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1 Introduction

Prior research on productivity analyzed improvements in athletic performance over time

to investigate the relationship between changes in output and factors driving technological

progress like learning-by-doing (LBD). A large, rich theoretical literature on the relationship

between LBD and economic growth (Jovanovic, 1996; Solow, 1997) motivated this analy-

sis. Early studies of athletic performance in the Olympic Games (Fellner, 1969) and the

Indianapolis 500 automobile race (Barzel, 1972) developed deterministic measures of the

long-run impact of LBD on contest winning times (Fellner) and speeds (Barzel). Both ar-

gued that time and speed over constant contest distances and venues are more standardized

and less prone to measurement error than alternative measures of technological progress or

productivity, which are notoriously hard to measure.1

Despite this intriguing evidence of a link between a well-measured proxy for LBD and

labor productivity, relatively little subsequent microeconomic research analyzed data from

this setting or explored the theoretical underpinnings more deeply. Mantel Jr et al. (1995)

extended the analysis of Indy 500 outcomes to include the roles of car technology (changes

embodied in capital) and organizer rules and regulations. Munasinghe et al. (2001) and

Preston and Johnson (2015) extended this research to an analysis of record-setting times

instead of winning times in human foot races, drawing from work on statistical distributions

of the record setting process.

The macroeconomic literature on economic growth emphasizes the importance of changes

in technology, or technical progress in long-run growth. Macroeconomists measure aggregate

technological change using either total factor productivity (TFP) constructed from the Solow

(1956) growth model or labor productivity (LP) defined as real output per unit of labor input.

Macroeconomists generally view TFP as driven by a long-run stochastic trend rather than

a deterministic process (Wickens, 1996).

More recent work explores the role of microeconomic heterogeneity in aggregate produc-

tivity (Basu and Fernald, 1997; Foster et al., 2001) and its measurement (Syverson, 2017).

Thus far, however, little research analyzed the theoretical or empirical linkages between long-

run growth trends in micro-foundations, like LBD at the firm or industry level, and macro

outcomes, like aggregate TFP or LP.

This paper makes two contributions toward linking micro LBD and macro TFP. First, it

updates and expands the athletic performance data analyzed in previous studies. Relative

to the literature, we update most time-series data by up to a half century, incorporating

1For examples, see Sichel (2019) and the Journal of Economic Perspectives symposia in fall 1988 and
spring 2017.
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recent decades when aggregate U.S. productivity growth exhibited significant medium-term

fluctuations. We also expand the analysis to new types of athletic contests (e.g., NHRA drag

racing) for robustness and additional insights.

A second contribution is to update, improve, and modernize the range of econometric

methods used to analyze long-run trends in technology and economic growth present in

athletic competitions and technology. Deterministic-trend models used in the early literature

are re-estimated with new data and improved specifications for LBD and compared with

growth in aggregate TFP. Finally, we estimate alternative stochastic-trend models from the

contemporary literature, a new bi-variate model of cointegration between auto racing speeds

and TFP with dynamic error correction.

Results from data on foot racing (track and field) and auto racing performances show

that the pace of LBD slowed significantly after 1973, the traditional dating of the start of

the U. S. Productivity Slowdown. This finding holds for both length-of-time and cumulative

output specifications of LBD trends, but a preferred specification of these models (log-log

versus semi-log) remains unclear despite analysis of an additional half century of data.

At first glance, the coincidence of a slowdown in LBD with aggregate productivity is not

surprising because LBD represents an important component of productivity and athletic per-

formances are an industry in the aggregate economy. However, many proposed explanations

for the Productivity Slowdown—oil price shocks, energy inefficiency, capital obsolescence,

declining educational quality, monetary policy mistakes, and such—do not apply directly to

LBD in athletic performances. Even declining education quality does not obviously explain

much of the improvement in elapsed times, especially in foot races.

The data also show the impact of LBD on auto racing varies significantly across time

(eras) and drivers. Naturally, LBD in auto racing was faster early in our sample as the

sport emerged and developed. Because auto racing drivers tend to have longer careers than

foot racers, data on individual-specific LBD in auto racing verify that the most successful

drivers exhibit faster LBD than the average driver. These micro data also reflect tremendous

heterogeneity in LBD across successful drivers and even within their specific careers. After

controlling for vintage technology, however, the vast majority of decline in elapsed auto

racing times is explained by technological improvement in capital (race cars) rather than

driver-specific LBD. Thus, trends in auto racing speeds may be better explained by trends

in TFP than trends in LBD.

Econometric results confirm the empirical evidence that auto racing speeds and aggregate

TFP share a common long-run trend in both deterministic and stochastic model specifica-

tions. Coefficients on full-sample deterministic trends of speed and TFP are statistically

equal; coefficients on race-day controls have expected signs and magnitudes when signifi-
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cant. However, neither exogenous nor endogenous estimated subsample breakpoints of de-

terministic trend models align well among speeds or between speeds and TFP. Furthermore,

estimated sub-sample deterministic trends in various auto racing speed do not match the

major breakpoints in U.S. productivity growth well (1973, mid-1990s, and mid-2000s).2

Joint tests of deterministic and stochastic trends (Bai and Perron, 2003) support the

latter, and a stochastic trend (cointegration) between speed and TFP cannot be rejected.

Bivariate vector error-correction models (VECM) of TFP and speed estimated using the

method of Johansen (1995) reveal the presence of one cointegrating vector with long-run

coefficients that are similar across speeds (0.4-0.5) and consistent with the raw data.

The estimated VECM model produces an unusually clear econometric result of asymmet-

ric dynamic adjustment in which auto race speeds adjust significantly to aggregate TFP but

not vice versa. This result supports the basic stochastic growth RBC model that assumes

aggregate TFP diffuses throughout the macroeconomy, rather than micro LBD or labor pro-

ductivity bubbling up to the macroeconomy. Estimated adjustment speed coefficients vary

across types of auto races, with Indy 500 and NHRA about four times faster than Indy 500

qualifying speeds (−.4 versus −.1).

The magnitude and heterogeneity of these estimates suggests that more detailed specifi-

cation of idiosyncratic factors related to race rules and regulations or car technologies may be

warranted. Empirically, TFP grows roughly twice as fast as auto racing speeds over the full

sample, so not all of TFP diffuses into auto racing performances. Further formal modeling of

the supply and demand functions in the auto racing industry in a general equilibrium macro

model could yield additional insights into the connection between trends and dynamics in

micro and macro technology and productivity.

2 Existing Literature

This paper extends and combines two distinct branches of literature. One focuses on the

microeconomics of technical change manifested in athletic performances over time. The other

focuses on the macroeconomic effects of aggregate technical progress on ouput.

2.1 Technological Change and Sports Outcomes

A body of literature analyzes outcomes from sports competitions to understand the rate of

technological progress over time. These papers posit that outcomes in sports contests reflect

2See Romer (1987), Baily and Gordon (1988), and Hansen (2001), and Cette et al. (2016) for exposition on
consensus trend breaks in US productivity as well as competing views on the sources of economic slowdown,
particularly from 1973 through the present day.
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both increases in athlete (worker) productivity and improvements in capital like cars and

engines in motor racing, skis in skiing, and swimsuits in swimming contests. These papers all

point out a number of advantages inherent in sports data relative to other more commonly

used macroeconomic data. These advantages include clean and consistently measured output

variables and implicit or explicit controls for factors that affect output unobservable in other

settings. For example, the Indianapolis 500 car race has been held annually at the same time

of year on the same track under almost identical conditions for more than a century.

Fellner (1969) performed the first empirical analysis of progress using data from sports

contests. This paper focused on understanding the role of “learning by doing,” (LBD)

defined by decreasing production costs over time when capital and output remain unchanged,

in driving technological progress. Fellner (1969) developed two competing empirical proxy

variables for learning by doing in automobile racing. The first used cumulative production

as a proxy for increased learning by doing, reflecting the idea that doing more of some

productive activity generated more LBD. The second used the passage of time as a proxy

for LBD, reflecting the idea that performing some productive activity for a longer period of

time generated more LBD.

Fellner (1969) analyzed data on the winning performance in the modern Summer Olympic

Games held from 1896 to 1964 to assess the role played by performing activities longer

in driving technological progress. Fellner (1969) estimated log-log regression models with

winning outcomes as the dependent variable and the number of Olympic Games where the

event was held as the explanatory variable. He focused on 11 men’s Olympic events where

capital remained unchanged. The paper reported evidence that the winning outcomes in

all these events changed significantly with the number of Olympic Games where each was

contested. Rates of increase averaged 5% to 7% in most events although swimming (14.4%)

and Discuss (28.7%) increased more quickly. The results supported the idea that performing

a productive activity for a longer period of time, a form of LBD, can explain observed

technological progress.

Barzel (1972) analyzed data from automobile racing, winning speeds and times at the

Indianapolis (Indy) 500, an open wheeled car race conducted annually since 1911. This paper

exploited exogenous variation in the amount of time over which this race was contested,

generated by breaks in competition from the two World Wars, to revisit the length of time

LBD proxy employed by Fellner (1969). Barzel (1972) estimated log-log regression models

using both winning speed and winning race time (miles
speed

) as dependent variables and the

number of previous races contested, a time trend, as the main explanatory variable.

These models also included separate intercepts and time trend slopes for the pre-WWI

and post-WWII periods, making the interwar period the omitted category. Data spanned
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the 1911 to 1969 competitions. The results from the winning speed model showed a faster

rate of technological progress in the pre-WWI era, about 3.1% per year, followed by a slower

rate of increase in the post-WWII era. The model using winning race time as the dependent

variable generated similar results.

Mantel Jr et al. (1995) explored the role that car characteristics and race-organizer im-

posed characteristics played in determining Indy 500, and thus proxy for the rate of tech-

nological progress. The paper estimated linear regression models with separate slopes and

intercepts for three discrete time periods: 1920-1922 and 1930-1937 (front engine cars with

driver and riding mechanic), 1923-1929 and 1938-1960 (front engine cars with one driver),

and 1961-1992 (rear engine cars). Mantel Jr et al. (1995) found a result opposite to Barzel

(1972) in that the rate of change in the average qualifying speed in the post-1961 period was

roughly double that in the earlier two time periods.

Subsequent research in this area focused on record setting times in athletic events as a

proxy for output. Munasinghe et al. (2001) analyzed the process describing record setting

in track and field competitions. They compared record setting in two types of track and

field competitions: competitions open to anyone in the world (world record times, Olympic

record times, Milrose Games record times) and competitions open to a restricted group of

athletes (the US record time and the New Jersey state track and field record times). Preston

and Johnson (2015) analyzed the frequency of record setting in the context of competitive

swimming. Section A.1.3 discusses these papers in detail.

We focus on the performance based measures analyzed by Fellner (1969) and Barzel

(1972). While record breaking may be a better indicator of technological progress, annual

performance in the Indy 500 generates a time series that can be easily compared to other

macroeconomic measures of technological change, like Total Factor Productivity and labor

productivity, used in the broad macroeconomic literature on technological change. This

allows us to link our results more closely to this broader literature than Munasinghe et al.

