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ABSTRACT 

 

The powers that artificial intelligence (AI) has developed are astounding, with 

recent success in integrating into a human cognitive workflow. AI will attain its full 

potential only if, as part of its intelligence, it also actively teams up with humans to co-

create solutions. Combining AI simulation with human understanding and strategic 

abilities through data convergence may optimize the process and provide a capacity akin 

to "teaming intelligence." This thesis will introduce the concepts of Human AI 

Convergence (HAC) capabilities for flood evacuation decision-making. The concept 

introduced in this thesis is the first step toward the HAC concept in weather disaster 

applications. This research demonstrates a synergy between humans and AI by integrating 

the data produced by humans through social media with an AI system to enhance a flood 

evacuation decision-making problem. The prediction from Long short-term memory 

(LSTM) and a river hydraulic model, i.e., Height Above Nearest Drainage (HAND), is 

integrated with human data from X (previously Twitter) to visualize flood inundation areas, 

which acts as a 3rd party agent for a HAC system. The goal is to synthesize and analyze 

HAC competence in flood evacuation emergency management and harness the full 

potential of AI as a partner in real-time planning and decision-making. This thesis has 

explored why HAC intelligence is essential to emergency planning and decision-making, 

providing a general structure for researchers to use HAC to devise effective systems that 

cooperate well and evaluate state-of-the-art, and, in doing so, providing a research agenda 

and a roadmap for future flood evacuation emergency management, rescue, and decision 
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making. This state-of-the-art flood evacuation product stands to advance the frontier of 

human-AI collaborative research significantly. 

 

Keywords: Artificial Intelligence; Human-AI Convergence; Flood Emergency 

Management; Evacuation Decision Making and Planning. 
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CHAPTER ONE 

INTRODUCTION 

 

Imagine a Category 5 storm slams a coastal region, batters the area with a powerful 

combination of wind and rain and keeps lashing buildings, businesses, and infrastructure 

with severe storm surges, powerful winds, and inland flooding. The bridges and roads 

become inaccessible, the power lines are damaged, the airports stay inoperable, and the 

region's residents are forced to fend for themselves until assistance arrives. This situation 

is the vivid and ominous picture that many tropical cyclones create. The situation is 

complex and frightening – yet it has become a new norm for many coastal regions 

worldwide. To find a proper solution, emergency management officials must reconcile the 

enormous demands these occurrences place on the infrastructure of service delivery and 

decision-making processes in the communities they impact. [1]. 

 

To maintain tabs on all the various issues, a collaborative human and artificial 

intelligence (AI) teaming intelligence can emerge as a beacon capable of comprehensively 

evaluating the multifaceted implications of a given course of action. Incredibly, a teammate 

has a special knack for considering all the ramifications of a plan of action [2]. This 

partnership will facilitate the model's recollection of numerous things, including prior 

emergency restrictions, locations of vital emergency supplies, evacuation routes, and social 

issues. Indeed, this model’s response to disaster events can improve physical, cognitive, 

and social capabilities to dynamically adapt to changes, predict the environment, and 
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acquire knowledge through experience and interactions with human teammates [3]. By 

combining the data of humans and AI, novel tools can be developed to empower the AI 

system to acquire the ability to collaborate on action, context, and "intelligence" during 

weather emergency decision-making processes. 

 

On the other hand, with human-AI collaboration, humans can perform tasks such 

as search and rescue, communication, and emotional support, which require human 

empathy and social skills. In contrast, AI can perform flood forecasting for evacuation 

decision-making tasks.  The proposed collaboration model places significant emphasis on 

the tight coordination between human agents and AI systems. This cooperation is driven 

by a shared objective, which necessitates the exchange of crucial information through 

diverse forms of communication, prediction, and the achievement of high-level 

coordination tasks. [4]. Previous Human-AI convergence (HAC) studies have primarily 

focused on the interaction and effectiveness of human teams with AI in robotic swarms [2], 

landed aircraft perimeter security [5], protection behaviors in collaborative games [6], and 

how various factors (e.g., communication, a person's understanding of the limits or 

mistakes an AI system might make) affect team performance in a HAC implementation [7] 

[8]. 

 

Evacuation is crucial for minimizing the risk of injury or loss of life during extreme 

events. However, the decision to evacuate can be complex, involving multiple factors. AI 

has recently become a viable solution in flood evacuation. AI machines can collaborate 
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with humans to improve decision-making when dealing with time-critical/real-time 

disasters, large datasets, and analytical problems. The approach to uniting data from 

humans and AI leverages the strengths of humans and AI systems, resulting in more 

efficient and effective flood evacuation processes. The tasks performed by AI in flood 

evacuation require large amounts of data processing, analytics, and decision-making, 

which can be overwhelming for humans. 

 

An intricate strategy is proposed within flood prediction and disaster management, 

capitalizing on the potential of state-of-the-art technologies and diverse data sources. This 

tool utilizes gauge height values as a critical input for predicting impending flooding 

events, facilitated by the prowess of machine learning models, including techniques such 

as Recurrent Neural Networks (RNNs) designed to capture temporal dependencies in data. 

By establishing a connection between historical gauge height readings and subsequent 

flood occurrences, these models can offer valuable insights into the dynamic patterns of 

river behavior, aiding in the anticipation of flood surges. Further enhancing the accuracy 

of flood assessment, integrating predicted gauge heights with flood inundation mapping 

emerges as a significant advancement. In addition, river hydraulic techniques, such as 

"Height Above Nearest Drainage (HAND)," can be employed to visualize the potential 

areas vulnerable to inundation. By merging this model with forecasted gauge heights, a 

comprehensive depiction of flood extents materializes, allowing decision-makers to 

anticipate the impact on specific geographical locations and critical infrastructure. 
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Moreover, integrating transportation data proves valuable to bolster the precision 

of emergency response strategies. This data provides insights into the geospatial 

distribution of road networks, critical access points, and potential bottlenecks, offering a 

comprehensive view of the region's transport infrastructure. Integrating transportation 

geospatial data with flood predictions enables an enhanced understanding of evacuation 

routes and potential challenges during flood events, ultimately contributing to more 

efficient emergency preparedness and response. Additionally, human insight takes on a 

new dimension through integrating X data, which acts as a conduit for real-time, on-the-

ground observations during flooding. Leveraging the X Application Programming 

Interface (API), this data stream offers a unique window into localized experiences and 

concerns, bridging the gap between data-driven forecasts and the human dimension of 

disaster response. By incorporating these human-generated insights into the flood 

evacuation prediction pipeline, a holistic view emerges, enriching the decision-making 

process and empowering authorities with nuanced perspectives on at-risk locations and 

specific scenarios. In this integrated framework, the fusion of gauge height predictions, a 

river hydraulic model, transportation data, and real-time X observations heralds a 

transformative paradigm in flood evacuation prediction and response strategies. 

 

Several studies have led to increased growth in HAC literature, where humans and 

AI data meet at a point to work together in collaboration and carry out complex tasks as an 

integrated unit. However, HAC has never been applied for flood emergency decision-

making and response, and perhaps this area needs special attention and creative solutions. 
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Indeed, analysis of HAC for flood evacuation emergency management requires humans 

and AI corporations to form the basis for its applications and developments in real time. 

This thesis examines the benefits of employing a HAC in flood evacuation planning and 

the decision-making process; no intention is to include all possible works, applications, or 

techniques, but rather to provide a big picture of some paths for future research. 

 

In this study, we addressed the current gaps and challenges and how the HAC 

paradigm can help to improve flood evacuation decisions. This study discusses that lack of 

teaming intelligence is one of the most prominent gaps in flood disaster management. 

Understanding how AI can be used as a teammate in real-time and highly collaborative 

scenarios is crucial to shedding light on how the HAC paradigm should be structured to 

suggest evacuation re-routing and improve flood emergency decision-making from a 

human perspective. 

 

This study aims to establish a comprehensive methodology for gauge height and 

river hydraulic prediction through the synergistic utilization of machine learning models 

and social media data. The process involved developing and training a machine learning 

model to forecast river gauge height, a pivotal factor in visualizing potential flood extents. 

This predictive model will be foundational for flood modeling, generating precise 

depictions of inundation areas on a geographical map. To enhance predictive accuracy and 

encompass the human dimension, incorporating human-generated data is planned by 

leveraging the X API to extract flood-related X posts (formally known as Tweet) from 
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South Carolina and mapping the X post's geolocations. The map interface is an 

intermediary, facilitating seamless interaction between human-contributed data and 

machine learning-generated predictions. A pioneering study aspires to be delivered through 

this approach that advances flood evacuation prediction and disaster management 

methodologies. 
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CHAPTER TWO 

RESEARCH QUESTIONS 

 

Developing an effective flood evacuation prototype necessitates a comprehensive 

exploration of critical research questions, encompassing a multidimensional perspective to 

enhance flood prediction, response, and decision-making. Addressing these questions is 

pivotal to fostering a holistic approach to disaster management. Developing a flood 

evacuation prototype will involve addressing the following research questions: 

  

1. How can we programmatically identify potential roads at risk of flooding 

over large coastal drainage networks based on observational sources such 

as river stage gauges, crowdsourced data (e.g., X data), and transportation 

network information?  

2. How can human and AI collaboration be leveraged to improve flood 

prediction and enable more informed evacuation decisions? 
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CHAPTER THREE 

LITERATURE REVIEW 

 

3.1 Human-AI Convergence Studies 

The seeds of AI were in the mid-20th century with the question "Can machines 

think?" which considered if machines could mimic human intelligence [9]. This question 

laid the foundation for machine intelligence and AI system development. As research 

progressed and AI grew, researchers started addressing "How can machines think and 

work for humans." To address this question, numerous algorithms such as Long Short-

Term Memory (LSTM) [10], Convolutional Neural Networks (CNN)  [11] and Support 

Vector Machine (SVM) [12]. As AI research has progressed, machines have largely 

supplanted humans in real-world contexts such as healthcare, transportation, finance, 

military, and disaster support applications. Today, the world views AI as a tool. However, 

this focus is shifting toward viewing machines as a collaborative partner rather than a tool.  

 

Achieving the successful development of an AI system that can function as a good 

teammate will require advances in the design and measurements. Proper modeling practice 

is crucial in designing, developing, and testing the new HAC systems, particularly 

concerning system development based on real-time decisions. However, achieving this 

goal of creating proper HAC requires that the AI systems be highly reliable and robust 

within the range of flood evacuation conditions in which they might be employed and that 
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these systems operate seamlessly within a much larger and more complex set of data and 

human observations. 

 

The study of human-only teams led to the foundation of human AI teaming. The 

study of who, what and how the human could team began in the 1980s [13]. This study 

examined the human team dynamics and iterated how this team could perform better. 

Another study [14] created a Team Evolution and Maturation (TEAM) model, which posits 

that teams can develop in various ways. The author also conducted an experimental 

investigation on this model, and the findings informed us that teams can be developed in 

multiple ways and rates. Each team is believed to be unique in its way. [15] focuses on a 

military team and highlights the military's role in military team cohesion, loyalty, and 

performance. Using military team as an example, this research discussed broader 

implications on various types of teams in different organizations. 

