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Abstract—Social conflicts appearing in the media are increas-
ing public awareness about security issues, resulting in a higher
demand of more exhaustive environment monitoring methods.
Automatic video surveillance systems are a powerful assistance to
public and private security agents. Since the arrival of deep learn-
ing, object detection and classification systems have experienced
a large improvement in both accuracy and versatility. However,
deep learning-based object detection and classification systems
often require expensive GPU-based hardware to work properly.
This paper presents a novel deep learning-based foreground
anomalous object detection system for video streams supplied by
panoramic cameras, specially designed to build power efficient
video surveillance systems. The system optimises the process
of searching for anomalous objects through a new potential
detection generator managed by three different multivariant
homoscedastic distributions. Experimental results obtained after
its deployment in a Jetson TX2 board attest the good performance
of the system, postulating it as a solvent approach to power saving
video surveillance systems.

Index Terms—Deep learning, video surveillance, panoramic
cameras, power saving

I. INTRODUCTION

Impelled by the abundance of social conflicts appearing

in the media, citizens of modern societies demand higher

security rates requiring effective security systems. One of

the multiple uses of computer vision is the construction of

automatic video surveillance systems. The different challenges

faced by the researchers when building these kinds of systems

are addressed in [1], where the author provides a survey on

vision-based human action recognition. W 4 system detailed

in [2] presents a real-time video surveillance system capa-

ble of performing the detection and tracking of people in

video streams coming from certain cameras placed in outdoor

environments. The system employs a combination of shape

analysis and tracking to locate people and the different parts of

their anatomy in order to create models of people’s appearance

so their activities can be monitored through different types of

interactions such as occlusions. These video surveillance sys-

tems usually are equipped with person identification modules

such as the one presented in [3], where the authors propose

a person re-identification system based on an effective feature

representation called Local Maximal Occurrence (LOMO),

and a subspace and metric learning method called Cross-

view Quadratic Discriminant Analysis (XQDA). Along the

same line goes the work illustrated in [4], describing a face

identification system using eigenface recognisers and Intel’s

Haar cascades, intended to monitor the identity of the people

appearing in video streams filmed by cameras installed at the

entry points of certain facilities.

Sometimes, people are not the only objective of a video

surveillance system. In fact, sometimes is important that video

surveillance systems are prepared to alert from the presence

of certain object in the scene that is under vigilance. As it

is reflected in the works referred to above, in order to have a

correct understanding of the scene that is being monitored, the

system must be able to identify the different objects swarming

in the scene, and for that, a background modelling algorithm

is needed. A good example of these algorithms can be found

in [5] and [6]. These algorithms continued their evolution until

nowadays as it is attested in [7], where deep learning-based

background subtraction model based is presented for flexible

foreground segmentation.

Deep learning is a machine learning technique, which stands

out in terms of accuracy and performance. This technique uses

Deep Neural Networks (DNN) to learn a series of features

from the input data, and is specially useful in the field of

computer vision, where it has several applications, as it is

illustrated in the work presented in [8]. In this work we can

find a review of various recent uses of convolutional neural

networks (CNNs) to solve inverse problems in imaging such

as deconvolution, denoising, medical image reconstruction and

superresolution. For instance, in [9], the authors present a

deep neural network-based denoising filter and a practical

method of deep neural network training with noisy patterns

to improve its performance against noisy test patterns. All of

these techniques have proven their effectiveness in computer

vision-based automated video surveillance systems. A good

example of can be found in [10] and [11], where several types

of deep convolutional networks are proposed to be used in the

construction of crack detection systems on asphalt pavement

surfaces. [12] Also presents a civil engineering deep learning-

based inspection system. In this case, the system proposes



a post-disaster inspection of the reinforced concrete bridge

structures.

The choice of an appropriate camera is critical in the design

of any video surveillance system at this device will be in

charge of supplying the image input of the cited system.

Pan-tilt-zoom (PTZ) cameras are powerful, yet affordable

devices with a high acceptance in the construction of video

surveillance systems because of their versatility and motion

capabilities. For example, in [13] the authors present the de-

velopment of a novel salient motion detection method mainly

for non-stationary videos captured by PTZ cameras. In [14] we

can find a background subtraction algorithm designed for PTZ

cameras that works without the need for explicitly registering

images. Video surveillance systems often operate using PTZ

camera networks as it is documented in [15] and [16].

