
Citation: Rashid, M.; Sonbul, O.S.;

Zia, M.Y.I.; Arif, M.; Sajid, A.;

Alotaibi, S.S. Throughput/Area-

Efficient Accelerator of Elliptic Curve

Point Multiplication over GF(2233) on

FPGA. Electronics 2023, 12, 3611.

https://doi.org/10.3390/

electronics12173611

Academic Editor: Grzegorz H.

Kasprowicz

Received: 10 July 2023

Revised: 19 August 2023

Accepted: 24 August 2023

Published: 26 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Throughput/Area-Efficient Accelerator of Elliptic Curve Point
Multiplication over GF(2233) on FPGA
Muhammad Rashid 1,* , Omar S. Sonbul 1 , Muhammad Yousuf Irfan Zia 2,3,* , Muhammad Arif 4 ,
Asher Sajid 5 and Saud S. Alotaibi 6

1 Computer Engineering Department, Umm Al Qura University, Makkah 21955, Saudi Arabia;
ossonbul@uqu.edu.sa

2 Department of Electrical Engineering, Ziauddin University, Karachi 74600, Pakistan
3 Telecommunications Engineering School, University of Málaga, 29010 Málaga, Spain
4 Computer Science Department, Umm Al Qura University, Makkah 21955, Saudi Arabia;

mahamid@uqu.edu.sa
5 Deanship of Scientific Research, Umm Al Qura University, Makkah 21955, Saudi Arabia;

malikasher267@gmail.com
6 Department of Information Systems, Umm Al Qura University, Makkah 21955, Saudi Arabia;

ssotaibi@uqu.edu.sa
* Correspondence: mfelahi@uqu.edu.sa (M.R.); yousuf.irfan@zu.edu.pk or yirfanzia@uma.es (M.Y.I.Z.)

Abstract: This paper presents a throughput/area-efficient hardware accelerator architecture for ellip-
tic curve point multiplication (ECPM) computation over GF(2233). The throughput of the proposed
accelerator design is optimized by reducing the total clock cycles using a bit-parallel Karatsuba mod-
ular multiplier. We employ two techniques to minimize the hardware resources: (i) a consolidated
arithmetic unit where we combine a single modular adder, multiplier, and square block instead of
having multiple modular operators, and (ii) an Itoh–Tsujii inversion algorithm by leveraging the
existing hardware resources of the multiplier and square units for multiplicative inverse computation.
An efficient finite-state-machine (FSM) controller is implemented to facilitate control functionalities.
To evaluate and compare the results of the proposed accelerator architecture against state-of-the-art
solutions, a figure-of-merit (FoM) metric in terms of throughput/area is defined. The implementation
results after post-place-and-route simulation are reported for reconfigurable field-programmable gate
array (FPGA) devices. Particular to Virtex-7 FPGA, the accelerator utilizes 3584 slices, needs 7208 clock
cycles, operates on a maximum frequency of 350 MHz, computes one ECPM operation in 20.59 µs,
and the calculated value of FoM is 13.54. Consequently, the results and comparisons reveal that our
accelerator suits applications that demand throughput and area-optimized ECPM implementations.

Keywords: hardware design; elliptic curve cryptography; point multiplication; crypto processor;
FPGA

1. Introduction

The rapid increase in applications related to information technology has dramatically
influenced the economy and culture in recent years [1]. This rapid increase has opened
several security doors, leading to new critical threats for the community. Amongst several
others, cryptography is one technique that offers secure information sharing on many elec-
tronic devices [2,3]. Therefore, two types of cryptographic algorithms exist: (i) symmetric
key and (ii) asymmetric key. Symmetric key cryptographic algorithms utilize a single key
for encryption and decryption. They are prevalent because of their high speed and ease
of use. However, they require the two parties to agree on a secret key beforehand, which
can be challenging. On the other hand, asymmetric cryptographic algorithms utilize two
different keys, i.e., a private key and a public key. The public key is widely known and used
to encrypt the original message. Similarly, the encrypted message can only be converted

Electronics 2023, 12, 3611. https://doi.org/10.3390/electronics12173611 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12173611
https://doi.org/10.3390/electronics12173611
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-5852-1296
https://orcid.org/0000-0003-1029-7568
https://orcid.org/0000-0003-4181-5997
https://orcid.org/0000-0003-0513-9872
https://orcid.org/0000-0002-4018-9827
https://orcid.org/0000-0003-1082-513X
https://doi.org/10.3390/electronics12173611
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12173611?type=check_update&version=3

Electronics 2023, 12, 3611 2 of 16

into the original message when the user has the corresponding private key. Consequently,
asymmetric algorithms are more beneficial for long-term security and are the area of interest
in this study.

Rivest–Shamir–Adleman (RSA) [4] and elliptic curve cryptography (ECC) [5] are
the most well-known methods in asymmetric cryptography. Comparatively, the ECC
requires shorter key lengths for equivalent security levels. Moreover, due to sits horter
key sizes, the additional benefits of ECC are its lower channel bandwidth, computation
time, and power consumption. Thus, this study utilized an ECC-based cryptoprocessor
for cryptographic applications. It is essential to mention that the security of ECC relies
on the discrete logarithm problem (DLP). It involves a model that comprises four layers
for implementation [3,6]. The uppermost layer is the protocol layer that defines the rules
for encryption and decryption, signature generation and verification for key authentica-
tion, and public key exchange. The essential operation in ECC is the elliptic curve point
multiplication (ECPM) performed in the third layer. It depends on the point addition (PA)
and double (PD) operations [3] performed in the second layer. Finally, modular arithmetic
operations such as addition, multiplication, square, and inversion are required to perform
these PA and PD computations.

In short, various settings are available to implement the (four) layer model of ECC. It
includes the selection between two different basis representations (polynomial and normal)
to represent the initial and final points. Furthermore, the choice between two coordinate
systems (affine and projective) is critical [3]. We preferred a polynomial basis in this
study, as it allows faster modular multiplications. On the other hand, a normal basis
is helpful when frequent squares need to be implemented [6]. Additionally, we have
selected a projective coordinate system as it concerns fewer inversion operations. Moreover,
ECC offers prime and binary fields for implementation. The prime fields are denoted by
GF(P) with P = 160, 191, 256, 384, and 521. Similarly, the binary fields are specified by
GF(2m) with m = 163, 192, 233, 409, and 571. Comparatively, the prime fields are suitable
for software implementations, while the binary fields are more practical for hardware
accelerations. As we dealt with hardware implementations, we selected binary fields for
our implementations.

In addition to several ECC settings, software and hardware are two implementation
platforms [2]. Comparatively, software platforms such as microcontrollers are more benefi-
cial for flexible implementations. However, they provide limited speed/throughput. On
the other hand, hardware platforms such as field-programmable gate arrays (FPGAs) and
application-specific integrated circuits (ASICs) offer higher throughput with little flexibility.
There is always a trade-off when selecting an appropriate implementation platform [7–9].
Thus, this study aimed to accelerate the ECPM operation of ECC on a FPGA platform for
applications with limited hardware resources and power consumption.

1.1. Related ECPM Hardware Accelerators and Limitations

The Weierstrass, binary Huff curves (BHCs), Hessian, and binary Edward curves
(BECs) are various ECC models. Therefore, the most related state-of-the-art hardware
accelerators are described in [6,10–19]. Reference [6] proposes a pipelined architecture
to accelerate ECPM operation by reducing the critical path delay. Moreover, PA and PD
instructions are scheduled to reduce the latency or computation time. The design achieves
a higher throughput/area ratio. It outperforms existing implementations, with synthesis
results showing up to 369, 357, and 337 MHz frequencies for key lengths of 163, 233, and
283 bits, respectively, on the Virtex-7 FPGA. The design of [10] considers parallelism and
Karatsuba–Offman–Algorithm (KOA) to optimize area, resulting in a highly flexible and fast
ECC coprocessor architecture. Using 28 nm process technology by Taiwan Semiconductor
Manufacturing Company (TSMC), the design of [10] obtains a circuit frequency 2.3 GHz,
and one ECPM operation requires 0.26 µs for computation.