 

From a human perspective, teaming has moved into HAC. This move wasn’t 

straightforward, and it started with works of literature presenting the theoretical foundation 

to HAC.  In a review of teaming studies, [16] found various roles for humans and AI to 

tackle the position of explorer, investigator, teacher, and Judge, where AI should take a 

role in calculating and identifying relevant information. [17] proposed a framework in the 

educational sector to enhance collaboration between humans and AI. This research 

illustrates that humans guide, design, and train AI to take on more tasks slowly as they 

evolve. Another study [18] also presented a conceptual framework of how humans and AI 
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could work together. This research suggested that a unique Educational AI (AIEd) system 

and human facilitators might augment one another.  

 

Another study [19], described human–machine collaboration on various economic 

scales (microscale, mesoscale and macroscale) to boost financial and environmental 

sustainability. This study suggested that merging AI with help automation in the artisanal 

economy would require supportive policies, metrics and changes in infrastructure. Another 

study, [20] presented a synergistic future for human and AI collaboration in media and 

communication. This study emphasized how humans and AI work together in previous 

studies. This paper suggested that AI helps humans in decision-making and extending 

human capabilities while humans work to direct and refine AI. This paper underscored the 

importance of creating interfaces where humans and AI can interact.  

 

Previous research exploring how humans and AI can work together suggests 

various roles and responsibilities for humans and AI collaboration frameworks. Each study 

suggests a common thread that humans and AI hold promise for the future. These 

researchers also recommended that in human-AI collaboration, humans and AI should 

assume roles in which they specialize. AI should take roles like calculation/computation 

and learning from extensive data, whereas humans should take roles in guiding and training 

by embracing creativity. 
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These studies have built the theoretical foundation of human-AI collaboration. 

Other studies have used game simulation to assess the impact of collaboration between 

humans and AI systems, which would converge the knowledge of humans and AI in a team. 

For example, [21] used a gaming platform named Rocket League to study how varying 

levels of AI teammates impact human performance. Authors found that humans perform 

better when the influence of AI gradually decreases using the gaming platform. The 

researcher also indicated that people do not judge AI by how it performs but if only it aligns 

with the goal of humans. Finally, the researchers concluded by suggesting that it is more 

important to prioritize human learning and growth in HAC. Another study [22] used the 

computer game Minecraft to access human agents and urban search and resume 

autonomous agent collaboration. The outcome of this study shows that the collaboration 

between AI and humans is degraded when there is limited communication. Also, a higher 

workload was felt when the participants were not informed of external challenges. This 

research concluded that a human-AI team must have effective communication, mutual 

understanding, shared beliefs, and knowledge to perform well. In another effort, [23] used 

a chess game to explore the effects of human perception when working with an AI 

teammate. Their finding revealed that while an expert player focuses on AI performance 

improvement, the less skilled player can have more influence on AI teaming. This research 

also highlights that deceiving human about their AI teammates can degrade trust and 

performance. It is also essential to consider individual expertise when teaming with AI. 
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Past studies show that game simulation has become very helpful in mimicking the 

real-world scenario. This controlled environment has helped to test the hypothesis of 

human-AI collaboration in a near real-world environment without any risk. The findings 

from these studies underscore that, like all human teams, it is essential to have effective 

communication, mutual understanding, shared goals, and trust in a human-AI 

collaboration. These game simulations also revealed that performance and efficiency have 

increased when AI collaborates as a teammate with a human. The findings from the game 

simulation were helpful for a test scenario, but to move forward in the realm of AI, we 

should test human-AI collaboration in a real-world scenario. 

 

Nonetheless, a few pioneering studies have ventured beyond the theoretical realm 

to explore practical implementations of converging the knowledge of humans and AI. One 

research [24] that worked beyond the theoretical area is Watch-And-Help (WAH), a 

challenge for testing social intelligence in AI in everyday household activities. In this 

research, an AI agent collaborates with a human-like agent in two stages to achieve the 

goal function faster. The first is the Watch stage, where an AI agent watches a human-like 

agent performing a task once and infers a human-like agent's goal from her actions. The 

second stage is the help stage, where an AI agent helps a human-like agent to achieve the 

same goal in a different environment as quickly as possible. The results show that the AI 

agent can complete the WAH challenge, but it is less effective than human participants. 

The authors concluded that the WAH challenge is valuable for evaluating AI agents' social 

perception and human-AI collaboration capabilities. They suggested that future research 
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should focus on developing AI agents to perform the WAH challenge more effectively than 

human participants. Another research [25] goes beyond the theoretical area and identifies 

the relationship between anticipatory information pushing and trust in human–autonomy 

teaming in a remotely piloted aircraft (RPA) system. This study finds that in deteriorating 

circumstances, trust in AI teammates decreased while trust in human teammates increased. 

Also, anticipatory information increases confidence among human colleagues but not AI 

colleagues. 

 

Previous studies have demonstrated that AI advances to surpass humans as 

competent partners. More research is needed to understand human and AI collaboration 

and knowledge sharing in a real-world scenario. Past studies used some form of hardware 

(for example, a robot) to support the HAC framework. However, these are not cost-

effective, and deploying this system in a large geographical region for a real-world scenario 

will be challenging. This is the reason why a HAC system does not yet exist in the disaster 

evacuation domain. If we eliminate the hardware dependency, the system can be cost-

effective as implementation across vast geographical areas in real-world settings becomes 

more manageable. This opens a gateway for HAC applications in disaster response and 

decision-making problems. To create a flood disaster evacuation tool, we should train the 

machine learning model and then couple it with a river hydraulic model along with 

leveraging real-time human knowledge and geospatial information, which can improve the 

performance of evacuation decisions. Adding much human knowledge to a system in real 

time can increase trust in HAC implementations. In addition, incorporating additional 
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human data through social media is deemed to be useful for improving disaster decision-

making [26].  

 

3.2 Data-driven Flood Forecasting Studies 

Flood forecasting research is evolving from traditional methods to more intelligent, 

data-driven approaches. Flood modeling helps understand the past and current state of the 

rainfall-runoff mechanism in a watershed and provides a way to explore the implications 

of management and planning decisions. Several modeling efforts have been conducted in 

complex watersheds, such as coastal drainage systems based on lumped and physically 

based simulations [27] [28]. [27] studied a Power-Law Regression Model (PLR) and [28] 

focused on fuzzing techniques. [29] employed a physics-based flood model and coupled 

the flood system with Bayesian uncertainty models. They suggested that large uncertainty, 

particularly during runoff peak rates simulation, can dimmish flood prediction accuracy 

and performance. 

 

However, the rapid increase in the availability of measurement data has spurred the 

development of many data-driven methods or ML approaches for modeling and predicting 

flood dynamics [30]. Machine learning algorithms attempt to estimate the mapping 

function (f) from the input variables (x) to numerical or continuous output variables (y) and 

can learn the patterns hidden in data. Several studies have demonstrated the use of machine 

learning in flood modeling. For example, [31] [31] [32] built feedforward networks and 
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proposed a neural network model that did not require many dataset pieces. [33], [34] 

considered the application of support vector machines (SVM) for flood forecasting. These 

authors proposed an SVM-based solution for flood forecasting problems but also discussed 

that SVM was prone to overfitting and underfitting and needed to perform various trial and 

error tests before reaching an optimal result. 

 

More recently, neural networks such as RNNs have been used to predict rivers' 

sequential values and water height [35]. Previous research (examples [36] and [35]) used 

LSTM to forecast the river's hydrological conditions. These studies presented a great 

approach to predicting the river's hydrological situation during historical periods. However, 

citizens would need real-time information, including flood height and inundation extent, 

during real-time flooding events to make intelligent decisions in advance. [37] underscored 

the use of LSTM in Google's operational flood forecasting system (operational since 2018), 

which has helped save lives and reduce damages in regions in India and Bangladesh prone 

to flooding. 

 

Traditionally, tools like flood warning systems, Geographic Information Systems 

(GIS), and transportation infrastructure plans are used for flood evacuation decisions in 

South Carolina. Flood warning systems use real-time data from sensors and weather 

forecasts to predict flood risks and issue alerts to residents in affected areas. For example, 

the National Weather Service (NWS) provides a nationwide network of flood warning 

systems that issue alerts via text message, email, or social media. The public only receives 
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this warning through text messages, emails, or social media feeds. However, some 

residents need smartphones to access the notifications and alerts, and those who access the 

alert information need help understanding and navigating the data. GIS tools can map flood 

risks, identify evacuation routes, and plan evacuation strategies. South Carolina 

Emergency Management Division (SCEMD) uses GIS tools and transportation 

infrastructure plans to map vulnerable locations and paths to help emergency managers 

plan evacuation decisions. However, these GIS tools can only be used with technical 

knowledge. Also, the South Carolina Department of Transportation (SCDOT) has 

developed evacuation routes and zones to identify safe roads to help residents evacuate 

quickly and safely during a flood event. 

 

Flood evacuation can be a difficult and stressful experience for those involved. 

Evacuation decisions often tend to be sudden or unexpected. Although a few tools, such as 

[38] [39] [40] are available for flood evacuation, these tools are not accessible or are not 

simple to use and understand by citizens. Furthermore, these tools do not coordinate with 

humans to validate evacuation decisions and responses.  
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CHAPTER FOUR 

STUDY AREA 

 

HAC approaches were developed and tested for the Lowcountry in South Carolina, 

where frequent flooding caused significant damage to people's lives, properties and critical 

infrastructure. A flat terrain and low elevation, prone to inundation conditions during heavy 

rainfall and storm surges, characterize the Lowcountry. Given the region's increased 

vulnerability to flooding, substandard roads in rural areas and relatively larger population 

density, the developed HAC approach was tested and validated for the Lowcountry of 

South Carolina. Previous instances of flooding and hurricanes in the region, such as the 

South Carolina Flood in 2015 and Hurricane Matthew in 2016, resulted in significant 

fatalities and damage. Thus, the primary objective of this research study is to understand 

flood evacuation decisions and model evacuation routes during flood emergency 

conditions. 

 

We considered various gauging stations in Lowcountry, South Carolina, as case 

studies for this research (see Figure 4.1). River's data was collected from the United States 

Geological Survey (USGS) and NWS. We trained the machine learning models for five 

USGS gauging stations located in the Lowcountry, explained below. 
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Figure 4.1: The USGS gauging stations used in this research. 

 

4.1 Case Study 1: Turkey Creek River 

Turkey Creek gauging station (USGS02172035) is located above Huger, South 

Carolina. Current and past discharge, gauge height, and precipitation conditions have been 
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available since 2005. The river gauge height data is available every 15 minutes. The 

drainage area for this gauging station is 19.8 square miles. The South Atlantic WSC 

Charleston Field Office manages this station. 

 

4.2 Case Study 2: South Fork Edisto River 

South Fork Edisto River gauging station (USGS02173000) is located near 

Denmark, South Carolina. Several hydrologic data, such as river discharge, gauge height, 

and precipitation conditions, are available at this site. Discharge data has been available 

since 1930, gauge height data since 2007 and precipitation data since 2015. The data on 

this river is also available every 15 minutes. The drainage area for this site is 720 square 

miles. The South Atlantic WSC Columbia Field Office manages this station. 

