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Abstract

Safe navigation of mission-critical systems is of utmost importance in many modern autonomous

applications. Over the past decades, the approach to the problem has consisted of using probabilistic methods,

such as sample-based planners, to generate feasible, safe solutions to the navigation problem. However, these

methods use iterative safety checks to guarantee the safety of the system, which can become quite complex.

The navigation problem can also be solved in feedback form using potential field methods. Navigation func-

tion, a class of potential field methods, is an analytical control design to give almost everywhere convergence

properties, but under certain topological constraints and mapping onto a sphere world.

Alternatively, the navigation problem can be formulated in the dual space of density. Recent works

have shown the use of linear operator theory on density to convexly approach the navigation problem. Inspired

by those works, this work uses the physical-based interpretation of occupation through density to synthesize a

safe controller for the navigation problem. Moreso, by using this occupation-based interpretation of density,

we design a feedback density-based controller to solve the almost everywhere navigation problem.

Furthermore, due to the recent popularity of legged locomotion for the navigation problem, we in-

tegrate this analytical feedback density-based controller into the quadruped navigation problem. By devising

a density-based navigation architecture, we show in simulation and hardware the results of the density-based

navigation.
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Chapter 1

Introduction

1.1 Motivation

Navigation under safety constraints is of utmost importance in mission-critical systems. However,

a few critical factors need to be considered when looking to tackle the problem, as shown in Figure 1.1.

These factors can potentially be the identification of the safe and unsafe region, consideration of autonomous

system constraints, and considerations of uncertainty in the model of the system or the estimated states. These

cumulative components make the safe navigation problem challenging. Furthermore, the safe navigation

problem may not only be in an environment separated by safe and unsafe regions, but in an environment

with degrees of safety – which can be categorized as the navigation problem in unstructured environments

[37]. This additional layer of complexity remains a topic of great interest actively being looked at for the

navigation problem [9,17]. Moreover, in the unstructured navigation problem where the degree of safety can

be represented as a traversability map, different systems will have different traversability constraints to remain

safe, such as mobile vehicles with their rollover stability through the balance of centripetal acceleration and

friction force [38] and legged systems with their body stability through foothold placements [18]. These

problem-specific constraints make it difficult to pose the navigation problem from a general point of view

[14, 50].

Therefore, a particular autonomous system that is of great interest for the navigation problem and

has seen a large amount of success is the legged robotic system. Legged robots are systems that utilize their

limbs to navigate around the world, allowing these systems to navigate in structured environments, such as

planar surfaces and stairs, and unstructured environments, such as ramps, hills, and planks. Examples of these

1



Figure 1.1: General navigation problem in unstructured environment. Diagram showcases the consideration
of different dynamic constraints, uncertainty, identification of safe and unsafe region, different traversable
areas to tackle the navigation problem of traversing through start to goal.

systems consist of bipeds – two-legged robots [15], quadrupeds – four-legged robots [5], and hexapods – six-

legged robots [44]. Naturally, there are more variations to the legged systems, but they all extend towards an

increase in legs or an additional appendage, such as an arm or a tail [45]. Although an increase in appendages

offers more possibilities in how the robot interacts with the world, which may be beneficial in unorthodox

environments, the increase in limbs also increases the complexity of how the robot may navigate the world.

Therefore, when considering the navigation problem, one must balance between capability and complexity.

A natural consideration of the balance between the two factors for legged systems is the quadrupedal

robots. The recent surge in quadrupedal research within the field [6, 10, 19, 23, 29] and the increase in the

commercialization of quadruped robots, such as Unitree Go1, Anybotics Anymal X, and the Boston Dynamic

Spot are proof of the capabilities is a good indicator of the balance. Furthermore, the advantages of the four-

legged systems were accentuated in a recent subterranean challenge [1, 16, 43, 46], where the objective of

the subterranean challenge was to have autonomous systems complete specific tasks while navigating in a

subterranean environment. Within this challenge, one of the core difficulties that obstructed the teams was

the diverse environmental factors such as rocky terrains, slippery surfaces, staircases, and more. Therefore,

the teams’ success relied on how their system would handle these various environmental conditions. Thus, it

is noted that the successful teams relied on quadrupedal robots to navigate around the subterranean world, as

the system naturally accommodates these environmental conditions.

2



Therefore, inspired by the diverse capabilities of legged robots to traverse through different environ-

ments, our interest lies in addressing the safe navigation problem and applying it on quadruped robots.

1.1.1 Contributions

This thesis first presents a novel approach for safe control synthesis using the dual formulation of the

navigation problem by providing an analytical construction of density functions for almost everywhere safe

navigation with safety constraints. In contrast to the existing approaches, where density functions are used for

the analysis of navigation problems, we use the physical interpretation of density functions through occupa-

tion for the synthesis of safe controllers. We provide convergence proof using the proposed density functions

for navigation with safety. Further, we use these density functions to design feedback controllers capable

of navigating in cluttered environments and high-dimensional configuration spaces. The proposed analytical

construction of density functions overcomes the problem associated with navigation functions, which are

known to exist but challenging to construct, and potential functions, which suffer from local minima.

Second, we present a motion planning architecture to apply the novel navigation density function

onto a quadruped. We decompose the locomotion problem into a high-level density planner and a model pre-

dictive controller (MPC), where the feedback planner synthesizes safe trajectories for the predictive controller

to locally optimize. This proposed method simplifies the model of the quadruped robot into an integrator sys-

tem, where the high-level plan is in feedback form, formulated through the constructed density function, and

the model predictive controller tracks the safe trajectories through locally optimal control trajectories. The

overall framework is implemented in both simulation and hardware, demonstrating the effectiveness of the

feedback density planner for the legged locomotion problem.

The rest of the work is organized as follows. Chapter 2 discusses background information about

density navigation and quadruped dynamics. Next, Chapter 3 presents the work ”Safe Navigation Using

Density Functions” at IEEE Robotics and Automation Letters, which showcases the analytical construction

of density to synthesize a feedback controller for almost everywhere navigation for integrator systems [54].

Sequentially, Chapter 4 presents the work ”Safe Motion Planning for Quadruped Robot Using Density Func-

tions” accepted to the Indian Control Conference, which gives details about how the synthesized feedback

controller is used and applied to the quadruped locomotion problem [35]. Lastly, Chapter 5 summarizes the

contribution of this work with navigation using density and discusses future work of extending the work to

utilize the legged locomotion capabilities in unstructured terrain.
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1.2 Other Contributions

While this thesis is focused on presenting the two papers, ”Safe Navigation Using Density Func-

tions” and ”Safe Motion Planning for Quadruped Robot Using Density Functions”, I wish to note my other

research contribution that will not be discussed in this thesis

• Alexander Krolicki, Dakota Rufino, Andrew Zheng, Sriram S.K.S. Narayanan, Joseph Erb, and Umesh

Vaidya. ”Modeling Quadruped Leg Dynamics on Deformable Terrains using Data-driven Koopman

Operators.” IFAC-PapersOnLine 55.37, 2022: 420-425.

• Sarang Sutavani, Andrew Zheng, Ajinkya Joglekar, Jonathon Smeraka, David Gorsich, Venkat Krovi,

and Umesh Vaidya. ”Artificial Neural Network Based Terrain Reconstruction for Off-Road Autonomous

Vehicles Using LiDAR”. Ground Vehicle Systems Engineering and Technology Symposium, 2023.

• Joseph Moyalan, Andrew Zheng, Sriram S.K.S. Narayanan, and Umesh Vaidya. ”Off-Road Navigation

of Legged Robots Using Linear Transfer Operators.” Modeling, Estimation, and Control Conference,

2023.

• Sriram S.K.S. Narayanan, Andrew Zheng, and Umesh Vaidya. ”Density Functions for Safe Navigation

of Robotic Systems in Dynamic Environments.” American Control Conference, 2024.

• Joseph Moyalan, Sriram S.K.S. Narayanan, Andrew Zheng, and Umesh Vaidya. ”Synthesizing Con-

troller for Safe Navigation using Control Density Function.” American Control Conference, 2024.
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Chapter 2

Preliminaries

This thesis present a novel approach to safe navigation problem. The novel approach relies on the

dual formulation of the navigation problem in the space of density. In this chapter, we provide preliminaries

from the linear transfer operator theory that form the mathematical foundation for the dual formulation of

navigation problem in the dual space of density. We also provide preliminaries for the reduced order mod-

elling of the quadruped dynamics that we use to demonstrate the application of safe navigation using density

function.

2.1 Operator Theory for Safe Navigation

The connection of operator theory is heavily involved in the construction of the density navigation

functions through occupation proposed in this thesis. Therefore, to give the appropriate context of this work,

we give a brief overview of linear operator theory, its connection to stability theory, and how operator theoretic

approach to stability extends to the almost everywhere safe navigation problem. We refer the readers to

[26, 48, 49] for more details on this topic.

2.1.1 Linear Operator Theory

Consider a continuous-time dynamical system in the form of

d
dt

x = f(x(t)) (2.1)
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where the following nonlinear flow map system f describes how the state x(t) ∈ Rn propagated forward in

time. Alternatively, the dynamics of the system can be rewritten through an operator-theoretic approach. The

Koopman operator K : L∞→L∞ is an infinitesimal operator that acts on the space of observables defined as

[KtΩ] (x) = Ω(st(x)), (2.2)

where Ω is the space of observable functions. Here, st(x) is the solution of (2.1) or the flow map of the

system under a dynamic given initial conditions x and a given t. Given that that f and Ω are continuously

differentiable, then Ω(t,x) =KΩ0(x) satisfies the partial differential equation (see [26])

∂Ω

∂ t
= f ·∇Ω := LKΩ, (2.3)

where LK is the infinitesimal generator of K i.e.,

LKΩ = lim
t→0

(KtΩ−Ω)/t.