Due to their restricted field of view, PTZ cameras present

some limitations that can be overcome by using 360◦

panoramic image capture devices. These devices supply dif-

ferent sorts of 360◦ spherical images offering the possibility

of covering most of the monitored area on each video frame

as it is described in works like [17] and [18]. This sort of

systems have been in continuous improvement by scientists

and engineers, reaching high performance levels in object

detection and tracking as it is described in [19].

Finally, computer vision in general and more specifically

deep learning-based video surveillance systems, usually have

heavy computational requirements that in many occasions only

can be supplied by expensive, high power consuming devices,

severely limiting their autonomy and versatility. Thus the

necessity for low power automatic video surveillance systems

with an acceptable performance. Along this line, some works

have been developed in the last years. In [20] the authors de-

scribe the design of a computationally efficient and low power

demanding system for detecting moving objects which can

be deployed into unmanned aerial vehicles (UAV). The work

presented by the authors in [21] propose a tracking pipeline

for fixed smart cameras that reaches real-time processing on a

low-cost embedded smart camera composed of a Raspberry-Pi

board and a RaspiCam camera. Finally, the work described in

[22] describes a deep learning-based automatic video surveil-

lance system for panoramic cameras, specifically designed to

be deployed on cheap and power efficient hardware devices,

such as a Raspberry-Pi microcomputer.

In this work we describe an improved deep learning-based

automatic video surveillance system for panoramic cameras,

specifically optimized to be deployed on a Jetson TX2 board.

This system relies on a novel potential detection generator

based on three multivariate homoscedastic distributions and a

MobileNet [23] Deep Convolutional network.

The rest of paper is organized as follows. Section II presents

the mathematical model of our proposal. Section III presents

the architecture of the system. In Section IV, our experimental

results are provided. Finally, Section V concludes this paper.

II. METHODOLOGY

The environments that are considered in this work contain

anomalous objects, which means that they do not belong to

the most frequently found classes in the scene. An alarm must

be activated in case that an anomalous object is found.

In this section, the proposed methodology to detect anoma-

lous objects is detailed. This method is an extension of our

previous work in [22].

The basis of our approach is the analysis of the most recent

detections. A set is maintained with such detections, i.e. the

active detections. The set comprises the objects that have

been detected recently by the surveillance camera. We define

a detection as a vector of four real numbers (πi, x1, x2, x3)
where:

• πi is the a priori likelihood of the object.

• (x1, x2) are the coordinates of the object (vertical and

horizontal), which refer to the panoramic coordinate

system defined by the video camera.

• x3 is the number of pixels that comprise the length of

the bounding box that surrounds the detected object.

Also, we define a forgetting rate α that is employed to

update the a priori probability πi. If a detection is lost from

the sight, then the associated detection goes non active.

If we note x = (x1, x2, x3), then we can express the

possible range for x this way:

V = [1, Nrows]× [1, Ncols]× [Smin, Smax] ⊂ R
3 (1)

where Nrows × Ncols is the size in pixels of the acquired

video frame, so that the possible sizes of the bounding boxes

are limited by Smin and Smax, respectively.

Then the following probabilistic model is employed to

estimate the possible positions of the objects:

p (y) = qUV (y) + (1− q)
1

M

M∑

i=1

πiK (y,xi, σ) (2)

where UV (y) is the uniform probability distribution on V ,

K (y,µ, σ) stands for a multivariate distribution having a

mean vector µ and a constant spread parameter σ, M is

the number of detections which are active, q ∈ (0, 1) is a

tunable mixing parameter and σ is the spread parameter of

the multivariate distribution.

The main novelty introduced in the mathematical model

presented in this work with respect to the mathematical model

in [22], is that the a priori probability πi of the i-th detection is

proportional to the probability that the i-th detection belongs

to the most likely class associated to that detection.

We have selected three multivariate distributions for our

probabilistic model. Such distributions are: Gaussian, Student-

t and triangular. Their equations are shown in Table I, so that

‖·‖ denotes the Euclidean norm of a vector, while ν stands for

the degrees of freedom of the Student-t distribution. It must

be highlighted that the Gaussian and Student-t options include
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KTriangular (y,µ, σ) =
3
∏

j=1

kTriangular,j (yj,µj , σ) (5)
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




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0 for yj < µj − σ
yj−µj+σ

σ2 for µj − σ ≤ yj < µj
1

σ
for yj = µj

µj+σ−yj

σ2 for µj < yj ≤ µj + σ

0 for yj > µj + σ

(6)

TABLE I
GAUSSIAN, STUDENT-T, AND TRIANGULAR MULTIVARIATE DISTRIBUTIONS.

a spread parameter σ which coincides with the standard

deviation.