(2001) and Preston and Johnson (2015).

2.2 Technological Change and Productivity

Three overarching themes motivate this study: 1) the theoretical basis for productivity [or

lack thereof]; 2) problems in measuring productivity; and 3) fluctuations in the trend of

productivity since World War II. A comprehensive review of this vast is beyond the scope

of this paper. Hulten (2001) offer a primer and history of aggregate technological progress

through the 20th century and Sichel (2019) provides a recent extension. Syverson (2011)

gives an analogous review of firm-level productivity within industries starting in the late
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20th century.

Growth models embody a theory of the trend in TFP. Exogenous growth models (Solow,

1956) view TFP as the “Solow residual” with a deterministic or stochastic trend to be spec-

ified. Endogenous growth models (Romer, 1986; Lucas Jr, 1988) view TFP trends as the

result of accumulation of human capital (e.g., education or LBD), technological changes

embodied in capital, or intangible capital (e.g., research and development or other innova-

tions). Prescott (1998) showed traditional passive definitions of TFP cannot fully explain

cross-country data and called for deeper investigation of theoretical underpinnings of TFP.

“New Growth Theory” (Hulten, 2001) adds non-constant returns to scale and imperfect com-

petition.3 It’s unclear how these more complex extensions apply to athletic performances.

Measurement of TFP has been equally nettlesome. If output and factor inputs are mea-

sured exactly, TFP is zero; if not, the Solow residual is a “measure of ignorance” (Hulten,

2001) or a “productivity puzzle.” Van Beveren (2012) surveys issues with measure of the

Solow residual, which is especially challenging because it requires output and input data

for all firms and industries; see Denison (2010) for details on this issue. More recent re-

search emphasizes other important factors in productivity measurement: reallocation and

heterogeneity across industries (Basu and Fernald, 1997; Foerster et al., 2019) or firms and

establishments; cyclical utilization of inputs (Basu, 1996); and information and communi-

cation technology (ICT) (Syverson, 2017; Nordhaus, 2021). In contrast, elapsed times in

athletic performances over constant distances and similar tracks are measured relatively

accurately.

Since World War II, U.S. productivity has experienced three large, complex swings in

trend growth. After a quarter century of relatively strong, steady growth, productivity

growth fell by about half starting around 1973. Most of the Productivity Slowdown is at-

tributed to changes in capital and labor input services that were unmeasured at the time due

to complexities associated with oil price shocks, capital obsolecense, structural reallocation

(away from energy intense sectors), booming labor force participation, education quality,

and high inflation and unemployment (Baily and Schultze, 1990).

In the mid-1990s, productivity recovered to its pre-Slowdown growth rate. The lead-

ing “suspect” was information and communication technology (ITC), which Greenwood and

Yorukoglu (1997) argue ignited a technological revolution in 1974 that ironically caused the

Productivity Slowdown before eventually triggering the “New Economy” boom.4 But pro-

ductivity growth slowed again in the mid-2000s—before the Global Financial Crisis (GFC),

3Deeper progress on this challenging task has been modest. One recent proposal is Nordhaus (2021),
which introduces a “singularity” in information technology and threshold where computation and artificial
intelligence accelerate the pace of growth.

4For more details about the role of ICT, see Syverson (2017) and references in this paper.
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which also may have restrained productivity.5 Although medium-term fluctuations in pro-

ductivity have been explained partly, Section 4.1 asks whether better-measured athletic

performances also experienced similar swings.

3 Data

Auto racing data come from two sources. First, Indy 500 data for 1911–2022 are from

the Indianapolis Motor Speedway’s historical archives, which extend a half century beyond

Barzel (1972), and three decades beyond Mantel Jr et al. (1995). The Indy 500 data in-

clude race results by driver and by year, plus additional data on race-day incidents, prize

distribution, and so forth. Speeds are available for the Indy 500 race and pre-race qualifying

trials that determine starting pole positions. Second, National Hot Rod Association (NHRA)

Winternationals drag racing data for 1961–2022 are constructed from ProQuest news arti-

cles containing race results and the results archive maintained by the NHRA.6 Appendix A

provides more details about the auto racing data.

For foot racing, winning one-hundred meter dash (100M dash) times and one-mile run

times are from the annual World Athletics Championships (WAC) occurring biannually

since 1912 at essentially the same distances, except for a change from 100 meters from yards.

Unlike the Indy 500, however, the WAC have been held at different geographic locations

with different tracks.

Aggregate US productivity data come from two sources. Annual productivity data for

1890–2018 come from the Bank of France’s Long-Term Productivity Database (LTPD), which

includes total factor productivity (TFP) and labor productivity (LP), or output per hour.7

A second source of annual (TFP) and quarterly (LP) productivity in the non-farm business

sector for 1948–2021 is from Bureau of Labor Statistics (BLS) (also available in FRED).

Notable differences exist between statistical measures of data on athletic performances

(time and speed) found in the literature. Most racing data are extreme-values (maximums,

like the winner or a world record), which contrast with TFP and LP data that implicitly

are central moments (i.e., average across agents). Thus, we construct Indy 500 race speeds

5Analyses of the contribution of the GFC to productivity include Byrne et al. (2016), Fernald (2015),
and Fernald et al. (2017).

6Unlike the Indy 500 (and marathons or mile races), which have many simultaneous competitors and
take hours to complete, drag races have two parallel, simultaneous competitors and take seconds to complete.
Mantel Jr et al. (1995) emphasize the importance of extensive changes to rules and regulations governing
the more than two-hour Indy 500, and the number and severity of crashes varies widely by year—both of
which influence the winning speed.

7We thank Dan Sichel for referring us to these data, which extend farther back in time (1890) than the
Bureau of Labor Statistics (BLS) multi-factor productivity estimates (1948) and Penn World Tables TFP
estimates (1954). The correlation between TFP data from LTPD and PWT is 0.91.
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as field averages to match TFP.8 NHRA drag race data are limited to winning speeds due

to the difficulty of data collection. Empirically, differences between the extreme- value and

central-moment racing data are modest but have declined steadily over time, inducing trend

differences. Trends in central-moment racing speeds clearly correspond more closely to trends

in TFP and labor productivity. Appendix A.1.3 provides more details about differences in

extreme and central moment measures of Indy 500 speeds. We also test for evidence of

non-normality in estimates of deterministic trend models reported in Section 6.

4 Trend Breaks in Race Outcomes

The literature using outcomes in sporting events as proxy variables for TFP growth con-

tains several issues related to output measurement and LBD that merit further discussion.

Heterogeneity in outcomes and inputs across sports (track and field, swimming, car rac-

ing) represents one important issue. Although research in this area focuses on changes in

outcomes over time, foot and swim racing depends on limited capital inputs (shoes, track

surfaces, pools, swim suits) while auto racing depends more heavily on capital inputs (cars,

engines, suspension systems). Auto racers also tend to have long careers, which provides

rich variation in LBD across individuals.9

Heterogeneity also exists in outcomes and inputs within sports, where LBD may differ

between short versus long distance events, or between events based on time versus distance

(as shown in Fellner, 1969). Practical issues in productivity measurement arise because

outcome options include elapsed time versus speed (inverses of each other) and winning times

in regularly scheduled events versus irregularly occurring record times. Finally, different

functional forms of trend growth in contest outcomes exist in the literature.

4.1 Race Outcomes and LBD Over Time

Fellner (1969) defined athletic performance as the inverse of labor productivity, Pt = Lt/Yt,

where Lt is labor input (time), Yt is output (distance traveled), and Pt reflects the elapsed

time to cover a certain distance during a race. Fellner (1969) argued that LBD manifests in

8Technically, the average speed of the Indy 500 race is a truncated mean because data are available only
for the drivers still running at the finish of the race, which can be less than half of the initial field. The
truncation bias may be small, however, if drivers who drop out due to crashes and mechanical failures do not
have systematically different average speeds, which is a reasonable null hypothesis. In contrast, essentially
all drivers post a qualifying time (their fastest single lap around the track in the weeks prior to the actual
race) because these times are needed to determine the pole positions for the actual race.

9A few papers in the sports economics literature analyzes trend breaks in other outcomes over time like
team winning percentages (Salaga and Fort, 2017; Groothuis et al., 2017; Jang et al., 2019), attendance (Fort
and Lee, 2006; Mills and Fort, 2014), or team scoring (Depken et al., 2020).
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declines in elapsed times (increases in labor productivity) over many years as competitors

repeatedly train for, and participate in, the same race. For example, if the mile world record

time drops from 4 minutes to 3 minutes and 50 seconds, the cost of producing output fell

because fewer units of inputs (labor time) were required to produce the same unit of output

(completion of the race).

Figure 1 plots the logs of annual winning elapsed times (black lines) for two long-distance

competitions (Indy 500 mile auto race and World Championships one-mile foot races) and

two short-distance competitions (NHRA Winternationals quarter-mile drag race and World

Championships 100M dash). These data extend the samples analyzed in Fellner (1969) and

Barzel (1972) by a half century, offering new insights into LBD trends. The figure also

includes estimated trends (colored lines) using common functional forms in the literature,

which all fit the data reasonably well, and evidence from one model of a trend break in

1973.10

Two of the estimated trends are from Fellner (1969), who hypothesized that competitors

acquired productivity-enhancing human capital (LBD) from past race experience by repeat-

edly performing the same task. He developed econometric models for trends in athletic

performances of the following form:

ln Pt = β0 + β1fi(T ), i = {1, 2, 3}, β1 < 0 (1)

where fi(T ) are functions of a deterministic linear time trend, T . Fellner’s specifications are

f1(T ) = ln(T ) and f2(T ) = T , labeled “log-log” and “semi-log” respectively. He hypothesized

the log-log model would better capture changes in LBD in events with very few margins for

improvement and heavily dependent on existing facilities and equipment, while the semi-log

model would better fit events with more margins for improvement, including technological

progress generated by macroeconomic growth. His results indicated that outcomes in short

events were better represented by log-log models and outcomes in long running events (5,000

meters or more) by semi-log models.

