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Abstract 

We propose a modelling framework which allows considering different priorities 

and individual expansion and contraction scales for distinct types of inputs and outputs, 

through the Weighted Russell Directional Distance Model (WRDDM). An equivalence 

model between the WRDDM and the super-ideal point model has also been established, 

which is then incorporated into several interactive Multiobjective Linear Programming 

(MOLP) approaches. The use of these diverse interactive methodologies allows obtaining 

the benchmark Decision Making Units (DMUs) which best suit the decision-maker’s 

(DM’s) preferences. This feature can be useful since traditional Data Envelopment 

Analysis (DEA) models tend to completely neglect the DM’s preferences and value 

judgements in the computation of the DMUs used as a reference of best practices. 

Therefore, with this tool the DMs have the possibility of translating into the decision-

making process management constraints (namely, budgetary) and aspiration levels 

regarding the inputs and outputs, providing much more realistic support for actual 

decision-making.  
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1 INTRODUCTION 

One of the main advantages of the application of DEA in efficiency assessment is the 

possibility of finding the benchmarks of inefficient DMUs, providing valuable 

information for managers about the best practices being followed to reach efficiency. The 

benchmarks of an inefficient DMU are usually computed through linear programming 

(LP) models and are obtained just by using the original inputs and outputs.  

Still, one of the limitations of traditional DEA models is that they do not typically 

incorporate the preference structure or value judgments of DMs (Allen et al., 1997). This 

can be particularly relevant in management decisions since these benchmarks might not 

be reachable due to budgetary constraints, or they may not reflect the DMs’ aspirations. 

Thus, the DMs’ preferences should be specifically contemplated in the selection of the 

most preferred DMUs to be used as benchmarks for the DMU under evaluation.  

Several methods have been suggested to account for the DMs’ preference 

information in DEA models. In this regard, there are two types of models (Halme et al., 

1999): the efficiency score models which use the DMs’ preference information to 

generate more valuable efficiency scores; and the target setting models which 

contemplate the DMs’ preference information to obtain more reasonable targets. Out of 

these, we will focus on target setting models. In this context, two distinct frameworks for 

efficiency evaluation are generally employed for targeting (Fukuyama et al., 2014): the 

greatest and the least distance frameworks. In the first case, the efficient targets are 

computed through the farthest projections to the DMU under evaluation via the 

maximization of the p-norm relative to either the strongly efficient frontier or the weakly 

efficient frontier. Non-radial measures such as the slacks based measure (SBM) proposed 

by Tone (2001), the enhanced Russell graph measure (ERGM) proposed in Pastor et al. 

(1999) and the range-adjusted measure developed by Cooper et al. (1999), belong to this 

sort of models. In the second approach, the closest targets are computed for a given DMU 

according to a previously specified criterion of similarity, i.e. considering the closeness 

between the values of the inputs and/or outputs of the DMU under assessment and the 

corresponding targets (see e.g. Aparicio et al., 2007; Fukuyama et al., 2014; Aparicio et 

al., 2017; Vakili et al., 2020; Ruiz and Sirvant, 2020). Although the least distance 

approach has the merit of potentially identifying the closest or easily acceptable efficient 

target for the DMs, we start by utilizing the greatest distance framework that has 

traditionally been employed because of its computational easiness (Fukuyama et al., 
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2014), then progressing towards the most preferred efficient target according to the DM’s 

preferences.  

In this context, within the methodological approaches that explicitly consider the 

DM’s preferences or value judgements in the attainment of the input and output targets 

and benchmarks1 for inefficient DMUs, the MOLP approach is one of the most used. This 

type of methodology was first introduced by Golany (1988) and it was conducted by 

asking the DMs to assign a set of input levels as resources and to select the most preferred 

set of output levels from a set of feasible points on the efficient frontier, leading to the 

joint use of DEA with MOLP.  