The aim of our proposal is to focus the search on the regions

of the incoming video where objects have been detected

recently. This corresponds to the multivariate distribution of

the probabilistic model. Nevertheless, the rest of the video

frame must also be queried. This is accommodated by the

uniform distribution of the probabilistic model.

The proposed algorithm to find objects of an anomalous

class within a panoramic video recording is given next:

1) Setup the set of current detections A to the empty set.

2) Acquire a new video frame from the surveillance hard-

ware.

3) Update the a priori probabilities πi of the set of active

detections by application of the forgetting rate α. Any

objects that have been lost of sight because they are

outside V are erased since they have become inactive.

4) Choose at random a set of M samples from the multivari-

ate distribution (2). Find the bounding box corresponding

to every sample, and change its size so that it matches the

required size for the deep neural network. After that, pass

the bounding box to the deep network. If the output of

the deep network reveals that there has been a detection,

then the associated sample is inserted into A, and the

sample is annotated with the probability that the object

is actually there, i.e. the reliability of the detection.

5) Go to step 2.

Next, a concrete framework to implement the above detailed

procedure is given, so that a cheap microcontroller based

surveillance system can be obtained.

III. SYSTEM ARCHITECTURE

As it was mentioned in Section I, the main piece of a

deep learning-based video surveillance system consists of a

powerful foreground object detection and identification engine.

However, object detection and classification from images

filmed by a high resolution camera usually requires high

amounts of computing power, specially if it incorporates deep

learning techniques. But at the same time, it looks reasonable

that a video surveillance system must have a fast response in

order to be effective. Consequently, these systems are often

supported by high performance GPU-based hardware that has

also high electric power demands.

Nevertheless, there are occasions where is very difficult

or just impossible to supply a general power connection

to those systems, specially in the case of systems with a

high degree of autonomy, either because they are constantly

in motion or because they are intended to be installed in

natural environments where no general power connections are

available.

This fact motivated the authors of this work to tackle the de-

sign and implementation of a deep learning video surveillance

system capable of detecting anomalous foreground objects

but at a small fraction of the electrical power needed by

a conventional deep learning-based system. Traditional deep

learning-based object detection and classification models, such

as Faster-RCNN, often rely on performing a massive number

of inference passes to all the surface of the frame, but this

is unfeasible to be done when designing a system that is

meant to be deployed in a low profile hardware device. Thus,

we decided to design a system that presents an architecture

that features a potential detection generator that will test just

a limited number of areas whose position and size will be

designated by a mixture of a random distribution and three

multivariate homoscedastic distributions. These areas of the

frame will be fed to a convolutional neural network who is in

charge of identifying the possible anomalous objects enclosed

in those areas.

Hence, the architecture of the object detection and iden-

tification system detailed in this work will consist of two

well differentiated parts: A software architecture that will

implement the object detection and classification algorithm,

and a hardware architecture integrated by a panoramic camera

and a Jetson TX2 board where the algorithm is meant to be

deployed.



A. Software architecture

The software architecture of the system is shown in Figure

1. In this figure it can be observed that it consists of two

Fig. 1. Schematic diagram of the software architecture

different modules: The first one is the potential detection

generator, a program developed in Python that acquires one

frame from the video stream supplied by a panoramic spherical

camera and scatters certain number of random windows,

namely potential detections, in the frame that will be delimited

and situated by one of the three mixtures of random and

homoscedastic multivariant distributions presented in Section

II. This module also is in charge of updating the position and

size of the existing detections according to the equations of

the model proposed in Section II.

The second module will try to identify the object enclosed

in each potential detection by feeding them to a convolutional

neural network.

Convolutional neural networks often require large amounts

of computing power to work in a timely manner. Thus, the

choice of the convolutional neural network to be used is critical

in a low power consuming system with limited computing

power. Therefore, the chosen CNN must present a balance

between accuracy and speed. These reasons led the authors of

this work to select the Pytorch framework implementation of

the MobileNet [23] network properly trained using the Pascal

VOC2012 dataset [24].

B. Hardware architecture

Hardware choice is also a critical matter when designing

a power efficient video surveillance system insofar as it must

have a limited power consumption and at the same time it

must be capable of working as fast as possible, because these

kinds of systems will be more useful as their operating speed

approaches to real-time. Therefore, we decided to use a Jetson

TX2 board to deploy our system as it features a cuda-capable

256 core NVIDIA Pascal GPU, specially useful for deep

learning tasks, with a power consumption of 7.5 watts.