Correspondingly, there is a dual relation of the Koopman operator with the Perron-Frobenius (P-F)

operator (see [26]) ∫
Rn

[KtΩ] (x(t))g(x(t))dx =
∫
Rn

[Ptg] (x(t))Ω(x(t))dx, (2.4)

where the P-F operator Pt describes the transport of densities g under dynamics through the following

g(t,x) = Ptg0(x). Likewise, given that f and g are continuously differentiable, then the following satisfies the

transport equation (see [26]).
∂g
∂ t

=−∇ · (fg) := LPg. (2.5)

where LP is the Perron-Frobenius generator i.e.,

LPg = lim
t→0

(Ptg−g)/t.

2.1.2 Duality in Stability Theory from Linear Operator Theoretic Perspective

The duality in stability theory was discovered in [49] from linear operator theoretic perspective. In

particular, it was shown that the traditional notion of point-wise stability as captured using Lyapunov function

is connected to the Koopman operator. On the other hand, the weaker notion of almost everywhere stability

6



Figure 2.1: Stability analysis through classical method and operator-theoretic framework. The duality be-
tween Lyapunov function and Lyapunov density is highlighted in [40, 49].

as discovered in [40] is connected to Perron-Frobenius operator. This weaker notion of almost everywhere

stability can be verified using density function for a continous-time system and Lyapunov measure for a

discrete-time system. Given that the Koopman and the Perron-Frobenius operator are dual to each other, the

dual between the Lyapunov function and the density function or Lyapunov measure follows.

Lyapunov’s direct method has been a long-standing tool for the analysis (and control synthesis)

of stability for nonlinear dynamical systems. However, many works have shown alternative notions of the

stability problem as shown in 2.1. We first discuss the Lyapunov stability criterion. It makes use of a candidate

Lyapunov function V (x) and a corresponding stability criterion

f(x) ·∇V < 0 (2.6)

to verify the stability of the nonlinear system f, given that V (0) = 0 and V (x)> 0 ∀x ̸= 0. We note the close

relation of Lyapunov function and the Koopman generator (and likewise the operator) as shown in (2.3) and

(2.6). Therefore, as the Koopman operator has a dual relation to the P-F operator, which acts on the space of

density, there is a notion for a dual to the Lyapunov stability criterion, which acts on the space of density. This

dual notion of stability was first presented in [40], where the author introduced a weaker notion of stability,

almost everywhere (a.e.) stability through the usage of nonnegative density functions ρ ∈ C 1 (Rn \{0},R)

that satisfies the following condition

∇ · (fρ)> 0. (2.7)

The density function ρ(x) should be integrable on Rn \Nε , where Nε is ε neighborhood of the equilibrium

point at the origin.

It is important to notice that the Lyapunov inequality in (2.6) can be expressed using the Koopman

7



generator and the density inequality on (2.7) can be expressed using the P-F generator. In particular, we have

the following

f(x) ·∇V < 0 ⇐⇒ LKV < 0 (2.8)

∇ · (f(x)ρ)> 0 ⇐⇒ LPρ < 0 (2.9)

2.1.3 Safe Almost Everywhere Navigation using Operator Theory

The notion of stability and safe navigation are connected. In particular, the use of Lyapunov function

for stability can be extended to navigation with safety constraints in the form of navigation function or poten-

tial function [21, 42]. Similarly, the use of density function used for almost everywhere stability verification

can be extended for almost everywhere navigation with safety.

The use of density functions for navigation is based on the occupancy-based physical interpretation

of the density function [48]. In particular, consider a dynamical system (2.1). For the dynamical system,

assume that there exists a density function ρ(x) that is positive and integrable and satisfies the following

equation

∇ · (f(x)ρ) = g(x)> 0, (2.10)

for some positive function g(x). For the purpose of concreteness, we assume that g(x) = 1D(x) i.e., indicator

function of set D. Let µ be the measure corresponding to density ρ i.e.,

µ(A) =
∫

A
ρ(x)dx

for any set A⊂Rn. µ(A) signifies the occupancy of system trajectories starting from the set D in the set A. In

particular, if µ(A) = 0, then almost all system trajectories starting from set D will not enter the set A i.e., zero

occupancy in set A. The physical significance of the density function as a measure of occupancy is critical

in providing systematic and analytical construction of density function for solving safe navigation problems.

Consider the problem of safe navigation where the objective is to steer the system with initial conditions in

set, say D, to some target set, say O, while avoiding the unsafe set U . This safe navigation problem using the

8



density function can be formulated as follows.

∇ · (f(x)ρ) = 1D(x) (2.11)∫
U

ρ(x)dx = 0 (2.12)

The objective is to find a density ρ that is positive and integrable outside the set O satisfying the above

property. The above is a convex but infinite-dimensional optimization problem to be solved for the density

function ρ(x).

2.2 Quadruped Dynamics

To understand how the navigation problem can be formulated for quadrupeds, one must look at the

mathematical model that describes how the system moves around the world. We begin by looking at the

dynamics of the quadruped by a high-fidelity full-order rigid body model. We then consider assumptions that

can be made for the dynamics of the quadruped, which introduces the corresponding centroidal model, single

rigid body model, and linear inverted pendulum model. For the full derivation of the model simplifications,

see [52].

We note that the notations defined in this section are defined only for quadrupeds, as well as the

sections later pertaining to quadrupeds, and should not be confused with notations defined for density navi-

gation. There should be little to no overlaps between the notations, but the appropriate section in this thesis

should ease the differentiation in notations if any do conflict.

Figure 2.2: Visual representation of the dynamic modeling equations for quadruped pushing off its front hind
legs.
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2.2.1 Rigid Body Dynamics

Assumption: Rigid bodies do not deform.

To model a four-legged robot, one can model each of its rigid bodies. The generalized coordinates

of the quadruped system are noted as q = [qb q j] ∈ SE(3)×R12, where qb are the position and orientation

of the body and q j are the joint angles of the leg. Therefore, the dynamics of the quadruped is through the

following equation of motion

M(q)q̈+H(q, q̇) = S⊤τττ +J(q)⊤λλλ c, (2.13)

where M ∈R18×18 is the joint-space inertia matrix, H ∈R18 describes the potential and nonlinear effect (e.g.

gravity, Centrifugal, and Coriolis), S⊤ = [0 I12×12] is a matrix that applies torques to row corresponding to

the joint angles, τττ ∈ R12 is the torque exerted from the actuators, and the Jacobian J maps the contact forces

λλλ c ∈ R12 from the end effectors to the generalized coordinates.

The dynamics of the quadruped can also be separated into the unactuated system and actuated system

governed by the following equation

Mu(q)q̈+Hu(q, q̇) = Ju(q)⊤λλλ c (2.14)

Ma(q)q̈+Ha(q, q̇) = τττ +Ja(q)⊤λc, (2.15)

where the subscript a in (2.15) describes the 12 torque actuated rows and the subscript u describes the 6

unactuated rows. Note, the 6 unactuated rows shown in (2.14) suggest that no direct torque actuation can be

applied onto the unactuated system. Therefore, the unactuated system (i.e. base) can only evolve through the

effects of the joints and the resulting forces from contact.

2.2.2 Centroidal Dynamics

Centroidal dynamics can be described as the projection of the quadruped dynamics into the center

of mass frame, expressed as follows [36]

A(q)q̈+ Ȧ(q)q̇ =

 mg+∑
4
i=1 λλλ c,i

∑
4
i=1(rcom(q)−pi(q))×λλλ c,i

 . (2.16)
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where A ∈ R6×12 is known as the Centroidal Momentum Matrix that maps the velocities into the center of

mass frame, m is the mass of the robot, g is the gravitational acceleration, λλλ c,i is the contact force generated

by end effector i, rcom is the center of mass, and pi is the position of the end effector. (2.16) can essentially

be viewed through the Newton-Euler equation of change of momentum of the rigid bodies projected onto the

base ( d(Aq̇)
dt = A(q)q̈+ Ȧ(q)q̇), resulting in the right-hand side to be the sum of forces and moments.

2.2.3 Single Rigid Body Model

To reduce the complexity of (2.16), the dependency of the model on the joints is removed:

Assumption: Momentum produced by the joint velocities is negligible

Assumption: Full inertia remains similar to the inertia in nominal joint configuration.

As a large amount of the mass for most of the legged robot design (e.g. MIT Cheetah [5], Spot-Mini,

Anymal) is distributed onto the base, especially the case for MIT Cheetah and Spot (the robots utilized a belt

drive such the motors are located closer to the base), the assumption that the momentum and inertia produce

by the legs is negligible is quite valid. Moreover, these assumptions are validated even further when the

robots move slowly or have very little change in joint configuration due to small movements.

Therefore, (2.16) can be rewritten such that the linear and angular components are decoupled as

follows

m̈r̈com = mg+
4

∑
i=1

λλλ c,i (2.17)

I(θθθ)ω̇ +ω× I(θθθ)ω =
4

∑
i=1

(rcom−pi)×λλλ c,i, (2.18)

where I(θθθ) ∈ R3×3 is the full inertia projected onto the inertial aligned base frame, ω is the body angular

velocity between the inertial and body frame, expressed in the inertial frame.

Note, one key component to this model is the loss of joint information. This makes the model

independent of joint states, which at the expense of some accuracy, reduces the complexity of the model in

both dimension and nonlinearity. This allows for simpler formulation for the legged locomotion problem.

2.2.4 Linear Inverted Pendulum Model

Although (2.17) is a reduced order model, the complexity of the model is still present in the nonlin-

earity through the cross products. Therefore, to eliminate the nonlinearities, a few assumptions are made:
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Assumption: Angular velocity ω and ω̇ of the base are negligible.

Assumption: Center of mass height rz is constant.

Assumption: Footholds are at a constant height pz.

The following dynamic equation under these assumptions simplifies to the following equation:

mr̈x =
4

∑
i=1

λc,i,x =
mg

rz− pz

(
rx−

∑
4
i=1 λc,i,z pi,x

∑
4
i=1 λc,i,z

)
=

mg
h
(rx− pc,x) (2.19)

where x notates the forward motion (y the horizontal), h is the walking height of the robot, and pc,x is the

center of pressure affected by the weighted average from the vertical contact force λc,i,z and the position of

contact pi,x.