In this framework, Tavana et al. (2018) established an extended equivalence 

model between the combined-oriented DEA model and the super-ideal point model of the 

minimax reference point formulation such that: the increase in the total outputs and the 

decrease in the total inputs are simultaneously contemplated. Regarding other approaches, 

this DEA-MOLP method enables the DM to select the variables, as well as their relative 

intensities, in order to move the DMU closer to the efficient frontier. As a result, the DM 

can assess the strategic trade-offs between the different factors that are required to reduce 

the DMU’s distance to the efficient frontier. This might be an important feature if there 

are budget constraints that prevent the DM from improving all the inefficient factors from 

a given DMU.  

Despite the merits of the comprehensive hybrid DEA-MOLP model developed in 

Tavana et al. (2018), this model assumes that the expansion of all outputs and contraction 

of all inputs is considered to have the same rate. In fact, many real-world problems require 

the use of non-radial measures of technical efficiency (Gomes Junior et al., 2013; 2016; 

Aparicio et al., 2018). In this case, as noted by Chen et al. (2015), on the one hand, the 

inefficiency linked to the use of a specific input by a DMU is not necessarily related to 

the inefficiency regarding the use of another input by the same DMU; on the other hand, 

a DMU may produce distinct outputs at the same time, but with a different production 

capacity, and thus the production efficiency for different outputs may also be distinct. 

Therefore, besides being non-radial, the modelling framework herein considered is also 

non-oriented.  

Hence, unlike other hybrid DEA-MOLP approaches proposed in the scientific 

literature, the modelling framework herein established allows accounting for different 

 
1 In this regard we would like to stress that targets are the coordinates of a projection point whereas 

benchmarks are the observed DMUs. 



4 

 

priorities and individual expansion and contraction scales regarding the outputs and 

inputs, making use of the non-radial and non-oriented WRDDM.  

We have used this latter DEA model, because when contrasted with the SBM and 

the ERGM models, which account for input and output efficiency measures in a nonlinear 

fractional form, the WRDDM is evaluated in a linear form, thus yielding the advantage 

of a lower computational burden (Chen et al., 2015).  

Therefore, the main novelties of our work are twofold: we establish an 

equivalence model between the WRDDM and the super-ideal point model based on the 

reference point approach; we combine this new model with several well-known 

interactive MOLP algorithms (in our particular case, the Wierzbicki, Tchebycheff, STEM 

and STOM methods) to allow for the explicit incorporation of the DM’s preferences in 

finding the target DMUs to be viewed as benchmarks. These interactive methods are 

selected according to the preferences provided by the DM, who is either asked to specify 

the new target values to be achieved or to establish the target inputs and outputs that can 

be increased, maintained or reduced, seeking values within his/her grasp. Besides, since 

there is no MOLP interactive method (or procedure) that performs best in all 

circumstances, the use of several methods or procedures allows exploring different search 

strategies and computation techniques (Antunes et al. 2016). Furthermore, by using such 

diverse approaches, the DM gains further insights into the problem and can correct his/her 

preceding decisions if he/she wishes to do so. Finally, by employing more than one 

interactive method in the solution process, the DM is also able to acquire a broader 

spectrum of possible targets according to his/her preferences2.  

The remainder of this paper is given as follows. Section 2 provides a detailed 

explanation of the methodological approach followed. Section 3 presents an illustrative 

example of the application of the methodology. Finally, the main conclusions will be 

presented in Section 4. 

 

2 The Methodological Approach 

In the next sections, we first describe the generalized directional distance function 

approach (under the assumptions of strong availability of inputs/outputs), following a 

non-radial and non-oriented model. Then, we present the main underpinning assumptions 

 
2 Further details regarding the combination of several interactive methods in the same solution process can 

be found in Miettinen and Makela (1999), Kaliszewski (2004), Luque et al. (2011), Ruiz et al. (2012) and 

Antunes et al. (2016). 
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underlying the MOLP approach that will be used to establish the hybrid DEA-MOLP 

framework herein developed. Finally, we propose to use several interactive methods to 

obtain solutions to the hybrid DEA-MOLP model previously suggested. 