The residue number system (RNS)-based coprocessor is presented in [11], where an
efficient design is obtained using a highly pipelined multimodulo arithmetic unit. The

Electronics 2023, 12, 3611 3 of 16

implementation results on an FPGA demonstrated its small size and comparable perfor-
mance to existing ECPM architectures. Also, the architecture allows flexible computation
of different key sizes without requiring design modifications. The design of [12] aims to
optimize hardware utilization and reduce power consumption by introducing a hybrid
finite field multiplier that combines Karatsuba and shift-and-add multiplication algorithms.
The multiplier performs one finite field multiplication in m/2 clock cycles for m-bit key
length. Implementation and testing using Xilinx Vivado (ML Edition - 2023) and ISE Design
Suite 14.7 design software showed promising results, indicating the suitability of the ECC
accelerator for low-power, resource-constrained embedded systems applications.

An ECPM processor was efficiently implemented [13] on an FPGA using a bottom-up
approach with three interdependent layers. Initially, they implemented an efficient digit-
serial versatile multiplier (DSVM) using the four-way overlap-free Karatsuba algorithm
(OFKA) and a modified radix-n interleaved multiplication technique. Secondly, they used
the Lopez–Dahab (LD) Montgomery PM algorithm to enhance signal control and avoid
data dependency in the ECPM design. Finally, the ECPM architecture was prototyped on
an FPGA, indicating the lowest area-delay product (ADP) compared with that of existing
structures for large field sizes.

The design of [14] implements the throughput/area-efficient ECPM architecture on ab
FPGA. It includes a segmented pipelined digit-serial multiplier to enhance speed while
minimizing area. Implementations on Virtex-4, Virtex-5, and Virtex-7 FPGAs achieved
throughput/slice figures of 19.65, 65.30, and 64.48. The design of [15] introduces an ECPM
architecture for generic irreducible polynomials using the modified Montgomery ladder
algorithm. Moreover, they optimized the finite field inversion operation through the mod-
ified Itoh–Tsujii algorithm, which reduces the computation time. The implementation
results showed that their architecture achieves significant area–time efficiency improve-
ments. Like [14], the design of [16] implements a throughput/area ECPM architecture by
proposing a two-stage pipelined design that reduces computation time through PA and PD
instructions rescheduling and efficient memory utilization. Also, they offered a design of a
41-bit polynomial multiplier for binary field polynomial multiplications. They reported
the implementation results on FPGA and ASIC platforms for NIST-recommended binary
elliptic curve fields.

The designs reported in [6,10–16] cover the Weierstrass ECC model over a GF(2m)
field. A Weierstrass ECC model over GF(P) with p = 256 was implemented in [17],
and the implementation results were demonstrated on a Xilinx Virtex-7 FPGA. The two-
stage and four-stage pipelined BHC models of ECC were implemented [18,19], and the
implementation results were reported on different Xilinx FPGA devices.

We must emphasize here that information security applications heavily rely on key
authentication and exchange operations. For example, key authentication is essential when
making payments online or in shopping centers. Similarly, key exchange is necessary
for secure network/client communications [20–22]. Therefore, an elliptic curve digital
signature algorithm (ECDSA) [23] is generally employed for key authentications. More-
over, the elliptic curve Diffie–Hellman (ECDH) [24] protocol is famous for key exchange
mechanisms. Implementing ECDSA and ECDH algorithms relies on ECC’s efficient com-
putation of ECPM operation. Therefore, several ECPM hardware accelerator designs,
including [6,10–16], are tailored for optimizing area and throughput at the same time. Nev-
ertheless, these accelerators lack discussion on the power consumption of their circuits,
which is critical for various constrained applications such as radio-frequency identification
(RFID) networks [25], wireless sensor networks (WSNs), and the Internet of things [26,27].

To summarize, multiple approaches have been implemented for performance im-
provement, e.g., the use of numerous modular operations in the data path of the processor
designs [10,28], pipelining in the data path or modular multipliers [18,19,29], instruction-
level parallelism [30], etc. These optimization strategies have resulted in overheads in
hardware resource utilization and are inappropriate for RFID and WSN applications. Even
if several hardware accelerators (in the literature) are optimized for area and throughput

Electronics 2023, 12, 3611 4 of 16

design parameters, including [6,10–16,18,19,28–30], there is always a possibility for further
improvements in hardware resources, computation time, and consumed power by utilizing
different design-level strategies.

1.2. Our Objective and Contributions

This study aimed to implement a hardware accelerator that simultaneously considers
throughput and area optimizations. To achieve our objective, the key contributions of this
study are as follows:

• We developed a throughput/area-efficient hardware accelerator architecture over
GF(2m) with m = 233 for ECPM computation.

• The throughput of the proposed accelerator architecture was optimized by reducing
the total clock cycles. The clock cycles were optimized by implementing a bit-parallel
Karatsuba modular multiplier.

• To optimize the area, instead of multiple modular operators, we incorporated a single
modular adder, multiplier, and square block in the arithmetic unit of the proposed
accelerator architecture. Moreover, we implemented an Itoh–Tsujii inversion algo-
rithm [31] using the existing hardware resources of the Karatsuba multiplier and
square units for the multiplicative inverse computations of ECC. These (two) strate-
gies effectively minimized hardware resource utilization.

• A dedicated finite-state-machine (FSM) was implemented for control functionalities.
• A figure-of-merit (FoM) was defined in terms of throughput/area to provide a realistic

comparison to state-of-the-art methods.

The remainder of this paper is structured as follows: Section 2 briefly overviews some
of the most relevant literature. Section 3 describes the proposed architecture for the ECPM
computation of ECC. The implementation results and comparison with state-of-the-art
method are shown in Section 4. Finally, Section 5 provides the main findings of this study.

2. ECPM Algorithm over GF(2m)

The most critical ECPM operation of ECC is the computation of d− 1 times the sum of
an initial point P, as shown in Equation (1):

Q = d× P = P + P + P · · ·+ P (1)

In Equation (1), P and Q represent the curve’s initial and resultant points, respectively,
whereas d is a scalar multiplier or private key. Different algorithms for ECPM are available
in the literature, including simple double and add, Montgomery .adder, and Lopez–Dahab,
among others. A detailed comparison of different ECPM algorithms on FPGA and ASIC
platforms can be found in [2]. Therefore, for our implementation, we opted for the Mont-
gomery algorithm (Algorithm 1), which is inherently resistant to simple power analysis
(SPA) attacks, which is a type of side channel attack to leak the secret during the power
consumption of the circuit. It is important to emphasize that our focus was on SPA attacks
at the algorithmic level, and we did not consider their realization on the design level.

The inputs to Algorithm 1 are the initial point P and a scalar multiplier d. A sequence
dn−1, . . . , d1, d0 determines the bits of the scalar multiplier in terms of zeros and ones. The
output from Algorithm 1 is the x and y coordinates of resultant point Q. The PA and PD
operations in Algorithm 1 show the number of instructions for point addition and double
computations, respectively.

Electronics 2023, 12, 3611 5 of 16

Algorithm 1: Montgomery PM algorithm [6].