10All elapsed times are expressed in hours for comparability. See below and Appendix B.1 for details of
the estimation of the trends.
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Figure 1: Actual and Estimated Elapsed Times in Auto and Foot Races

Figure 1 shows the fitted values of Fellner’s semi-log (green lines) and log-log (red lines)

models for the full extended sample. Based on his proposed criteria of R2, the semi-log

model fits the data from the full sample slightly better for all but the 100M dash, but

the differences in R2 between models are economically modest and smaller than in the

literature before 1973. Perhaps the most striking feature of Figure 1 is an economically

significant decline (flattening) in the LBD trends of all four contests after 1973 (vertical

lines), commonly identified as the start of the US Productivity Slowdown. After 1973, the

trends in auto racing fell (increased in absolute value) about 1 to 2 percentage points (Indy

500 and NHRA, respectively)—roughly similar magnitudes to the estimated decline in US

labor productivity growth. The trends in foot races also declined (flattened) after 1973 but

by less in percentage points.11

For logical reasons, neither of Fellner’s applied specifications likely represents the best fit

over the all periods of time. Semi-log models predict that future elapsed times eventually

will reach zero and turn negative, which is infeasible. On the other hand, log-log models

backcast that elapsed times in the distant past before 1911 would have been implausibly

slow This result is analogous to the debate between Lucas (2000) and Ireland (2009) over

11Data Appendix B.1 reports the estimation results for subsamples split at 1973. The results show a
steady decline in auto racing elapsed times since 1973 for the log-log specification, but little change in the
pace for auto racing semi-log models or in any track and field models. R2 declines modestly (up to 6
percentage points) after 1973 for six of the eight models and the relative performance across models after
1973 differs from before 1973.
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the functional form of money demand. As with the money demand, more data could make

each LBD specifications look more sensible within sample, as estimated curvatures and slopes

diminish in absolute, or make one specification fit significantly better. However, one of the

asymptotic predictions in each model would remain theoretically implausible. Thus, deespite

a half century of additional data, which of the two traditional functional forms for trends in

elapsed times (LBD) remains uncertain.

To redress asymptotic infeasibility associated with log-log and semi-log models of LBD, we

propose an alternative model: f3(T ) = − eT

1+eT
= −tanh(T ), or hyperbolic tangent function.12

Figure 1 also plots the fitted values of the tanh model of elapsed times (blue lines); see

Appendix B.1 for estimation details. An important advantage of the tanh model is that

it exhibits finite asymptotes in both directions of time (limT→±∞ f3(T ) = ±α > 0), which

provides more theoretically sensible estimates of the maximum and minimum elapsed race

times over all time. A finite maximum elapsed time is plausible for foot races in early

recorded human history but may be less so for auto racing given that cars were invented

in the late 1800s. The tanh model’s assumption of a fixed, non-zero asymptotic minimum

elapsed time may be too strong for both types of races.

To evaluate implications of the tanh model and connect these results to the rest of the

paper, Figure 2 plots the inverse of estimated log elapsed times (i.e., p−1
t = st, or speed in

miles per hour, MPH) for the Indy 500 and 100M dash. The tanh model produces more

feasible and sensible estimates of LBD over all years. Estimated MPH for the 100M dash

(right panel) increased from 18.4 near 1600 and is predicted to peak at 24.8 after 2300. It’s

hard to assess whether the minimum 100M dash speed is plausible for pre-historic times.

Estimated MPH for the Indy 500 increased from 25 prior to 1800 and will peak at only 151.4

by about 2055.13 The tanh model clearly is less well-suited to auto racing because cars did

not exist prior to 1800 (i.e., MPH ≡ 0). For both speeds, the tanh model’s assumption of

a hard physical limit on top speeds may be too strong, especially for the Indy 500 where

further changes in technology, rules, and regulations may enable much higher speeds.

12We thank Susanto Basu for suggesting this specification. The tanh function is equivalent to a re-scaled
logistic sigmoid transformation, or inverse logit.

13By comparison, the first recognized auto race from Paris to Rouen, France, in 1894 was won at an average
speed of 10.2 MPH. A similar race one year later reached 15.0 MPH, and other races reached 50.0 MPH by
1900. See https://www.britannica.com/sports/automobile-racing. Although these race courses and
cars differed from those in the Indy 500, early recorded speeds suggest even the tanh deterministic model
should be interpreted with caution when evaluating estimated asymptotes.
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Figure 2: Fitted and Forecasted Speeds from tanh Models

An alternative to Fellner’s time-trend specification is that LBD accrues from repeatedly

performing an activity independently the time passed (Alchian, 1963). In this case LBD

increases directly with cumulative output over any time period, short or long, rather than as

a direct function of elapsed time. Levitt et al. (2013) apply this approach to auto assemblies

in an individual plant and found that the average amount of time needed to assemble a car

dropped with the number of cars assembled during the first eight weeks of production but

did not change much after that. In the context of the Indy 500, we define cumulative output

as individual driver j′s experience as Ejt, the number of races in which driver j participated

before year t.14

Figure 3 gives a snapshot of trends in cumulative LBD with Indy 500 qualifying times

plotted by driver experience. Full-sample data show LBD increases (elapsed time decreases)

with experience for at least the first 15 years. To isolate improvements in car technology, the

figure plots LBD experience curves for different eras; earlier curves are higher because cars

were slower. However, changes in the slopes of experience curves reveal the pace of LBD

varied across eras, which is another type of trend break. From 1911-1945, LBD grew fast

14This measure could be refined. One way is to weight participation by the number of laps or miles
completed. Full completion of the race (all 200 laps and 500 miles) yields maximum learning but completing
part of the race yields less. If successful drivers learn more, participation could be skill-weighted by finishing
position or average speed. Explorations of these refinements (unreported) produced similar results.
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then flattened from 1946-1964. LBD growth resumed in 1965-1984 but much more slowly,

and has been essentially flat since. For more detailed analysis of cumulative measures of

LBD at the microeconomic level of individual drivers in auto racing, see Humphreys, Schuh,

and Williams (forthcoming).

Figure 3: Indy 500 Qualifying Times by Driver Experience and Era

5 Race Outcomes and Aggregate Productivity

This section generates new evidence on the long-run relationship between auto racing out-

comes and aggregate productivity. For this analysis, we shift our focus from elapsed race

times, Pt = Lt/Yt, to race speed, St = P−1
1 , the distance driven divided by elapsed time.

Speed can be interpreted as either labor productivity (LP), or output per hour, of race drivers

given a car (capital stock) and track. TFP represents a broader estimate of technological

changes that are unmeasured. These might include the productivity of complementary ser-

vices (e.g., pit crews and racing regulations) or unobserved technological changes embodied

in capital (e.g., race cars).

Figure 4 plots data on three auto racing speeds and U.S. TFP since 1911. All variables

are converted to a common index (1947=100) and plotted in natural logs to facilitate growth

comparisons. The dashed vertical lines denote the ends of the data samples in Barzel (1972)

and Mantel Jr et al. (1995) (1969 and 1992, respectively).15

15Long historical time series of TFP were unavailable at the time of earlier research in the literature.
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Figure 4: TFP and Auto Racing Speeds, 1911-2021

Several basic facts emerge from this graph. TFP grew about twice as fast (1.8 percent

per year) as Indy 500 race and qualifying speeds (0.8 and 1.0 percent per year, respectively)

over the full sample (upper left panel, common y-axis). The fact that aggregate technology

diffuses less than one-for-one into speeds suggests that either some components of TFP are

irrelevant for auto racing outcomes or an idiosyncratic component of technological change in

auto racing offsets some TFP growth. Both Indy 500 speeds grew at a similar constant rate

until the 1970s, when growth in race speeds slowed relative to qualifying speeds.

Race outcomes can reflect additional complications (weather, in-race events like caution

flags, strategic driving interaction, etc.) or race-specific rules and regulations (for which we

do not have data) that would influence their trends relative to qualifying speeds. Since the

1960s, drag racing speeds grew about the same rate as Indy qualifying speeds (0.7 versus 0.6

percent, respectively). The remaining panels plot TFP pairwise with each speed outcome

using two y-axis scales to highlight common trends, which are evident in the econometric

models.

Two major developments occurred after the sample periods analyzed in previous research.

First, no more World Wars occurred, which Barzel (1972) had interpreted as a major dis-

ruptions to trends in technology and production. Second, U.S. labor productivity growth

fluctuated substantially since World War II, as shown in Table 1. Growth rates of speed

and productivity fell more than half after the Productivity Slowdown.16 Productivity growth

increased from the mid-1990s to mid-2000s by roughly half, but it was transitory and growth

16See Griliches (1980) and Romer (1987) for more details on the Productivity Slowdown.
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declined to its average during 1973-1994 (or less) in the mid-2000s.

Many researchers attributed the productivity boom-bust to surging investment in in-

formation and communication technology (ITC) (for examples, Oliner and Sichel, 2000;

Brynjolfsson and McAfee, 2014). However, speeds did not increase commensurately, per-

haps because ITC impacted auto racing less than the rest of the economy. 17 Whether

the mid-2000s decline reflected a second slowdown from the GFC (Andrews et al., 2016),

increased measurement error, or complications from ICT is unresolved.

Table 1: Annual Growth Rates of Speeds and Productivity by Era

Speeds Productivity
Era Race Qualifying LP (BLS) TFP

1911–1973 1.42 1.56 na 2.28
1911–1916 1.68 1.89 na 2.32
1919–1941 1.36 1.09 na 1.88
1946–1973 1.34 1.63 2.78 1.95

1974–2021 0.38 0.48 1.93 1.09
1974–1994 0.07 0.96 1.61 0.99
1995–2006 0.19 -0.16 2.72 1.56
2007–2021 1.52 0.23 1.73 0.70

6 Deterministic Trend Models

This section describes the specification and estimation of single-equation models of long-run

growth in auto racing speeds and technology based on deterministic trends that shift exoge-

nously and discretely over time. This econometric approach was common in the literature

prior to the 1980s for variables like athletic performances and productivity. This section

extends the literature by formally testing whether deterministic trends in auto racing speeds

coincide with those in TFP over the long run and during subsamples.

6.1 Econometric Models

For simplicity, let Sk
t denote speeds for k = {r, q} where r indexes annual Indy 500 winning

speeds and q is Indy 500 qualfying times. Lowercase variables skt denote log levels. The

17See Jorgenson et al. (2007) and Jorgenson et al. (2008) for more details on the New Economy Boom/Bust,
and the Vu et al. (2020) review of ICT in growth. Ireland and Schuh (2008) argue these low-frequency TFP
dynamics are best interpreted as a one-time shift in the level of investment-sector TFP in a two-sector RBC
model.
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econometric models for race speeds,

skt = αs0 + βs0T +

ND∑
j=1

αsjDj + βj(Dj × T )

 + γsCONTROLSt + εkst , (2)

are extended versions of the semi-log transformation in Barzel (1972).18 T is a deterministic

time trend; Dj are ND dummy variables that capture exogenous shifts in the time trend

T ; and CONTROLS is a set of variables that might influence estimation of the trend

coefficients.

As explained in Section 4.1, the data on race speeds are averages of the field so the

regression error εst is assumed to be distributed i.i.d. N(0, σ2
εks

) rather than an Extreme

Value distribution, which might be warranted with data based on winning speeds or world

records. Omitted variables that affect the trend in race speed are captured in the regression

error.

We estimate Equation (2) using data from 1911-2022, extending the time period in earlier

papers. Barzel (1972) (1911-1969) examined the impact of World Wars I and II impacted

technical change through spillover improvements to automobile production. Recent data

(1994-2022) incorporate the New Economy and Dot Com boom-bust dynamics around the

turn of the 21st century, which influenced technical change and productivity growth in

new ways. Equation (2) incorporates medium-term fluctuations in technical change and

productivity growth using deterministic trends from the literature listed in Table 2. The

inter-War period (1917-1945) is the omitted trend variable. Where applicable, D′3 = D3 +

D4 +D5 a dummy variable for the Productivity Slowdown starting in 1974.