 

4.3 Case Study 3: North Fork Edisto River 

North Fork Edisto River gauging station (USGS02173500) is located in Orangeburg, South 

Carolina. Current and past discharge, gauge height, and precipitation conditions are 

available for this site. Discharge data has been available since 1986, gauge height data 

since 2007, and precipitation data since 2014. The data on this river is also available every 

15 minutes. The drainage area for this site is 683 square miles. The South Atlantic WSC 

Columbia Field Office manages this station. 
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4.4 Case Study 4: Waccamaw River  

Waccamaw River gauging station (USGS02110550) is located above Conway, 

South Carolina. Current and past discharge, gauge height, and precipitation conditions have 

been available at this site since 2013. The data on this river is also available every 15 

minutes. The drainage area for this site is 1,250 square miles. The South Atlantic WSC 

Columbia Field Office manages this station. 

4.5 Case Study 5: Cooper River 

Cooper River gauging station is located in Charleston Harbor. NWS Advanced 

Hydrologic Prediction Service (AHPS) issues every-hour forecasts for this site, which are 

published routinely year-round. This forecast can be parsed and used out of the box without 

creating a ML model. This site is also located in Charleston and is considered a crucial site 

for flood forecasting in the Charleston area. 

 

 

 

. 
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CHAPTER FIVE 

METHODOLOGY 

 

5.1 Human Data 

Human input is a crucial component of HAC architecture. Human data collection 

is usually chaotic. However, with the rise in technology, gathering human data has become 

less complicated. Several methods for collecting human data exist, such as (i) 

interviews/focus group discussions and(ii) social media, search engines, and web scraping. 

This research collects human data using interviews and social media (X).   

5.1.1 Human Data from Interviews 

We have conducted several interviews and focus group discussions with various 

stakeholders, including SCEMD, SCDOT, and the South Carolina Department of Public 

Safety (SCDPS), to acquire their attitudes and perspectives on flood evacuation decisions. 

In these interviews, we learned about the history of flood evacuation decisions, tools, 

current obstacles, and ideas for improvement. Unfortunately, none of the organizations 

with which we've conducted interviews maintain a flood evacuation tool; instead, they rely 

on data from external sources such as USGS and NWS and transportation infrastructure 

planning. USGS and NWS contain information such as the river's current and future 

forecasts. However, converting the numerical data from USGS and NWS into standard 

format presents a substantial barrier for organizations engaged in the Lowcountry flood 

evacuation decision. These numerical statistics provide river conditions, but they face a 
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tremendous issue in determining the extent of a flood in a particular region. To address this 

issue, we used the HAND method and a visualization approach to map flood inundation 

areas.  

5.1.2 Human Data from X API 

Machine learning models are an excellent tool to predict flooding events. However, 

these tools alone may not capture all the pertinent information required for accurate flood 

prediction. In addition, flood data is highly variable, making it difficult to construct proper 

models. In addition, the quality and precision of the data used to train machine learning 

models can limit their reliability. Although machine learning models can help predict flood 

events, they should be supplemented with other methods to ensure accuracy. By providing 

real-time updates, diverse perspectives, and contextual information that machine learning 

models alone may not be able to capture, adding human knowledge, such as data obtained 

from social media platforms such as X, can improve machine learning's capacity to predict 

flood events. 

 

The X API is a valuable tool for collecting X posts related to flooding because it 

provides real-time updates on flood conditions and evacuation efforts. The X API enables 

developers to search for messages using particular keywords or hashtags, making it simple 

to collect relevant data. The keywords that were used to search for X posts in this project 

include “floods,” “flood emergency,” “road damage,” and "evacuation". These keywords 

can be customized by the user to collect data on specific flood events or locations. In this 
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study, only X posts from South Carolina are retrieved. The X API also provides metadata 

about messages, such as location and time, which can be used to filter and analyze the 

collected data. In addition, we have designed a text classification model to filter only those 

X posts that are relevant to flooding. 

 

5.1.2.1 X post Classification 

This study used Google’s Bidirectional Encoder Representations from 

Transformers (BERT) package to classify X posts. BERT is a cutting-edge, pre-trained 

Natural Language Processing (NLP) model with sophisticated neural network architecture 

and capacity for contextual text analysis [41]. The BERT model can generate high-quality 

representations of natural language text by simultaneously considering the entire input 

sequence of words to the left and right of the target word, thereby enabling more 

contextually relevant representations. In contrast to previous NLP models, which only 

considered the context of the target term's left and right, this model considers the entire 

sentence. 

 

To classify an X posts related to flooding using BERT, the model can be trained on 

a labeled dataset of X posts, where each X post is categorized as relevant or irrelevant to 

flooding. We first created a text classifier on top of the BERT model. We then collected 

the dataset from various sources [42] [43] [44] [45] [46] [47] to train BERT. These data 

sources also contain irrelevant X posts so that BERT could learn the distinction between 

relevant and irrelevant X posts by accumulating irrelevant X posts alongside relevant ones 
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during training. By including irrelevant X posts in the training data, the model learned to 

differentiate between various categories of X posts and identified which specific features 

or keywords indicate whether a X post is relevant or irrelevant to flooding.  Each text was 

then given a category of 0 (not relevant) or 1 (relevant). During the process of fine-tuning, 

the BERT model learned to identify key flood-related textual features and used them to 

make accurate predictions. 

 

The fine-tuning process involved training the BERT model on the labeled dataset 

and adjusting its parameters to classify relevant X posts.  A backpropagation method was 

used for the text fine-tuning process. The model was trained for 30 epochs. The model's 

predictions were compared to the true labels, and the model's parameters were adjusted to 

minimize the difference between the predictions and the true labels. Once the BERT model 

was fine-tuned, it was used to classify new, unlabeled X posts as either relevant or 

irrelevant to flooding. The text of the X post is input into the BERT model to classify a 

new X post. The model's output is a probability score indicating the likelihood that the X 

post is relevant to flooding. If the probability score is above a threshold of 80%, the X post 

is classified as relevant to flooding. After the X posts were collected using X API in real-

time, we performed text classification of collected X posts. This text classification decided 

whether the X post was relevant to a flood disaster or not. 
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5.1.2.2 Performance Metrics Used in X post Classifier 

To evaluate the performance of the BERT model for classifying flooding X posts, 

we used three standard performance metrics: accuracy, precision, and recall. Accuracy 

measures the model's overall performance and represents the percentage of X posts 

correctly classified as relevant or irrelevant to flooding. This metric is essential for 

evaluating the general effectiveness of the model. Precision measures the proportion of 

correctly classified relevant X posts among all X posts classified as relevant by the model. 

This metric is essential for evaluating the accuracy of the positive predictions made by the 

model. Recall measures the proportion of correctly classified relevant X posts among all 

relevant X posts in the dataset. This metric is essential for evaluating the completeness of 

the positive predictions made by the model. Equations 1, 2, and 3 are accuracy, precision, 

and recall formulas, respectively. In these equations, TP denotes true positive, TN is true 

negative, FP represents false positive, P is total positive classes, and N denotes total 

negative classes. 

 

Accuracy =  TP + TN
P+N

     (Equation 1) 

 

Precision =  TP
TP + FP

   (Equation 2)  

 

Recall =  TP
TP + FN

     (Equation 3) 
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5.2 Gauge Height Forecast 

Gauge height, also known as flood stage, is the height of the water surface above a 

specified reference point, such as a fixed point on the riverbank or the riverbed. It is 

typically measured using a water level instrument or stream gauge instrument installed at 

a specific location along the river. Gauge height is an important parameter for monitoring 

and predicting flooding, as it can estimate the volume of water flowing in the river. 

 

We used machine learning algorithms, NWS AHPS forecast data, and a Rational 

method along with a rating curve conversion tool to predict flood level (or gauge height of 

the river) in ungauged/poorly gauged watersheds in the Lowcountry. USGS has developed 

a comprehensive database system, freely available online, that enables users to access a 

diverse array of water-related data and information to train machine learning algorithms. 

USGS National Water Information System (USGS NWIS) is a comprehensive repository 

of data pertaining to water resources, encompassing details on the physical, chemical, and 

biological properties of rivers and watersheds. This information is gathered via a 

comprehensive network of nationwide monitoring stations. These stations are responsible 

for the measurement and recording of diverse hydrological parameters. 

 

Historical time series data of precipitation and discharge obtained from USGS 

NWIS were used to train machine learning algorithms. Precipitation and discharge are two 

important variables that were incorporated into machine learning models to predict gauge 

height values. The depth of a river, and hence the gauge's height, is directly determined by 
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its discharge, which quantifies how much water flows through it in a fraction of time. The 

river's depth typically rises as the flow increases, boosting the gauge's height. On the other 

hand, rivers can receive water from river basins through precipitation. Rainfall has an 

impact on river flows both directly and indirectly through several hydrological procedures, 

such as surface runoff mechanisms and groundwater recharge. Increased precipitation may 

cause more significant river flows, affecting gauge height. As a result, by monitoring and 

analyzing flow and precipitation data, we can train machine learning algorithms and use 

the pre-trained models to forecast floods. 

 

 It is important to note that the gauge height of the river was a slow-changing 

parameter during no-flood events, while its values changed significantly during flooding 

events over short intervals of 15 minutes. Since the flood prediction task was based on an 

hourly basis, we used an aggregation engine that calculated the cumulative number of bytes 

(15 minutes) on a daily basis. Since several watersheds in the study area were poorly 

gauged, we used the NWS AHPS River forecast. If NWS AHPS was not available, we then 

calculated flood level using a Rational model. 

5.2.1 Machine Learning Algorithms 

We trained two types of RNN models, i.e., LSTM and Gated Recurrent Unit 

(GRU), [48] for four USGS gauging stations. For each station, we used Optuna [49] to 

optimize the best hyperparameters. We trained 30 models for each station (240 models [2 

models, 4 stations and 30 models each]) and used the best model for flood forecasting. 
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During training, we used the pruning technique in Optuna as an early stopping technique. 

Pruning within the Optuna hyperparameter optimization library stops RNN training early 

if it is deemed unlikely to produce a better result than the previous best-known model 

configuration. Using the pruning technique, we can stop the model training intelligently 

and efficiently if it is deemed unlikely to produce better results without sacrificing the 

quality of results. From 240 models produced during training, eight best models were 

selected from the Optuna library (for four gauging stations and two models), and then four 

best models were chosen manually by looking at the performance metrics.  

 

We applied LSTM and GRU to forecast gauge height. The architecture of an RNN 

variant has been specifically developed to address the issue of vanishing gradients that are 

commonly encountered in conventional RNNs. LSTM networks are equipped with a 

specialized memory cell that is capable of retaining information for extended periods. 