 

2.1. The directional distance function approach 

Fukuyama and Weber (2009, 2010) developed a measure of inefficiency, also known as 

the directional slacks-based inefficiency (SBI) measure, to obtain a generalized measure 

of technical inefficiency which considered all slacks in input and output constraints. This 

measure allows obtaining the same information provided by the SBM model suggested 

by Tone (2001) as long as the directional vectors for inputs and outputs are equal to the 

corresponding input and output vectors, being also regarded as a generalization of the 

Russell’s3 measure of efficiency. In this context, it is important to mention that the 

WRDDM is a closely related measure of ERGM, though the ERGM and SBM are special 

cases of the WRDDM (Chen et al., 2015). While the objective function of the ERGM is 

specified for calculating an efficiency measure, those corresponding variables in the 

WRDDM are inefficiency measures. Besides, the WRDDM has an additive form 

objective function, whereas the ERGM has a ratio form. 

More recently, Färe and Grosskopf (2010) also proposed a generalization of the 

SBM based on the directional distance function, where the optimization problem is based 

on the sum of the directional distance function being able to express how much inputs 

have excessively been used and how much shortage of outputs have been produced 

regarding their efficiency level.  

The directional distance function aiming to increase the outputs and decrease the 

inputs directionally can be defined as: 

𝑠𝑢𝑝{: (𝒙 − 𝒈𝑥, 𝒚 + 𝒈𝑦) ∈ 𝑇}                                                                                                  (1)                                                   

where the non-zero vector 𝒈 = (−𝒈𝑥, 𝒈𝑦) establishes the “directions” in which inputs 

and outputs are scaled, and the technology reference set satisfies the assumptions 𝑇 =

{(𝒙, 𝒚): 𝒙 can produce 𝒚} of constant returns to scale, with strong disposability of inputs 

 
3 The Russell’s measure was first suggested by Färe and Lovell (1978) following an input-orientation 

modelling approach. This measure only considers the input slacks, failing to account for the inefficiencies 

related to outputs. Färe et al. (2013) later extended this measure into a nonlinear form, also known as the 

“Russell graph measure”, by combining the input and output Russell measures in an additive way and 

allowing for the incorporation of all the input and output slacks. Pastor et al. (1999) also revised this latter 

proposal with the suggestion of a new measure called the “Enhanced Russell graph measure” (ERGM), by 

combining input and output Russell measures in a ratio form. 
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and outputs (Chen et al., 2015). A production process shows strong disposability of 

inputs/outputs if the inputs/outputs are freely disposable. 

Given two vectors 𝒙 = (𝑥1, … , 𝑥𝑛)𝑇 and 𝒚 = (𝑦1, … , 𝑦𝑛)𝑇, the DEA piecewise 

reference technology can be obtained as follows: 

𝑇 = {(𝒙, 𝒚): ∑ 𝜆𝑗𝑦𝑟𝑗 ≥ 𝑦𝑟
𝑛
𝑗=1 , r 𝜖 𝑂, 

∑ 𝜆𝑗𝑥𝑖𝑗 ≤ 𝑥𝑖
𝑛
𝑗=1 , i 𝜖 𝐼, 

𝜆𝑗 ≥ 0, (𝑗)},                                                                                                                      (2) 

where O and I are the index sets that designate the outputs and inputs, respectively. 

In what regards the reference technology T given in (2), traditionally, for each 

DMU under assessment, DMUo, the directional distance function can be obtained by 

solving the following LP problem4: 

max  𝛽𝑜  

s.t. ∑ 𝜆𝑗𝑦𝑟𝑗 ≥ 𝑦𝑟𝑜
𝑛
𝑗=1 +  𝛽𝑜𝑔𝑦𝑟, r 𝜖 𝑂, 

∑ 𝜆𝑗𝑥𝑖𝑗 ≤ 𝑥𝑖𝑜 − 𝛽𝑜𝑔𝑥𝑖
𝑛
𝑗=1 , i 𝜖 𝐼, 

𝑗 ≥ 0 (j)                                                                                                                                        (3) 

where  𝛽𝑜 measures simultaneously the maximum enlargement of outputs and reduction 

of inputs that remain technically feasible and can serve as a measure of technical 

inefficiency. If  𝛽𝑜 = 0, then DMUo operates on the frontier of T with technical 

efficiency. If  𝛽𝑜 > 0, then DMUo operates inside the frontier of T and it is inefficient. 