Although strict assumptions limit the model’s utility, the linear model is still helpful in generating

planar legged locomotion plans.
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Chapter 3

Safe Navigation Using Analytically

Constructed Density Functions

This chapter is adapted from a paper in IEEE Robotics and Automation Letters:

Andrew Zheng, Sriram S. K. S. Narayanan, and Umesh Vaidya, ”Safe Navigation Using Density

Functions,” in IEEE Robotics and Automation Letters.

3.1 Introduction

The navigation problem is usually decomposed into planning and control, where safety must be en-

sured at each sublevel [27]. Within the planning problem, the objective usually involves defining a collision-

free trajectory in the feasible configuration space given an initial and final configuration.

A standard method to solve the planning problem involves using sample-based planners such as

rapidly-exploring random tree search (RRT) and probabilistic roadmaps (PRM) [2, 28]. These sample-

based methods are observed to be probabilistically complete through iterative samples of locally safe and

feasible paths. Asymptotically optimal variations of these planners have been developed in [20], where the

convergence rate for optimality is improved in [12, 17].

Another method involves designing feedback controllers that jointly solve the convergence and

collision-free avoidance problem. Artificial potential field based methods have attempted to solve the joint
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problem by the sum of attractive and repulsive potentials [22]. However, the existence of local minima is a

well-known issue [25, 42]. In [24, 42], a class of analytical potential functions, known as navigation func-

tions (NFs), are introduced, which guarantees almost everywhere (a.e.) convergence while adhering to safety

constraints. This method relies on a range of problem-specific tuning parameters to guarantee a.e. conver-

gence. Moreso, complex safety constraints arising from arbitrarily shaped obstacles are generally limited by

the possible mapping to a model sphere world.

The navigation problem can alternatively be formulated in the dual space of density. In [48], a

navigation measure was introduced to provide a convex formulation for synthesizing safe controllers. In the

continuous-time setting, the density function was used as a safety certificate for the analysis and synthesis

using the sum of squares optimization method [41]. Similarly, density-based approaches are also used

for the convergence analysis of existing navigation algorithms [8, 31]. More recently, convex data-driven

approaches based on the linear transfer Perron-Frobenius and Koopman operators are used for solving the

optimal navigation problem with safety constraints [34,53]. In contrast to using the convex dual formulation

for navigation, we provide an analytical construction of density functions for navigation. In particular, the

analytical construction of navigation density can be viewed as the dual construction of the classical NFs from

[42]. However, unlike [42], the construction is not restricted to navigation in the sphere world environment.

The main contribution of this chapter is in providing analytical construction of density functions

used for solving the safe navigation problem. The density function has a physical interpretation, where the

measure associated with the density is a measure of occupancy of the system trajectories in any set of the state

space as shown in Figure 3.1. We exploit this occupancy-based physical interpretation of the density function

in the construction of the navigation density functions. Unlike NFs, the density formulation can represent

arbitrary shapes of the obstacle sets. We prove that the proposed density function can navigate almost all

initial conditions from the initial set to the target set while avoiding the obstacle set. We show navigation

results for simple integrator dynamics in complex environments as well as high-dimensional configuration

spaces. Similarly, navigation results for obstacle avoidance involving robotics systems such as the two-link

planar robotic arm manipulator are presented.

The rest of the chapter is organized as follows. Section 3.2 discuss the preliminaries and the prob-

lem formulation. Section 3.3 discusses the construction of density functions, and Section 3.4 discusses the

properties of density functions for the navigation problem. This is followed by application to robotic systems

in section 3.5 and conclusive remarks in section 3.6.
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Figure 3.1: Navigation framework using density where (a) defines the navigation problem, (b) shows the
density for navigation, and (c) shows occupancy measure, which physically denotes the duration of system
trajectories occupying the set.

3.2 Problem Statement

Notations: The following notations will be used in this paper. Rn denotes the n dimensional Euclidean space,

x∈Rn denotes a vector of system states, u∈Rn is a vector of control inputs. Let X⊂Rn be a bounded subset

that denotes the workspace for the robot. X0, XT , Xuk ⊂ X, for k = 1, . . . ,L denote the initial, target, and

unsafe sets, respectively. With no loss of generality, we will assume that the target set is a single point set and

located at the origin, i.e., XT = {0}. Xu = ∪L
k=1Xuk defines the unsafe set and Xs := X\Xu defines the safe

set. We will denote by X1 := X \Bδ , where Bδ is the δ neighborhood of the origin for arbitrary small δ .

We use C k(X) to denote the space of all k-times differentiable functions of X. We use M (X) to denote the

space of all measures on X and m(·) to denote the Lebesgue measure. 1A(x) denotes the indicator function
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for set A⊂X. The formal statement of the navigation problem that we solve in this paper is stated as follows.

Problem 1 (Almost everywhere navigation) The objective of this problem is to design a smooth feedback

control input u = k(x) to drive the trajectories of the dynamical system

ẋ = u, (3.1)

from almost every initial condition (w.r.t. Lebesgue measure) from the initial set X0 to the target set XT while

avoiding the unsafe set Xu.

There is an implicit assumption that the feedback controller exists and that Problem 1, as stated above, is

solvable.

3.3 Construction of Density Function

The a.e. navigation problem, as stated in Problem 1, is solved using the navigation density function.

The construction of the navigation density is inspired by the work of [40, 48, 49]. The navigation measure,

as introduced in [48], has a physical interpretation of occupancy, where the measure of any set is equal to

the occupancy of the system trajectories in the set, as shown in Figure 3.1. Hence, zero occupancy in a set

implies system trajectories not occupying that particular set. So by ensuring that the navigation measure is

zero on the obstacle set and maximum on the target set, it is possible to induce dynamics whereby the system

trajectories will reach the desired target set while avoiding the obstacle set. We exploit this occupancy-based

interpretation in the construction of analytical density functions.

We start with the construction of the unsafe set, where the boundary of the unsafe set is described

in terms of the zero-level set of a function. Let hk(x) be a continuous scalar-valued function for k = 1, . . . ,L

such that the set {x ∈ X : hk(x) ≤ 0}, is connected with only one component. Thus, the unsafe set Xuk is

defined using the function hk(x) as follows

Xuk := {x ∈ X : hk(x)≤ 0}. (3.2)

Next, we define a transition region Xsk , which encloses the unsafe set Xuk . Let sk(x) be a continuous

scalar-valued function for k = 1, . . . ,L such that the set {x ∈ X : sk(x) = 0} defines the boundary of this
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transition region. Then the transition region can be defined by the following set

Xsk := {x ∈ X : sk(x)≤ 0}\Xuk . (3.3)

We propose a navigation density function of the form

ρ(x) = ∏
L
k=1 Ψk(x)
V (x)α

. (3.4)

Here, the function V (x) is the distance function that measures the distance from state x to the target set,

(i.e., the origin), and α is a positive scalar. In this paper, we assume V (x) to be of the form V (x) = ∥x∥2.

Additionally, Ψk(x) is a smooth C ∞ function that captures the geometry of the unsafe set Xuk and can be

constructed using the following sequence of functions. We first define an elementary C ∞ function f as

follows

b(τ) =


exp(−1

τ
), τ > 0

0, τ ≤ 0
, (3.5)

where τ ∈ R [47]. Next, we construct a smooth version of a step function f̄ from f as follows

b̄(τ) =
b(τ)

b(τ)+b(1− τ)
. (3.6)

Here, b̄ serves as the elementary function for representing zero and nonzero occupation through density.

Furthermore, the form of the elementary function, b̄, is chosen to ensure that the gradient of the density

function is well-defined. To incorporate more general geometric information about the environment, we

define a change of variables such that φk(x) = b̄
(

hk(x)
hk(x)−sk(x)

)
. The resulting function Φk(x) take the following

form,

Φk(x) =


0, x ∈ Xuk

φk(x), x ∈ Xsk

1, otherwise.

(3.7)
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Finally, the function Ψk(x) is defined as

Ψk(x) = Φk(x)+θ , (3.8)

where θ > 0 is some positive parameter. The parameters θ and α are introduced in the construction of

the navigation density. The physical significance of these parameters and the assumption made on these

parameters and functions are stated in the following remark.

Remark 1

• The distance function V (x) can be modified to adapt to the geometry of the underlying configuration

space. For a Euclidean space with x ∈ Rn, we pick V (x) = ∥x∥2.

• The parameter α is used to control the sharpness of the distance function and is used in the proof of

the main convergence results.

• The function Ψk(x) is a θ shifted version of inverse bump function Φk(x) and hence strictly positive

i.e., Ψk(x)≥ θ > 0 for k = 1, . . . ,L.

• Ψk(x) makes a smooth transition from θ to 1+θ in the transition region Xsk .

• The transition region, Xsk , acts as a sensing region for system trajectories where they start to react to

the unsafe set. We refer to the transition region as the sensing region for the rest of this paper.

• hk(x) = 0 defines the boundary of the unsafe set and sk(x) = 0 defines the boundary of the sensing

region. Refer to Figure 3.2 for an illustrative example. In the simplest case, the function sk(x) can be

chosen to be synonymous to hk(x), such that hk(x)− sk(x) = σ (where σ > 0 is a constant) uniformly

scales the unsafe set to form a sensing region.

We assume explicit bounds on the functions Ψk, V , and their derivatives which follow from the

construction of the density function in equation (3.4). It is important to emphasize that it is not necessary to

estimate these bounds, but the existence of these bounds is used as part of the proof of the main results of this

paper.

Assumption 1

1. We assume that the distance between the initial set, the target set, and the unsafe sets are all bounded

away from zero by some positive constant, say ζ .
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Figure 3.2: Examples of inverse bump function Ψ(x) for (a) Xu as a circle (h(x) = ||x||2 − r2
1 ≤ 0) and

transition region boundary as an ellipse (s(x) = ||ax||2− r2
2 = 0 where r2 > r1 and a is a scaling vector), (b)

Xu as a rounded square (h(x) = ||x||4− r4
1 ≤ 0) and a transition region (s(x) = a2x2

1 + b2x2
2cx1 − r2

2 where
r2 > r1; a,b,c are parameters) defined using equation (3.4), (c-d) 3D view of (a) and (b) respectively.