Equation (2) also includes a vector of CONTROLS containing two types of variables

that might influence trends in race speed. One type captures variation in race-day conditions,

including: precipitation (Prect), which may reduce race speed even with improvements in tire

technologies; the number of incidents per race lap, (Inct), which reflects caution laps run at

lower speeds; Spreadt, which measures dispersion in the dollar value of driver winnings that

induces greater competition among drivers (hence higher speeds); and Temp, the ambient

temperature during the race.

The other type of explanatory variables capture trends in rules set by race organizers

pertaining to improvements in car technologies and governing the running of the Indy 500

race, including: experience, Exp, which measures the total number of prior Indy 500 races

run by field of drivers in year t; size of the field, Fieldt, which is the total number of drivers;

18Equation (2) is f2(Sk) = ln(Sk
t ) = skt from Barzel (1972). He also estimated transformations f1(Sk) =

Sk and f3(Sk) = 500/Sk; the latter is equivalent to elapsed time for the 500-mile race (or the number of
miles actually completed). Results were not qualitatively significantly different across transformations.
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Table 2: Variable Definitions

Variable Description Units

T Time Trend [1, ..., 112]
D1 1911-1916 (pre-WWI) 1/0 indicator
D2 1946-1973 (post-WWII) 1/0 indicator
D3 1974-1995 (Productivity Slowdown) 1/0 indicator
D4 1996-2005 (New Economy Boom) 1/0 indicator
D5 2006-2022 (Productivity Bust) 1/0 indicator
Prect Precipitation Inches
Inct Incidents Per Lap (0, 1] interval
Spreadt Real Prize Spread log $s
Tempt High Temperature logs
Expt Average Field Experience logs
Fieldt Field Size logs
Ridert Number of Vehicle Occupants {1, 2}
Polet Pole Position logs

Ridert, which measures the number of vehicle occupants; and pole position, Pole, which

measures the extent to which the winning driver had to negotiate past other drivers.

Analogous econometric models for total factor productivity (TFP), At, are:

ln(At) = αa0 + βa0T +

ND∑
j=1

αajDj + βj(Dj × T )

 + εat (3)

the deterministic trends (T and Dj) are the same as in the models for race speeds discussed

above. CONTROLS for auto racing presumably do not influence aggregate TFP (at least

not directly) and thus are excluded.

Equations (2) and (3) are estimated with ordinary least squares (OLS). In addition to

coefficient estimates for each equation, tests of the null hypothesis, H0 : αsj = αaj ∀ j =

{1, . . . , ND}, are of central interest. These tests are conducted by jointly estimating bi-

variate speed and TFP models using seemingly unrelated regression estimates (SURE) of

the common deterministic trends. Failure to reject these null hypotheses provides evidence

that race speeds and technical change share common deterministic trends. Residuals are

tested for normality using the Jarque-Bera test to assess whether the coefficient estimates

might be drawn from a non-normal distribution, perhaps due to imperfect averaging of the

race speed data.
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6.2 Results

Table 3 contains estimation results for deterministic trend models explaining Indy 500 win-

ning speeds, qualifying speeds, and TFP beginning in 1911; NHRA drag race speeds are

excluded from this analysis because the data begin much later, in 1961. All coefficient esti-

mates from these semi-log models are multiplied by 100 to convert them to annual percent

changes. For each dependent variable, the table reports four sets of model estimates using

samples of increasing length from left to right. Qualifying speed data begin in 1912. No

qualifying heats occurred in the 1911 race. The first sample (1911-1973) shows the effects

of including a vector of race control variables, CONTROLS, which were not originally in

Barzel (1972).19 The second sample (1911-1994) is similar to that analyzed by Mantel Jr

et al. (1995) and this sample period includes the influence of the Productivity Slowdown.

The final two samples (through 2005 and 2022) incorporate the effects of the boom-bust

cycle in productivity occurring around the beginning of the 21st century.

The results in Table 3 reveal broad similarity and general statistical significance in the

deterministic trend parameter estimates across dependent variables and sample periods.20

Several key conclusions can be drawn from these results.

Estimated coefficients on the full-sample time trend (T ) are economically and statistically

similar. Both race speed outcomes and TFP grew about 1.6 to 1.7 percent per year on

average after accounting for trend breaks and controls. This result suggests that race speeds

and TFP share a common trend, at least in the very long run. Estimated coefficients on

subsamples with separate time trends (Di) generally are stable across sample periods as

more time series data are added to the sample. However, about half of the subsample trend

estimates are statistically insignificant, especially during the earlier periods. This result

suggests that adding considerably more time series data does not alter the results in an

economically significant way.

Estimated coefficients on subsample time trends (Di) and periods are qualitatively similar

between race and qualifying speeds, although the difference in quantitative magnitudes is

sometimes economically significant. This indicates that trend breaks are not the same for

race and qualifying speeds, so the choice of speed measure will likely influence the analysis

of the relationship between speed and TFP. Estimated coefficients on subsample time trends

(Di) for TFP exhibit economically large differences with those for speeds, although the degree

of statistical significance in the speed and TFP estimates for subsample trends is similar in

19Estimates of the Barzel model over the original sample (through 1969) with winning race speeds but no
controls are replicated exactly. Estimates using average race speed data are not economically or statistically
significantly different from those using winning race speeds in any sample.

20Results for TFP in Table 3 are robust to the use of alternative labor and mutifactor measures of
productivity. See Appendix B.4 for more details.
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general, suggesting that, although speed and TFP share a common trend in the long run,

the two variables exhibit quite difference trend break properties in the subsamples.

Most estimated coefficients on race-level control variables are not statistically significant

except for precipitation and number of incidents per race, which have the expected negative

sign. Only some of these control variables are available and relevant for qualifying speeds;

most notably, coefficients on the number of riders are economically large and statistically

significant—more so than for race speed. Although most control coefficients are not statis-

tically significant, many of the controls contain statistically significant time trends of their

own and thus contribute to the estimated deterministic trends in speeds. Finally, as typically

found in time series trend models, the adjusted R2 statistics are uniformly high and thus

not surprising.

The Durbin-Watson statistics reveal some autocorrelation in the residuals, especially

for TFP. The Jarque-Bera test (of skewness and kurtosis matching a Normal distribution)

suggests the hypothesis of Normality can be rejected at conventional levels except for the

full-sample models of average speeds, but the chi-squared approximation is sensitive in small

samples like this (about 110 observations) and susceptible to high rates of Type I errors.

These results suggest deterministic time trend models may reflect serial-correlation and lack

of sufficient observations to draw firm conclusions. Correcting for these issues in estimation

or using more advanced diagnostics may generate different results. We explore the robustness

of the results to these alternative methods below.

Overall, the deterministic trend regression results offer a mixed view on the central re-

search question of the paper. Estimated coefficients on the full-sample time trend (T ) are

similar across all model specifications. This indicates that speeds and TFP share a common

trend in the long run. However, differences in the parameters on the subsample time trend

variables, the Di variables on Table 3, casts some doubt on that conclusion because the

speeds and TFP do not appear to clearly and consistently share common trends over the five

shorter subsamples. These conclusions are formally confirmed with hypothesis tests using

seeming unrelated regression estimation (SURE) of the speed and TFP variables that are

reported in Appendix B.2.

The estimates in Table 3 reflect a distinct temporal pattern in deterministic trend breaks

shown in Figure 5, which plots trend estimates (star symbols) and standards errors (hori-

zontal lines) for the full sample and subsamples. The first row depicts the clear equality of

the long-run trend coefficients. The remaining rows show the volatility and heterogeneity

of deterministic trend estimates over different time periods. The point estimates over time

show little consistency, even when accounting for sampling error. Instead, each subsample

contains a different relationship between the deterministic trends. Notably, average speeds
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Table 3: Deterministic Trend Model Estimates

Avg. Race Speed Avg. Qual Speed Total Factor Productivity
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

T 1.67*** 1.73 *** 1.70*** 1.67*** 1.71*** 1.6*** 1.55*** 1.54*** 1.71*** 1.71*** 1.71*** 1.71***
(0.22) (0.27) (0.27) (0.29) (0.11) (0.11) (0.11) (0.10) (0.16) (0.13) (0.12) (0.12)

D1 × T 1.63 1.79 1.70 1.88 1.63* 1.41 1.32 1.31 -0.05 -0.05 -0.05 -0.05
(1.04) (1.40) (1.47) (1.59) (0.80) (0.85) (0.85) (0.80) (1.21) (1.01) (0.95) (0.89)

D2 × T -0.48* -0.45 -0.40 -0.38 -0.43** -0.17 -0.14 -0.13 0.42 0.32 0.32* 0.32*
(0.23) (0.26) (0.27) (0.29) (0.13) (0.12) (0.12) (0.11) (0.22) (0.16) (0.16) (0.15)

D3 × T -1.45*** -1.41*** -1.37*** -0.50*** -0.44** -0.44** -0.69*** -0.70*** -0.70***
(0.30) (0.31) (0.33) (0.14) (0.14) (0.13) (0.19) (0.19) (0.18)

D4 × T -1.38** -1.3152** -1.48*** -1.48*** 0.01 0.01
(0.45) (0.00) (0.24) (0.22) (0.35) (0.33)

D5 × T -1.26** -1.32*** -0.92**
(0.39) (0.17) (0.30)

Prect -1.43 -5.56** -5.60*** -5.28**
(3.92) (1.91) (1.55) (1.68)

Inct -68.09 -172.98*** -157.45*** -175.145***
(37.92) (38.71) (38.12) (38.36)

Spreadt 2.79* 1.78 1.64 1.97
(1.28) (1.39) (1.44) (1.51)

Tempt -5.31 -4.92 -0.97 -2.35
(4.28) (4.37) (4.29) (4.43)

Expt -0.71 -2.34 -1.45 -1.41 -4.01** -2.02 -1.18 -1.10
(2.27) (2.63) (2.65) (2.70) (1.42) (1.35) (1.30) (1.18)

Fieldt -12.77* -10.44 -9.76 -9.83
(5.42) (7.00) (7.29) (7.84)

Ridert -1.50 -1.20 -1.32 -1.51 -4.03*** -4.11*** -4.14*** -4.14***
(1.52) (1.96) (2.04) (2.21) (1.03) (1.10) (1.10) (1.03)

Polet -0.21 -0.26 -0.15 0.31
(0.45) (0.50) (0.49) (0.49)

Adj. R2 0.98 0.97 0.97 0.96 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99
End Date 1969 1995 2006 2021 1969 1995 2006 2021 1969 1995 2006 2021
Durbin-Watson 1.67 1.85 2.14 1.97 1.97 1.44 1.47 1.46 0.75 0.75 0.75 0.75
Jarque-Bera 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.00
Note: ∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05. All coefficients are multiplied ×100.

clearly reflect the 1973 Productivity Slowdown but only TFP reflects the New Economy and

Dot Com productivity booms.
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Figure 5: Comparison of Subsample Deterministic Trends

In summary, these results approximately reflect the five predetermined, distinct trend

periods identified in the literature on labor productivity since World War II. However, this

approach is appropriate only under two strong assumptions: 1) TFP break points are known

a priori with certainty; and 2) if auto racing speeds have their own trend breaks, they occur

at exactly the same as those in TFP. The second condition could be true for deterministic

trends by random chance (highly unlikely) or if TFP and speeds share a common stochastic

trend. The latter is likely to appear in the data as if TFP and speeds have approximately

the same deterministic trends.