Finally, the parameter  𝛽𝑜𝑔𝑥𝑖 indicates the level by which DMUo has to reduce its i-th 

input to become efficient. Analogously, the parameter  𝛽𝑜𝑔𝑦𝑟 provides information on the 

level by which DMUo has to enlarge its r-th output in order to become efficient. 

Besides being a generalization of the Shephard’s distance functions, the 

directional distance function can be specified to embed different assumptions. If 𝒈 =

(−𝒈𝑥, 𝒈𝑦)= (−𝒙𝑜, 𝒚𝑜), i.e., the direction is set to account for the observed data,  𝛽𝑜 

corresponds to the potential proportional variation in outputs and inputs. If alternatively 

𝒈 = (−𝒈𝑥, 𝒈𝑦)= (−1, 1), then the solution value can be viewed as the net improvement 

in performance in terms of feasible enlargement in outputs and feasible reduction in inputs 

(Färe and Grosskopf, 2004). Conversely, with 𝒈 = (0, 𝒈𝑦), the directional output 

 
4 According to Kuosmanen (2005) under the weakly disposable technology assumption the evaluation of 

efficiency in terms of Variable Returns to Scale technology, goes beyond the imposition of the additional 

constraint ∑ 𝜆𝑗
𝑛
𝑗=1 = 1 in (3). 
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distance function is thus obtained. Nevertheless, this approach does not account for 

inefficiencies associated with non-zero slacks and it eventually has the problem of miss 

specifying some evaluated DMUs as efficient units (Chen et al., 2015). 

 

2.1.1. A generalized directional distance function approach (under the assumption of 

strong availability of inputs/outputs) 

The efficiency measurement obtained in (3) expands all outputs and inputs and contracts 

all inputs and outputs by the same rate, 𝛽. However, there is no guarantee that the 

proportional contraction rate for input factors and expansion rate output factors must be 

equal. Moreover, as noted by Chen et al. (2015), the inefficiency linked to the use of a 

specific input by a DMU is not necessarily related to the inefficiency regarding the use of 

another input by the same DMU. Additionally, a DMU may produce distinct outputs at 

the same time, but with a different production capacity, and hence the production 

efficiency for different outputs may also be distinct. Therefore, we consider the WRDDM 

developed by Chen et al. (2015), which, besides allowing for the technical inefficiency 

associated with inputs and outputs to be different, also allows for the technical 

inefficiency among each of the inputs and outputs to be distinct. The formulation of (3) 

can hence be generalized and adapted to individual expansion and contraction scales as 

follows: 

max 𝛽𝑜
𝑅 = 𝑚𝑎𝑥 (𝑤𝑦(∑ 𝜛𝑦

𝑟𝛼𝑜
𝑟)𝑟 𝜖 𝑂 + 𝑤𝑥(∑ 𝜛𝑥

𝑖𝜁𝑜
𝑖

𝑖 𝜖 𝐼 )) 

s.t. ∑ 𝜆𝑗𝑦𝑟𝑗 ≥ 𝑦𝑟𝑜
𝑛
𝑗=1 +  𝛼𝑜

𝑟𝑔𝑦𝑟, r 𝜖 𝑂, 

∑ 𝜆𝑗𝑥𝑖𝑗 ≤ 𝑥𝑖𝑜 − 𝜁𝑜
𝑖 𝑔𝑥𝑖

𝑛
𝑗=1 , i 𝜖 𝐼, 

∑ 𝜆𝑗
𝑛
𝑗=1 = 1, 𝑗 ≥ 0 (j),                                                                                                                     (4) 