2. For x ∈ Xuk , let

V k
min = min

x∈Xuk

V (x)> 0. (3.9)

Since the distance between the unsafe set and the target set is bounded away from zero, the above

quantity is well-defined and greater than zero.

3. Furthermore, m(Xuk), i.e., the Lebesgue measure of the unsafe set, is assumed to be finite, with θ
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satisfying the following inequality for any given ε > 0,

θ ≤
V k

min
m(Xuk)

ε, k = 1, . . . ,L. (3.10)

4. In the transition region, i.e., 0 < hk(x)≤ sk(x), we assume following bounds

cV ≤V (x)≤ c̄V , cVx
≤
∣∣∣∣ ∂V
∂x j

∣∣∣∣≤ c̄Vx ,

∣∣∣∣∣∂ 2V
∂x2

j

∣∣∣∣∣≤ c̄Vx2

∣∣∣∣∂Ψ

∂x j

∣∣∣∣≤ c̄Ψx ,

∣∣∣∣∣∂ 2Ψ

∂x2
j

∣∣∣∣∣≤ c̄
Ψ2

x
, j = 1, . . . ,n.

Further, by construction, both the first and second derivatives of Ψ w.r.t. x j are zero outside the

transition region.

5. Outside the transition region and in X1, we assume

∂ 2V
∂x2

j
≤ d̄V 2

x
, V ≤ d̄V∥x∥2,

∣∣∣∣ ∂V
∂x j

∣∣∣∣≥ dVx
∥x∥ j = 1, . . . ,n.

We have used lower bar, c, d, and upper bar, c̄, d̄, notations to help define the lower and upper positive

bounds on functions. The subscripts for c and d signify the corresponding functions.

3.4 Almost Everywhere Navigation Using Density Functions

Given the construction of ρ(x) in (3.4), we design a controller for navigation as the positive gradient

of ρ(x), i.e.,

ẋ = k(x) = ∇ρ(x)

=

(
− α

V α+1
∂V
∂x

L

∏
k=1

Ψk(x)+
1

V α

∂

∂x

L

∏
k=1

Ψk(x)

)⊤
. (3.11)

Remark 2 We make following modification to (3.11) to ensure that the vector field is well-defined and the ori-

gin is locally asymptotically stable in Bδ . ẋ =
[
1− b̄(τ)

]
∇ρ(x)− b̄(τ)x where, f̄ is as defined in (3.6).With

this modification we will continue to work with (3.11) with the assumption that the origin is locally asymp-
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totically stable in Bδ for (3.11).

The main result of the paper is given in the following theorem.

Theorem 1 Under Assumption 1, the dynamical system (3.11) will solve the a.e. navigation problem as

stated in Problem 1.

Proof of this main theorem is differed to Appendix A. The feedback controller design for the a.e.

navigation problem is illustrated in pseudo-code in Algorithm 11.

Algorithm 1 Density-based Navigation Algorithm

Input: X0,Xu,XT
Ψ(x)← 1
Define V (x) according to configuration
for Xuk in Xu do

Define hk(x) and sk(x) (see Remark 1 and 3)
Form Ψk(x) from hk(x) and sk(x) (see equation 3.7)
Ψ(x)← Ψ(x)×Ψk(x)

end for
ρ(x) = Ψ(x)

V (x)α

u = ∇ρ(x)

The rest of the section showcases the navigation results using the controller designed from the ana-

lytical density function. We first show the characteristics of the proposed controller, which validates the a.e.

navigation properties. Then, we extend our feedback controller to a more complex environment. Lastly, a

comparison of our algorithm to NFs is presented.

3.4.1 Characteristics of Density Functions

In this example, we demonstrate the a.e. navigation properties of the proposed controller. The

navigation problem is defined with the target set at XT = (4,−3) and the unsafe set Xu, which is constructed

using a circular inverse bump function with h(x) = ||x||2− r2
1 and s(x) = ||x||2− r2

2 with r1 = 2 and r2 = 3.

Hence, Xsk for the inverse bump function is defined on the domain 2 < ∥x∥< 3.

Figure 3.3a illustrates the a.e convergence of the proposed controller with initial conditions set de-

fined by a line at the top left of the environment boundary. The blue contour lines represent the level sets of

the density function. For this example, all the initial conditions starting on the set {X0 ⊂ X : m(X0) = 0},

which is polar opposite of the target set, cannot converge. This set of initial conditions constitutes a measure

1Code implementation details can be seen through the following link: https://github.com/clemson-dira/density_
feedback_control
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zero set. Furthermore, these initial conditions are attracted to a saddle point, implying the existence of local

maxima (shown in Figure 3.3b). Note that the existence of a saddle point will imply the existence of local

maxima. Any other trajectory starting from an initial condition perturbed from the zero-measure set con-

verges to the target set XT while avoiding the obstacle set Xu. Furthermore, we look at the characteristics of

initial conditions starting outside the sensing region, defined as a state x such that s(x)≥ 0 (trajectory A), and

within the sensing region, defined as a state x such that 0 < h(x)< s(x) (trajectory B), shown in Figure 3.3c.

The gradients of the density function ρ(x) are such that trajectory A starts to react as it enters the sensing

region while trajectory B is repelled outward towards the boundary of the sensing region before converging

to the target set (see Figure 3.3d).

3.4.2 Complex environment

One of the main features of our proposed navigation density is that it can incorporate complex

shapes of the obstacle set, which is captured in terms of the unsafe set by some appropriate function hk(x).

The unsafe set Xu ∈ R2 in Figure 3.4a is constructed using an implicit function that geometrically represents

a circle, an ellipse, an oval, and a bowtie. We show that the initial conditions starting along the boundary

converge to the goal at the center while safely avoiding obstacles. The proposed controller can also satisfy

a.e navigation in complex maze-like environments. Figure 3.4b shows a trajectory finding a tight feasible

region between two obstacles while navigating to the target set. Furthermore, this can be easily extended to

navigation problems in higher dimensions. Figure 3.4c shows all trajectories starting from a plane converging

to the target set while avoiding obstacles represented as 3D spheres. Figure 3.4d shows navigation with unsafe

sets composed of two tori, an unbounded cylinder, and a sphere. We note that unlike [11,30], the construction

of the density function naturally admits any complex shapes.

3.4.3 Comparison to Navigation Functions

In this section, we compare the a.e. convergence property of artificial potential field NF to the

proposed density functions in a complex environment as shown in Figure 3.5. More specifically, we compare

the tuning of s(x) for a.e. convergence in the density function formulation shown in equation (3.4) to the

tuning of κ ∈ R for a.e. convergence in NFs proposed in [42, Ch. 3, p. 36],

ψk(x) =
||x−xg||22(

||x−xg||2κ
2 +β (x)

)1/κ
, (3.12)
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Figure 3.3: (a) Trajectories converge to the target (green) while avoiding the unsafe set (gray), (b) Initial
conditions along the zero-measure set (black) converge to a saddle point (purple), (c) Trajectories starting at
A (s(x)> 0) and B (in Xsk ) converge to the target set, (d) Trajectories follow the same path near the boundary
of s(x).
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Figure 3.4: (a) Trajectories converge to the target set (green) while avoiding obstacles (gray), (b) Trajectory
finding a narrow feasible region around obstacles, (c) Navigation in a spherical grid, (d) Navigation through
two tori, cylinder, and sphere.

where xg is the desired goal location, β (x) is an obstacle function and κ is a tuning parameter.

Although a domain is not necessary in the density formulation, NFs do require a radially bounded

sphere world. Hence, we define an appropriate bounded sphere world of radius 25. The authors note that NFs

do not make any claims about tuning κ for a.e. convergence other than the sphere world and its extensions

[11,42], but for the sake of comparison, we look at an environment with a C-shaped unsafe set. We then look

at initial conditions that lie inside the C-shaped unsafe set with the target set defined outside the cavity of the

unsafe set.

Figures 3.5a and 3.5b show that the trajectories do not converge to the goal for all random initial
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Figure 3.5: Comparison of density functions and NFs for random initial conditions. The sensing region for the
density function is defined by s(x) = a2x2

1+b2x2
2cx1−r2 (r, a,b,c are parameters). For (a) r = 2.5, trajectories

don’t converge, while setting (c) r = 4.5 leads to all trajectories converging. NFs with their corresponding
tuning parameter for convergence (b) κ = 1 and (d) κ = 10 lead to trajectories not converging.

conditions for small values in tuning parameter in either the density function formulation or the artificial

potential field NF formulation. This is expected in NF as only large κ in a sphere world guarantees a.e.

convergence. Likewise, the density formulation sees the same results. However, tuning s(x) such that the

density function formulation has a.e. convergence property is intuitive, as stated below in Remark 3. This

is shown in Figure 3.5c, where tuning s(x) to be larger than the C-shaped unsafe sets results in all system

trajectories converging to the target set. Note, no explicit mapping to a simplistic unsafe set (e.g., circle) is

required, where the same cannot be stated for NFs (even with high κ), which does not give a.e. convergence

results for complex unsafe sets. This can be seen in Figure 3.5d, where some trajectories exit the unsafe set
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and converge to the goal (by taking a large curvature path) while others get trapped inside the cavity of the

unsafe set.

Remark 3 The tuning parameter in the design of the navigation density functions are α , and sk(x). The

tuning of α depends on the rate of convergence of the trajectories. The convergence proof of the main theorem

relies on the argument of using large value of α but in practice small value of alpha works in simulation.

The tuning of sk(x) is physically intuitive, as it signifies the sensing region. Hence, a sensing region that

encompasses the unsafe set with a sufficiently curved convex set has worked in the simulations.