Appendix B.2 explores the implications of relaxing the strong a priori assumptions that

TFP and speed breakpoints are known and exogenously fixed. Allowing breakpoints for

both variables to be estimated endogenously provides modest additional evidence that auto

race speeds may share a common trend with TFP. When allowed to “speak freely,” the data

suggest roughly similar numbers and dates of trend breaks within the full sample. However,

the large magnitude of discrepancies in the number and date of breaks firmly suggests that

trends may be stochastic rather than deterministic.

7 Stochastic Trend Models

In the 1980s, macroeconomists questioned the validity of deterministic trend models for

aggregate variables, such as GDP and TFP, and began specifying models with stochastic
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trends stemming from a unit root(s).21 Variables that share a common stochastic trend

are co-integrated (CI) with dynamic error correction to the common trend, as in Engle and

Granger (1987). This section implements a contemporary vector error correction model

(VECM) that assumes co-integration between auto racing speed and TFP that is consistent

with a benchmark stochastic growth real business cycle (RBC) model of auto racing. While

a “deeper” theoretical model may well be needed, it is informative to first assess whether

speed and TFP share a common stochastic trend and error correction.22

7.1 A Motivating Theoretical Model

Consider the following partial-equilibrium stochastic growth real business cycle (RBC) model

(Kydland and Prescott, 1982; Long Jr and Plosser, 1983) applied to the auto racing industry

(subscript i).23 The industry Planner chooses consumption of auto racing, cit, and beginning-

of-period effective capital stock, kit = Kit/Lit, to solve

max
cit,ki,t+1

∞∑
t=0

βtU(cit) (4)

subject to

yit = Aitf(kit) (5)

yit = cit + ∆ki,t+1 − δkit (6)

Ait = γ0 + γiAt (7)

∆At = εt (8)

where β is the discount factor and 0 < δ < 1 is the depreciation rate. The representative

auto racing team produces speed as defined earlier, yit = Yit/Lit = P−1
it , where Yit is the

distance traveled by the representative race car and Lit = (1/τit) is the inverse of elapsed

time of the representative driver (τit).
24 Output of speed also includes industry TFP, Ait.

Based on the deterministic trend results linking yit and At in the long run, equation (7)

21See Nelson and Plosser (1982) and Durlauf and Phillips (1988).
22The central hypothesis in the literature is that technological progress somehow is manifest in the ongoing

improvements of athletic outcomes measured by speed (or time). Knowing the precise theoretical mechanism
by which technological progress diffuses into auto racing speeds is a crucial step in testing this hypothesis.
Although basic, the structural model is a conventional macroeconomic rationalization of a common stochastic
trend between speed and TFP.

23This subsection also is guided by the surveys of Fagerberg (1994) and Jorgenson (1991).
24Yit and Lit vary by event: the Indy race is 500 miles and Indy qualifier is 2.5 miles; the NHRA race is

.25 miles.
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specifies industry TFP as linear function of aggregate TFP, At, with expected γi ≈ 1/2.25

The unit root in aggregate TFP in equation (8) introduces a stochastic trend.

Although the simple benchmark model motivates the VECM estimation, two limitations

merit brief discussion. First, the full model requires a more complete specification of demand

for consumption of auto racing events. Most likely, consumers get utility from more than

just the pure speed of the race cars and value other elements of auto racing entertainment

more generally.26 TFP combines these distinct effects in a multiplicative catchall term, At.

Expanding the model to include them separately could be a potentially fruitful direction for

future research.

7.2 VECM Specification

Let Zk
t = [skt , at]

′ denote the bivariate vector motivated by the RBC model, now with k =

{r, q, d} where d is NHRA drag race. Lowercase variables continue to denote log levels. The

stochastic trend makes skt , at ∼ I(1). If speed and TFP share a common trend, they are

cointegrated:

skt = α + βat + εkt , (9)

where the cointegrating residual is εt ∼ I(0). The stationary first differences (growth rates)

are jointly determined by a VECM,

∆Zk
t = Kk + ΠkZ

k
t−1 +

L∑
i=l

Γk,i∆Z
k
t−l + ηkt (10)

for k = {r, q, d}. Equation (9) can be estimated in a separate first-step regression with OLS

or as the simultaneous system described in equation (10) using the more efficient method of

Johansen (1995).

The reduced-rank (r) matrix Πk = αβ′ contains the cointegrating vector(s) βk and ad-

justment speed(s) αk and defines the I(1) model H(r). The rank of Πk is the number of

25This assumption may be strong but is simple and tractable. See Foster et al. (2001), Foerster et al.
(2019), Dosi and Nelson (2010) for discussions of the relationship between aggregate versus industry-specific
technological change. See Basu et al. (2006) for an alternative approach to jointly modeling aggregate and
industry-specific productivity. Note, however, the consumption share of spectator sports was only 0.2 percent
in 2019. Thus, the share of auto racing (and especially one Indy 500 race) is a tiny fraction of GDP and Ait

probably has little or no aggregate implications.
26See Garćıa and Rodŕıguez (2002) for exposition on determinants of sports viewership, attendance and

demand for competitiveness of sports outcomes.
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cointegrating vectors, which the structural model predicts is r = 1. If so,

αkβ
′
kZ

k
t =

[
αsk

αa

]
[skt − βkat] = αεkt

and εkt is the CI error from equation (9). If the system exhibits dynamic correction to

a common trend, αi ≤ 0 for i = {s, a}; at least one adjustment speed must be strictly

negative.

7.3 Stochastic Trend Results

Standard pre-estimation tests are reported in Appendix B.5 and support the VECM specifi-

cation reasonably well. Tests for stationarity confirm that all variables are I(1) in log levels

and I(0) in growth rates at conventional levels of significance, as required. Information cri-

teria tests for the VAR representation of the model with annual data suggest an optimal

lag length of one in log levels (L = 1), hence no lagged growth rates. On balance, the data

reject the hypothesis of no cointegration between speeds and TFP, thus generally support

the existence of a single cointegrating vector.

The VECM coefficient estimates for all three models are correctly signed and mostly

statistically significant, as shown in Table 4. As expected, the cointegrating coefficients

(β̂k) are highly significant and range from .38− .53, consistent with the relative magnitudes

of the long-run growth rates of speeds and TFP essentially the same as the OLS estimates.

Estimated adjustment speeds (α̂k) reveal an interesting asymmetry—those for the auto races

are negative (as expected) and statistically significant but those for TFP are close to zero

and statistically insignificant. Thus, the levels of auto racing speeds adjust to the level of

TFP in the long run but not vice versa. Absolute values of the adjustment speeds coefficients

are economically large as well. Race adjustment speeds (Indy and NHRA) are about .4 per

year, but the qualifying adjustment speed is only one-fourth as large (.1).
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Table 4: VECM Model Coefficient Estimates (L = 0)

∆srt ∆at ∆sqt ∆at ∆sdt ∆at
K .004 .019*** .008** .018*** .000 .012***

(.006) (.003) (.003) (.004) (.003) (.002)
α −.360*** .082 −.099* .042 −.398*** .008

(.075) (.044) (.041) (.050) (.102) (.061)
βV ECM .428*** .534*** .380***

(.000) (.000)*** (.000)***
βOLS .427*** .556*** .404***

(.000) (.000)*** (.000)***
R2 .193 .219 .140 .196 .249 .545
D.W. 2.12 2.43 2.13
N 108 107 58
NOTE: ∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Figure 6 plots the estimated cointegrating errors from the VECMs. The race speeds

(Indy 500 and NHRA drag) fluctuate around zero relatively frequently with few persistent

deviations. Although Indy 500 qualifying speeds may be standard pre-estimation tests cointe-

grated with TFP, they exhibit two lengthy trend deviations in the 1940s-60s and 1980s-1990s.

Indy 500 race speeds exhibit similar but less persistent deviations, such as the 1960s-70s and

1990s-2010s. Persistent deviations likely reflect periods when the bivariate VECMs are not

capturing important factors affecting either the trends or adjustment to them. For examples,

rule changes affecting adoption of embodied technology or governing the conduct of actual

races and qualifying events may help explain these periods, as argued in Mantel Jr et al.

(1995).
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Figure 6: Estimated Cointegrating Errors from VECM Models

This section provides thought-provoking support for the stochastic trend model of auto

racing speeds and TFP. Consistent with a basic stochastic RBC growth model, there is one

common trend driven by a unit root in TFP. The asymmetric adjustment patterns in the

estimated VECMs (speeds adjust to TFP but not vice versa) also support the simplifing

model assumption that industry TFP (speeds) are linearly proportional to aggregate TFP

in the long run.

8 Summary and Conclusions

This paper uses long time series data on auto and foot racing productivity (LBD), an ac-

curately measured productivity proxy variable, to estimate long-run trends and compare

them with trends in aggregate U.S. productivity data, which are measured less precisely.

Trend changes in athletic performance over time exhibits two key features: 1) it shares a

common long-run trend (growth) with aggregate productivity, including a large, persistent

decline (trend break) around 1973—but not all subsequent breaks; and 2) trends in racing

outcomes, reflecting micro technology changes adjust to the stochastic trend in aggregate

productivity, which reflects macro technology. While the findings apply to a subset of a small

service-producing industry (spectator sports, NAICS 71121), the consistency and clarity of

the results offer thought-provoking implications.
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First, causation appears to run from macro technology growth to micro technology growth

in the long run. This result is not a foregone conclusion a priori. In principle, a compre-

hensive general equilibrium growth model with micro (industry) and macro technology that

includes all industries and perfect aggregation could alternatively predict causality running

from micro technology to the exactly aggregated macro technology or in both directions

simultaneously. Because aggregate TFP does not diffuse one-for-one into auto racing tech-

nology, other causal factors (idiosyncratic to auto racing or non-transferable from aggregate

TFP) likely exist. The results highlight the inadequacy of deterministic time-series models

of technological change. Relatively simple stochastic RBC models with unit root shocks

perform better.