where the vectors of inputs and outputs of DMUo are given as 𝒙𝑜  and 𝒚𝑜 , 

correspondingly; the parameters 𝛼𝑜
𝑟 and 𝜁𝑜

𝑖  are the individual inefficiency measures for 

each output and input, respectively, and all variables are nonnegative except for  𝛽𝑜
𝑅. The 

coefficients 𝑤𝑦 and 𝑤𝑥 may be regarded as the given priorities associated with the outputs 

and inputs, and their sum should be one. On the other hand, the inefficiencies of each 

corresponding output and input can also be assigned with different priorities and their 

sums are also assumed to be one, i.e.: ∑ 𝜛𝑦
𝑟

𝑟 𝜖 𝑂  = 1, ∑ 𝜛𝑥
𝑖

𝑖 𝜖 𝐼  = 1. In this case, it is 

necessary that the directional vectors are measured according to the same measurement 

units as the original vectors of inputs and outputs in order to add 𝛼𝑜
𝑟 and 𝜁𝑜

𝑖 . Finally, we 
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assume the variable returns to scale technology, which implies the imposition of the 

additional constraint ∑ 𝜆𝑗
𝑛
𝑗=1 = 1, 𝑗 ≥ 0  (j). 

If the WRDDM inefficiency measure is zero (𝛽𝑜
𝑅 = 0), then the DMU is fully 

efficient. Further developments regarding the WRDDM approach might be found in 

(Chen et al., 2015). 

The reference set of the inefficient DMUo based on (4) is obtained by solving the 

following LP problem, assuming that 𝛼𝑜
𝑟∗ and 𝜁𝑜

𝑖∗ are computed in the optimal solution to 

(4): 

max ∑ 𝑠𝑟
+

𝑟 𝜖 𝑂 + ∑ 𝑠𝑖
−

𝑖 𝜖 𝐼 , 

s.t. ∑ 𝜆𝑗𝑦𝑟𝑗 − 𝑠𝑟
+ = 𝑦𝑟𝑜

𝑛
𝑗=1 +  𝛼𝑜

𝑟∗𝑔𝑦𝑟, r 𝜖 𝑂, 

∑ 𝜆𝑗𝑥𝑖𝑗 + 𝑠𝑖
− = 𝑥𝑖𝑜 − 𝜁𝑜

𝑖∗𝑔𝑥𝑖
𝑛
𝑗=1 , i 𝜖 𝐼, 

∑ 𝜆𝑗
𝑛
𝑗=1 = 1, 𝑗 ≥ 0 (j),                 

𝑠𝑟
+ ≥ 0 (∀𝑟𝜖 𝑂), 𝑠𝑖

− ≥ 0 (∀𝑖𝜖 𝐼),                                                                                      (5) 

Let (𝑠𝑟
+∗, 𝑠𝑟

−∗, 𝜆𝑗
∗) be the optimal solution to (5) and 𝛼𝑜

𝑟∗, 𝜁𝑜
𝑖∗ are given by problem (4). 

Consider the reference set of the WRDDM-inefficient DMUo as follows: 

Eo = {j: 𝜆𝑗
∗ > 0, j=1, …, n}. 

The point of the efficient frontier which can be viewed as a target DMU for the WRDDM 

-inefficient DMUo is given by: 

(𝒙̂𝑜, 𝒚̂𝑜) = (∑ 𝜆𝑗
∗𝒙𝑗𝑗𝜖𝐸𝑜

, ∑ 𝜆𝑗
∗𝒚𝑗𝑗𝜖𝐸𝑜

). 

If the direction vectors do not have the same units of measurement as the vectors 

of the observed data, we can alternatively see the weights 𝜛𝑦
𝑟 and 𝜛𝑥

𝑖  in problem (4) as 

values which can normalize the direction vectors, by using the sample standard deviations 

of inputs and outputs (see for example Chen et al. (2015)). 

