358, 2020.

[63] Rik Versendaal. Large Deviations for Stochastic Processes on Riemannian Manifolds. PhD
thesis, Technical University of Delft, Netherlands, 2020.

[64] K. Vogtmann, A. Weinstein, and V.I. Arnol’d. Mathematical Methods of Classical Mechanics.
Graduate Texts in Mathematics. Springer New York, 1997.

[65] E Weinan, Tiejun Li, and Eric Vanden-Eijnden. Applied stochastic analysis, volume 199. Amer-
ican Mathematical Soc., 2021.

[66] David E. Wolf. What is the confocal volume? FCS.

[67] Andrew Zangwill. Modern electrodynamics. Cambridge University Press, 2013.

[68] Jingxiao Zhang and D. Kannan. A girsanov type theorem on the path space over a compact
riemannian manifold. Stochastic Analysis and Applications, 25(3):667–678, 2007.

94


	Aspects of Stochastic Geometric Mechanics in Molecular Biophysics
	Recommended Citation

	Title Page
	Abstract
	Dedication
	Preface
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Markov Processes
	Insights From the Two-State CTMC

	Brownian motion and Stochastic Analysis
	Brownian Motion
	Stochastic Differential Equations

	Simulation of Confocal smFRET Experiments
	The Structure of a confocal smFRET Experiment
	Algorithms and Simulations

	Free Energy Landscape Geometry and smFRET
	Metastable Proteins
	Disordered Landscapes

	Stochastic Geometric Mechanics
	Rotational Dynamics
	Differential Geometry
	Path Entropy: Schilder's Theorem

	Fluorescence Dynamics in smFRET
	Spring Models
	Elastic Pendulum
	2 and Dipole Orientation Dynamics

	Influence of Dye Motion on smFRET Dynamic Shift
	Dye Models and Properties

	Large Deviations Theory
	Fluctuations of Vanishing Markov Perturbations
	A Corollary
	Examples

	Conclusion
	Appendices
	Physics of FRET
	Martingale Problem
	The Orthonormal Frame Bundle

	Bibliography