Second, the strikingly synchronous decline in micro technology (racing LBD) and macro

technology (TFP or labor productivity) around 1973 raises new questions about the nature of

the Productivity Slowdown, one of the most important events in U.S. economic history that

has not yet been fully explained. Although LBD is only part of firm TFP, and productivity

in the spectator sports industry is only a small part of aggregate TFP, LBD in racing exhibits

the same large one-time trend slowdown as virtually all other measures of productivity. It

seems unlikely that some prominent explanations for the general Productivity Slowdown—

capital obsolescence, energy prices, information technology, and such—can explain much of

the slowdown in racing LBD. Another prominent explanation—education quality—might

play a role, but formal human capital accumulation (other than LBD) appears unlikely to

affect much of the output of speed in auto racing, much less human foot racing (especially

at short distances).

Third, the results affirm in a novel way the presence of substantial heterogeneity in tech-

nological change. Even within a narrowly defined industry, the driving forces of technology,

for example such the contribution of capital, differ between auto racing and foot racing.

Idiosyncratic factors apparently can be quite important in each type of firm or industry.

In auto racing, organization of the sport (rules, regulations, field size, etc.) influences the

growth of output and differs across events within the auto racing industry; for example

between Indy 500 and NHRA Winternationals. However, this is not a classical form of

TFP and thus requires distinctly separate modeling. This paper’s application represents a

unique setting with accurate measurement of productivity in a service-producing industry,

but measurement in other service industries is more complex.

Finally, new insights about technological change gained by combining micro and macro

data motivate additional research on measurement and structural modeling of LBD, pro-

ductivity, and economic growth. The paper’s insights stem from measuring these concepts

in a unique industry with a clear production process. Examining the relationship between

27



outcomes in this industry and TFP reveals gaps between standard theoretical modeling

approaches and actual industry outcomes.

The literature in sports economics focuses on tournament theory and closeness of com-

petition, one determinant of demand for spectator sports,. However, that approach does

not incorporate a role for supply-side factors like speed, an input to production of spectator

sport services influenced uniquely by LBD, technology, and productivity. From the macro

perspective, reliance on a portmanteau measure like TFP misses the rich complexity of tech-

nology and growth, which arise more naturally in micro applications. Deeper understanding

of these ideas and the micro-macro link may be a fruitful avenue for future research.
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A Auto Racing Data

A.1 Indianapolis 500 Data

The Indianapolis 500 is a world renowned car race. The organization IndyCar, an open-wheel

automobile race sanctioning body, operates the Indianapolis 500. The vehicles competing

in races sanctioned by IndyCar, called Indy cars, not surprisingly, have open wheels and a

single seat. As one of earliest and most prestigious car races in the world, it attracts top

teams and drivers from around the world. The race takes place annually at the Indianapolis

Motor Speedway (IMS) in Speedway, Indiana, a suburb of Indianapolis.

The race traditionally occurs on Memorial Day weekend. The track is a 2.5-mile oval-

shaped rounded rectangle with four turns of identical dimension, essentially the same track

that has been in use since the first race in 1911. The track surface changed once, from

brick in 1909-1961 to various forms of asphalt used since then.27 Vehicles must conform to

certain technical specifications pertaining to the engine, drive train, and body, and the race

is governed by a set of rules; both are determined by IndyCar each year. Thus, neither the

technology of Indy cars nor the race regulations is constant over time, and these changes affect

measurent of LBD. The constancy and regularity of the Indy 500 race is a key advantage to

it’s measurement of learning by doing (LBD).

A.1.1 Data Sources and Construction

Annual race–day data are available from the Indianapolis Motor Speedway’s historical data

archives beginning in 1911. These data include the average speed of the winning car, qual-

ifying results by driver by race for all drivers who qualified for the Indy 500, as well as

tertiary data on race conditions such as on–track collisions, caution flags, and driver-specific

statuses during each race. Finally, the Indianapolis Motor Speedway also publishes data on

the prize purse in dollars for all races. We collected the full series for both the Indy 500 race

(1911–2021) and its qualifying events (1912–2021).

Race–day and qualifying–event data are retrieved from the Indianapolis Motor Speedway

website under their “Indianapolis 500 Historical Stats” page. This page contains the data of

27See Indy Star article for the history of the raceway itself.
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interest utilized in our deterministic trend models and outlined in Table 2. Table 5 expands

upon race day variables obtained from the Indianapolis Motor Speed historical stats archives.

We specifically scrape an initial panel data set of all drivers by year from the “Race Results”

section of the “Indianapolis 500 Historical Stats” page from 1911 through 2021.

Table 5: Variable Definitions

Variable Definition Construction Archive Page

Inct Incidents Per Lap (Accidentst + Contactt)/Lapst Race Results
Spreadt Real Prize Spread Winnings1p,t −Winnings2p,t Race Results

Expt Average Field Experience
∑I

i=1 PreviousAppit
I

Race Results
Fieldt Field Size – Race Results
Polet Pole Position – Race Results

Going variable-by-variable, “Incidents Per Lap” captures in any given Indy 500 race in

year t how many drivers were involved in a collision or accident that rendered them unable

to complete the race. The Indianapolis Motor Speedway codes drivers with a “Status”

corresponding either to their average speed conditioned on finishing the race or with a string

of text indicating why driver i in year t failed to finish. Any “Status” denoted as “Accident”

or “Contact” are aggregated in each year t to form a measurement we call “Incidents.” We

normalize this variable to account for the reality that not all Indy 500 races finish with

200 laps completed, thus we adjust our “Incidents” variable by dividing it by the number

of “Laps” completed in the race in year t. This forms our “Incidents Per Lap” regression

variable, otherwise shortened to Inct.

Our price spread variable is also pulled from the “Race Results” page. Each driver i in

year t receives a prize purse (denoted as “Winnings” within the historical archives) based

on their “Finish” in the race. The race winner has a “Finish” variable coded as “1,” while

second place has a “Finish” coded as “2,” and so on. The difference between the “Winnings”

of the first place driver and second place driver forms our nominal prize spread variable. This

nominal variable is deflated using the CPI index to produce the prize spread in real terms.

Only after this prize spread is deflated is it logged for use in our econometric models as

Spreadt.

Expt encompasses the average experience of the field of drivers in year t. This time series

variable is created from the panel of all drivers, i . . . I in year t. In any given year t, each

driver i is assigned a variable called PreviousAppit, which counts the amount of previous

Indy 500 races each driver i in t has participated in prior to year t. The average of this

variable across all drivers, I, in year t returns to us our Expt measure used as a model

control.
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Finally, Fieldt, and Polet capture the field size (number of race participants), and pole

position of the winning car, respectively. This variables are trivial and require no additional

manipulation. Pole position is denoted as “Start” in the historical archives. The field size is

simply the count of all participants in the race in year t or the maximum value associated

with the “Start” variable in any given year.

The “Starting Grid” section of “Indianapolis 500 Historical Stats” page contains infor-

mation on the top qualifying speed recorded for each driver at each pole position. The

organization of the data within this section of the historical archives allows us to identify

qualifying speeds in order of magnitude for each driver i in year t. The average qualifying

speed used in our econometric models is simply the average of the variable “Qual Speed” in

the historical archives across all drivers in year t.

A.1.2 Other Race-Day Data

The Indianapolis Motor Speedway does not collect race-day weather conditions. To obtain

weather-related controls for each Indy 500 race in year t, we use data from the National

Oceanic and Atmospheric Administration (NOAA). More specifically, we use reports avail-

able in NOAA from reporting entities in the Indianapolis area for days the race is run. The

NOAA reporting entity we collect precipitation and temperature data from is the Anderson

Sewage Plant monitoring station, which contains reports dating back to 1911.28 Precipita-

tion levels are coded for the specific race day and measured in terms of inches. “Trace” levels

of precipitation are interpolated as 0.05 inches, which is the midpoint between zero and the

lowest reported levels of 0.10 inches.

A.1.3 Measures of Race Outcomes

Elapsed time variables constitute the main outcome variable from car races analyzed in the

literature. The literature focused mainly on two outcomes: 1) the elapsed time for the winner

of a race or 2) the time of new world records in events (the fastest time ever). Both are

maximum statistics that call for econometric specifications designed to fit data generated by

extreme-value distributions. In contrast, aggregate data like TFP represent average values

(or totals) across all agents that are typically specified to fit data generated by the normal

distribution, like OLS estimation of basic linear models. We constructed Indy 500 speeds

(race and qualifying) reflecting the average across all participating drivers in each year to

28The use of the Anderson Sewage Plant’s reports on NOAA specifically are due to the length of its data
relative to other reporting units in the Greater Indianapolis Area as well as the breadth of available data,
namely temperature, and precipitation.
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better match TFP and labor productivity.29

Two papers analyzed the frequency of record setting in athletic events as a proxy for

output. Munasinghe et al. (2001) analyzed the process describing record setting in track and

field competitions. They compared record setting in two types of track and field competitions:

competitions open to anyone in the world (world record times, Olympic record times, Milrose

Games record times) and competitions open to a restricted group of athletes (the US record

time and the New Jersey state track and field record times). Munasinghe et al. (2001)

argued that analyzing record breaks, and not actual performance offers advantages. In

terms of methods, these outcomes can be analyzed nonparametrically, avoiding any strong

assumptions about the underlying distribution of performance or changes in this distribution

over time. In terms of measurement, Munasinghe et al. (2001) argued that records better

reflect discrete changes by optimizing agents.

The results in Munasinghe et al. (2001) showed that the rate of technological progress,

as reflected in record setting, remained constant over the 1900 to 1992 period, and that

globalization did not affect the rate of change. The results also indicated that LBD played a

role in explaining the rate of change, since the rate of record setting times for less experienced

high school athletes fell below the rate in contests involving more experienced athletes in the

world level competitions.

Preston and Johnson (2015) analyzed the frequency of record setting in the context

of competitive swimming. This paper focused on the impact of innovations in swimsuit

technology. They analyzed variation in the number of records set in a calendar year over the

period 1969-2009. This variable contains many zeros (mean 1.1, min 0, max 5). The paper

found that the number of new swim suit innovations introduced in a year was correlated

with the number of swimming records set in that year. A new swimsuit innovation was

associated with an increase of about 1/3 of a record in that year. But this sort of “counting”

of innovations assumes homogeneity of the impact of each innovation on performance.

Extreme-value (winning car) and central-moment (field average) measures of Indy 500

auto race speeds have similar long-run trends but their levels converge over time, as shown in

Figure 7. The top row shows that the levels of winning and average speeds are similar overall,

but winning speeds were visibly higher until the second half of the sample. The bottom row

of shows the differences between winning and average speeds expressed as a percentage of

the average speed for comparability. Early in the sample, the winning speed is roughly

10 percent higher than the average speed for the race and qualifier. However, differences

29As noted in the main text of the paper, Indy 500 race and qualifying speeds are not exactly comparable.
Data for race speeds are available only for the drivers still running when the winner crosses the finish line,
which is often less than half the field and thus a truncated mean. In contrast, qualifying speeds are available
for essentially all drivers and thus represent a true mean.

37



between the statististics for both Indy events declined steadily and similarly, reaching close

to 0 percent by the end of the sample.