Input: d = (dn−1, . . . , d1, d0) with dn−1 = 1, P = (xp, yp) ∈ GF(2m)
Output: Q = (xq, yq) = d · P

1 Set X1 = xp, Z1 = 1, Z2 = x2
p and X2 = x4

p + b
2 for (i from m-2 down to 0) do
3 if (ki = 1) then
4 Z1 = X2 × Z1
5 X1 = X1 × Z2
6 T1 = X1 + Z1
7 X1 = X1 × Z1

8 Z1 = T2
1

9 T1 = xp × Z1
10 X1 = X1 + T1

11 Z2 = Z2
2

12 T1 = Z2
2

13 T1 = b× T1

14 X2 = X2
2

15 Z2 = X2 × Z2

16 X2 = X2
2

17 X2 = X2 + T1

18 else
19 Z2 = X1 × Z2
20 X2 = X2 × Z1
21 T1 = X2 + Z2
22 X2 = X2 × Z2

23 Z2 = T1
1

24 T1 = xp × Z2
25 X2 = X2 + T1

26 Z1 = Z2
1

27 T1 = Z2
1

28 T1 = b× T1

29 X1 = X2
1

30 Z1 = X1 × Z1

31 X1 = X2
1

32 X1 = X1 + T1
33 end if

34 end for

35 xq = X1
Z1

,

36 yq = xp + (X1
Z1
)[(X1 + xp × Z1)(X2 + xp × Z2) + (x2

p + yp)(Z1 × Z2)]×
(xp × Z1 × Z2)

−1 + yp

3. Proposed ECPM Hardware Architecture

The proposed ECPM accelerator architecture to implement Algorithm 1 is shown in
Figure 1. It comprises a memory unit, a routing network, an arithmetic unit, and a control
block. In addition to these critical blocks, the controller unit takes eight inputs and produces
two outputs. The clk, rst, start, and din_ext are one-bit input signals. The key length is
shown with m bits. x and y are the coordinates of initial point P (i.e., xp, and yp). Similarly,
con-b represents the curve constant. Moreover, done is a one-bit output signal while doutf
is an m-bit output. The start signal specifies when the ECPM operation is needed to initiate
the computation. The din_ext signal represents the inputs (such as xp, yp, key, and con-b).
These inputs are needed to be loaded into the memory unit from outside. The done signal

Electronics 2023, 12, 3611 6 of 16

shows that the computation of the ECPM operation has finished. Finally, the doutf signal
loads the generated output from the memory unit to the chip output. We provide the
corresponding details of the various aforementioned units in the following sections.

Dual-Port
BlockRAM
(12×233)

dina

dinb

douta

doutb

addra addrb

wea web

sout

mout

key xp

m
u

x

adder

FSM-based Control Unit

yp con-b

aout

din_ext
m

u
x

dwback m
u

x
douta

donerstclk start din_ext doutf

Routing Network
Arithmetic Unit

c1

c2

c3

multiplier

squarer

Itoh-Tsujii Inversion

Figure 1. Proposed hardware architecture for ECPM computation.

3.1. Memory Unit

A dual-port block RAM (DP-BRAM) of size 12× 233 was utilized, as shown in Figure 1.
Here, 12 shows the number of addresses, and 233 indicates the number of bits stored on
each memory address. It is important to mention that the BRAMs for FPGA designs offer
a maximum 36-bit data width. Therefore, we generated an IP of a true DP-BRAM of
12× 233, equivalent to six 36-bit data width BRAMs and one BRAM with an 18-bit data
width. The total number of addresses was 12. Consequently, a 4-bit read/write address was
needed to scan all addresses in the instantiated BRAM. The memory unit kept the initial
point parameters (xp and yp) together with a curve constant (con-b). It also contained the
intermediate results during Algorithm 1 and stored the resultant outputs. The reason for
using dual-port memory is to read two operands for the arithmetic unit in one clock cycle.
Furthermore, it also allows the writing o two results (where needed) after the computation
in one clock cycle. The prefixes of the corresponding ports are ‘a’ and ‘b’. Similarly, ‘din’
and ‘dout’ represent the input and output data, respectively. The read/write addresses are
shown with ‘addr’. A one-bit write-enable signal is used for read and write operations. The
control unit generates the read/write addresses and the corresponding write-enable signal.

3.2. Routing Network

The orange dotted portion in Figure 1 shows the routing network, including two
2× 1 multiplexers. Each multiplexer contains an input of ‘din_ext’, which means the user
wants to load external data on the utilized memory. The external data include the proposed
ECPM processor architecture inputs and can be xp, yp, con-b, and key. Another input to the
first multiplexer is from the output of the adder unit to write back the result of modular
addition using an ‘aout’ signal, while the second input to the second multiplexer is from
the multiplexed output of square and multiplier circuits, as shown in Figure 1. Using these
two routing multiplexers in this way allows us to write two results in one clock cycle (if
needed), resulting in a decrease in overall clock cycle counts. The blue dashed lines in
Figure 1 are the control signals for the multiplexers, and generating these signals is the
control unit’s responsibility.

Electronics 2023, 12, 3611 7 of 16

3.3. Arithmetic Unit

The gray dotted area in Figure 1 specifies the arithmetic unit (AU). It incorporates an
adder, a square, and a multiplier circuit. Also, it contains a 3 × 1 multiplexer for selecting
an appropriate result for writing back on the DP-BRAM memory unit. We describe the
components of the AU in the following subsequent sections.

3.3.1. Adder and Square Units

Figure 2a shows the adder unit design, where an array of exclusive-OR gates is needed
to implement it—see the red highlighted portion. It takes two 233-bit inputs from the
DP-BRAM memory unit and generates a 233-bit accumulated result as the output. The
computational cost of the adder circuit is one clock cycle. The modular square over GF(2233)
is implemented via the placement of a constant bit ‘0’ after each input data bit, as shown
in Figure 2b. It takes one 233-bit input from a DP-BRAM memory unit and produces a
2× (233−1) bit result as an output. A modular reduction is essential to reduce the squaring
result into 233-bit. However, the modular reduction is described later in this paper. Similar
to the adder unit, the computational cost of the square unit, including a modular reduction,
is one clock cycle.

douta[0]

doutb[0]
aout[0]XOR

douta[1]

doutb[1]
aout[1]XOR

douta[2]

doutb[2]
aout[2]XOR

douta[232]

doutb[232]
aout[232]XOR

. . .

co
n

ca
te

n
at

e
to

 g
en

er
at

e
2

3
3

-b
it

 o
u

tp
u

t

aout

(a) Modular addition.

douta[0] sout[0]

douta[1] sout[2]

douta[2] sout[4]

. . .

sout[1]

sout[3]

1-bit constant - 0

1-bit constant - 0

1-bit constant - 0
sout[5]

. . .

co
n

ca
te

n
at

e
to

 g
en

er
at

e
2

×(
2

3
2

-1
)

b
it

douta[232] sout[462]

sout[463]
1-bit constant - 0 N
IS

T
p

o
ly

n
o

m
ia

l r
ed

u
ct

io
n

 a
lg

o
ri

th
m

sout

(b) Modular square.

Figure 2. The internal architectures of adder and square units over GF(2233) field.

3.3.2. Multiplier Unit

The discussion of the multiplier unit is divided into two parts. The first part describes
the selection of an appropriate modular multiplier. Subsequently, the second part describes
the architecture of the selected modular multiplier.

Selection of an appropriate modular multiplier: The modular multiplication operation
has significant importance for modular addition and square operations. There are several
state-of-the-art polynomial multiplication techniques. Amongst them, the most frequently
utilized methods are bit-serial, bit-parallel, digit-serial, and digit-parallel multipliers. Some
hardware architectures of these multiplication approaches are reviewed in [32]. Examples
of bit-serial multipliers are the schoolbook and booth. Similarly, Karatsuba and Toom–
Cook are examples of bit-parallel multipliers. The implementation results of some of these
methods are summarized in Figure 3.