Additionally, these networks feature three distinct types of gates - namely, the input gate, 

forget gate, and output gate - which regulate the inflow and outflow of information to and 

from the memory cell. The gates incorporated in the network facilitate the selective 

retention or omission of information, rendering it highly appropriate for applications that 

entail the manipulation and retention of sequential data, such as NLP, speech recognition, 

and time series prediction. The LSTM network receives input data as a sequential vector 

set, with each individual LSTM unit processing a single vector at each time step. The output 

of each LSTM unit is a hidden state vector that is subsequently utilized as input for the 

following time step. The LSTM model can effectively model intricate sequential data by 
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using gates to regulate the flow of information within the network. This enables the model 

to retain information from past inputs and leverage it to make informed predictions about 

future inputs. As a result, LSTM is a highly potent tool for modeling complex sequential 

data like flood data. 

 

Our study employed a neural network architecture consisting of six LSTM layers 

dropout and a dense layer. The first three hidden layers were followed by a dropout layer, 

and then the dropout layer was followed by the remaining LSTM layers. This was followed 

by a flattened layer and a dense layer containing five neurons. The spatial dimensions of 

the input are reduced to the size of the channel by a flattened layer. The LSTM layer is 

designed to predict the subsequent 5 data points (5 hours) by utilizing the preceding 48 

data points (48 hours). The dropout rate, number of units for each layer and epoch number 

were decided after training 240 models using Optuna. This is because the quantity of water 

flowing into and out of a river system affects the height of a gauge. The river system 

receives runoff from precipitation, whereas the runoff output from the system is 

represented by discharge. The primary source of water in rivers is precipitation, which 

exhibits significant spatial and temporal variability. In hydrological forecasting, 

incorporating precipitation data is crucial for accurate gauge height prediction as it enables 

the capture of temporal fluctuations in flood data patterns. The discharge, which pertains 

to the quantity of water passing through a river's cross-sectional area per unit of time, is a 

crucial variable to take into account as it indicates the volume of water present within the 

river system. The discharge of water can be influenced by a range of factors, including but 
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not limited to precipitation, snowmelt, groundwater discharge, and anthropogenic activities 

such as dam operations and water withdrawals. 

5.2.2 Performance Metrics  

Several significant performance measures are utilized to assess the RNN model's 

performance. They are Mean Square Error (MSE), Mean Absolute Error (MAE), Mean 

absolute scaled error (MASE), the Nash–Sutcliffe model efficiency coefficient (NSE), and 

Huber Loss. 

 

MSE (Equation 4) is the average square of the difference between the model's 

predicted data and the actual data throughout the whole dataset.  

𝑀𝑀𝑀𝑀𝑀𝑀 =  1
𝑛𝑛
� �𝑌𝑌𝑖𝑖 − 𝑌𝑌�𝑖𝑖�

2𝑛𝑛

𝑖𝑖=1
 Equation (4)  

     Where: 

• 𝑌𝑌�𝑖𝑖 is predicted data. 

• 𝑌𝑌𝑖𝑖 is actual data.  

• n is the length of dataset. 

 

MAE (Equation 5) is the average magnitude of the difference between the model’s 

predicted data and its actual data for a collection of predictions and observations as a 

measure of the magnitude of errors for the entire dataset. 

𝑀𝑀𝑀𝑀𝑀𝑀 =
� |𝑌𝑌𝑖𝑖−𝑌𝑌�𝑖𝑖|

𝑛𝑛
𝑖𝑖=1

𝑛𝑛
    Equation (5) 
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        Where: 

• 𝑌𝑌�𝑖𝑖 is predicted data. 

• 𝑌𝑌𝑖𝑖 denotes actual data.  

• n represents the length of the dataset. 

 

MASE (Equation 6) is an alternative to metrics like MAE to provide a more 

interpretable scale. To calculate MASE, we divide the MAE of the forecasting method with 

the MAE obtained when using the previous observation as the forecast for the next 

observation. 

 

MASE = MAEforecast
MAEnaive

                                           Equation (6)  

Where: 

• MAEforecast is Mean Absolute Error of the forecast method. 

• MAEnaive represents Mean Absolute Error obtained when 

using the previous observation as the forecast for the next 

observation. 

The NSE (Equation 7) is used to evaluate the hydrological models' forecasting 

ability. NSE indicates how well the plot of actual and predicted data fits a 1:1 line.  

 

NSE = 1 −  
� (𝑌𝑌𝑖𝑖−𝑌𝑌�𝑖𝑖)2

𝑛𝑛
𝑖𝑖=1

� �𝑌𝑌𝑖𝑖−𝑌𝑌𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛�2

𝑛𝑛

𝑖𝑖=1

                            Equation (1) 

Where: 
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• 𝑌𝑌𝑖𝑖 is observed data at time step i. 

• 𝑌𝑌�𝑖𝑖 represents the predicted or modeled data at time 

step i. 

• 𝑌𝑌𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛 mean of the observed data. 

• 𝑛𝑛 denotes the total number of observations. 

 

The Huber loss (Equation 8) is a robust loss function used in regression problems. 

It combines the properties of the MAE and the MSE. The Huber loss is quadratic for small 

error values (similar to MSE) and linear for large error values (similar to MAE), making it 

less sensitive to outliers than the MSE. 

 

𝐿𝐿𝛿𝛿�𝑦𝑦,𝑓𝑓(𝑥𝑥)� = �
1
2

 �𝑦𝑦 − 𝑓𝑓(𝑥𝑥)�
2

                               𝑖𝑖𝑓𝑓 𝑦𝑦 − 𝑓𝑓(𝑥𝑥)  ≤  𝛿𝛿

𝛿𝛿 | 𝑦𝑦 − 𝑓𝑓(𝑥𝑥) | − 1
2
𝛿𝛿2                    𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒             

     Equation (8) 

Where: 

• y is the true value. 

• f(x) denotes the predicted value. 

• δ represents a threshold value. 

 

5.2.3 Rational Method  

The Rational method (Equation 9) is a deterministic hydrological tool commonly 

used for estimating an ungauged watershed or catchment 's peak flow rate or discharge. It 
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is based on the principle that the peak flow rate is directly proportional to the rainfall 

intensity, the area of the catchment, and a runoff coefficient that considers the 

characteristics of the land use and soil type in the area. This method uses a simple 

mathematical equation to estimate flood peak discharge (Q) based on three inputs: the 

rainfall intensity (I), the drainage area (A), and the runoff coefficient (C). The equation is 

given as:  

Q =  𝐶𝐶∗𝐼𝐼∗𝐴𝐴
360

   Equation (9) 

The Equation 9 involves: 

• The measurement of I in inches per hour (in/hr). 

• The expression of A in acres. 

• The utilization of C as a dimensionless factor. 

 

To obtain the value of Q in cubic feet per second (cfs), it is necessary to divide the 

product of C, I, and A by 360. The product of the values of C, I, and A is first divided by 

12 to convert the unit of measurement from inches to feet and subsequently divided by 60 

to convert the unit of measurement from hours to minutes. This calculation yields a factor 

of 1/720. This value is subsequently multiplied by 3600, which serves to convert minutes 

to seconds, resulting in a factor of 1/360. The computation of Q in cfs is obtained through 

division by 360. The Rational method is employed in cases where there is insufficient data 

to facilitate flood prediction and when the NWS AHPS fails to furnish a river forecast. 
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The initial step in computing the runoff coefficient involves obtaining the land use 

data for a specific latitude and longitude through the utilization of the overpass API. A 

coefficient is assigned to each type of land use. The OpenWeatherMap API is utilized to 

obtain data on rainfall intensity. The drainage area can be obtained by utilizing a digital 

elevation model (DEM) specific to the low-country region of South Carolina. Initially, the 

metadata of DEM was extracted, encompassing details such as the pixel dimensions and 

transformation data. Subsequently, the provided latitude and longitude values were 

transformed into pixel coordinates utilizing the available transformation data. A threshold 

value was subsequently employed on the DEM to generate a binary mask that denotes the 

watershed region. Finally, the computation of the watershed's drainage area involves the 

summation of the mask, which is then multiplied by the pixel area. The calculated drainage 

area is expressed in units of square meters and converted to acres through division by 4047. 

By utilizing these three variables, it is possible to derive the maximum discharge of water 

in a river. 

 

A rating curve approach was then employed to convert the maximum discharge 

obtained from the Rational method's equation into gauge height. The rating curve was 

established by the USGS as an empirical correlation known as a "rating curve" linking the 

stage of a river to its stream discharge. The rating curve represents the correlation between 

the height of a measuring instrument and the volume of water flowing in a stream. In order 

to generate this curve, the USGS conducts site visits to all gauges on a biweekly basis and 

obtains stage and river discharge measurements through manual means. 
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5.3 HAND Model 

We formulated the HAND model as an [50]  inundation mapping approach in 

Python to depict the potential extent of flooding. The HAND model is a terrain analysis 

technique that estimates the elevation of a point above the nearest stream or river. The 

model is extensively employed for the purpose of ascertaining the flood risk, drainage 

patterns, and erosion potential of a given region. The HAND model is founded on the 

principle of surface elevation and the idea that water moves in a downward direction from 

elevated to lower altitudes, ultimately accumulating water in low-gradient areas with a 

potential for ponding conditions. Consequently, the vertical distance between a given point 

and the closest stream or river is crucial in determining the likelihood of water movement 

toward the downstream portion. The initial step in generating a HAND model involves 

utilizing a DEM model to produce a flow accumulation map. The map portrays the number 

of cells that contribute to the flow of each cell within the digital elevation model. Typically, 

the cells exhibiting the greatest flow accumulation are situated in proximity to the streams 

and rivers. Subsequently, a distance transform algorithm determines the distance between 

each cell in the DEM and the closest stream or river. Subtracting the elevation of individual 

cells in the DEM from the distance to the closest stream or river results in the computation 

of the HAND value for that particular cell. The utilization of HAND values is viable in the 

creation of a HAND map, which effectively displays the altitude of individual points in 

relation to the nearest stream or river. The HAND map has the potential to facilitate the 
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identification of regions that are susceptible to flooding, areas with inadequate drainage, 

and locations that are prone to surface ponding conditions. 

 

The HAND model utilizes a pair of methodologies on a DEM to normalize the 

terrain in relation to the hydrological network. The initial stage involves executing a 

sequence of computations to produce a DEM that adheres to hydrological principles, 

establishes pathways for water flow, and allocates drainage channels. The subsequent 

phase entails employing indigenous drain orientations and the drainage system to generate 

the nearest drainage chart, which will subsequently guide the HAND operator in 

establishing the normalized topology of the HAND model in a spatial manner. The HAND 

model is classified into various classes based on the severity of the inundation. These 

classes include class 1 (0 to 0.5 meters), class 2 (0.51 to 1 meters), class 3 (1.1 to 1.5 

meters), class 4 (1.51 to 2.0 meters),  class 5 (greater than 2.0 meters). The HAND model 

postulates that inundation occurs when the elevation of water surpasses the altitude above 

the adjacent stream or drainage. The HAND methodology involves assigning a value to 

each pixel in a raster, which represents the relative elevation in meters between the pixel 

and the nearest water stream. Equation 8 provides the map algebra equation for calculating 

inundation that is equal to or less than the HAND value. 