IV. EXPERIMENTAL RESULTS

In order to properly test the anomalous object detection

system for panoramic cameras presented in this work we have

developed a benchmark program including the two modules

referred to in Section III. The program uses a panoramic video

from a well-known 360◦ videos dataset hosted by the Virtual

Human Interaction Lab at the University of Stanford [25] to

simulate the video stream provided by a 360◦ camera. This

is a very convenient configuration in order to make more

reproducible experiments. Thus, the program works as follows

(Figure 2):

First, a panoramic video frame is supplied to the program.

Second, the potential detection generator module will use one

of the homoscedastic multivariate distributions to generate the

frame coordinates for a certain number of windows enclosing

the areas that will be examined in search for anomalous

objects. These will be our “potential detections”. After the

potential detection generation phase has been completed, the

program feeds the areas enclosed by these potential detections

to the identification module, where a convolutional neural

network will identify the possible anomalous objects present in

that area of the frame. Next, every potential detection contain-

ing any object will be included in the detections set referred

as A in the model described in Section II. Finally every new

detection is compared to the list of anomalous objects, and

if the program finds any coincidence, it raises an anomalous

object detection alert informing about the coordinates of the

upper left corner and side sizes of the bounding box that

surrounds the anomalous object detected. It also informs about

its category and the accuracy of the detection.

With the objective of exhaustively testing the system pre-

sented in this work, a series of experiments has been per-

formed. These experiments included the separate utilisation,

one by one, of the three probability distributions in which the

potential detection generator relies and that were described

in Section II. In order to create the same conditions for all

the experiments we have used an unaltered 360◦ video from

the public dataset hosted by the Human Interaction Lab of

the University of Stanford. In this video we have localised

and tagged manually all the appearances of objects from four

different classes of the well-known and widely used Pascal

VOC 2012 dataset, that we have considered as anomalous

for that scene. These classes are “person”, “dog”, “car” and

“motorcycle”. As it was mentioned before, given the limited

computing power of the software our system is going to be

deployed in, it is very important to choose a classifier that is

well balanced in terms of accuracy and performance. Thus, as

the basis of the object location and classification module, we

have used the Pytorch framework implementation of the also



Fig. 2. Illustration of the system’s operating with real frames from the [25] video dataset

well-known MobileNet convolutional neural network trained

using the cited Pascal VOC 2012 dataset.

Basically, experiments consisted of feeding the 100 first

frames of the 360◦ manually tagged video to the system and

counting the total number of anomalous objects detected after

processing the 100 frames. This process has been performed

for a number of potential detections that goes from 1 to 10 and

for each of the three multivariate homoscedastic distributions

featured by the potential detection generator, namely a mixture

of uniform and gaussian distribution, a mixture of a uniform

distribution and a triangular distribution and a mixture of

a uniform distribution and a Student-t distribution. In order

to calculate the amount of anomalous objects detected on

each frame, the system compares the position and identity

of the detected objects with the tags appearing on the .xml

file associated to that frame and calculates how many of the

detected objects have been detected in their correct place with

an adjustable margin of error. Despite the relative simplicity

of the system’s operating, some parameters had to be properly

tuned in order to find the proper configuration that allowed

to extract the best performance of the entire system. Thus,

after the parameter optimisation process, we realised that the

optimal parameter values were different for each one of the

three distributions. Therefore we have fixed them to the values

appearing in Tables II - IV.

Parameter Value

q 0.4

σ 0.3

detection size (% of frame height) 10

α 0.1

TABLE II
SELECTED PARAMETER VALUES FOR THE UNIFORM-GAUSSIAN MIXTURE

DISTRIBUTION.

Parameter Value

q 0.2

σ 0.3

Max detection size (% of frame height) 10

α 0.1

TABLE III
SELECTED PARAMETER VALUES FOR THE UNIFORM-TRIANGULAR

MIXTURE DISTRIBUTION.

Parameter Value

q 0.7

σ 0.3

Max detection size (% of frame height) 10

α 0.1

TABLE IV
SELECTED PARAMETER VALUES FOR THE UNIFORM-STUDENT-T MIXTURE

DISTRIBUTION.

The results obtained are shown in Figure 3 and they

represent the number of anomalous objects correctly identified

for a number of potential detections spanning from 1 to 10 and

for each of the three considered distributions supporting the

potential detection generator.
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Fig. 3. Mean number of anomalous object detections for each of the three
multivariate homoscedastic distributions considering a number of potential
detections between 1 and 10.