Figure 3 shows that the schoolbook and booth multiplication help to obtain area-
optimized designs. However, the computation cost of the schoolbook is m clock cycles for
the input operands of m bits. For a similar operand size of m bits, the computation cost of
the booth multiplier is m/2 clock cycles. On the other hand, bit-parallel and digit-parallel
multipliers require one clock cycle with area overhead. Karatsuba and Toom–Cook are
examples of bit-parallel multipliers. We do not show the implementation of digit-parallel
multipliers in Figure 3. Digit-serial multiplication approaches take m/n clock cycles for one
modular multiplication. Here, m is the operand size, and n is the digit size. This method is
useful for applications requiring high speed and low-area/power utilizations. Two dotted
lines are shown in Figure 3. These lines represent an exponential increase in slices with an
exponential decrease in clock cycles. There is always a trade-off between various modular
multiplication approaches. Nevertheless, the Karatsuba multiplier needs lower FPGA slices

Electronics 2023, 12, 3611 8 of 16

than the Toom–Cook multipliers. Based on the aforementioned observation, a bit-parallel
Karatsuba modular multiplier was used in this study. It reduces the overall clock cycles for
ECPM computation.

Figure 3. FPGA slices and clock cycle requirements of bit-serial and bit-parallel polynomial multipli-
ers on Virtex-7 over GF(2233).

Architecture of our implemented Karatsuba modular multiplier: The Karatsuba multiplier
is an efficient way to multiply two polynomials, and it reduces the number of required
multiplication operations by splitting a large polynomial’s length into smaller ones. It
recursively applies the algorithm to each pair of smaller polynomials and combines the
results to obtain the final product. For our implemented Karatsuba multiplier over GF(2233),
each polynomial length is 233 bits, and the polynomial partitions are shown in Figure 4.
The gray horizontal bars in Figure 4 show the polynomial splits, and a numerical value
inside each circle shows the polynomial size. It is essential to note that it is common in
the literature for specific FPGA devices to split Karatsuba polynomials into four levels.
After that, the multiplication over smaller split polynomials can be computed using built-
in FPGA multipliers. This approach is not compatible with ASIC platforms. Moreover,
concerning [33], more polynomial splits result in increased requirement for hardware
resources. Therefore, we preferred three polynomial splits in our implemented Karatsuba
multiplier, as our implemented multiplier can be used for both FPGA and ASIC platforms.
The mathematical background of the Karatsuba multiplier is not presented here; however,
interested readers are referred to [12,33] for algorithmic details.

Instead of the polynomial split levels for the Karatsuba multiplier, the complete
multiplication architecture is shown in Figure 5, where each polynomial is split into two
parts, each of size 233/2, resulting in four sub-polynomials, indicated as ‘ah’, ‘al’, ‘bh’, and
‘bl’. The ‘ah’ and ‘al’ are the split polynomials incoming from the douta port of the DP-
BRAM memory. Similarly, ‘bh’ and ‘bl’ are the split polynomials incoming from the doutb
port of the instantiated memory. Moreover, Figure 5 shows the three inner multiplications
required to operate the Karatsuba steps. These include Mult1, Mult2, and Mult3. Mult1
multiplies ‘ah’ and ‘bh’, Mult2 multiplies ‘al’ and ‘bl’, and Mult3 multiplies the outputs
generated by adders (i.e., Add1 and Add2). Despite three inner multiplications, four
addition operations are also needed to execute Karatsuba multiplication; these include
Add1, Add2, Add3, and Add4. Add1 produces a sum of ‘ah’ and ‘al’. Similarly, Add2 adds
‘bh’ and ‘bl’. Add3 produces a sum of the multiplication results generated by multipliers
Mult1, Mult2, and Mult3 (as shown in Figure 5). Add4 produces a 2 × (233 − 1)-bit
output. In addition to addition and multiplication operations, two shift operations are also
needed, named Shift1 and Shift2. The corresponding Shift1 and Shift2 operators shift the
polynomials by m/2 and m bits toward the right, respectively, where m is 233.

Electronics 2023, 12, 3611 9 of 16

Karatsuba split levels (total=3)

58

29 29

58

29 29

58

29 29

59

29 30

116

233

117

Figure 4. Polynomial split levels incorporated into the implemented Karatsuba modular multiplier.

m/2-bits (ah) m/2-bits (al) m/2-bits (bh) m/2-bits (bl)

douta (m-bit) doutb (m-bit)

al (m/2-bit) bl (m/2-bit)

ah (m/2-bit) bh (m/2-bit)

ah + al (m/2+1 bit) bh + bl (m/2+1 bit)

2m-bit m-bit

2m-bit

Shift2 is m-bit shifter
Shift1 is m/2-bit shifter

NIST Polynomial Reduction Algorithms

2× m-1 bit

mout (m-bit)

Mult

1

Mult

2

Mult

3

Add

1

Add

2

Add

3

Add

4

Shift

1

Shift

2

Figure 5. Architecture of modular multiplier unit over GF(2233) field. Each circle denotes the
arithmetic and logical operators such as multiplier, adder, and shifter. A numerical value inside the
circle shows the number of operators, which means that three multipliers, four adders, and two
shifters are needed to implement the Karatsuba-based polynomial multiplications.

3.3.3. Polynomial Reduction

Figure 2b and Figure 5 show that the polynomial square and multiplier produce output
in 2× (m− 1) bits. Therefore, a modular reduction is mandated to generate a polynomial
of length m bits. For GF(2233), we implemented a polynomial reduction algorithm of 2.42
of [3], which requires shift and exclusive-(OR) operations for implementation.

3.3.4. Modular Inversion

Lines 35 and 36 of Algorithm 1 highlight the need for modular inversion computation
of ECPM implementation. Multiple approaches exist in the literature to compute modular
inversion over GF(2m). Consequently, the Itoh–Tsujii inversion algorithm is frequently

Electronics 2023, 12, 3611 10 of 16

adopted in the literature in ECPM architectures as it needs only squares and modular multi-
plications for computation. Therefore, an Itoh–Tsujii inversion algorithm was implemented
in this study.

In short, Itoh–Tsujii is an efficient method for computing the multiplicative inverse
of an element in a binary finite field. It works by expressing the inverse of the element as
a polynomial and then using a series of frequent squares and multiplications to compute
the inverse of the polynomial [31]. The Itoh–Tsujii method takes 232 squares for a specific
GF(2233) field, followed by 10 modular multiplications. Interested readers are referred
to [31] for complete algorithmic details.

Concerning hardware implementations, the Itoh–Tsujii algorithm can be implemented
in two ways: (i) square Itoh–Tsujii block and (ii) quad Itoh–Tsujii block. The square
Itoh–Tsujii version was implemented in [6], allowing one square computation in one clock
cycle. In the quad Itoh–Tsujii block, two repeated squares are needed to implement one
clock cycle; some hardware implementations are considered in [34,35]. In contrast, the
former is well suited for applications that demand area-reduced ECPM implementations
with throughput overhead. On the other hand, the latter is suitable for high-speed ECPM
computations with area overhead. There is always a trade-off. Hence, to achieve the goal of
this study, we implemented the square Itoh–Tsujii algorithm by reusing the existing hard-
ware resources of the square and (Karatsuba) multiplier units, shown in orange in Figure 1.
The hardware reutilizations allow us to minimize the hardware resources. Regarding the
computational cost of the square Itoh–Tsujii algorithm over GF(2233), 232 clock cycles are
needed for square computations and 10 cycles for multiplication computations.

3.4. Control Unit and Clock Cycles’ Calculation

We implemented an FSM-based dedicated control unit (CU) to execute the control
functionalities. The CU is responsible for generating signals that control the routing network
(RN) components and the read/write addresses, including the read/write-enable signals
for the DP-BRAM unit. The control signals are shown with red and blue dotted lines in
Figure 1. Therefore, to implement Algorithm 1, the details of the required clock cycles are
described below:

• Affine to projective conversions: The state 0 of the implemented CU is idle, which
indicates do not act. The CU generates the control signals for implementing affine to
the projective conversion of Algorithm 1 during states 1 to 6. Each state needs one
clock cycle for computation; hence, six cycles are needed to implement the affine to
projective conversion.