3.4.4 Comparison to CLF-CBF-QP

Similarly to the analytical density function that guarantees safety and convergence, control Lya-

punov function with control barrier function using quadratic programming (CLF-CBF-QP) guarantees safety

and convergence by enforcing both a control Lyapunov stability criterion (control counterpart to Lyapunov

stability) for convergence and a forward-invariance criterion for safety [4]. This forward invariance of safety

is enforced by defining a barrier function on a safe set C, which we denote here as B(x), that satisfies the

following conditions,

C = {x ∈ D⊂ Rn : B(x)≥ 0},

∂C = {x ∈ D⊂ R : B(x) = 0}, (3.13)

Int(C) = {x ∈ D⊂ Rn : B(x)> 0}.

The barrier function B(x) must also satisfy safety invariance by enforcing the minimally restrictive linear

constraint

Ḃ(x,u) = L f B(x)+LgB(x)u≥−ιB(x), (3.14)

where ι ∈ R+. See [3] for more information.

We compare our feedback controller to the CBF-CLF-QP with the appropriate distance function as

shown in Figure 3.6 and 3.7. We note that for small ι , (3.14) is minimally restrictive and, therefore, smoothly

diverges from the obstacle set while converging to the target. However, for larger ι , i.e. more restrictive barrier

certification Ḃ ≥ 0, the trajectories shown are similar to the analytical density function solution. However,

the difference lies in that the navigation density controller abruptly reacts in the transition region while the

CBF controller reacts at the boundary of the unsafe set.
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Figure 3.6: Comparison of CLF-CBF-QP and Analytical Density Functions for Xu w/ center at (−5,0),
X0 = (−10,0) and XT = (0,0). Here our density function is defines h(x) and s(x) as circles with r1 = 1 and
r2 = 1.5. For the CBF, B(x) is defined as a distance function with ι = 1.

Figure 3.7: Comparison of CLF-CBF-QP and Analytical Density Functions for Xu w/ center at (−5,0),
X0 = (−10,0) and XT = (0,0). Here our density function is defines h(x) and s(x) as circles with r1 = 1 and
r2 = 1.5. For the CBF, B(x) is defined as a distance function with ι = 10.
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Figure 3.8: (a) States converge to the target and (b) control trajectories remain within the constraints

3.5 Application to Robotic Systems

In this section, we show applications of the proposed density functions where the system is un-

der control constraints, the system has process noise, and the navigation results for a fully actuated robotic

systems.

3.5.1 Constrained Control w/ Density Function

We consider a system with constraints in the following form

ẋ = u = ∇ρ(x), u ∈ [−umax,umax], (3.15)

where umax is the bound on control. More specifically, we constrain the control when ||u||∞ > umax by

normalizing the control

ū =
u
||u||∞

umax, (3.16)

where ū is the constrained control. Figure 3.8 shows that the system trajectories converge to the target while

satisfying control constraints.
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Figure 3.9: Density function w/ gaussian white noise of µ = 0 and (a) Σ = 10−3× I2 (b) Σ = 5× 10−3× I2
(c) Σ = 10−2× I2

3.5.2 Performance of Density Function w/ Noise

We consider the performance of our controller in a stochastic setting where noise is entered through

the control input

ẋ = u+w u ∈ [−umax,umax], (3.17)

where w ∈N (µ,Σ) is the gaussian white noise with mean µ = 0 and covariance Σ. Figure 3.9 showcases

the navigation problem with control noise for varying levels of covariance.

We see that the feedback controller is capable of invariance while converging towards the goal with

noise. Although the invariance of our control law is not guaranteed, we see that up to a certain bound on the

noise, the control performs reasonably well.

3.5.3 Fully Actuated Robotic System

We extend the density function presented in Section 3.3 to a general class of robotic systems. For

a robot with n joints and n rigid links, the system’s dynamics can be expressed using the Euler-Lagrange

equations. Consider an unconstrained system where M(q) is the inertia matrix and H(q, q̇) represents the

Coriolis and gravity effects on the system, q ∈ S1× S1. Then the corresponding system is represented as

follows

M(q)q̈+H(q, q̇) = u. (3.18)

We then take a similar approach outlined in [24] in which there exists an equivalent ”planning” system

defined by q̇ = ∇ρ(q) and a control law given by u = ∇ρ(q)+ d(q, q̇) (d(q, q̇) is a dissipative term and
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Figure 3.10: (a) Robot (red) converges to the goal (π,0) starting from equilibrium (0,0) while avoiding
obstacles (gray). (b) state trajectories of the robot and (c) control inputs for executing the swing-up maneuver.

q̇⊤d(q, q̇) < 0), where the system defined in (3.18) tracks the planning system asymptotically [24]. For a

general robotic system such as the system defined in equation (3.18), d(q, q̇) can be selected such that it

cancels out the nonlinearities of the system similar to the inverse dynamics approach. Therefore, we define a

density-based inverse dynamics controller given by

uρ = M(q)q̈d +H(q, q̇)+M(q)
(

Kp∇ρ(e)−Kvė
)
, (3.19)

where e := q−qd, ė := q̇− q̇d, qd is the desired reference trajectory to follow, and Kp and Kv are positive

definite gain matrices.

Figure 3.10a shows a fully actuated two-link planar robotic arm executing a swing-up maneuver

with Kp = diag([1,1]), Kv = diag([10,10]) and V (q) = (1− cos(q1))(1− cos(q2)). The mass and length of

each link are set to unity. The task space obstacles (circular with a radius of 0.2) are mapped to joint space

and approximated using inverse bump functions. The reference trajectories are obtained in joint space based

on the planning system q̇ = ∇ρ(q). The corresponding state and control trajectories are shown in Figures

3.10b and 3.10c, respectively. It is seen that the density-based inverse dynamics controller drives the two-link

manipulator to the upright position while avoiding the obstacle set.
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3.6 Conclusions

This chapter provides an analytical construction for the navigation density. Moreso, we prove that

the navigation density solves the almost everywhere navigation problem. The proposed navigation density

can be viewed as dual to the popular navigation function and is derived based on the occupancy-based in-

terpretation of the density function. The navigation density has a few advantages compared to navigation

functions. Unlike navigation functions, which are hard to construct, navigation density can be easily con-

structed. Furthermore, the density function formulation can incorporate arbitrary shapes of the unsafe set.

We provide simulation results for navigation using density function in complex and high dimensional envi-

ronments as demonstrated. Lastly, we also demonstrate the application of the density function for control on

a robotic system with safety constraints.
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Chapter 4

Safe Navigation of Quadruped Using

Density Function

This chapter is adapted from a paper in Indian Control Conference:

Sriram S. K. S. Narayanan, Andrew Zheng, and Umesh Vaidya, ”Safe Motion Planning for Quadruped

Robots Using Density Functions,” in Indian Control Conference.

4.1 Introduction

Quadruped research has grown considerably over the past few years [51]. This was highlighted in

the DARPA Subterranean Challenge, where top contenders used legged robots as a core component of their

underground autonomy challenge [46]. It is noted that the legged locomotion problem for these systems is

typically decomposed into smaller subproblems [13, 32] as shown in Figure 4.1. Therefore, under certain

assumptions on the model and the motion of the dynamical systems, it is seen that the quadruped dynamics

can be reduced to a low-order fidelity model and used as a motion plan [52]. In fact, [32] shows that the

motion planning problem for legged locomotion can be utilized in a model-free planning problem under

asymptotic assumptions. Naturally, as a consequence, the generated reference trajectory cannot directly be

utilized to control the robot’s motion. Therefore, the low-fidelity trajectories must be mapped to a higher-

fidelity model. A standard method used is utilizing an optimizer in the form of a model predictive controller
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to generate high-fidelity solutions that enforce dynamically feasible constraints from a given reference.

Therefore, inspired by [32], this chapter uses the density functions proposed in [54] as a tool to

design safe high-level trajectories for quadruped locomotion. More specifically, a modular navigation ar-

chitecture is designed such that any planning algorithm can be utilized for the legged locomotion problem.

Furthermore, the navigation density controller is reformulated as a navigation feedback density planner for

the motion planning problem of a quadruped. These low-fidelity trajectories are optimized using a nonlinear

model predictive controller (NMPC) to obtain locally optimal reference contact forces to track the trajecto-

ries. Finally, the contact forces are converted to joint torques using a whole-body controller.

The rest of the paper is organized as follows. First, we review this chapter’s notation and problem

statement in Section 4.2. Then, we give an overview of the legged locomotion problem in Section 4.3. We

followed this with our navigation framework for our novel density navigation function in Section 4.4, where

we show the results of the algorithm in simulation (Section 4.5 and hardware (Section 4.6. Finally, Section

4.7 are concluding remarks about the current limitations and future directions.

4.2 Notations and Problem Statement

Here, we restate the underlying notations that was mentioned in the previous chapter for clarity and

independency in this chapter. Furthermore, we give an informal problem statement about navigation applied

onto the quadruped. This is a modified version to the original problem statement. See Problem 1 to see how

we originally addressed the a.e. navigation problem.

Notations: The following notations will be used in this chapter. Rn denotes the n dimensional Euclidean

space, x ∈ Rn denotes a vector of system states, u ∈ Rn is a vector of control inputs. Let X ⊂ Rn be a

bounded subset that denotes the workspace for the robot. X0, XT , Xuk ⊂X, for k = 1, . . . ,L denote the initial,

target, and unsafe sets, respectively. With no loss of generality, we will assume that the target set is a single

point set located at the origin, i.e., XT = {0}. Xu = ∪L
k=1Xuk defines the unsafe set and Xs := X\Xu defines

the safe set. We use C k(X) to denote the space of all k-times differentiable functions of x. We use M (X) to

denote the space of all measures on X and m(·) to denote the Lebesgue measure. 1A(x) denotes the indicator

function for set A⊂ X.

Problem Statement: We wish to design a smooth feedback planner from almost every initial condition from

the initial set X0 to the target set XT while avoiding the unsafe set Xu. We then wish to apply a feedback

controller to track the safe reference trajectory generated by the planner for the quadruped robot.
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Figure 4.1: Hierarchical Planning and Control Architecture for Quadruped Locomotion.