 

HAND raster <  𝑥𝑥          Equation (8) 

where, x is the height of water. 
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Figure 5.5 presents a step-by-step example of HAND calculation. For the last step 

(i.e., step 8), Equation 8 is used to calculate the inundation and integer 2 is considered the 

flood depth. 
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Figure 5.1. The workflow of HAND calculation. 
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We transferred the HAND inundation approach along with RNN models to a web 

application to visualize flood inundation and suggest evacuation re-routing. Initially, the 

HAND elevation data was acquired from [51] and generated a hydrological terrain raster, 

known as HAND, for a Hydrologic Unit Code 6 (HUC6) region in the contiguous United 

States (CONUS). This was achieved by utilizing a DEM with a 10-meter resolution 

obtained from the USGS 3-D Elevation Program (3DEP) and the National Hydrography 

Dataset (NHD) Plus hydrography dataset. The HAND data was then generated by utilizing 

data sources such as stream networks. Then, the aforementioned data was amalgamated 

with the hydraulic property data to generate an all-encompassing dataset. Subsequently, 

the map algebra approach in Python was used to compute the HAND value for each raster 

grid.  

 

Next, the HAND map was categorized into several classes. These classifications 

represent varying depths of flooding, ranging from deep to shallow water. This categorized 

HAND raster was finally put in a web application utilizing a JavaScript library leaflet. 

 

5.4 Transportation Networks 

We have combined the HAND model with transportation geospatial data, including 

highways, trains, evacuation zones, and evacuation routes. We included data on highways 

and railroads from the TIGER (Topologically Integrated Geographic Encoding and 

Referencing) database. Additionally, we added SCDOT evacuation routes and SC 
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Hurricane Evacuation Zones. The United States Census Bureau initially created the TIGER 

database to assist the decennial census, which is carried out once every ten years. In-depth 

geographic data on the United States, such as the locations and features of roads and 

railroads, can be found in the TIGER database. Each year, emergency management 

officials designate some geographic locations in South Carolina as hurricane evacuation 

zones because they are vulnerable to storm surges and other hurricane-related risks. These 

areas have been set aside to assist locals and tourists in South Carolina determine whether 

they should stay in a location that storm surges might impact and whether they should 

evacuate before a hurricane. The Hurricane Evacuation Zone maps are updated and 

maintained by the SCEMD to guarantee the information's accuracy and the efficacy of the 

evacuation strategy. The SCDOT has authorized several evacuation routes for usage in an 

emergency. These routes are designed to ensure the safety of locals and visitors during 

storms, flooding, or other natural catastrophes. These roads are intended to divert traffic 

inland and away from the shore to safer regions. 

 

The integration of various transportation networks has been achieved through 

ArcGIS REST (Representational State Transfer) API services and the Esri Leaflet plugin. 

Esri provides ArcGIS REST, web-based services that enable users to access, visualize, and 

analyze geospatial data. The services are founded on the RESTful design pattern and rely 

on HTTP requests and responses for intercommunication between the client and server. 

Esri Leaflet plugin is an open-source Leaflet plugin. This provides an easy way to integrate 

ArcGIS REST services and ArcGIS Server map services into Leaflet-based web mapping 
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applications. The plugin encompasses a collection of classes and functions that facilitate 

the integration of ESRI layers, such as feature layers, dynamic map layers, and tiled map 

layers, into Leaflet maps for developers. The ESRI layers were integrated with the 

OpenStreetMap layer to generate interactive maps for end-users. 

 

5.5 Evacuation Re-routing 

Evacuation planning is critical to disaster management, as it involves identifying 

safe routes for evacuees to follow. Recently, routing algorithms have been used to optimize 

evacuation routes, suggest re-routing (if needed), and aid emergency management in real-

time decision-making [52] [53]. To perform evacuation re-routing, a Leaflet routing 

machine, a JavaScript library for interactive re-routing in web applications, was used to 

connect to the Graphhopper API. Graphhopper API provides various re-routing algorithms 

using the 'alternative_route' algorithm, which generates multiple alternative routes for a 

given start and end point. The Grasshopper API was then integrated into the prototype to 

calculate the shortest or alternative routes between multiple points. The parameters passed 

to the API include the algorithm type (alternative_route), maximum number of routes 

(max_paths), maximum weight factor (max_weight_factor), and maximum sharing factor 

(max_share_factor). The key parameters used in Graphhopper API for our user case are: 

• Algorithm Type (alternative_route): This parameter specifies the algorithm 

used for routing, with alternative_route being particularly useful for 

evacuation as it provides several route options. 
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• Maximum Number of Routes (max_paths): Determines the number of 

alternative routes to generate. In evacuation scenarios, having multiple 

paths ensures that there are options available if the primary route becomes 

impassable. 

• Maximum Weight Factor (max_weight_factor): This parameter influences 

the maximum weight of the alternative paths, which can be interpreted as a 

measure of route efficiency in terms of distance. 

• Maximum Sharing Factor (max_share_factor): This parameter controls the 

degree of similarity between the alternative routes. A lower sharing factor 

will indicate the algorithm to provide routes that diverge from each other, 

which can increase the chances of avoiding blocked areas. 

 

These parameters ensure that multiple evacuation routes are generated and that 

flooded areas are avoided as much as possible. After the API returned the routes, each route 

was checked to see if it was in the inundation area or not. The fastest route, which was out 

of the inundation area, was selected and displayed on the map to guide citizens toward a 

safe evacuation.  

 

5.6. Deployment Into Cloud Platform  

The flood evacuation tool is developed as a website so that it can be accessible 

remotely. We have used Advanced Cyberinfrastructure Coordination Ecosystem: Services 
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& Support (ACCESS), which is a program facilitated by NSF to provide cloud computing 

resources. Through the ACCESS program, we have used a virtual machine provided by 

Jetstream2 [54]. Jetstream is a cloud computing environment that was developed by 

Indiana University (IU) and funded by the National Science Foundation (NSF). Jetstream 

allows researchers to create virtual machines (VMs) that can be configured and scaled 

according to the needs of their projects. Our tool is also set up in a remote virtual machine 

(VM), which makes our tool remotely accessible through a website. 

 

5.6 HAC Workflow for flood evacuation decision 

This sub-section explains each method used in this research in detail. Figures 5.1 

and 5.2 illustrate a brief step-by-step methodology of the HAC for flood evacuation 

decisions. In Step 1, we forecasted the gauge height of the river using (i) the LSTM model, 

(ii) the NWS AHPS forecast, and (iii) the Rational (deterministic) method. In the second 

step, we use the forecasted gauge height to map inundation areas. This inundation extent 

was created using a terrain-based river hydraulic model, i.e., the HAND method. In the 

third step, we collected X posts from X API, followed by step 4, which was X Text 

Classifier using BERT. Steps 3 and 4 helped collect human data. Finally, in the final step, 

we added the transportation network, evacuation re-routing scheme, and evacuation zones 

to the map. Each component was explained in detail in Figures 5.1 and 5.2. Figure 5.3 is 

the HAC flood evacuation tool architecture. 
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Figure 5.2. The workflow of gauge heigh prediction (step 1 of the proposed methodology). 
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Figure 5.3. The workflows of flood inundation mapping and social media data collection (steps 2 

to 5 of the proposed methodology). 
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Figure 5.3. The overall workflow of HAC flood evacuation tool architecture. 
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CHAPTER SIX 

RESULTS AND FINDINGS 

 

This dissertation research focuses on using multiple approaches such as data-driven 

gauge height prediction, inundation mapping, and utilizing human data through X posts to 

predict flood events and suggest re-routing for evacuation decisions in the Lowcountry 

region of SC. This study shed light on potential synergies between machine learning, 

human data, traditional hydrological forecasting techniques and evacuation re-routing. 

 

The traditional methods of predicting floods need to be more adaptable to handle 

changing conditions, which makes them less useful. We made our developed approaches 

more versatile and flexible in many ways to enhance the accuracy of flood forecasts as well 

as evacuation re-routing. Several data-driven methods were used to predict floods and 

improve the accuracy of evacuation decisions in real-time. Specifically, we used machine 

learning algorithms to predict gauge height, the HAND model to map flood inundation, a 

graphhopper API to suggest evacuation re-routing and the X API to get human data and 

validate the forecast. By using these methods together, we were able to make a flood 

forecasting tool that accurately uses the forecast to compute flood inundation extent and 

suggest evacuation re-routing. This new method is based on data, stressing the importance 

of accurate and up-to-date information. The model also considers people's thoughts and 

experiences, which helps it better understand how floods can affect citizens in real-time. 
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6.1 Human Data Analysis Results 

In this research, we leveraged structured interviews and unstructured social media 

data to enrich the human dimension of our system. We conducted interviews with various 

organizations, which served as a foundation for comprehending what is needed in flood 

evacuation tools. These organizations had a profound experience in flood evacuation, and 

we gained enormous insights into the historical and operational challenges of flood 

evacuation decisions. During our interviews, we found that the stakeholders in the region 

lack the proper tools to assess flood evacuation decisions intelligently. The stakeholders 

needed a tool or a model that intelligently transferred domain knowledge of a river system 

into actionable insights, which was the most critical part of the flood evacuation tools. To 

bridge this gap, we created an action item to incorporate inundation methodology into our 

flood evacuation tool. More specifically, we added the HAND model for the inundation 

methodology to the pipeline. By adding the inundation methodology, we could translate 

this river's height into actionable insights, which would enhance the effectiveness of the 

flood evacuation tool. Other operational challenges were adding ground information 

through human knowledge. Getting human knowledge takes time and effort. However, the 

real-time nature of social media, especially X, is instrumental in adding real-time human 

knowledge to our system. The social media data provided immediacy and diversity of 

perspectives, offering contextual richness to incorporating human data into the flood 

evacuation tool. 
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We used X API to collect the X posts. X posts had to be filtered because they may 

or may not be related to flooding. This has been filtered via an X post-classifier model that 

has been constructed utilizing BERT. To develop an X post classifier model, a dataset of 

approximately 60000 X posts was gathered and manually annotated to indicate whether 

each X post was related to flooding or not. The X posts were partitioned into two sets, 

namely a training set and a test set, with a ratio of 75%:25%.   

 

Figure 6.1 shows the architecture of the X post classifier. The input to the neural 

network is a text. The input dimension is “None” because in Keras of TensorFlow [55], a 

“None” dimension means that it can be any scalar number. So, the input dimension is 

arbitrary to the input text length. A preprocessed layer obtained from a pre-existing saved 

text preprocessing layer is utilized for BERT in TensorFlow Hub. The aforementioned 

layer serves as a companion to BERT models, facilitating the preprocessing of plain text 

inputs into the specific input format that BERT requires. The preprocessed layer's output 

is linked to the input of the BERT encoder layer sourced from a pre-existing TensorFlow 

Hub model that was trained beforehand. BERT utilizes a Transformer architecture and a 

deep, pre-trained neural network to generate dense vector representations for natural 

language. The present model employs 12 hidden layers, also known as Transformer blocks, 

with a hidden size of 768 and 12 attention heads. The weights utilized in this model 

correspond to those disclosed by the primary authors of BERT. The outputs of the encoder 

consist of two components: the "pooled_output," which serves to encapsulate the entirety 

of the input sequence, and the "sequence_output," which represents each individual token 
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within the context of the sequence. The output obtained from pooling is linked to the 

dropout layer with a rate of 0.1. The dropout is subsequently linked to a densely connected 

output layer. 
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Figure 6.1. Neural network architecture of X post classifier constructed in this research. 
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The BERT model attained an accuracy rate of 88.5% along with a precision rate of 

0.84% and a recall rate of 0.85% during the training phase. Similarly, during the testing 

phase, the model achieved an accuracy rate of 89%, a precision rate of 81%, and a recall 

rate of 94%. 