• Point multiplication computation: As shown in Algorithm 1, the ECPM computation
in projective coordinates requires 28 instructions: 14 for i f and 14 for else portions.
Therefore, to implement these 28 instructions depending on the value of di, 29 cycles
are required. Out of these 29 cycles, 28 are for implementing 28 instructions of the PA
and PD operations of Algorithm 1, while 1 additional clock cycle is necessary to check
the value of the di and m, where m is a counter that counts the number of points on the
specified ECC curve. For GF(2m) with m = 233, the value of m increases to 0 when
the initial value is m− 2. Thus, the PM in projective coordinate takes 29× (m− 2)
clock cycles for computation, where m is 233.

• Projective to affine conversion: The projective to affine conversion of the Montgomery
ECPM algorithm involves two finite field inversion (inv) computations, as shown in
Algorithm 1. We used a single-bit ‘inv1’ signal to monitor these inversion operations.
Initially, the ‘inv1’ signal is zero. It remains zero until the completion of the first
inversion computation. In the last state of the inversion operation, FSM checks the
value of ‘inv1’ signal: if it is 1, the FSM starts generating the control signals for
the remaining instructions; otherwise, the FSM sets the ‘inv1’ signal to 1 and starts
provoking the control signals to compute the second associated inversion operation.
Subsequently, one inversion takes m− 1 square operations, 10 modular multiplication
operations, and utilizes overall (m− 1) + 10 clock cycles. Similarly, 2× [(m− 1) + 10]

Electronics 2023, 12, 3611 11 of 16

cycles are needed for two inversion computations. In addition to inversion operations,
an additional 18 clock cycles are required to complete the remaining projective to
affine conversion instructions of Algorithm 1.

The total clock cycles (Tcycles) for ECPM computation is the sum of clock cycles for
an idle state (IDLE), affine to projective conversion (APC), PM executions in projective
coordinates (PMPC), and projective to affine conversions (PAC). Therefore, the total
number of cycles is 7208, which can be calculated using Equation (2):

Tcycles = IDLE + APC + PMPC + PAC (2)

4. Results and Comparison

Section 4.1 presents the implementation results of the proposed cryptographic proces-
sor design. Subsequently, Section 4.2 compares the achieved performance with state-of-the-
art designs.

4.1. Results

The proposed hardware architecture was implemented in Verilog HDL using the Vi-
vado IDE tool. The input parameters were selected from the NIST-suggested document [36].
Table 1 provides the implementation results up to the post-place-and-route level on Xilinx
devices. Column one shows the implementation devices (Virtex-6 and Virtex-7). Column
two provides the total consumed power. Columns three to five show the hardware uti-
lizations in slices, LUTs (look-up tables), and FFs (flip-flops). Similarly, we present the
clock cycle, operating frequency, and latency results in columns six to eight. The achieved
throughput is shown in column nine; and, finally, the last columns provide the through-
put/area ratio. The corresponding power and area values (directly) were obtained from
the Vivado tool. The frequency is a reciprocal of the provided time period. It is important
to note that there were no timing violations. This implies that the written RTL code for the
accelerator is synthesizable and routable. We already described the calculation of the total
clock cycles in Section 3.4. The latency determines the time required to perform one ECPM
computation. It was calculated using Equation (3). The throughput is the ratio of one over
latency and is calculated using Equation (4). Finally, the FoM is defined using Equation (5),
where we used slices as the area.

Latency (µs) =
Clock Cycles

Frequency (MHz)
(3)

Throughput (Kbps) =
1

Latency (µs)
=

106

Latency (s)
(4)

FoM =
Throughput (Kbps)

Area
=

Throughput (bps)
Slices

× 103 (5)

The total power consumption of a digital circuit depends on the sum of static and
dynamic powers. The static power determines leakage when the device is in idle mode. On
the other hand, the dynamic power is related to the switching activity (of the transistors).
Multiple approaches are available to measure the dynamic power consumption of the
circuit. Amongst others, after the place-and-route level, we report the power results of
our accelerator architecture directly from the synthesis tool, i.e., Vivado IDE. As shown
in column one in Table 1, the total consumed power of the proposed accelerator design is
0.921 and 0.813 W on Virtex-6 and Virtex-7 devices, respectively. It is noted that the design
consumes 11.5% less power on the modern (28 nm) Virtex-7 FPGA compared with that on
the older (40 nm) Virtex-6 FPGA. The higher power consumption is due to utilizing a bit-
parallel Karatsuba multiplier architecture in the proposed design. A detailed comparison
in [37] with different modular multipliers indicates that the bit-parallel multiplication
approaches, such as Karatsuba and Toom-Cook, utilize more power than digit-serial and bit-

Electronics 2023, 12, 3611 12 of 16

serial modular multiplication methods. Therefore, the power consumption of the hardware
design can be minimized by adopting other multiplication methods, i.e., schoolbook and
booth, with latency overhead.

Table 1. Implementation results after post-place-and-route level of our proposed hardware accelerator
over GF(2233) on Xilinx FPGA devices.

Target Device Power (W)
Area Utilizations Timing-Related Results

Thrpt (Kbps) FoM
Slices LUTs FFs Tcycles Freq (MHz) Lat (µs)

Virtex-6 0.921 4608 17057 2487 7208 310 23.25 43.01 9.33
Virtex-7 0.813 3584 13267 1934 7208 350 20.59 48.56 13.54

Freq, Lat, and Thrpt determine the operating frequency, computation time, and throughput. FoM is the defined
figure-of-merit in throughput/area ratio.

Instead of focusing on power consumption, we compared hardware resource utiliza-
tion (in slices, LUTs, and FFs) of the proposed design on Virtex-7 and Virtex-6 devices. The
results are presented in columns three to five in Table 1. The analysis revealed that the
proposed design occupies less area on Virtex-7 FPGA than Virtex-6 devices. It shows a
significant 23% decrease in slices, LUTs, and FFs when transitioning from Virtex-6 to Virtex-
7. This decrease was expected due to the use of different implementation technologies
for the two devices. Virtex-6 is built on 40 nm technology, while Virtex-7 is built on more
advanced 28 nm technology. Consequently, implementing the same design on different
technologies naturally leads to varied hardware costs. Let us break down the Virtex-7 slices
of our architecture into its components. The DP-BRAM, the routing network including the
control block, and the arithmetic unit consume 31%, 11%, and 58% of the total area. This
reveals that the arithmetic unit accounts for more than 50% of the total slices on the Virtex-7
implementation. In the arithmetic unit, the sum of slice utilization for adder and square
units is approximately 19%. Similarly, the proposed multiplier unit consumes 39% of the
slices. This area expense was expected because the proposed multiplier needs only one
clock cycle for implementation. With clock cycles overhead, using modular bit-serial and
digit-serial multipliers can optimize the hardware area.

Regarding the timing-related results, column six in Table 1 shows that the proposed
design needs 7208 cycles for one ECPM computation. Similar to the designs of [28,30], these
clock cycles can be reduced by employing multiple adder, multiplier, and square units with
area and power overheads. Another technique is the employment of a quad-block version
of the Itoh–Tsujii inversion algorithm, as used in [34,35]. Nevertheless, these optimization
approaches increase hardware resources and consumed power. The obtained frequency
values are 310 and 350 MHz on Virtex-6 and Virtex-7 FPGA devices, respectively. The
proposed accelerator architecture is 13% faster on a modern 28 nm Virtex-7 FPGA than a
40 nm Virtex-6 device. To further improve our architecture’s operating frequency with area
and power overheads, it is possible to utilize n-stage pipelining like the ECC accelerators
of [6,16,29]. Our architecture requires 23.25 and 20.59 µs for one ECPM computation on
Virtex-6 and Virtex-7 devices, respectively.