The dynamics of winning and average speeds shown in Figure 7 have important impli-

cations for inference about trends. Most importantly, their close correspondence means the

trends of the two speed statistics are always the same sign (qualitatively similar) and about

the same magnitude (quantitatively similar). If their difference remained about constant

at 10 percent, their trends would be statistically and economically the same. However, the

steady convergence of speed statistics induces a statistically significant difference, with aver-

age speed growing about 0.4 percentage point per year faster than winning speed in the full

sample. Moreover, the lower trends in winning speed are statistically significantly different

from the full-sample estimates of TFP trends in column (12) of Table 3, whereas the average

speed trends are not.30

30In unreported regressions, the estimated coefficients (in percent per year) on the time trend (T ) for
winning race and qualifying speeds are 1.29 and 1.14, respectively; both are significant at the 1 percent level.
These estimates are comparable to the analogous estimates for average speed of 1.67 and 1.54, respectively,
from columns (4) and (8) of Table 3. In unreported SUR model regressions, the null hypothesis of equality
between winning speed and TFP trend coefficients is rejected at less than the 1 percent level for both race
and qualifying events.
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Figure 7: Extreme and Central Moment Measures of Indy 500 Speeds

A.2 NHRA Drag Racing Data

The National Hot Rod Association (NHRA) Winternationals is one of the premier drag

racing contests held annually in February since the 1961 at the In-N-Out Burger Pomona

Dragstrip in Pomona, California. Drag racing differs dramatically from open wheel Indy

car racing. Drag racing involves highly specialized automobiles competing on a short (0.25

mile) straight track. The automobile technology affecting drag racing outcomes could differ

substantially and should showcase all technological progress in drag racing made from the

previous year. The Winternationals significance in drag racing is comparable to the Indy

500 for Indy car racing.

A.2.1 Data Sources and Construction

The National Hot Rod Association (NHRA) publishes Winternationals results for a little less

than two decades worth of observations, thus, to get the full time series for the entirety of the
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event, we turn towards identifying news excerpts and articles via ProQuest that document

the winner’s top speed and elapsed time. Despite this, we have three years in the sample

that require linear interpolation. The full sample extends from 1961–2021. The NHRA

maintains a database of annual results for the Winternationals event since 2015. These data

contain driver-specific outcomes that include the elapsed time and miles per hour of each

head-to-head race completed within the event’s rounds.

Unlike the Indianapolis 500, however, the Winternationals event contains more than one

contest. In drag racing, there numerous contests for different specializations and variations.

The Winternationals event contains contests for different classifications of drag racing vehi-

cles, including top fuel, funny car, pro stock, and top dragster categories. We only analyze

results from the top fuel category in the Winternationals. We do this as top fuel events are

the fastest sanctioned category of drag racing relative to other popular categories. As such,

technological progress and the fastest observable speeds within the sport are best observed

through this category. Throughout our study, when we refer to “elapsed times” or “top

speeds” from the NHRA Winternationals event, we are referring specifically to elapsed times

and top speeds from the top fuel race category.

In the data, head-to-head events for the Winternationals consist of four qualifying rounds,

coded as “Q1” through “Q3,” and four elimination rounds, coded as “E1,” through “E4.”

The results of the qualifying rounds inform the order of each head-to-head race in the elimi-

nation rounds. The final elimination round, “E4,” presents information on the race winner’s

outcomes, which we use for our study given the limited availability of complete data prior

to 2015 on the NHRA’s website.

To fill in the gaps from 1961 to 2015, digitized news articles referring to the event winner’s

time and speed in each year as well as archival footage retrieved on YouTube are used to

supplement the NHRA’s database, thereby giving us a “complete” history of Winternationals

winner’s elapsed times (in seconds) as well as speeds. For econometric analysis, we opt for

using elapsed times of the Winternationals winner in year t as our outcome variable of

interest. We utilize elapsed times over top speed, as pairwise winners in the elimination

rounds can often produce lower marginal top speeds compared to their competition, but

will hit their individual top speed sooner than their competitor resulting in a faster finish.

As such, elapsed time (and their inverse) serve as the best representation of technological

performance in this sport by comparison to top speeds on their own.
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A.3 Foot Race Data

For foot racing, winning 100M dash times and one-mile run times are from the annual World

Athletics Championships (WAC) occurring biannually since 1912 at essentially the same

distances, except for a change from 100 meters from yards. Unlike the Indy 500, however,

the WAC have been held at different geographic locations with different tracks at slightly

different times in the calendar year. For example, in 2019, the WAC was held in Doha, Qatar

from September 27 through October 6, while in 2023 it was held in Budapest, Hungary from

August 19 through August 27.

This geographic heterogeneity is further complicated by changes in the average eleva-

tions of each WAC venue. For instance, Doha’s average elevation is around 33 feet, while

Budapest’s elevation is on average around 430 feet. Changes in elevation are well-known

to have implications for athletic performances in aerobic sports, including short- and long-

distance running. Finally, both the timing of events, and the precision of measurement for

record breaks have varied over time. Up until 1977, performance times for 100M dash par-

ticipants were taken manually and rounded down to the nearest tenth of a second. Since

1977, however, times are taken “automatically” and measured out to the nearest hundredth

of a second.

B Robustness Checks

B.1 Deterministic Trend Models: Elapsed Times

This section reports teh estimation results underlying the three deterministic trends plotted

in Figure 1 of Section 4.1. Each trend line represents the fitted values of econometric models

defined in Equation 1:

pj = β0j + β1jfi(T ) + εjt

where pj is the log of elapsed times in four races, j = {r, d, h,m}: 1) Indy 500, r (average

time); 2) NHRA Winternationals, d (winning time); 3) 100M dash, h (world record time);

and 4) the mile run, m (world record time). Trend models are defined by functions of

a deterministic time dummy, T , indexed by, i = {1, 2, 3}: 1) f1(T ) = ln T (log-log); 2)

f2(T ) = T (semi-log); and 3) f3(T ) = −tanh(T ). All models are estimated with OLS.

Table 6 reports estimation results for the full sample. All coefficients are statistically

significant at the 1-percent level. As expected from visual inspection of the data, the β1

coefficients are all negative (elapsed times are declining, LBD in increasing). However, the

magnitudes of the coefficient estimates are not comparable across model specifications, due
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to the different transformations in fi(T ), or across races, due to heterogeneity in LBD across

events. Instead, the literature has focused on comparisons of model fit measured by R2.

In this regard, the traditional log-log and semi-log models each fit two of the events better

than the other, as judged by higher R2. Overall, however, the tanh models fit the data best

because it has consistently higher R2 than the other two models.

Table 6: Deterministic Trend Model Estimates: Elapsed Times, Full Sample

Semi-Log Models Log-Log Models tanh Models
pr pd ph pm pr pd ph pm pr pd ph pm

β0 172.9*** -551.4*** -583.3*** -265.3*** 2.276*** -2.144*** -5.766*** -2.537*** 1.945*** -4.633*** -5.829*** -2.636***
(3.0) (4.1) (0.1) (0.2) (0.057) (0.147) (0.004) (0.007) (0.044) (0.296) (0.002) (0.002)

β1 -0.7*** -1.3*** -0.1*** -0.1*** -0.253*** -1.008*** -0.031*** -0.051*** -0.880*** -2.482*** 0.155*** -0.180***
(0.000) (0.000) (0.000) (0.000) (0.015) (0.034) (0.001) (0.002) (0.043) (0.209) (0.019) (0.004)

β2 0.020*** 0.013*** -0.007*** 0.011***
(0.002) (0.002) (0.001) (0.001)

R2 0.69 0.92 0.96 0.95 0.74 0.94 0.87 0.88 0.80 0.94 0.96 0.98
Note: ∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05. All semi-log model coefficients are scaled by ×100.

Table 7 reports analogous estimation results for the two subsamples of data before and

since 1973. Most coefficients are statistically significant at the 1-percent level, but several are

not significantly different from zero. All statistically significant β1 coefficients are negative.

The subsample estimates in Figure 1 are from the semi-log model , whose β1 coefficients

are in percent (multiplied by 100). Again, the magnitudes of the coefficient estimates are

not comparable across model specifications. In all but one case (log-log model for the mile

race), the models fit (R2) the trends before 1973 better than since 1973, perhaps due to the

flattening of the trend. By the R2 standard, the tanh models do not fit the data better in

subsamples than the other two models.

Table 7: Deterministic Trend Model Estimates: Elapsed Times, Subsamples

Semi-Log Models
pr pd ph pm

β0 187.7*** 104.3*** -444.1*** -569.9*** -582.7*** -582.9*** -264.1*** -271.9***
(2.7) (1.15) (15.7) (4.9) (0.1) (0.5) (0.1) (0.4)

β1 -1.2*** 0.10 -3.1*** -1.1*** -0.1*** -0.1*** -0.2*** -0.1***
(0.1) (0.1) (0.3) (0.1) (0.000) (0.000) (0.000) (0.000)

R2 0.82 0.012 0.92 0.89 0.93 0.86 0.98 0.79
Split Pre-1973 Post-1973 Pre-1973 Post-1973 Pre-1973 Post-1973 Pre-1973 Post-1973

Log-Log Models
pr pd ph pm

β0 2.198*** 0.675 0.848 -2.569*** -5.788*** -5.572*** -2.577*** -2.528***
(0.062) (0.492) (0.625) (0.220) (0.004) (0.023) (0.008) (0.015)

β1 -0.219*** 0.099 -1.745*** -0.913*** -0.023*** -0.075*** -0.037*** -0.055***
(0.019) (0.110) (0.155) (0.049) (0.001) (0.005) (0.002) (0.003)

R2 0.71 0.004 0.92 0.88 0.86 0.82 0.80 0.85
Split Pre-1973 Post-1973 Pre-1973 Post-1973 Pre-1973 Post-1973 Pre-1973 Post-1973
Note: ∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05. All semi-log model coefficients are scaled by ×100.
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B.2 SURE Estimation and Hypothesis Tests

To formalize the general conclusions from Table 3, we jointly estimated the speed and TFP

models using seeming unrelated regression estimate (SURE) and tested the null hypothesis

of equality for each speed-TFP pair of trend coefficients in the long run and each subsample.

Table 8 reports the p-values for each pairwise test, with the column headings denoting

the two regression models from Table 3 whose coefficients were compared. The first four

columns compare the two speeds, the other columns compare the two speeds with TFP.

Not surprisingly, equality of the long-run speed and TFP coefficients (on T ) clearly is not

rejected. In the full-sample models (4,8), equality of race and qualifying speed trends cannot

be rejected for any period except the Productivity Slowdown (D3). However, equality of

each speed’s trend with the TFP trend is rejected or marginally accepted for most subsample

periods. Rejection of equality is more common for average speed (three of five coefficients)

than for qualifying speed (only D4, although two subsamples are rejected at the 12-13 percent

level).