Table 6.1: Confusion Matrix for the test set of the BERT model. 

 
Predicted Values 

Negative Positive 

Ac
tu

al
 

Va
lu

e 

Negative 8183 1238 

Positive 319 5209 

 

BERT's architecture, especially its bidirectional mechanism, was pivotal in 

understanding the context behind each X post. X posts were classified more accurately 

using this method. When examining the real-time application of BERT, its performance 

highlights the model's ability to effectively utilize human-generated data in the context of 

evolving flood situations. BERT demonstrates its efficacy as a vital tool for contemporary 

flood prediction systems by efficiently eliminating extraneous data and focusing on 

relevant flood-related information. 
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6.2 Flood Forecasting Results 

We conducted training for both the LSTM and GRU models. To optimize and select 

the most optimal model, we employed Optuna. A total of 240 models were trained using 

the Optuna framework, from which the top four models were selected. The four stations 

that we used were 02173500, 02173000, 0212035 and 02110550. The performance of both 

the LSTM and GRU models exhibited a high degree of similarity. However, the LSTM 

model exhibited slightly superior performance, particularly on the test dataset. LSTM was 

particularly successful in capturing flood peak rates and time to peak, which are two 

important factors for flood emergency decisions.  

 

Tables 6.2, 6.3 and 6.4 illustrate the performance achieved by LSTM in the test, 

validation and train set, respectively, for USGS02173500 (Turkey Creek River), 

USGS02173000 (South Fork Edisto River), USGS0212035 (North Fork Edisto River), and 

USGS02110550 (Waccamaw River).   

Table 6.2. LSTM performance in test data set. 

Station MASE NSE Huber Loss MSE MAE 

USGS02173500 0.0019 0. 9792 0.0120 0.02404 0. 1284 

USGS02173000 0.0066 0.9832 0. 0248 0.0498 0.1619 

USGS0212035 0.00460 0.98093 0.0177 0.0354 0.1406 

USGS02110550 0.0122 0.9763 0.0067 0. 01356 0.09676 
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Table 6.3. LSTM performance in validation data set. 

Station MASE Huber Loss MSE MAE 

USGS02173500 0.0027 0.0070 0.0140 0.0887 

USGS02173000 0.0052 0.0075 0.0150 0.0634 

USGS0212035 0.0078 0.0065 0.0131 0.0696 

USGS02110550 0.0063 0.0029 0.0058 0.0543 
 

Table 6.4. LSTM performance in training data set.  

Station MASE Huber Loss MSE MAE 

USGS02173500 0.0028 0.0025 0.0050 0.0430 

USGS02173000 0.0063 0.0020 0.0040 0.0447 

USGS0212035 0.0094 0.0188 0.0890 0.0066 

USGS02110550 0.0054 0.0067 0. 01356 0.09676 
 

Figures 6.2, 6.3 and 6.4 show the actual vs predicted gauge height values. These 

figures also include discharge and precipitation for USGS02173500 (Turkey Creek River), 

USGS02173000 (South Fork Edisto River), USGS0212035 (North Fork Edisto River), and 

USGS02110550 (Waccamaw River) respectively.  
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Figure 6.2. Flood gauge height prediction for USGS02173500.  

 

Figure 6.3. Flood gauge height prediction for USGS02173000. 
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Figure 6.4. Flood gauge height prediction for USGS0212035 

 

Figure 6.5. Flood gauge height prediction for USGS 02110550 
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6.3 Evacuation Re-routing Results 

It is vital to include geospatial technologies and advanced routing algorithms to 

enhance evacuation planning. To suggest alternative routes, a Leaflet routing machine 

(through Graphhopper API) was employed for evacuation re-routing.  We used 

'alternative_route' as a parameter to the algorithm in Graphhopper API. Using this 

parameter, the API returns multiple routes; the best route that is not inundated was selected. 

When the API returned the route data, each path was checked if it was in a flooded area or 

not and the fastest route, which was far away from the inundation area was selected. The 

optimal route — the fastest one clear of flooding — was then displayed on the map to offer 

a reliable guide for safe evacuation. By actively avoiding inundated areas, the system 

ensures that the evacuation routes remain as safe as possible. The integration of real-time 

re-routing methods has substantially enhanced the safety and efficiency of emergency 

situations.   
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Figure 6.6. Map showing re-routed path from the inundated area. 

 

 

 

 

 

 

 

 

 

 

 

 



 59 

 

CHAPTER SEVEN 

CONCLUSION 

 

The flood evacuation tool, which was created as an HAC prototype in this study, 

exhibits a high degree of efficacy in its ability to forecast river gauge height and suggest 

re-routing by combining LSTM and a river hydraulic model with relevant social media 

information and a re-routing approach that can facilitate disaster response and evacuation 

efforts. The incorporation of social media data provides a humanistic aspect to the 

developed HAC prototype and facilitates the identification of regions that may require 

prompt aid. The utilization of the HAND algorithm for inundation mapping and 

Graphhoper API for re-routing yields precise outcomes for an at-risk region for flooding. 

In general, the prototype exhibits significant potential for utilization in disaster response 

and evacuation endeavors within low-lying regions of South Carolina and other flood-

prone areas. The high accuracy and precision achieved by the LSTM and BERT models 

demonstrate the effectiveness of machine learning and NLP in predicting river gauge 

height and filtering relevant social media data to validate flood prediction. 

 

Traditionally, machine learning models rely on historical data to make predictions, 

but this approach may need to be revised in unpredictable circumstances like flooding, 

where real-time information is critical. To address this challenge, we introduced a new 

methodology incorporating machine learning predictions and human expertise derived 
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from X data into a geographical representation. The cartographic representation functions 

as an interface between machine learning and human inputs, facilitating mutual 

reinforcement and enhancing the precision of predictions. Utilizing X data enables the 

acquisition of contemporary human knowledge, augmenting machine learning models' 

predictive capacity. The integration of two sources of information is facilitated by utilizing 

a visualization map as a platform, resulting in creating a cohesive perspective of the 

situation. This methodology enables instantaneous cooperation between human specialists 

and the machine learning algorithm, resulting in enhanced precision and efficacy of 

predictions in emergency scenarios. This HAC strategy is the first step towards achieving 

human-AI collaboration in flood evacuation problems. As applied to flood management 

and planning, the human AI collaboration strategy centers on leveraging extant 

competencies to strategically coordinate the interplay between human data and machine 

learning prediction systems to achieve optimal disaster response outcomes. This involves 

a range of activities, including but not limited to information reception and transmission, 

situational awareness maintenance, and interview data to understand the needs and 

attitudes of stakeholders. The utilization of human-AI collaboration in the context of flood 

emergency management has the potential to augment human capabilities and knowledge, 

thereby increasing overall effectiveness. The present collaboration involves high-risk 

teaming, wherein ultimate decision-making authority rests with humans. 

 

AI continues to evolve, and its decision-making and prediction can help teams deal 

with real-time planning during flood emergencies. AI is vital to resilience in flood 
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evacuation response. Still, with careful coordination with humans, this teaming paradigm 

may achieve the necessary scope and scale and adversely impact at-risk populations. One 

way to help the stakeholders (for example, emergency responders, transportation officials, 

and public safety staff) better understand and trust AI prediction is to provide them with a 

proof of concept using data from prior disasters. If these officials can verify the accuracy 

of the black box with known data, this can help to demonstrate the value that AI machines 

can have during an actual disaster event. However, finding ways to improve trust in human-

AI interaction is essential for emergency officials to be willing to use HAC systems when 

lives are on the line.    

 

Societal demands for flood management and decision-making inquiry and problem-

solving will continue to increase the need for technologies such as HAC in prediction and 

planning. Engineering solutions to flooding management problems, including evacuation 

and warning, real-time decision-making increasingly rely on sophisticated computational 

solutions rather than manual/ empirical assessment. At the same time, scientists working 

in the field of AI and flood emergencies will increasingly be pushed towards inquiry 

directly relevant to societal decision-making, bolding human factors in AI forecasting, 

which has important consequences for people’s safety and protection. However, more 

research is needed to develop methods for incorporating human data and supporting trust 

in HAC during evacuation responses that consider flood situational conditions and inform 

emergency officials of when to rely on an AI system and when to intervene. This research 

will serve as a foundation for future studies exploring the potential of human-AI 
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collaboration approaches in flood disaster domains. The application of this approach could 

be extended to other fields, such as healthcare, transportation, and security, where decision-

making is critical and requires real-time data. Exploring and refining the HAC approach 

could unlock new possibilities for improving trust and achieving more significant 

breakthroughs in various HAC domains.  
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Appendix A 

Pseudocode 
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This pseudocode1 requires flood depth (flood_depth), top left clipped rectangle coordinate 

(TL), bottom right clipped rectangle coordinate (BR) and HAND DEM path 

(hand_DEM_path). Functions used in this pseudo-code: 

• OPEN_GIS_DATASET represents the process of opening the GIS file. 

• GET_BAND, GET_DATASET_GEOTRANSFORM, and similar 

functions represent various GIS data operations. 

• CALCULATE_INVERSE_GEOTRANSFORM calculates the inverse 

geotransformation matrix. 

• APPLY_INVERSE_GEOTRANSFORM applies the inverse geotransform 

to convert world coordinates to pixel coordinates. 

• READ_RASTER_DATA_AS_ARRAY reads raster data from the GIS file 

into a numeric array. 

• REPLACE_ARRAY_VALUES replaces specific values in an array with 

another value. 

• CREATE_MASK_WHERE creates a boolean mask based on a condition. 

• DEFINE_BINS, ASSIGN_TO_BINS, and 

IDENTIFY_MASK_FOR_ZONE are used for categorizing the data into 

different zones based on the flood depth. 

• CONVERT_PIXELS_TO_WORLD_COORDINATES converts pixel 

coordinates back to world. 
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Pseudocode 2 requires identifier for the flood station (flood_station), time period 

over which to fetch data (period), path to the directory where the scaler files are stored 

(scaler_path) and path to the directory where the trained machine learning model files are 

stored (model_path). Function used in this pseudocode are: 

• NWIS_WEB_SERVICE: Uses NWIS API to perform GET request and 

fetch data from it. 

• EXTRACT_AND_PROCESS_DATA: Performs operations like fetching 

data, resampling, and timezone localization. 

• HANDLE_DATA_RETRIEVAL_ERROR: Encapsulates error handling 

for data retrieval issues. 

• LOAD_SCALER: Loads and returns scaler. 
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• PREPARE_DATA_FOR_PREDICTION: Prepares data scaling and 

preparation for input into the predictive model. 

• LOAD_MODEL: Loads and return machine learning model. 