 

2.2 DEA models and MOLP models 

In the next section, we describe the main underpinning assumptions regarding MOLP 

models in the framework of our proposal for a new hybrid DEA-MOLP model. In this 

context, we provide the overall steps used in the transformation of the general-combined 

non-oriented DEA model (4) into an equivalent super-ideal point model. Subsequently, 

this model is incorporated into an interactive framework that can encompass a sequence 

of computation and dialogue phases, after which, a solution is shown to the DM who 

reacts by providing his/her preferences to carry out a new computation phase and to attain 
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a new solution. The DM learns about the possible solutions that can be obtained from the 

model, and he/she can progressively adjust his/her preferences until reaching the most 

preferred solution (MPS). Throughout this interactive framework, the DMs can explore 

different benchmarks and best practices that might be target DMUs for the non-efficient 

DMUs under evaluation, explicitly accounting for the management constraints and 

aspiration levels that DMs might be facing.  

 

2.2.1. Basic MOLP concepts 

Consider the following MOLP problem: 

max  (𝑓1(𝝀), … , 𝑓𝑠+𝑚(𝝀)) = (∑ 𝜆𝑗
∗𝑦1𝑗

𝑛
𝑗=1 , …, ∑ 𝜆𝑗

∗𝑦𝑠𝑗
𝑛
𝑗=1 , − ∑ 𝜆𝑗

∗𝑥1𝑗
𝑛
𝑗=1 , …, 

− ∑ 𝜆𝑗
∗𝑥𝑚𝑗

𝑛
𝑗=1 ) 

s.t. 𝝀                                                                                                                                          (6) 

where the decision variables 𝝀 = (𝜆1 ,…, 𝜆𝑛 )T belong to the non-empty feasible space . 

 

Definition 1. A solution 𝝀′ ∈  is weakly efficient to problem (6) if and only if there is 

no other 𝝀 ∈   such that 𝑓𝑘(𝝀′)  𝑓𝑘(𝝀) for all 𝑘 = 1, … , 𝑠 + 𝑚. 

 

Definition 2. A solution 𝝀′ ∈  is efficient to problem (6) if and only if there is no other 

𝝀 ∈   such that 𝑓𝑘(𝝀′) ≤ 𝑓𝑘(𝝀) for all 𝑘 = 1, … , 𝑠 + 𝑚 with at least one strict inequality. 

 

A way of expressing preferences about efficient solutions in multiobjective 

programming is through the use of a reference point 𝐟𝑟𝑒𝑓 = (𝑓1
𝑟𝑒𝑓

, … , 𝑓𝑠+𝑚 
𝑟𝑒𝑓

)𝑇, which 

consists of a desirable or reference value for each objective function. One of the most 

used achievement scalarizing function (ASF) to solve problem (6) was proposed by 

Wierzbicki (1980): 

𝑠(𝐟𝑟𝑒𝑓 , 𝑓(𝝀),  ) max
𝑘=1,…,𝑠+𝑚

{𝑘(𝑓𝑘
𝑟𝑒𝑓

− 𝑓𝑘(𝝀))},                                                                  (7) 

where  = (1, … , 𝑠+𝑚)𝑇 is a vector of weights for reaching these values which must be 

positive. This function must be minimized in the feasible region: 

min max
𝑘=1,…,𝑠+𝑚

{𝑘(𝑓𝑘 
𝑟𝑒𝑓

− 𝑓𝑘 (𝝀))}, 

𝑠. 𝑡. : 𝝀                                                                                                                                      (8) 
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where  = {𝝀 = (𝜆1, … , 𝜆𝑛)𝑇 |  ∑ 𝜆𝑗
𝑛
𝑗=1 =  1, 𝑗 ≥ 0  𝑗 = 1, … 𝑛} is the weight vectors 

space (decision space in this case). 

 Every solution to (8) is weakly efficient to problem (6) and it is efficient if it is 

unique. One possible drawback of problem (8) is that it is generally non-differentiable 

even if the functions in the original problem (6) are all differentiable or even linear5. 