4.3 Legged Locomotion Overview

Quadruped locomotion is a challenging problem due to its dimensionality and hybrid nature. One

standard method of approaching the problem is decomposing the system into smaller subsystems. First, to

deal with the hybrid nature, a Finite State Machine (FSM) determines a switching logic that generates the

corresponding gait phases. Accordingly, to track a reference trajectory under these different gaits, the robot

must exert contact forces from the different feet in stance, propelling the robot forward. This is achieved by

finding locally optimal control trajectories u⋆(t) from a model predictive controller (MPC). Finally, a whole-

body controller is used to generate the required joint torques to track the joint torques in stance and swing.

The corresponding subsections go into detail about each of the subsystems.

4.3.1 Finite State Machine

To incorporate the hybrid dynamics of a quadruped, apriori knowledge of the contact phases for a

quadruped is crucial in reducing the complexity of the problem. Therefore, a finite state machine can be

utilized as a generator to define the corresponding gaits of a quadruped. Therefore, the finite state machine

defines which of the legs of a system are in contact, which we denote C, and not in contact, which we denote

as Ĉ. Knowledge of the contact phases can then be used in the control formulation as shown in the section

4.3.3.
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4.3.2 Dynamic Model

Under the assumption that there is adequate control for the fully actuated system (2.15), we can

consider (2.14) for our control problem. The unactuated dynamics – or centroidal dynamics – can be rewritten

in Newton-Euler form as

L̇com =

 ∑
nc
i=1 λλλ ci +mg

∑
nc
i=1 rcom,ci ×λλλ ci

 , (4.1)

where Lcom = [Llin Lang] ∈ R6 is the centroidal momentum described through its respective linear

and angular components about the centroidal frame1, rcom,ci is the position of the contact point ci of each leg

with respect to the center of mass m, λλλ ci are the contact forces of each leg exerted onto the robot from the

environment, and g is the gravitation vector.

Correspondingly, to model the rate of change of the generalized coordinates, we can use the cen-

troidal momentum matrix (CMM) A(q) := [Ab(q) A j(q)] ∈ R6×18 as the following

Lcom =
[
Ab(q) A j(q)

]q̇b

q̇ j

 , (4.2)

where Ab(q) and A j(q) are the body and joint components of the centroidal momentum matrix. This can

then be rewritten into the following form

q̇b = A−1
b

(
Lcom−A jq̇ j

)
,

where qb = [p θθθ ] ∈ R6 is the base pose in the inertial frame and q j ∈ R12 are the joint angles. Thus, with the

dynamic relation defined, the equation of motion can be written in state space form

1Centroidal frame, here, is the reference frame on the center of mass of the quadruped aligned with the world frame
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L̇lin =
nc

∑
i=1

λλλ ci +mg

L̇ang =
nc

∑
i=1

rcom,ci ×λλλ ci . (4.3)

q̇b = A−1(Lcom−A jq̇ j)

q̇ j = v j,

where we define xr = (hcom,qb,q j) ∈ R24 as the robot states and u = (λλλ c1 , ...,λλλ cnc ,v j) as the input

vectors.

4.3.3 Optimal Control Problem Formulation

The optimal control problem for quadruped locomotion can be formulated as a nonlinear MPC

proposed in [45] as such

min
x,u

Φ(x(T ))+
∫ T

0
L(x(t),u(t), t)dt

s.t. ẋ = fh(x(t),u(t), t)

p(x(t),u(t), t) = 0 (4.4)

h(x(t),u(t), t)≥ 0

x(0) = x0,

where fh(x(t),u(t)) is the hybrid system dynamics in state space form mentioned in (4.3), x and u

are the vector of state and input decision variables, Φ defines the terminal cost, L defines the stage cost, p

denotes the state and input constraints, h denotes the inequality constraints, and x(0) = x0 denotes the initial

conditions. We note that p and h are general constraints to the optimization problem, but the core constraints

that are expressed in this form for the quadruped problem are the following

p(x(t),u(t)) = vci = 0 i f ci ∈Ci (4.5)

h(x(t),u(t), t) = µsλ
z
ci
−
√

λ x2
ci
+λ

y2
ci ≥ 0 i f ci ∈Ci (4.6)
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where ci denote the leg in closed contact C, p denotes the no slip condition in contact, h denotes the friction

constraints.

The constrained optimization problem is solved in closed-loop in a receding horizon fashion using

the Sequential Linear Quadratic (SLQ) technique [7].

4.3.4 Low-level Controller

Due to simplifications in the model, a low-level controller is designed to find the closest feasi-

ble solution from the model predictive controller through a quadratic program (QP) under full-order model

constraints. Information is extrapolated from the solution of the predictive controller to generate control ref-

erences for the QP. For the leg in swing, joint accelerations are obtained through a transformation of task to

joint space accelerations

Jswi q̈ j + J̇swi q̇ j = r̈ci , (4.7)

where Jswi is the swing leg Jacobian and r̈ is the end-effector acceleration. Correspondingly, torque level

control is computed to be optimized in the QP from the optimized contact forces:

τττ
st
i = J⊤i R⊤i λλλ ci , (4.8)

where Ji is the stance jacobian, R is the corresponding rotation matrix. Finally, the solution from the quadratic

program is commanded to the driver, where the commanded torque (τττa) is defined by the following

τττa = τττ f f +Kp(q⋆−q j)+Kd(q̇⋆− q̇ j) (4.9)

where τττ f f is the feedforward joint torque, q̇⋆ and q⋆ are the optimized joint reference states. More details on

the QP formulation can be referenced to [45].

4.4 Feedback Density Planner

To incorporate safe navigation on the legged locomotion problem, we incorporate a hierarchical

navigation framework to execute a feedback density plan, where a corresponding model predictive controller

(MPC) and whole-body controller find locally optimal joint torques to track the corresponding reference

trajectory as seen in Figure 4.1. We again note the usage of simplified model trajectories as a reference to
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the control problem, as seen in [33, 52]. Therefore, we first design a motion planning navigation framework

that utilizes a bidirectional communication architecture between the planning algorithm and body planner,

as shown in the top left image of Figure 4.1, through the ROS messaging interface. This communication

interface handles receiving the current observed state from the quadruped sensory information to generate

an appropriate plan. Likewise, the plan is sent to the body planner, where the low-fidelity trajectory is

transcribed into a centroidal model trajectory. The centroidal model trajectory is then sent to a trajectory

manager to handle synchronization conflicts with the FSM and MPC. This navigation architecture allows us

the ability to incorporate general motion planning algorithms for the quadruped, such as A⋆, RRT⋆, and Zero

Moment Point planning. Details of the full implementation are available through code in the GitHub2.

Furthermore, we highlight the integration details to transcribe the density plan from integrator dy-

namics to a quadruped. In particular, we incorporate the density feedback controller as a density feedback

planner by formulating a discrete time form for our continuous time controller.

xk+1 = xk +∇ρ(x)∆t (4.10)

Furthermore, the discrete time form of the controller (4.10) was forward simulated up to a horizon for refer-

ence tracking.

Correspondingly, due to the discretization of a controller in the continuous domain, we smoothen

the trajectories through a moving average filter and a first-order filter. The following trajectory is given to the

reference tracking MPC and FSM to execute a locally optimal trajectory for legged locomotion.

4.5 Simulation Results

In this section, we show simulation results using Gazebo as the physics engine with RVIZ as the

visual interface, as shown in Figure 4.2. The following experiment considers the navigation problem where

the target set is at XT = (10,0). Moreover, a circular obstacle Xu is centered at (5,0.1) with a radius of r =

0.5+0.5 (the obstacle set incorporates the quadruped geometry by enlarging the radius of the obstacle) and

highlight the trajectory taken by the density-navigation on the quadruped. Comparatively, in Figure 4.2c, we

consider an experiment with two obstacles centered at (3,0.1) and (7,-1) with the same enlargement of radius

to incorporate the geometry of the robot. These parameters are utilized for constructing and synthesizing

2https://github.com/AndrewZheng-1011/legged planner
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Figure 4.2: Quadruped robot executing the proposed density plan. (a) Robot executing a safe motion plan in
an environment with a single obstacle and (b) the corresponding height map representation. (c) safe motion
plan for an environment with two obstacles.

a density feedback controller as described in (3.11) with Table 4.1 giving implementation details about the

major parameters to execute the feedback planner.

Table 4.1: Feedback Density Plan Parameter on Quadruped

Parameters
Step size (∆t)[s] Plan Horizon (Nhor) Window Size (Nwin) Update Frequency ( fupdate) [Hz]

0.1 200 21 20

The resulting trajectory of the center of mass of the quadruped in comparison with the center of

mass trajectory from the density is shown in Figure 4.3. Despite the model differences, the model predictive

controller tracks the reference trajectory quite well.

Correspondingly, we are able to see the resulting optimized reaction force to track the reference

trajectory from the density plan in Figure 4.4. Note, generally, when the quadruped tracks the reference

trajectory in Figure 4.3, the optimized ground reaction force u is seen to be nonzero in the transverse direction.

This is because the ground reaction force is the main component in propelling the quadruped in the transverse

plane, hence nonzero forces for fci,x and fci,y. An example is that for the quadruped to traverse a trajectory

from the density plan with nonzero curvature, the lateral ground reaction forces must invert signs. Figure 4.4
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Figure 4.3: Quadruped robot state trajectory (output) with desired density-based plan.

highlighted this statement for n ∈ [330,350] iterations, where the quadruped goes around the obstacle.

4.6 Hardware Results

The proposed density-based planner is implemented in hardware. Although the algorithm itself is no

different, the implementation in hardware will differ. Therefore, we highlight some implementation details

that are necessary to integrate into hardware.

4.6.1 Contact Sensors

Contact sensors are a crucial method to determine which foot is in contact with the ground. The

Unitree Go1 uses pressure bag sensors to determine whether a foot is in contact. By incorporating the contact

sensors with the finite state machine, we can handle abrupt contact from the environment and generate a new

set of contact sequences for the optimal control problem if the previous contact sequences are incorrect.