The higher throughput and FoM values ensure an efficient hardware design. The
proposed accelerator design can achieve a throughput of 43.01 and 48.56 Kbps on Virtex-6
and Virtex-7 devices. Equation (4) shows that the throughput is a ratio of one over latency.
Therefore, the latency values require optimization to maximize the throughput. Several
techniques exist (in the literature) to minimize latency. They include pipelining, instruction-
level, and design-level parallelism. These methods maximize hardware resources and
power values. Hence, we struggled with different design choices to obtain a balanced
hardware implementation of the ECPM operation. The calculated FoM values in our design
are 9.33 and 13.54 on Virtex-6 and Virtex-7 devices.

Electronics 2023, 12, 3611 13 of 16

4.2. Comparisons

We compared our results with those obtained using state-of-the-art accelerators in
Table 2. We implemented the proposed accelerator architecture on various FPGA devices
for a fair comparison. Column one in Table 2 shows the reference designs (Ref #). The
information on the implementation device is presented in column two. The power con-
sumption is shown in column three. Columns four to six present resource utilization in
slices, LUTs, and FFs. The total clock cycle (Tcycles), operating frequency (Freq), and latency
(Lat) values are presented in columns seven to nine. The throughput (Thpt) is shown
in column ten. Column eleven shows the defined FoM values. Finally, the last column
provides the details in terms of implemented ECC model and the supported key length.
Power, area, and operating frequency values were obtained directly from the Vivado tool.
Latency and throughput values were calculated using Equations (3) and (4), respectively.
An FoM value was defined using Equation (5) with slices as the area metric. Moreover, we
used the symbol ‘–’ in Table 2 for those where the reference design does not provide the
related information.

Table 2. Comparison with state-of-the-art designs of ECPM hardware accelerators.

Ref. # Device Power (mW)
Area Results Timing Results

Thrpt
(Kbps) FoM ECC Model/m

Slices LUTs FFs Tcycles
Freq

(MHz)
Lat
(µs)

[6] Virtex-7 – 5120 18,953 2764 5634 357 15.78 63.37 12.37 Weierstrass/GF(2233)
[12] † Artix-7 – 4001 – 2933 173,154 89 1945 0.51 0.12 Weierstrass/GF(2233)
[12] ‡ Artix-7 – 4467 – 3399 173,154 143 1217 0.82 0.18 Weierstrass/GF(2233)
[15] Virtex-5 – – 14,137 – 1476 158 9.20 108.69 7.68 Weierstrass/GF(2233)
[17] Virtex-7 – – 23.1k – – 105 80 12.50 0.53 Weierstrass/GF(P256)
[18] Virtex-7 3481 7123 – – 15,495 371 41.7 23.98 3.36 BHC/GF(2233)

Ours Virtex-5 0.617 4943 17,892 2756 7208 317 22.73 43.99 8.89 Weierstrass/GF(2233)
Virtex-7 0.813 3584 13267 1934 7208 350 20.59 48.56 13.54 Weierstrass/GF(2233)

A symbol # specifies only the number of hardware accelerators from the existing literature. Freq is the operating
frequency, Lat determines the computation time, Thrpt is the throughput, FoM is the defined figure of merit, [12] †

is a nonpipelined design, and [12] ‡ is a two-stage pipelined design. FoM value for [15] was calculated using LUTs
instead of slices; BHC shows the Binary Huff curve model of ECC.

Comparison to hardware accelerators of Weierstrass model over GF(2233) [6,12,15]: In com-
parison with [6], the proposed accelerator achieves a significant reduction in FPGA slices
by a ratio of 1.42 (5120 slices in [6] compared with 3584 slices with our method on a similar
Virtex-7 FPGA). This reduction is attributed to the implementation of pipelining in [6].
However, Table 2 demonstrates that the pipelined design of [6] requires fewer clock cycles,
and computation time, i.e., latency, than our accelerator. In addition, due to pipelining,
the operating frequency achieved in [6] is also higher than that of our accelerator. In other
words, the two-stage pipelining in [6] enables a shorter critical path, resulting in a higher
throughput of 63.37 Kbps, which is 1.30 times greater than our design’s throughput of
48.56 Kbps. Despite our design utilizing fewer hardware resources and the pipelined
design of [6] being faster, the overall FoM for our design is 1.09 times higher (ratio of 13.54
with 12.37). This is primarily due to our design’s lower hardware resource utilization,
contributing to its improved FoM. Moreover, with a small area overhead, different pipeline
stages can be incorporated into our design to accelerate the latency value, which also
improves the overall throughput of our design. In short, our design benefits applications
that demand throughput/area-optimized ECPM implementations.

In Table 2, the nonpipelined and pipelined ECC implementations of [12] on Artix-7
FPGA reveal that the pipelined architecture is more efficient in operating frequency and
computation time, i.e., latency, with area overhead. If we compare the FPGA slices of
the pipelined design of [12], our accelerator on Virtex-7 is 1.24 (ratio of 4467 with 3584)
times more area-efficient. Also, our accelerator architecture is more area-efficient than

Electronics 2023, 12, 3611 14 of 16

the nonpipelined implementation of [12]. This difference is attributed to the combined
use of Karatsuba and schoolbook methods in [12], whereas the discussed implementation
utilizes only the Karatsuba multiplier. Apart from the area comparison, our accelerator is
24.02 times faster in clock cycles than [12]. The ratio of 173154 to 7208 indicates the relative
difference in clock cycles required for modular polynomial multiplication. The improved
speed of our design is achieved by using the Karatsuba multiplier, which performs modular
polynomial multiplication in a single clock cycle. In contrast, the combined Karatsuba and
schoolbook methods in [12] require m/2 clock cycles for a singular modular multiplication.
Rather than the clock cycles, the proposed accelerator is also faster than nonpipelined and
pipelined designs of [12] in operating frequency and latency, as presented in Table 2. Our
design’s throughput and FoM values are much higher than those of the nonpipelined and
pipelined designs of [12].

On the Virtex-5 FPGA, the design of [15] presents an ECPM architecture for generic
irreducible polynomials using a modified Montgomery ladder algorithm. Compared with
our method, the design presented in [15] is more efficient regarding clock cycles, latency,
and throughput. The reason is that they optimized the finite field inversion operation
by employing the modified Itoh–Tsujii algorithm, which helps them to reduce the clock
cycles and computation time. In our method, we implemented the square version of the
Itoh–Tsujii algorithm using the existing hardware resources of the square and multiplier
units, optimizing the overall hardware area. The proposed accelerator utilizes fewer
hardware resources, specifically FPGA LUTs, and operates at a higher circuit frequency, as
shown in columns five and eight in Table 2. When considering the overall FoM value for
comparison, our accelerator is comparatively 1.15 times more efficient than [15].

Comparison with the accelerator of the Weierstrass model over GF(P) with P = 256 [17]: On
a comparable Virtex-7 FPGA, the hardware resources (in LUTs) presented in [17] exhibit a
1.73-fold increase (a ratio of 23,000 to 13,267) compared with our binary field accelerator.
This discrepancy arises from the larger supported key length of 256 in [17], whereas our
accelerator supports a 233-bit key length. However, our accelerator surpasses in terms of
operating frequency, latency, throughput, and FoM values, as shown in Table 2. It is worth
noting that the comparison of power consumption is not feasible as the reference design
lacks this information.