However, this drawback can be overcome if we use an equivalent differentiable 

formulation: 

min       𝛽𝑜 

𝑠. 𝑡. :  𝑘(𝑓𝑘
𝑟𝑒𝑓

− 𝑓𝑘 (𝝀)) ≤  𝛽𝑜,   𝑘 = 1, … , 𝑠 + 𝑚

          𝝀     

                                                          (9)  

which implies in our case that problem (9) is linear. 

In order to require the uniqueness of the solution, an augmentation term can be 

added to the objective function of problem (9) (Wierzbicki, 1980).  

Problem (9) can be used to account for simultaneous modifications of the input 

and output values of DMUs. In fact, Ebrahimnejad and Lotfi (2012) established an 

equivalence model between the general combined oriented radial DEA model and model 

(9) with the use of the ideal point, i.e. the individual optimal solutions of each objective 

function, as a reference point, also known as the super-ideal point model. 

 

2.2.2. The super-ideal equivalent model to the WRDDM model  

Let the following MOLP problem be given as: 

max (𝑓𝑟 (𝝀), 𝑟 𝜖 𝑂, 𝑓𝑖(𝝀), 𝑖 𝜖 𝐼) 

s.t. 𝝀                                                                                                                                             (10) 

Considering the same reasoning of the previous Section, but bearing in mind that we are 

in the presence of a non-radial model and thus new conditions have to be employed, the 

next super-ideal point model can be used to generate any efficient solution to MOLP 

problem (10): 

min , 

s.t. 𝑦𝑟(𝑓𝑟 
𝑟𝑒𝑓

− 𝑓𝑟 (𝝀)) ≤  𝛼𝑟 , 𝑟 𝜖 𝑂, 

𝑥𝑖(𝑓𝑖 
𝑟𝑒𝑓

− 𝑓𝑖 (𝝀)) ≤  𝜁𝑖 , 𝑖 𝜖 𝐼, 

 (𝑤𝑦(∑ 𝜛𝑦
𝑟(𝛼𝑟 ))𝑟 𝜖 𝑂 + 𝑤𝑥(∑ 𝜛𝑥

𝑖(𝜁𝑖 )𝑖 𝜖 𝐼 ) ≤ , 

 
5 For example, if the problem is linear (all the objective functions and the constraints are linear), an 

appropriate single objective optimization solver for LP can be used, which is usually more efficient and 

accurate than a solver for non-differentiable problems. 
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∑ 𝜛𝑦
𝑟

𝑟 𝜖 𝑂 = 1,  

∑ 𝜛𝑥
𝑖

𝑖 𝜖 𝐼 = 1, 

𝑤𝑦 + 𝑤𝑥 = 1, 

𝝀                                                                                                                                                 (11) 

where 𝑓𝑟 
𝑟𝑒𝑓

, 𝑟 𝜖 𝑂 and 𝑓𝑖 
𝑟𝑒𝑓

, 𝑖 𝜖 𝐼 are the reference values established for each objective 

function. 

Finally, it can be demonstrated that problem (11) is equivalent to problem (4) if 

certain conditions are met. 

In model (11), the rth composite output (with 𝑟 𝜖 𝑂) can be given as follows: 

𝑓𝑟 (𝝀) = ∑ 𝜆𝑗𝑦𝑟𝑗 − 𝑦𝑟𝑜
𝑛
𝑗=1 , r 𝜖 𝑂,                                                                                           (12) 

In a similar way the ith composite input (with 𝑖 𝜖 𝐼) can be as follows: 

𝑓𝑖 (𝝀) = 𝑥𝑖𝑜 − ∑ 𝜆𝑗𝑥𝑖𝑗
𝑛
𝑗=1 , i 𝜖 𝐼,                                                                                              (13) 

The maximum feasible value of the rth composite output for the observed DMUo 

can be given by   𝑓𝑟𝑜  ̂= 𝑓𝑟 (𝝀∗), for r 𝜖 𝑂, where 𝝀∗ can be computed by solving the 

following problem: 