However, one demerit of solely relying on contact sensors is that the nature of the hybrid system

repeatedly deteriorates the contact sensors by repeated collision with the ground. This leads to worse contact

sensory readings over time, even showing nonzero values when a leg is not in contact, as shown in Figure

4.5. Note, the difference between the mentioned hardware contact forces and the simulation contact forces
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Figure 4.4: (FL: front left, FR: front right, RL: rear left, RR: rear right) Simulation GRFs produced by the
feet. Note the y-direction reaction force (Fy) changes the direction track density-based plan.
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Figure 4.5: Contact readings from Unitree Go1 hardware. Display of stance and swing of Unitree Go1 with
even swing phase showing nonzero contacts.
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in Figure 4.4. The simulation contact forces show zero reaction force during the swing phase and nonzero

during the stance. For hardware, the contact force shown shows nonzero but relatively small force sensed

when a leg is in swing and a large reaction force when in stance. As we typically denote when a foot is in

contact with a uniform contact threshold, a uniform contact threshold may lead to a perceived notion of a leg

always being in stance, depending on the conditions of the contact sensor. Therefore, we instead denote a

unique contact threshold for each leg. The effects of the change in contact threshold can be seen in Figure

4.6, where we give the quadruped a command to traverse 0.1m. Figure 4.5a shows when the contact threshold

was set uniformly, showing poor results for traversing a distance of 0.1m. Likewise, Figure 4.5 shows when

the contact threshold was set appropriately for each individual leg, giving improved performance.

Figure 4.6: Contact threshold performance difference for a given command to travel 0.1m. Performance for
a) Contact threshold uniformly set to 30 Newtons b) Appropriately set for each leg

4.6.2 State Estimation

As the robot relies on an inertial measurement unit (IMU) to measure acceleration and velocity

states, there will naturally be an accumulation of drift in the position states of the robot. Since our feedback

density planner relies on accurate state information – in the context of navigation, the position state is crucial

– it is necessary to rely on accurate position information to ensure safety. Therefore, we rely on two major

setups: a motion capture system that gives accurate localization data and a redundant mesh configuration

system that is robust to the masking of LED lights for the mocap system.

First, we utilize a Phasespace motion capture system that is physically set up in the lab. The camera
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capture system is a 15x10 meter configuration frame for a 24-camera setup as shown in Figure 4.7.

Figure 4.7: Lab Motion Capture Configuration. It is a 15x20 meter configuration with 24 camera setups.
There exists overlap to get better localization between the intersection of camera setups. a) Shows the two
overlapping set of camera configuration and b) shows the set of overlapping camera configurations in the lab.

The refresh rate of the motion capture system operates at 60 Hz, giving positional information with

respect to the motion capture frame and information about the condition of the data (i.e. if data is not reliable

due to objects covering the line of sight of the camera to the LED lights, then that particular data is stated to

be unreliable). These data are sent from the microdrivers and received on the Phasespace server.

Next, we consider the redundant mesh group algorithm with a visual representation of this algorithm

shown in Figure 4.8. The redundant mesh group algorithm relies on the fact that a singular LED configuration,

which we denote as a mesh, captures the centroidal states of the meshes as follows:

[
xmesh,i,υmesh, j,k

]
= S(X j,k,υ j,k), (4.11)

where X j,k ∈ R3×nL are the position information from LED light j to LED light k, υ j,k ∈ {0,1} are the

corresponding condition of the LED lights, xmesh,i ∈ R6 is the ith centroidal or mesh state, υmesh,i ∈ {0,1}

is the ith condition on the corresponding mesh (0 denoting unregistered and 1 denoting registered), and S is

the mapping of each LED positional information to a centroidal state. We note that in this framework, if the

mesh configuration consists of only a line as shown in Figure 4.8a, then the orientation states in xmesh,i are

not computed and only positional states are computed.

Then, as each mesh may not be registered, we utilize a redundant mesh configuration (or mesh

group) to compute the centroidal state of the quadruped given one mesh is registered. If multiple are reg-

istered, a combined quadruped centroidal state is computed for the group of meshes. For Figure 4.8a, the
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Figure 4.8: Visualization of the mesh configuration system. The general system is such that each LED light
can be within a mesh, with each mesh within one mesh group. This redundant structure allows robustness to
masking of a mesh. Here, a) the mesh is in the form of a line w/ the mesh group being a collection of lines,
whereas, b) the mesh is in the form of a triangle w/ the mesh group being collection of triangles

computation of the mesh group state from overlapping line meshes would be

xmesh =
n

∑
i=1

xmesh,i/n

whereas Figure 4.8b would require more than simply computing a uniformly weighted average. Then, given

a robust mesh state, which is a state in the inertial aligned motion capture frame, a transformation matrix

is utilized to be mapped to the odometry frame of the robot. Thus, using this method of computing the

quadrupedal state, the redundant mesh group algorithm allows us to handle the partial obscuring of LED

lights due to unforeseen objects.

4.6.3 Results

We show results on hardware where the feedback density planner and corresponding NMPC were

computed on an AMD Ryzen 5 4600H computer offboard. The following optimized torque command is then

sent to the low-level control module in the Unitree Go1 through a UDP connection, where the IMU states and

motor states are sent back to the offboard computer for computation of the following torque.

The first results do not use a motion capture system for localization and, therefore, have large esti-
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Figure 4.9: Feedback Density Planner on Go1 Hardware without a motion capture system. Extra enlargement
of the obstacle set was done to account for state estimation drifts. The following figure shows the Unitree
Go1 at a) start, b) beginning to avoid Xu, c) after avoiding Xu, and d) goal

mation drifts. We enlarge the obstacle set to account for this uncertainty, where the original Xu is of radius

0.25m and the enlarged is 1m (these radii account for robot radius and obstacle radius). This is shown to

achieve safe navigation as shown in Figure 4.9. A video of the implementation is available on YouTube3.

Correspondingly, we show another experimental setup with the motion capture system. Given an

X0 = (0,0),XT = (4,0) with Xu origin to be (1.5, 0) and radius to be 0.5m, we note the improved localization

with the motion capture system. Figure 4.10 shows that the estimation of the position states is highly accurate,

so much so that obstacle avoidance with convergence is guaranteed without any unnecessary enlargement of

the obstacle radius.

4.7 Conclusions

In this work, we develop a safe motion planning architecture for quadruped locomotion. We use

density functions to design a safe reference trajectory for the robot. The trajectories are obtained as a positive

gradient of the proposed density function, giving a closed-loop feedback form. The proposed algorithm is

3https://www.youtube.com/watch?v=gJH6RTcHrfg
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Figure 4.10: Feedback Density Planner on Go1 Hardware with a motion capture system. No extra enlargment
of the obstacle set was needed. The following figure shows the Unitree Go1 at a) start, b) beginning to avoid
Xu, c) after avoiding Xu, and d) goal

integrated with a nonlinear MPC and low-level controller from the OCS2 framework. Simulation results

show that the robot is able to track safe reference trajectories provided by the density-based motion planning

framework.

One of the current limitations is that the density formulation is limited to a binary representation of

the environment, safe and unsafe. Therefore, there is no distinction for the degree of traversability, limiting

the extension of this work to unstructured environments. Additionally, the current formulation assumes a

holonomic system, hence limiting the class of systems for this feedback controller. Lastly, the quality of

trajectories can be improved; therefore, a proper filter to smoothen state and control trajectory without in-

troducing phase delays will significantly increase the planner’s performance. Future works look to integrate

a trajectory optimizer to smoothen the trajectory and extend this framework to non-holonomic systems and

off-road navigation.

47



Chapter 5

Conclusions and Outlook

5.1 Summary

The contribution of this work is twofold: the formulation of an analytically constructed density

feedback planner for the almost everywhere navigation problem and the use of the density feedback planner

applied on quadruped due to their diverse capabilities in locomotion to integrate the density-based plan into

the legged locomotion problem.

For the first contribution, the novelty leverages the interpretation of navigation through density from

linear operator theory to analytically construct a density function. Other works have approached the naviga-

tion problem through the mathematical optimization lens, utilizing the convex form of the almost everywhere

convergence criterion to solve for a density function and feedback controller. However, regarding navigation

under safety constraints, the physical interpretation of safety through density is lost through the optimization.

More related works have tried leveraging the physical interpretation of density with linear operator theory

to convexly optimize for the density function. However, the challenge to this method is the curse of dimen-

sionality, where the infinitesimal linear operator is approximated, and hence, the computation of a density

function is intractable. Contrary to utilizing optimization-based method, this work utilizes the occupation-

based interpretation to directly construct an analytical density function for the safe navigation problem. By

utilizing occupation interpretation from linear operator theory, the density constructed is able to incorporate

safety constraints implicitly. Moreover, this work proves that the analytically constructed density function

and the corresponding density-based controller satisfy the almost everywhere convergence criterion.

The density-based feedback controller is then integrated into a density-based navigation architecture
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applied to the quadruped. Due to the hierarchical nature of the legged locomotion problem, it is noted that

simplified models are used to achieve legged locomotion. Furthermore, it has been shown that these simplified

models are sufficient enough to give reliable trajectories for the locomotion problem. Therefore, inspired by

other works that use simple integrator dynamics as the reference trajectory, we integrate a feedback planner

applied on a physical quadruped and show simulation and hardware results.

5.2 Future Research Directions

We see large potential in leveraging the intuitive occupation interpretation through density to con-

struct an analytical feedback controller for almost everywhere convergence under safety constraints.

However, current works have only proven this in the static environment case. Future works should

focus on utilizing the controller under more realistic applications where the environment contains static and

dynamic safety constraints. As the computation is quite simple compared to other related works [34], a

promising lead is the recomputation of density function under changing environments. Progressing these

works will aid in the theoretical understanding and showcase the practical limits of density for safe navi-

gation in more realistic environmental conditions. Furthermore, as the current work only utilizes integrator

dynamics, extending the work to ensure safety for non-trivial dynamics (e.g. nonholonomic systems) would

be beneficial.