Comparison with a four-stage pipelined BHC accelerator over GF(2233) [18]: On a similar
Virtex-7 FPGA, the slices of [18] are 1.98 (ratio of 7123 with 3584) times higher than those of
the proposed hardware accelerator. Their design incorporates a BHC ECC model, while we
employ a Weierstrass model. A comprehensive comparison of various ECC models and
PM algorithms was conducted in [2]. It was shown in [2] that the BHC model requires more
mathematical instructions than the Weierstrass model. Therefore, the BHC model utilizes
more hardware resources. Due to the four-stage pipelining in [18], the circuit frequency
of 371 MHz is higher than our non-pipelined hardware accelerator (which is 350 MHz).
Overall, the proposed hardware accelerator outperforms in latency, throughput, and FoM
results, as shown in Table 2. Regarding the power, our nonpipelined hardware accelerator
consumes much lower power than the four-stage pipelined BHC accelerator of [18] which
consumes 3481 mW.

In summary, the implementation results of our proposed hardware accelerator on
Virtex-5, Virtex-6, and Virtex-7 FPGA devices are shown in Tables 1 and 2. These results
demonstrate the benefits of the accelerator for cryptographic applications requiring both
high throughput and efficient utilization of hardware resources. However, it is essential to
note that the proposed accelerator is not suitable for applications that demand high-speed
cryptographic computations, such as network servers.

5. Conclusions

This paper presented a throughput/area-efficient hardware accelerator design for
ECPM computation over GF(2233) on FPGA. Using a bit-parallel Karatsuba multiplier
results in reducing clock cycles which eventually helps to optimize throughput. Further-

Electronics 2023, 12, 3611 15 of 16

more, the use of a single modular adder, multiplier, and square block in the arithmetic
unit benefits optimizing hardware area. Moreover, the implementation of an Itoh–Tsujii
inversion algorithm by leveraging the existing hardware resources of the modular multi-
plier and square units to perform the multiplicative inverse also helps to reduce the area
cost of the design. Consequently, comparison with state-of-the-art methods reveals the
suitability of the optimized throughput/area hardware accelerator architecture for various
cryptographic applications that demand throughput and area-optimized implementations.

Author Contributions: Conceptualization, M.R., M.Y.I.Z. and M.A.; methodology, S.S.A. and M.R.;
software, A.S.; validation, M.R. and M.A.; formal analysis, O.S.S. and M.Y.I.Z.; investigation, M.R.
and M.A.; resources, O.S.S.; data curation, A.S.; writing—original draft preparation, A.S. and M.A.;
writing—review and editing, M.R. and M.Y.I.Z.; visualization, M.A.; supervision, M.R. All authors
have read and agreed to the published version of the manuscript.

Funding: The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura
University for supporting this study with grant code: 22UQU4320199DSR01.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare that they have no conflict of interest.

References
1. Simsim, M.T. Internet usage and user preferences in Saudi Arabia. J. King Saud Univ.—Eng. Sci. 2011, 23, 101–107. [CrossRef]
2. Rashid, M.; Imran, M.; Jafri, A.R.; Al-Somani, T.F. Flexible Architectures for Cryptographic Algorithms—A Systematic Literature

Review. J. Circuits Syst. Comput. 2019, 28, 1930003. [CrossRef]
3. Hankerson, D.; Menezes, A.J.; Vanstone, S. Guide to Elliptic Curve Cryptography. 2004; pp. 1–311. Available online:

https://link.springer.com/book/10.1007/b97644 (accessed on 27 June 27 2023).
4. Rivest, R.L.; Shamir, A.; Adleman, L. A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM

1978, 21, 120–126.
5. Miller, V.S. Use of Elliptic Curves in Cryptography. In Advances in Cryptology—CRYPTO ’85 Proceedings; Williams, H.C., Ed.;

Springer: Berlin/Heidelberg, Germany, 1986; pp. 417–426.
6. Imran, M.; Rashid, M.; Jafri, A.R.; Kashif, M. Throughput/area optimised pipelined architecture for elliptic curve crypto processor.

IET Comput. Digit. Tech. 2019, 13, 361–368. [CrossRef]
7. Rashid, M.; Sonbul, O.S.; Arif, M.; Qureshi, F.A.; Alotaibi, S.S.; Sinky, M.H. A Flexible Architecture for Cryptographic Applications:

ECC and PRESENT. Comput. Mater. Contin. 2023, 76, 1009–1025. [CrossRef]
8. Rashid, M.; Sonbul, O.S.; Zia, M.Y.I.; Kafi, N.; Sinky, M.H.; Arif, M. Large Field-Size Elliptic Curve Processor for Area-Constrained

Applications. Appl. Sci. 2023, 13, 1240 [CrossRef]
9. Arif, M.; Sonbul, O.S.; Rashid, M.; Murad, M.; Sinky, M.H. A Unified Point Multiplication Architecture of Weierstrass, Edward

and Huff Elliptic Curves on FPGA. Appl. Sci. 2023, 13, 4194 [CrossRef]
10. He, Z.; Chen, X. Design and implementation of high-speed configurable ECC co-processor. In Proceedings of the 2017 IEEE 12th

International Conference on ASIC (ASICON), Guiyang, China, 25–28 October 2017; pp. 734–737. [CrossRef]
11. Matutino, P.M.; Araújo, J.; Sousa, L.; Chaves, R. Pipelined FPGA coprocessor for elliptic curve cryptography based on residue

number system. In Proceedings of the 2017 International Conference on Embedded Computer Systems: Architectures, Modeling,
and Simulation (SAMOS), Pythagorion, Greece, 17–20 July 2017; pp. 261–268. [CrossRef]

12. Kashif, M.; Cicek, I.; Imran, M. A Hardware Efficient Elliptic Curve Accelerator for FPGA Based Cryptographic Applications. In
Proceedings of the 2019 11th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 28–30
November 2019; pp. 362–366. [CrossRef]

13. Zeghid, M.; Ahmed, H.Y.; Chehri, A.; Sghaier, A. Speed/Area-Efficient ECC Processor Implementation Over GF(2m) on FPGA
via Novel Algorithm-Architecture Co-Design. IEEE Trans. Very Large Scale Integr. Syst. 2023, 31, 1192–1203. [CrossRef]

14. Khan, Z.U.A.; Benaissa, M. Throughput/Area-efficient ECC Processor Using Montgomery Point Multiplication on FPGA. IEEE
Trans. Circuits Syst. II Express Briefs 2015, 62, 1078–1082. [CrossRef]

15. Nadikuda, P.K.G.; Boppana, L. An area-time efficient point-multiplication architecture for ECC over GF(2m) using polynomial
basis. Microprocess. Microsyst. 2022, 91, 104525. [CrossRef]

16. Imran, M.; Pagliarini, S.; Rashid, M. An Area Aware Accelerator for Elliptic Curve Point Multiplication. In Proceedings of the
2020 27th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Scotland, UK, 23–25 November 2020;
pp. 1–4. [CrossRef]

http://doi.org/10.1016/j.jksues.2011.03.006
http://dx.doi.org/10.1142/S0218126619300034
https://link.springer.com/book/10.1007/b97644
http://dx.doi.org/10.1049/iet-cdt.2018.5056
http://dx.doi.org/10.32604/cmc.2023.039901
http://dx.doi.org/10.3390/app13031240
http://dx.doi.org/10.3390/app13074194
http://dx.doi.org/10.1109/ASICON.2017.8252580
http://dx.doi.org/10.1109/SAMOS.2017.8344638
http://dx.doi.org/10.23919/ELECO47770.2019.8990437
http://dx.doi.org/10.1109/TVLSI.2023.3268999
http://dx.doi.org/10.1109/TCSII.2015.2455992
http://dx.doi.org/10.1016/j.micpro.2022.104525
http://dx.doi.org/10.1109/ICECS49266.2020.9294908