Table 8: SURE Tests of Trend Coefficient Equality

Paired Outcomes srt , s
q
t srt , tfpt sqt , tfpt

Coefficient/Model (1), (9) (4), (12) (8), (12)

T 0.62 0.90 0.53
D1 × T 0.50 0.26 0.32
D2 × T 0.29 0.00 0.12
D3 × T 0.00 0.06 0.32
D4 × T 0.68 0.00 0.00
D5 × T 0.87 0.42 0.13

B.3 Endogenous Break Points

This subsection relaxes the strong assumptions underlying the deterministic trend models

in two ways. First, deterministic trends in auto racing speeds are estimated separately from

trends in TFP. This changes allows the data to reveal rather than conform to trends, and

helps determine whether the breaks in TFP and speeds align independently rather than

being forced to be the same. Second, the number of trends and dates of trend breaks are

determined endogenously for both TFP and speeds, rather than predetermined exogenously.

This change allows the most recent data to reveal the optimal number and location of trend

breaks for each variable without imposing any covariance structure.31

31Christiano (1992) first argued for endogenizing break points but acknowledged a tradeoff between preci-
sion of estimated break dates and gains in identification of the true number of actual breaks. See also Hansen
(2001) for more recent advances and arguments for endogenous breakpoint estimation, especially the ability
to distinguish estimated break dates from exogenous processes and random walks. However Byrne et al.
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Figure 8 portrays the results of endogenous breakpoint estimation with unknown number

and dates of breaks in the two speeds and TFP for two samples.32 The first column shows the

full sample (1911-2019) and the second column the sample ending before the Dot Com/New

Economy boom that temporarily increased productivity growth. Black symbols denote esti-

mated breakpoints, and color segments illustrate estimated trend ranges. Comparing graphs

within a column (across the three rows) reveals the extent to which estimated trend breaks

and ranges align across the three variables.

Figure 8: Endogenous Breakpoint Tests: Unknown Number of Breaks

Inspection of Figure 8 reveals that endogenously estimated breakpoints are not consistent

across variables or sample periods. Both speeds have a different number of estimated breaks

across samples, and wide differences in break years. TFP has five estimated breakpoints in

both samples, but the break years vary almost as widely across samples. Most importantly

(2016) stress the limitations to endogenizing both the number and location of breaks, highlighting the un-
certainty and imprecision of confidence intervals associated with endogenous breakpoint tests. Trend-break
tests also rely on the presence of unit roots (Byrne and Perman, 2007), detection of which has low power in
small samples. Addressing these limitations, Bai and Perron (2003) acknowledge that “true” simultaneity of
estimating the number and location of breaks is unrealistic, so breaks should be tested sequentially.

32We use the STATA xtbreak command.
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for the research question of this paper, the breaks in speeds do not align consistently with

TFP for either sample. In the full sample, qualifying speed also have five breaks that are

less than 10 years different from the TFP breaks, but race speed only has three breaks in

entirely different years. In the shorter sample, race speeds have five breaks that are roughly

aligned with TFP, but qualifying speeds only have four breaks in markedly different years.

Results are more consistent when the number of breaks (but not year) is fixed a priori, as

shown in Figure 9 for the full sample only. Here columns represent the number of endogenous

breaks (2-5). The estimated endogenous breakpoints and subsamples line up across the

three variables better as the number of predetermined breakpoints increases. With only two

breakpoints, the estimates range almost a half century (1927-1974 for the first and 1963-1991

for the second). With five breakpoints, however, the majority of estimated breakpoints are

within a decade of each other across all three variables. Although rarely an exact year match,

the five endogenous breakpoints align similarly across variables.

Figure 9: Endogenous Break Point Tests: Fixed Number of Breaks
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B.4 Robustness to Alternative Productivity Data

For robustness, this section reports estimates of semi-log deterministic trend models of pro-

ductivity (equation 3) using two alternative measures of productivity: 1) labor productivity

(Yt/Lt) from the Bank of France’s Long-Term Productivity Database (LTPD), the same

data source as TFP; and 2) multifactor productivity (At) from the U.S. Bureau of Labor

Statistics (BLS), which uses different data and methods to construct productivity.

Estimates of the deterministic trend models with labor productivity and multifactor

productivity are consistent with estimates for TFP, as shown in Table 9. The estimated

long-term trends (coefficients on T ) are all significant and not sensitive to the addition of

subsample trend breaks. As expected in theory, the long-run trend in labor productivity

(2.4 percent per year) is larger than for TFP (1.7 percent). The multifactor productivity

trend (1.8 percent) is essentially the same as for TFP, which suggests that the results are

not sensitive to methodology of data construction. The only significant subsample estimates

for either productivity variable are for post-1973 (D3) and post-New Economy Boom (D5);

the relative magnitudes also are quite similar to those for TFP. There is less residual serial

correlation in labor productivity (Durbin-Watson statistics) than in TFP or multifactor

productivity, which have very similar persistence. Normality of most residuals can be rejected

(Jarque-Bera statistics), same as with TFP (and auto racing speeds).

Table 9: Estimates of Deterministic Trend Models, Alternative Productivity

Labor Productivity (LTPD) Multifactor Productivity (BLS)

T 2.40*** 2.40*** 2.40*** 2.40*** 1.80*** 1.80*** 1.80*** 1.80***
(0.10) (0.10) (0.10) (0.10) (0.10) (0.10) (0.10) (0.10)

D1 × T 0.20 0.20 0.20 0.20
(1.00) (0.80) (0.80) (0.70)

D2 × T 0.30 0.20 0.20 0.20
(0.20) (0.10) (0.10) (0.10)

D3 × T -1.10*** -1.10*** -1.10*** -1.20*** -1.20*** -1.20***
(0.20) (0.20) (0.10) (0.10) (0.10) (0.10)

D4 × T -0.10 -0.10 -0.30 -0.30
(0.30) (0.30) (0.20) (0.20)

D5 × T -1.40*** -1.30***
(0.20) (0.10)

Adj. R2 0.99 0.99 0.99 0.96 0.97 0.99 0.99 0.99
Date Range 1911–1969 1911–1995 1911–2006 1911–2021 1948–1969 1948–1995 1948–2006 1948–2021
Durbin-Watson 0.75 1.49 1.49 1.48 0.78 0.79 0.80 0.88
Jarque-Bera 0.00 0.09 0.00 0.00 0.04 0.08 0.00 0.22

Note: ∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05. Labor productivity data is from the Long-Term Productivity Database (LTPD)
by the Bank of France (BoF), while multifactor productivity is from the U.S. Bureau of Labor Statistics (BLS).
Coefficients and standard errors are multiplied ×100.
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B.5 VECM Pre-Estimation Results

This section reports the results of three types of pre-estimation tests for the VECM speci-

fication. The first test is for non-stationarity in the model variables. The VECM requires

a unit root in log levels and stationary first differences (growth rates). Auto racing speeds

and TFP are clearly I(1) in levels and I(0) in growth rates, as shown by the augmented

Dickey-Fuller (ADF) tests in Table 10.

Table 10: ADF Tests for Stationarity

Levels Growth Rates
Variable T-Statistic p-Value T-Statistic p-Value

sr −1.96 .30 −13.79 < .001
sq −1.81 .37 −13.56 < .001
sd −1.63 .47 −10.94 < .001
a −1.92 .32 −10.76 < .001

Note: 5% critical values are −2.922 for sd and −2.889 for sr, sq , a

The second pre-estimation test is for the optimal lag length of the VECM specification.

Table 11 reports the results of three common information criterion tests applied to the three

model vectors for race speeds of up to four lagged levels of data (L = 4). The HQIC and SIC

(aka SBIC) tests are consistent estimators and uniformly show one lag (L = 1) as optimal

(hence zero lagged changes in the VECM). The traditional AIC test, which is not consistent

and tends to overestimate lag lengths especially in small samples like ours, also indicates an

optimal lag length of one (L = 1) for the NHRA drag race speeds but zero (L = 0) and four

(L = 4) for the Indy 500 race and qualifying speeds, respectively. Test statistics across all

models and lag lengths are quantitatively similar. On balance, one lag (L = 1) is most likely

the best model specification.
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Table 11: VECM Lag Length Selection Tests

Vector Lag Length (L) AIC HQIC SIC

Zr
t

L = 1 -6.60 -6.54* -6.45*
L = 2 -6.55 -6.44 -6.29
L = 3 -6.57 -6.43 -6.22
L = 4 -6.56 -6.37 -6.10

Zq
t

L = 1 -8.12 -8.10* -7.97*
L = 2 -8.12 -8.02 -7.86
L = 3 -8.11 -7.97 -7.76
L = 4 -8.15* -7.97 -7.97

Zd
t

L = 1 -11.09* -11.01* -10.87*
L = 2 -11.02 -10.88 -10.66
L = 3 -10.99 -10.80 -10.48
L = 4 -10.86 -10.60 -10.20

Note: * indicates the optimum lag length as per the STATA varsoc com-
mand. For the Zr

t vector, the AIC criteria prescribes an lag length of L = 0
(unreported).

The third pre-estimation test is for the number of cointegrating vectors in the model.

Table 12 reports the Johansen rank tests for cointegration.33 At the most likely optimal lag

length (L = 1), the null hypothesis of no cointegrating vector (r = 0) can be rejected at the

5-percent level or better for the Zr
t and Zd

t models. The absence of a cointegrating vector

(r = 0) for the Zq
t model cannot be rejected with the same high confidence but is close to

rejection at the 10 percent level (not reported). Nevertheless, the sequential test for r ≥ 1

can be rejected at the 5 percent level, so cointegration is less likely for the Zq
t model by this

measure. However, unreported tests of cointegrating residuals from two-step estimation of

equation (9) test I(0) at the 10 percent level (or better) for all three models, and the ADF

statistics are nearly identical to those from the VECM estimated residuals.

Table 12: Johansen Test Results for 1 ≤ L ≤ 4 Lags

Vector H0
Trace Statistics

L = 1 L = 2 L = 3 L = 4

Zr
t

r = 0 29.31** 23.10** 17.17* 15.59*
r = 1 4.40* 4.92* 5.76* 5.75*

Zq
t

r = 0 12.02 12.13 12.36 12.28
r = 1 5.02* 4.81* 4.95* 4.66*

Zd
t

r = 0 18.56* 12.76 14.97 11.63
r = 1 4.43* 2.54 1.65 1.20

Note: * and ** indicate rejection of the null hypothesis (H0) at levels of
5% (critical values of 15.41 for r = 0, and 3.76 for r = 1) and 1% (critical
values of 20.04 for r = 0, and 6.65 for r = 1), respectively.

33We use the vecrank command in STATA.
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Because estimation of error-correction frameworks like the Johansen rank tests can be

sensitive to model lag length (Kilian and Lütkepohl, 2017), Table 12 includes results for up to

four model lags for robustness. Overall, the results for the Zr
t and Zq

t models are qualitatively

similar to those for the optimal lag length (L = 1). However, the results for the Zd
t vectors

with L > 1 cannot reject the null hypotheses of either zero or one cointegrating vector, a

qualitatively different result that demonstrates sensitivity to lag length. On balance, the

standard cointegration tests provide reasonable support for a single cointegrating vector for

speed and TFP.
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