In general, the plot reveals that the number of anomalous

objects detected increases as the number of potential detections

does so. However, it can also be observed that the number

of detected objects presents several oscillations for all three

multivariate distributions utilised by the potential detection

generator.



# Windows 1 2 3 4 5 6 7 8 9 10

Gaussian Mixture (fps) 5.4645 4.7182 3.8535 3.3569 2.8472 2.5620 2.1691 2.0162 1.7665 1.7558

Triangular Mixture (fps) 5.0401 4.8257 3.9403 3.2813 2.7894 2.4990 2.2304 2.0058 1.7528 1.6959

Student-t mixture (fps) 5.2514 4.7676 3.8529 3.3008 2.8830 2.4920 2.2292 1.9963 1.8504 1.6981

TABLE V
SYSTEM PERFORMANCE EXPRESSED IN MEAN FPS. VS NUMBER OF POTENTIAL DETECTION GENERATIONS FOR THE THREE MIXTURE MODELS.

Individually, Figure 3 reveals that the potential detection

generator managed by the uniform-triangular mixture detects

more objects than the potential detection generator man-

aged by the other two distributions. However, the uniform-

triangular mixture version presents deeper oscillations whilst

the uniform-Student-t mixture presents a more stable be-

haviour despite the fact that it detects a lower amount of

objects. The generator managed by the uniform-gaussian dis-

tribution seems to present the most balanced behaviour as,

although it detects less objects than the generator powered

by the uniform-triangular mixture, it also looks more stable

in terms of oscillations and it detects more objects than the

uniform-Student-t mixture.

Speed is very important issue when designing any automatic

video surveillance system. Indeed, if the system is not fast

enough, its usefulness may be very limited. But is very

important to take into account that we are dealing with a low

power consuming system with limited computational power.

Therefore, it is critical to know the capabilities of the systems

in terms of speed performance when deployed in a Jetson

TX2 board. Thus, the system speed experiments consisted of

calculating the mean system speed in frames per second (fps)

when running a test program that processes 612 frames of the

above referenced 360◦ video for each of the three distributions

used by the potential detection generator and for a number of

potential detections between 1 and 10. The obtained results

are illustrated in Table V.

Considering that the time spent by the MobileNet neural

network in processing one potential detection is constant,

experiments reveal a similar behaviour for the three ho-

moscedastic distributions in terms of processing speed. How-

ever, there are some differences that must be analysed. The

maximum processing speed achieved by the entire system

is 5.4 frames per second when using a potential detection

generator supported by the uniform-gaussian mixture and the

number of potential detections is set to 1. The minimum

processing speed is also achieved by the system powered by

the uniform-gaussian mixture for a number of 10 potential

detections. In general, is difficult to establish a clear winner

between the three distributions used to implement the potential

detection generator, in terms of speed. But according to the

values shown in Table V, the uniform-gaussian distribution

achieved the highest processing speed for 1, 4, 6, 8 and 10

windows. This means that the uniform-gaussian distribution

is faster than the others in 50% of the executions, whilst

the uniform-triangular distribution is faster in the 30% of the

times, and the uniform-Student-t distribution stands out from

its competitors 20% of the times. Therefore, even though they

have similar execution speeds, uniform-gaussian distribution

should be recommended in terms of time consumption.

V. CONCLUSION

In this paper it is presented the design and implementation

of a deep learning-based video surveillance system, managed

by low power hardware devices, capable of detecting anoma-

lous objects in a video stream shot by a panoramic camera.

The system presents a potential detection generator, relying

on a new mathematical model based on three multivariate

homoscedastic distributions, in charge of deciding what parts

of the scene are more likely to contain an anomalous ob-

ject; and a MobileNet convolutional neural network that will

perform the classification of the detected objects. Parameter

optimisation is such a heavy task in terms of computational

requirements and this fact conditioned the dimension for the

parameter optimisation process performed insofar as more

time is needed to perform a deeper parameter optimisation

process. This circumstance leads us to think that there is still

some margin for improvements in this direction allowing us

to be optimistic with respect to future performance of our

model. Nevertheless, performance tests at this moment reveal

that the system is capable of detecting anomalous objects with

an acceptable accuracy at a speed of up to 5.4 fps, positioning

our approach as a good foundation for the construction of

energy saving automatic video surveillance systems.
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