• PREDICT: Predict and return predicted data. 

• SETUP_MODEL_CUSTOM_OBJECTS: Represents the setup for custom 

objects required by the model, such as custom loss functions or metrics. 

• POST_PROCESS_PREDICTIONS: Performs the post-processing of 

predictions to convert them from the scaled form back to the original 

measurement scale. 

• PREPARE_PREDICTIONS_DATAFRAME: Prepares the creation of a 

DataFrame with predictions, including setting up the index with appropriate 

timestamps. 
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Appendix B 

Training data 

 

The upcoming subsections, includes the training data done to hypertune the 

parameter using Optuna. We have trained 240 models to select the best 4 for this 

research. The trial which was selected is highlighted. In this subsection the 

following notations are used: 

• Trial is used as T. 

• Units in 1st layer is used as L1. 

• Units in 2nd layer is used as L2. 

• Units in 3rd layer is used as L3. 

• Units in 4th layer is used as L4. 

• Units in 5th layer is used as L5. 

• Units in 6th layer is used as L6. 

• Dropout rate is used as DR. 

• Epoch Number is used as EN. 

• Validation Huber Loss is used as VHL. 

• Validation Mean Square Error is used as VMSE. 

• Validation Mean Absolute Error is used as VMAE.  

• Validation Mean Absolute Scaled Error is used as VMASE.  
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LSTM model trainings for USGS02110550 

T L1 L2 L3 L4 L5 L6 DR EN VHL VMSE VMAE VMASE HL MSE MAE MASE 
0 133 93 77 50 30 12 0.1 82 0.0062 0.0125 0.0909 0.0056 0.0060 0.0119 0.0725 0.0063 
1 128 149 107 60 37 7 0.19 176 0.0093 0.0187 0.0950 0.0053 0.0094 0.0188 0.0937 0.0063 
2 127 103 72 66 23 15 0.36 129 0.0045 0.0090 0.0764 0.0056 0.0022 0.0044 0.0485 0.0062 
3 177 81 96 68 17 5 0.11 65 0.0121 0.0241 0.1129 0.0054 0.0110 0.0222 0.1035 0.0063 
4 107 126 80 58 20 9 0.38 140 0.0044 0.0088 0.0705 0.0054 0.0029 0.0058 0.0543 0.0063 
5 136 100 74 48 18 7 0.14 89 Model pruned 
6 161 83 52 70 13 13 0.13 79 Model pruned 
7 166 110 76 51 32 8 0.31 113 Model pruned 
8 152 85 98 58 26 13 0.33 194 Model pruned 
9 161 138 70 42 21 6 0.44 179 Model pruned 
10 100 127 56 32 11 10 0.44 140 Model pruned 
11 103 118 86 62 24 15 0.37 137 Model pruned 
12 125 129 63 64 26 10 0.39 116 Model pruned 
13 113 109 87 57 19 15 0.5 149 Model pruned 
14 116 155 65 65 15 9 0.24 160 Model pruned 
15 143 139 85 55 22 12 0.25 108 Model pruned 
16 114 105 64 42 30 11 0.34 156 Model pruned 
17 196 121 96 54 39 9 0.27 131 Model pruned 
18 119 96 81 66 10 14 0.36 100 Model pruned 
19 106 118 69 44 34 11 0.29 54 Model pruned 
20 137 137 58 61 23 8 0.41 124 Model pruned 
21 127 92 77 50 29 13 0.21 93 Model pruned 
22 136 93 80 34 27 12 0.3 75 Model pruned 
23 147 103 71 47 20 14 0.17 164 Model pruned 
24 126 113 91 38 29 11 0.33 123 Model pruned 
25 109 89 80 53 33 14 0.26 141 Model pruned 
26 120 100 90 70 15 9 0.23 103 Model pruned 
27 132 126 73 57 24 12 0.3 85 Model pruned 
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28 143 114 67 63 28 10 0.18 148 Model pruned 
29 122 133 107 59 35 7 0.35 182 Model pruned 

 

LSTM model trainings for USGS02172035 

T L1 L2 L3 L4 L5 L6 DR EN VHL VMSE VMAE VMASE HL MSE MAE MASE 
0 151 88 54 70 26 11 0.3 191 0.0215 0.0430 0.1413 0.0066 0.0128 0.0259 0.0968 0.0078 
1 169 140 76 58 36 12 0.14 166 0.0121 0.0242 0.1020 0.0066 0.0108 0.0220 0.0947 0.0082 
2 163 123 69 67 35 14 0.23 117 0.0094 0.0188 0.0890 0.0066 0.0065 0.0131 0.0696 0.0078 
3 110 140 101 55 16 13 0.13 60 0.0161 0.0322 0.1189 0.0066 0.0206 0.0427 0.1354 0.0086 
4 140 96 62 60 10 14 0.24 87 0.0147 0.0294 0.1063 0.0066 0.0101 0.0204 0.0917 0.0080 
5 194 122 73 52 26 7 0.15 88 Model pruned 
6 127 152 81 47 16 14 0.38 89 Model pruned 
7 196 108 57 58 32 10 0.23 173 Model pruned 
8 130 98 54 59 31 15 0.26 134 Model pruned 
9 121 156 86 47 31 14 0.23 96 Model pruned 
10 167 119 108 32 40 8 0.49 130 Model pruned 
11 167 137 69 70 39 12 0.11 156 Model pruned 
12 173 132 90 64 35 10 0.17 156 Model pruned 
13 183 120 71 65 36 5 0.17 118 Model pruned 
14 153 146 92 38 22 12 0.19 151 Model pruned 
15 158 130 65 64 35 15 0.14 184 Model pruned 
16 180 110 77 41 29 12 0.1 112 Model pruned 
17 141 144 80 51 22 9 0.2 200 Model pruned 
18 161 128 63 67 37 13 0.18 52 Model pruned 
19 184 111 97 56 33 11 0.29 143 Model pruned 
20 145 149 50 61 28 13 0.1 170 Model pruned 
21 136 80 62 61 10 14 0.26 105 Model pruned 
22 104 99 68 54 10 15 0.34 80 Model pruned 
23 173 99 76 61 15 13 0.22 123 Model pruned 
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24 147 91 60 65 21 14 0.15 73 Model pruned 
25 160 125 84 48 19 11 0.24 103 Model pruned 
26 137 114 74 68 13 12 0.2 66 Model pruned 
27 170 139 67 58 38 15 0.27 137 Model pruned 
28 154 135 58 62 29 14 0.22 172 Model pruned 
29 188 104 50 69 25 11 0.31 115 Model pruned 

 

LSTM model training for USGS02173000 

T L1 L2 L3 L4 L5 L6 DR EN VHL VMSE VMAE VMASE HL MSE MAE MASE 
0 153 124 55 41 22 12 0.17 138 0.0092 0.0185 0.0665 0.0050 0.0019 0.0038 0.0426 0.0062 
1 102 115 57 51 33 9 0.39 59 0.0064 0.0128 0.0605 0.0053 0.0024 0.0049 0.0462 0.0062 
2 149 92 108 67 15 5 0.12 200 0.0028 0.0056 0.0464 0.0053 8.7537e-

04 
0.0018 0.0302 0.0061 

3 102 100 52 31 11 6 0.18 185 0.0030 0.0059 0.0461 0.0053 0.0022 0.0045 0.0424 0.0061 
4 200 117 57 45 31 12 0.15 72 0.0110 0.0220 0.0712 0.0051 0.0021 0.0042 0.0443 0.0062 
5 177 110 79 34 14 14 0.34 64 Model pruned 
6 101 139 83 39 31 13 0.45 109 Model pruned 
7 200 85 69 31 20 8 0.18 176 Model pruned 
8 105 150 92 40 18 5 0.2 64 Model pruned 
9 184 129 70 65 16 15 0.36 138 Model pruned 
10 137 80 105 70 39 7 0.27 194 Model pruned 
11 129 99 110 57 10 5 0.1 198 Model pruned 
12 156 97 94 57 10 7 0.1 167 Model pruned 
13 125 97 98 60 14 5 0.25 165 Model pruned 
14 165 104 69 50 25 10 0.22 108 Model pruned 
15 115 88 84 69 13 7 0.14 184 Model pruned 
16 140 91 75 49 23 6 0.23 153 Model pruned 
17 120 106 62 63 18 9 0.29 150 Model pruned 
18 142 92 88 35 10 6 0.22 182 Model pruned 
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19 166 157 50 54 26 8 0.14 199 Model pruned 
20 116 128 101 44 13 10 0.19 114 Model pruned 
21 108 112 50 54 40 9 0.33 94 Model pruned 
22 110 117 63 46 35 11 0.41 87 Model pruned 
23 101 103 59 65 29 6 0.48 133 Model pruned 
24 131 111 65 30 36 8 0.31 160 Model pruned 
25 122 84 54 53 35 6 0.38 87 0.0075 0.0150 0.0634 0.0052 0.0020 0.0040 0.0447 0.0063 
26 146 137 74 36 28 9 0.26 188 Model pruned 
27 112 93 110 49 17 5 0.32 121 Model pruned 
28 184 119 53 60 20 7 0.24 176 Model pruned 
29 154 125 58 42 23 11 0.16 144 Model pruned 

 

LSTM model training for USGS02173500 

T L1 L2 L3 L4 L5 L6 DR EN VHL VMSE VMAE VMASE HL MSE MAE MASE 
0 132 90 73 44 15 10 0.16 100 0.0070 0.0140 0.0887 0.0027 0.0025 0.0050 0.0430 0.0028 
1 154 141 65 66 11 15 0.22 119 0.0133 0.0267 0.1202 0.0027 0.0135 0.0282 0.1061 0.0030 
2 169 93 58 45 26 12 0.18 101 0.0124 0.0249 0.1172 0.0027 0.0105 0.0211 0.0990 0.0029 
3 120 142 76 64 32 7 0.21 54 0.0131 0.0263 0.1261 0.0027 0.0135 0.0282 0.1066 0.0030 
4 111 113 51 49 35 5 0.36 70 0.0097 0.0195 0.1012 0.0027 0.0110 0.0238 0.0931 0.0030 
5 184 131 79 41 40 9 0.21 137 Model pruned 
6 196 137 81 41 36 10 0.38 53 Model pruned 
7 166 152 54 44 37 15 0.24 195 Model pruned 
8 154 103 100 69 11 15 0.35 118 Model pruned 
9 167 143 103 51 27 7 0.13 115 Model pruned 
10 134 83 90 57 17 12 0.48 160 Model pruned 
11 102 111 50 30 19 5 0.3 80 Model pruned 
12 124 120 66 53 20 5 0.11 83 Model pruned 
13 107 80 66 34 31 8 0.28 79 Model pruned 
14 136 100 93 56 22 12 0.34 94 Model pruned 
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15 117 117 110 47 14 6 0.14 144 Model pruned 
16 138 93 61 36 29 10 0.4 61 Model pruned 
17 111 128 72 60 23 13 0.25 68 Model pruned 
18 131 107 89 49 33 9 0.16 99 Model pruned 
19 147 89 50 39 15 11 0.27 170 Model pruned 
20 125 116 73 53 35 7 0.11 73 Model pruned 
21 171 92 57 45 26 13 0.16 99 Model pruned 
22 175 98 58 44 24 13 0.17 105 Model pruned 
23 145 87 62 49 40 11 0.2 90 Model pruned 
24 112 95 70 38 29 14 0.19 109 Model pruned 
25 157 105 55 46 19 11 0.14 69 Model pruned 
26 185 110 82 42 29 9 0.24 88 Model pruned 
27 100 123 60 52 14 12 0.19 140 Model pruned 
28 127 85 53 56 22 8 0.1 129 Model pruned 
29 160 101 68 32 11 14 0.22 129 Model pruned 