Moreover, we note that the integration of simplified dynamics for the motion planning of the legged

locomotion problem, do not fully utilize the dynamics of the quadruped. Therefore, the current work does

not leverage the unstructured terrain capabilities of quadruped robots. By extending the analytical controller

to a model more appropriate for quadrupeds, we can leverage more of the legged locomotion capabilities for

navigation under safety constraints. Future works would include extensions of the density-based navigation

to a 3-dimensional constrained environment and utilizing occupation information to navigate in unstructured

terrains.
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Appendix A Proof of Almost Everywhere Navigation using Analyti-

cally Constructed Density Functions

The proof of Theorem 1 relies on the following Lemma.

Lemma 1 Consider the navigation density function as given in equation (3.4), then under Assumption 1, we

have

∇ · (k(x)ρ(x))≥ 0, a.e. x ∈ X, (1)

∇ · (k(x)ρ(x))≥ ξ > 0 for x ∈ X0, (2)

where k(x) = ∇ρ(x) is the feedback control input (3.11).

Proof: We have

∇ · (k(x)ρ(x)) = ρ(x)∇ ·k(x)+ ∂ρ

∂x
∂ρ

∂x

⊤
. (3)

The proof will follow if we can show that ∇ ·k(x)≥ 0. Since ρ(x)> 0 and ∂ρ

∂x
∂ρ

∂x
⊤
≥ 0, we have

∇ ·k(x) =
n

∑
j=1

∂ 2ρ

∂x2
j
. (4)

Letting Ψ(x) = ∏
L
k=1 Ψk(x), we obtain

∂ 2ρ

∂x2
j
=

∂

∂x j

(
− α

V α+1
∂V
∂x j

Ψ(x)+
1

V α

∂Ψ

∂x j

)

=
α

V α

(
(α +1)

V 2

∣∣∣∣ ∂V
∂x j

∣∣∣∣2− 1
V

∂ 2V
∂x2

j

)
Ψ(x)

+
α

V α

(
− 2

V
∂V
∂x j

∂Ψ

∂x j
+

1
α

∂Ψ2

∂x2
j

)
. (5)

It is important to note that the last two terms in the above expression are non-zero only in the transition region

Xsk . Outside this transition region ∂Ψ

∂x j
= 0 and ∂ 2Ψ

∂x2
j
= 0. To show that the above quantity is positive outside

the transition region in X1, we use the bounds from Assumption 1. We have

(α +1)
V

∣∣∣∣ ∂V
∂x j

∣∣∣∣2− ∂ 2V
∂x2

j
≥ (α +1)d̄−1

V d2
Vx
− d̄V 2

x
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Thus by choosing α sufficiently large the above quantity can be made positive. We next show that equation

(5) is non-negative in the transition region. For this, we make use of the following facts. First, Ψk(x)≥ θ > 0

for k = 1, . . . ,L and hence Ψ(x) is bounded away from zero. Second, from the construction of Ψ(x) and V (x)

functions there exists uniform bounds on ∂Ψk
∂x j

, ∂ 2Ψk
∂x2

j
, ∂V

∂x j
, and ∂ 2V

∂x2
j
. Third, using Assumption 1, we know that

the distance between the unsafe set and the target set is bounded away from zero by a positive constant ζ and

hence
∣∣∣ ∂V

∂x j

∣∣∣2 is bounded away from zero. Hence, the following bounds can be obtained for the ∂ 2ρ

∂x2
j

term

(α +1)
V 2

∣∣∣∣ ∂V
∂x j

∣∣∣∣2 Ψ(x)≥
(
(α +1)c̄−2

V c2
Vx

)
θ ,

1
α

∂ 2Ψ

∂x2
j
≥−

c̄
Ψ2

x

α
,

− 1
V

∂ 2V
∂x2

j
Ψ(x)≥−c−1

V c̄Vx2 θ , − 2
V

∂V
∂x j

∂Ψ

∂x j
≥−2c−1

V c̄Vx c̄Ψx .

Therefore, we have following lower bound for ∂ 2ρ

∂x2
j

∂ 2ρ

∂x2
j
≥ α

V α

((
(α +1)c̄−2

V c2
Vx
−c−1

V c̄Vx2

)
θ

)
+

α

V α

(
−2c−1

V c̄Vx c̄Ψx −
c̄

Ψ2
x

α

)
.

Hence, by choosing α sufficiently large, of order 1
θ

, we can make the term inside the bracket positive.

To show that equation (2) is satisfied, we again make use of Assumption 1 and the fact that Ψ(x) = 1,

∂Ψ

∂x j
= 0, and ∂ 2Ψ

∂x2
j
= 0 for x ∈ X0 and j = 1, . . . ,n. Further,

∣∣∣ ∂V
∂x j

∣∣∣2 is bounded away from zero. Hence for,

x ∈ X0 and for some ξ > 0, we obtain

∇ · (k(x)ρ(x)) =∂ρ

∂x
∂ρ

∂x

⊤
+

α(α +1)
V α+2

∣∣∣∣ ∂V
∂x j

∣∣∣∣2
− 1

V α+1
∂ 2V
∂x2

j
≥ ξ > 0.

Proof of Theorem 1: Using the results of Lemma 1, we know that the density ρ satisfies

∇ · (k(x)ρ(x)) = g(x) (6)

for some g(x)≥ 0 such that g(x)≥ ξ > 0 for x ∈ X0.

Since ρ(x) satisfies the linear partial differential equation (6), it follows using the method of char-

acteristics that the solution ρ(x) can be written in terms of the solution st(x), of the system ẋ = k(x) as
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follows [39]

ρ(x) =
Ψ(x)

V α(x)
=
∫

∞

0
g(s−t(x))

∣∣∣∣∂ s−t(x)
∂x

∣∣∣∣dt, (7)

where | · | is the determinant. The proof follows by substituting the integral formula for ρ(x) from (7) in (6)

and using the fact that

lim
t→∞

g(s−t(x))
∣∣∣∣∂ s−t(x)

∂x

∣∣∣∣= 0. (8)

The limit in (8) goes to zero as ρ(x) is bounded for all x ∈ X1 and using Barbalat’s Lemma. The integrant

in (7) defines a semi-group of linear Perron-Frobenius (P-F) operator, Pt , acting on function g(x) and can be

written compactly as

[Ptg](x) = g(s−t(x))
∣∣∣∣∂ s−t(x)

∂x

∣∣∣∣ . (9)

Using (9), (7) can be written as

ρ(x) =
∫

∞

0
[Ptg](x)dt. (10)

Furthermore, (8) can be written as

lim
t→∞

[Ptg](x) = 0 =⇒ lim
t→∞

[Pt1X0 ](x) = 0,

where 1X0 is the indicator function for set X0. This implication follows because g(x)≥ ξ > 0 for all x ∈ X0

and from dominated convergence theorem. For any set A⊆ X1, we have

∫
A
[Pt1X0 ](x)dx =

∫
X1

[Pt1X0 ](x)1A(x)dx

=
∫

X1

1X0(x)1A(st(x))dx. (11)

The above follows by using the definition of Pt in (9) and change of variables in the integration, i.e., y= s−t(x)
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and dy = | ∂ s−t (x)
∂x |dx and after relabeling. Note that the right-hand side of (11) is nothing but

∫
A
[Pt1X0 ](x)dx = m{x ∈ X0 : st(x) ∈ A}.

From Lebesgue dominated convergence theorem

0 =
∫

A
lim
t→∞

[Pt1X0 ](x)dx

=
∫

X1

1X0(x) lim
t→∞

1A(st(x))dx = m{x ∈ X0 : st(x) ∈ A}.

Since the above is true for any measurable and positive Lebesgue measure set A⊆X1 := X\Bδ for arbitrary

small δ , we obtain

m{x ∈ X0 : lim
t→∞

st(x) ̸= 0}= 0. (12)

We next show that the unsafe set Xuk will be avoided by trajectories st(x) starting from almost all

w.r.t. Lebesgue measure initial condition x ∈ X0. We have for x ∈ Xuk

ρ(x) =
Ψk(x)

V α
=

θ

V α
. (13)

Following Assumption 1 (equation (3.9)), we have

ρ(x) =
θ

V α
≤ θ

V k
min

. (14)

Using the above bound on ρ(x), we obtain

G :=
∫

Xuk

∫
∞

0
[Pt1X0 ](x)dtdx =

∫
Xuk

ρ(x)dx≤ θ

V k
min

m(Xuk),

where m(·) is the Lebesgue measure. Utilizing that dy= | ∂ s−t (x)
∂x |dx, which is described through the definition

of Pt and performing a change of variable y = s−t(x), we can use the bounds on ρ(x) in (14) for x ∈ Xuk to

obtain

G =
∫

X1

1X0(y)
∫

∞

0
1Xuk

(st(y))dtdy≤ θ

V k
min

m(Xuk).
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The time integral on the left-hand side is the time spent by system trajectories starting from the initial set X0

in the unsafe set Xuk . Let this time be denoted by T (y). Hence, we obtain

∫
X1

T (y)1X0(y)dy≤ θ

V k
min

m(Xuk).

Following Assumption 1 (equation (3.10)), we have

θ ≤ ε
V k

min
m(Xuk)

=⇒
∫

X0

T (y)dy≤ ε,

for any given ε > 0.

Choose some η < 1, then using Chebyshev’s inequality and the fact that X0 ⊂ X1, we have

m{x ∈ X0 : T (y)≥ ε
η} ≤ ε

−η

∫
X0

T (y)dy≤ ε
−η+1.

Since the above is true for arbitrary small ε > 0, we have

m{x ∈ X0 : T (y) =
∫

∞

0
1Xuk

(st(x))dt > 0}= 0. (15)

Now we make use of the continuity property of the flow st(x) w.r.t. time to show that 1Xuk
(st(x)) = 0 for

all t ≥ 0. Assume not, then there exists γ and t̄ such that 1Xuk
(st̄(x)) ≥ γ > 0. Then from the continuity of

solution st(x) w.r.t. time, we know that there exists ∆ > 0 such that 1Xuk
(st(x)) > 0 for t ∈ [t̄, t̄ +∆]. This

violates (15).
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