Electronics 2023, 12, 3611 16 of 16

17. Wang, D.; Lin, Y.; Hu, J.; Zhang, C.; Zhong, Q. FPGA Implementation for Elliptic Curve Cryptography Algorithm and Circuit
with High Efficiency and Low Delay for IoT Applications. Micromachines 2023, 14, 1037. [CrossRef]

18. Rashid, M.; Imran, M.; Kashif, M.; Sajid, A. An Optimized Architecture for Binary Huff Curves with Improved Security. IEEE
Access 2021, 9, 88498–88511. [CrossRef]

19. Jafri, A.R.; Ul Islam, M.N.; Imran, M.; Rashid, M. Towards an optimized architecture for unified binary huff curves. J. Circuits
Syst. Comput. 2017, 26, 1750178. [CrossRef]

20. Bedoui, M.; Bouallegue, B.; Ahmed, A.M.; Hamdi, B.; Machhout, M.; Mahmoud; Khattab, M. A secure hardware implementation
for elliptic curve digital signature algorithm. Comput. Syst. Sci. Eng. 2023, 44, 2177–2193. [CrossRef]

21. Trujillo-Olaya, V.; Velasco-Medina, J. Hardware implementation of elliptic curve digital signature algorithm over GF(2409) using
sha-3. Int. J. Mach. Learn. Comput. 2022, 12, 73–78. [CrossRef]

22. Khan, S.Z.; Jamal, S.S.; Sajid, A.; Rashid, M. FPGA implementation of elliptic-curve diffie hellman protocol. Comput. Mater.
Contin. 2022, 73, 1879–1894. [CrossRef]

23. FIPS. Digital Signature Standard—Publication 186-5 (Supersedes FIPS 186-4). 2023. Available online: https://doi.org/10.6028/
NIST.FIPS.186-5 (accessed on 29 June 2023).

24. Barker, E.; Chen, L.; Roginsky, A.; Smid, M. Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm
Cryptography. 2023. NIST Special Publication 800-56A (Revision 2). Available online: http://dx.doi.org/10.6028/NIST.SP.800-56
Ar2 (accessed on 16 June 2023).

25. Singh, A.; Gutub, A.; Nayyar, A.; Khan, M.K. Redefining food safety traceability system through blockchain: Findings, challenges
and open issues. Multimed. Tools Appl. 2023, 82, 21243–21277 [CrossRef]

26. Almotairi, K.H. Application of internet of things in healthcare domain. J. Umm Al-Qura Univ. Eng. Archit. 2023, 14, 1–12
[CrossRef]

27. Khan, F.; Jan, M.A.; Alturki, R.; Alshehri, M.D.; Shah, S.T.; Rehman, A.U. A Secure Ensemble Learning-Based Fog-Cloud
Approach for Cyberattack Detection in IoMT. IEEE Trans. Ind. Inform. 2023, 19, 10125–10132. [CrossRef]

28. Khan, Z.U.A.; Benaissa, M. High-Speed and Low-Latency ECC Processor Implementation Over GF(2m) on FPGA. IEEE Trans.
Very Large Scale Integr. Syst. 2017, 25, 165–176. [CrossRef]

29. Al-Khaleel, O.; Papachristou, C.; Wolff, F.; Pekmestzi, K. An Elliptic Curve Cryptosystem Design Based on FPGA Pipeline Folding.
In Proceedings of the 13th IEEE International On-Line Testing Symposium (IOLTS 2007), Crete, Greece, 8–11 July 2007; pp. 71–78.
[CrossRef]

30. Lai, J.Y.; Hung, T.Y.; Yang, K.H.; Huang, C.T. High-performance architecture for Elliptic Curve Cryptography over binary field. In
Proceedings of the 2010 IEEE International Symposium on Circuits and Systems, Paris, France, 30 May–2 June 2010; pp. 3933–3936.
[CrossRef]

31. Itoh, T.; Tsujii, S. A fast algorithm for computing multiplicative inverses in GF(2m) using normal bases. Inf. Comput. 1988,
78, 171–177. [CrossRef]

32. Imran, M.; Rashid, M. Architectural review of polynomial bases finite field multipliers over GF(2m). In Proceedings of the 2017
International Conference on Communication, Computing and Digital Systems (C-CODE), Islamabad, Pakistan, 8–9 March 2017;
pp. 331–336. [CrossRef]

33. Kang, B.; Cho, H. FlexKA: A Flexible Karatsuba Multiplier Hardware Architecture for Variable-Sized Large Integers. IEEE Access
2023, 11, 55212–55222. [CrossRef]

34. Kalaiarasi, M.; Venkatasubramani, V.R.; Rajaram, S. A Parallel Quad Itoh-Tsujii Multiplicative Inversion Algorithm for FPGA
Platforms. In Proceedings of the 2020 Third ISEA Conference on Security and Privacy (ISEA-ISAP), Guwahati, India, 27
February–1 March 2020; pp. 31–35. [CrossRef]

35. Kalaiarasi, M.; Venkatasubramani, V.; Manikandan, M.; Rajaram, S. High performance HITA based Binary Edward Curve Crypto
processor for FPGA platforms. J. Parallel Distrib. Comput. 2023, 178, 56–68. [CrossRef]

36. NIST. Recommended Elliptic Curves for Federal Government Use (1999). Available online: https://csrc.nist.gov/csrc/media/
publications/fips/186/2/archive/2000-01-27/documents/fips186-2.pdf (accessed on 22 May 2023).

37. Imran, M.; Abideen, Z.U.; Pagliarini, S. A Versatile and Flexible Multiplier Generator for Large Integer Polynomials. J. Hardw.
Syst. Secur. 2023. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/mi14051037
http://dx.doi.org/10.1109/ACCESS.2021.3090216
http://dx.doi.org/10.1142/S021812661750178X
http://dx.doi.org/10.32604/csse.2023.026516
http://dx.doi.org/10.18178/ijmlc.2022.12.3.1082
http://dx.doi.org/10.32604/cmc.2022.028152
https://doi.org/10.6028/NIST.FIPS.186-5
https://doi.org/10.6028/NIST.FIPS.186-5
http://dx.doi.org/10.6028/NIST.SP.800-56Ar2
http://dx.doi.org/10.6028/NIST.SP.800-56Ar2
http://dx.doi.org/10.1007/s11042-022-14006-4
http://dx.doi.org/10.1007/s43995-022-00008-8
http://dx.doi.org/10.1109/TII.2022.3231424
http://dx.doi.org/10.1109/TVLSI.2016.2574620
http://dx.doi.org/10.1109/IOLTS.2007.15
http://dx.doi.org/10.1109/ISCAS.2010.5537670
http://dx.doi.org/10.1016/0890-5401(88)90024-7
http://dx.doi.org/10.1109/C-CODE.2017.7918952
http://dx.doi.org/10.1109/ACCESS.2023.3282646
http://dx.doi.org/10.1109/ISEA-ISAP49340.2020.234996
http://dx.doi.org/10.1016/j.jpdc.2023.03.008
https://csrc.nist.gov/csrc/media/publications/fips/186/2/archive/2000-01-27/documents/fips186-2.pdf
https://csrc.nist.gov/csrc/media/publications/fips/186/2/archive/2000-01-27/documents/fips186-2.pdf
http://dx.doi.org/10.1007/s41635-023-00134-2

	Introduction
	Related ECPM Hardware Accelerators and Limitations
	Our Objective and Contributions

	ECPM Algorithm over GF(2m)
	Proposed ECPM Hardware Architecture
	Memory Unit
	Routing Network
	Arithmetic Unit
	Adder and Square Units
	Multiplier Unit
	Polynomial Reduction
	Modular Inversion

	Control Unit and Clock Cycles' Calculation

	Results and Comparison
	Results
	Comparisons

	Conclusions
	References