 
GRU model training for USGS02110550 

T L1 L2 L3 L4 L5 L6 DR EN VHL VMSE VMAE VMASE HL MSE MAE MASE 
0 161 106 101 64 39 5 0.43 51 0.2348 0.4820 0.6010 0.0104 0.2066 0.4534 0.5425 0.0079 
1 123 139 103 50 14 13 0.19 77 0.0051 0.0102 0.0797 0.0052 0.0054 0.0108 0.0781 0.0063 
2 169 120 53 41 33 8 0.11 125 0.0052 0.0103 0.0778 0.0055 0.0050 0.0099 0.0680 0.0062 
3 113 83 52 55 22 10 0.36 74 0.0025 0.0050 0.0543 0.0056 0.0041 0.0082 0.0603 0.0062 
4 129 112 55 61 30 15 0.16 153 0.0037 0.0074 0.0623 0.0051 0.0036 0.0072 0.0612 0.0062 
5 127 152 72 51 18 15 0.42 169 Model pruned 
6 187 101 96 62 12 8 0.39 125 Model pruned 
7 198 91 95 66 26 12 0.37 168 Model pruned 
8 134 114 61 35 23 6 0.27 50 Model pruned 
9 135 140 66 61 12 10 0.41 94 Model pruned 
10 100 86 82 49 20 10 0.49 95 Model pruned 
11 105 83 51 56 30 15 0.29 194 Model pruned 
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12 113 134 79 56 29 12 0.24 146 Model pruned 
13 144 99 62 56 37 8 0.33 147 Model pruned 
14 117 125 50 69 25 12 0.22 99 Model pruned 
15 150 159 59 41 33 14 0.33 72 Model pruned 
16 113 80 75 44 17 11 0.11 200 Model pruned 
17 135 110 89 30 22 9 0.17 144 Model pruned 
18 161 92 68 59 28 13 0.32 117 Model pruned 
19 125 127 57 69 33 7 0.27 172 Model pruned 
20 144 98 66 52 36 10 0.35 111 Model pruned 
21 121 142 107 46 15 14 0.17 81 Model pruned 
22 108 143 107 53 15 14 0.18 70 Model pruned 
23 129 117 86 58 10 13 0.21 66 Model pruned 
24 119 133 55 47 20 11 0.3 81 Model pruned 
25 141 153 90 54 26 15 0.26 104 Model pruned 
26 106 127 72 49 23 13 0.15 137 Model pruned 
27 124 107 101 66 30 11 0.21 87 Model pruned 
28 113 148 63 61 15 14 0.24 159 Model pruned 
29 157 91 102 65 21 5 0.14 56 Model pruned 

 
GRU model training for USGS02172035 

T L1 L2 L3 L4 L5 L6 DR EN VHL VMSE VMAE VMASE HL MSE MAE MASE 
0 169 115 64 62 26 5 0.42 121 0.0500 0.1002 0.2511 0.0066 0.0233 0.0484 0.1511 0.0072 
1 115 113 58 59 30 10 0.13 83 0.0145 0.0290 0.1269 0.0066 0.0116 0.0246 0.0972 0.0078 
2 142 93 94 32 12 9 0.49 186 0.0214 0.0427 0.1515 0.0066 0.0139 0.0291 0.1097 0.0077 
3 127 85 108 34 35 5 0.11 197 0.0166 0.0333 0.1269 0.0066 0.0155 0.0326 0.1163 0.0082 
4 189 104 70 60 25 5 0.23 114 0.0424 0.0848 0.2282 0.0066 0.0206 0.0440 0.1392 0.0075 
5 165 111 107 50 25 13 0.24 141 Model pruned 
6 198 124 77 48 12 10 0.29 102 Model pruned 
7 156 154 54 31 11 15 0.12 183 Model pruned 
8 108 81 60 34 19 14 0.33 182 Model pruned 
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9 184 90 78 44 10 14 0.35 83 Model pruned 
10 100 134 51 68 39 8 0.18 52 Model pruned 
11 125 141 94 41 37 7 0.1 152 Model pruned 
12 128 102 109 57 32 7 0.15 70 Model pruned 
13 120 126 91 55 31 12 0.18 157 Model pruned 
14 139 84 86 39 34 11 0.11 92 Model pruned 
15 112 97 101 65 28 6 0.17 52 Model pruned 
16 136 110 70 54 20 9 0.21 200 Model pruned 
17 115 154 84 70 36 11 0.14 135 Model pruned 
18 100 138 101 50 30 7 0.1 73 Model pruned 
19 152 120 70 37 40 9 0.25 168 Model pruned 
20 131 88 58 44 21 11 0.15 107 Model pruned 
21 141 94 99 30 34 9 0.49 197 Model pruned 
22 147 100 94 35 14 10 0.5 181 Model pruned 
23 122 81 106 34 16 8 0.4 169 Model pruned 
24 131 90 87 46 22 6 0.2 133 Model pruned 
25 160 107 98 40 28 12 0.27 191 Model pruned 
26 145 96 104 30 17 10 0.14 170 Model pruned 
27 108 117 110 37 33 8 0.21 155 Model pruned 
28 133 87 82 62 36 6 0.27 66 Model pruned 
29 118 114 74 58 28 5 0.47 119 Model pruned 

 
GRU model training for USGS02173000 

T L1 L2 L3 L4 L5 L6 DR EN VHL VMSE VMAE VMASE HL MSE MAE MASE 
0 103 102 93 34 11 15 0.43 172 0.0083 0.0166 0.0818 0.0059 0.0063 0.0126 0.0823 0.0064 
1 158 116 52 64 40 15 0.14 189 0.0138 0.0276 0.0972 0.0057 0.0130 0.0261 0.0930 0.0062 
2 131 133 50 55 30 9 0.49 193 0.1260 0.2906 0.3362 0.0098 0.0655 0.1353 0.2582 0.0080 
3 104 117 85 32 24 11 0.23 154 0.0114 0.0228 0.0696 0.0052 0.0015 0.0031 0.0384 0.0062 
4 152 92 62 38 23 8 0.14 62 0.0070 0.0140 0.0601 0.0051 0.0022 0.0044 0.0446 0.0061 
5 126 119 51 63 28 15 0.23 57 Model pruned 



 76 

6 115 90 63 59 28 9 0.37 91 Model pruned 
7 198 99 76 68 18 14 0.48 51 Model pruned 
8 181 94 66 42 11 10 0.27 193 Model pruned 
9 180 111 97 48 31 7 0.34 61 Model pruned 
10 150 153 72 41 21 5 0.12 111 Model pruned 
11 146 80 107 31 10 12 0.39 153 Model pruned 
12 164 102 89 38 15 7 0.18 148 Model pruned 
13 136 135 97 47 37 12 0.1 93 Model pruned 
14 105 84 62 36 16 7 0.3 137 Model pruned 
15 169 106 109 30 22 13 0.43 172 Model pruned 
16 139 134 83 44 35 8 0.18 122 Model pruned 
17 119 91 94 53 19 5 0.31 86 Model pruned 
18 157 106 70 37 13 10 0.41 170 Model pruned 
19 174 157 57 35 25 12 0.35 76 Model pruned 
20 196 98 103 40 14 8 0.44 111 Model pruned 
21 106 127 82 33 23 11 0.23 159 Model pruned 
22 100 113 87 30 25 14 0.25 172 Model pruned 
23 117 126 77 34 19 11 0.2 134 Model pruned 
24 109 145 88 45 26 6 0.15 182 Model pruned 
25 123 107 93 33 33 9 0.26 161 Model pruned 
26 143 84 80 39 17 13 0.15 146 Model pruned 
27 130 121 101 51 21 10 0.21 122 Model pruned 
28 110 93 85 43 13 8 0.17 104 Model pruned 
29 151 114 57 37 39 15 0.14 181 Model pruned 

 
GRU model training for USGS02173500 

T L1 L2 L3 L4 L5 L6 DR EN VHL VMSE VMAE VMASE HL MSE MAE MASE 
0 171 121 107 55 40 6 0.3 122 0.0038 0.0076 0.0654 0.0027 0.0041 0.0085 0.0551 0.0027 
1 145 93 101 65 19 14 0.14 130 0.0099 0.0198 0.1033 0.0027 0.0063 0.0126 0.0790 0.0029 
2 192 89 67 33 30 12 0.32 76 0.0184 0.0369 0.1401 0.0027 0.0175 0.0379 0.1158 0.0029 
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3 105 159 84 31 22 5 0.16 182 0.0079 0.0158 0.0903 0.0027 0.0071 0.0147 0.0733 0.0029 
4 181 143 56 53 11 11 0.32 142 0.0037 0.0075 0.0603 0.0027 0.0035 0.0069 0.0517 0.0027 
5 152 100 61 48 17 7 0.14 111 Model pruned 
6 145 121 84 58 19 6 0.15 109 Model pruned 
7 166 145 50 40 30 14 0.13 196 Model pruned 
8 131 91 56 52 16 10 0.47 125 0.0070 0.0140 0.0801 0.0027 0.0042 0.0083 0.0575 0.0027 
9 106 124 104 43 16 9 0.18 84 Model pruned 
10 197 140 72 68 10 12 0.38 161 Model pruned 
11 176 111 95 57 38 8 0.27 149 Model pruned 
12 179 135 110 59 40 11 0.27 155 Model pruned 
13 166 158 76 51 33 9 0.34 96 Model pruned 
14 180 110 92 45 10 5 0.23 50 Model pruned 
15 166 132 66 63 25 15 0.37 140 Model pruned 
16 187 149 89 55 36 7 0.23 164 Model pruned 
17 200 130 79 40 27 12 0.3 120 Model pruned 
18 156 110 51 62 13 10 0.36 170 Model pruned 
19 134 147 110 53 24 8 0.42 141 Model pruned 
20 186 102 98 48 35 13 0.33 70 Model pruned 
21 138 83 60 52 13 10 0.5 128 Model pruned 
22 116 119 56 55 14 11 0.43 103 Model pruned 
23 118 82 56 48 21 9 0.5 120 Model pruned 
24 131 101 69 60 15 11 0.28 141 Model pruned 
25 161 116 62 55 11 6 0.41 90 Model pruned 
26 125 127 56 44 28 13 0.46 131 Model pruned 
27 174 137 73 51 19 8 0.35 113 Model pruned 
28 172 152 86 69 22 10 0.4 179 Model pruned 
29 144 95 105 65 18 13 0.36 132 Model pruned 
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