  𝑓𝑟𝑜   ̂= max 
𝑓𝑟𝑜(𝝀)

𝝀 ∈ 𝛬
, r 𝜖 𝑂,                                                                                                       (14) 

Analogously, the maximum feasible value of the ith composite input for the 

observed DMUo can be given by   𝑓𝑖𝑜   ̂= 𝑓𝑖 (𝝀∗), i 𝜖 𝐼, where 𝝀∗ can be computed by 

solving the following problem: 

  𝑓𝑖𝑜   ̂= max 
𝑓𝑖𝑜(𝝀)

𝝀 ∈ 𝛬
, i 𝜖 𝐼,                                                                                                         (15) 

The equivalence relationship between the general DEA Model (4) and the minimax 

formulation (11) can be established by the following theorem. 

 

Theorem 1. Assume 𝑔𝑦𝑟 >0 (r𝜖𝑂) and 𝑔𝑥𝑖  >0 (i𝜖𝐼). The general combined-oriented 

DEA Model (4) can be equivalently transformed into the super-ideal point Model (11) 

using Equations (12)-(15) and the following definitions: 

𝑦𝑟= 
1

𝑔𝑦𝑟
, r𝜖𝑂,                                                                                                                      (16) 

𝑥𝑖= 
1

𝑔𝑥𝑖

, i𝜖𝐼,                                                                                                                         (17) 

𝑓𝑟 
𝑟𝑒𝑓

= 
𝐹𝑟

𝑚𝑎𝑥

𝑦𝑟
, r 𝜖 𝑂,                                                                                                                 (18) 



12 

 

𝑓𝑖 
𝑟𝑒𝑓

= 
𝐹𝑖

𝑚𝑎𝑥

𝑥𝑖
 , i 𝜖 𝐼,                                                                                                                  (19) 

𝐹𝑟
𝑚𝑎𝑥= {𝑦𝑟  𝑓𝑟𝑜  ̂} = {

  𝑓𝑟𝑜  ̂

𝑔𝑦𝑟
}, r 𝜖 𝑂                                                                                        (20) 

𝐹𝑖
𝑚𝑎𝑥=  {𝑥𝑖  𝑓𝑖𝑜  ̂} = {

  𝑓𝑖𝑜  ̂

𝑔𝑥𝑖

}, i 𝜖 𝐼                                                                                             (21) 

𝛼𝑟  = 𝐹𝑟
𝑚𝑎𝑥 − 𝛼𝑜

𝑟, r 𝜖 𝑂,                                                                                                          (22)  

𝜁𝑖  = 𝐹𝑖
𝑚𝑎𝑥 − 𝜁𝑜

𝑖 , i 𝜖 𝐼,                                                                                                          (23)  

 = ((𝑤𝑦(∑ 𝜛𝑦
𝑟𝐹𝑟

𝑚𝑎𝑥)𝑟 𝜖 𝑂 + 𝑤𝑥(∑ 𝜛𝑥
𝑖𝐹𝑖

𝑚𝑎𝑥
𝑖 𝜖 𝐼 )) −  𝛽𝑜

𝑅.                                                 (24)  

 

Proof 

Using Equations (12)-(17), the general non-radial non-oriented DEA Model (4) can be 

rewritten as: 

max 𝛽𝑜
𝑅 = max (𝑤𝑦(∑ 𝜛𝑦

𝑟𝛼𝑜
𝑟)𝑟 𝜖 𝑂 + 𝑤𝑥(∑ 𝜛𝑥𝑔

𝑖 𝜁𝑜
𝑖

𝑖 𝜖 𝐼 )), 

s.t. 𝛼𝑜
𝑟 1

𝑦𝑟
− 𝑓𝑟 (𝝀) ≤ 0 , r 𝜖 𝑂, 

𝜁𝑜
𝑖 1

𝑥𝑖
− 𝑓𝑖 (𝝀) ≤ 0 , i 𝜖 𝐼, 

𝝀                                                                                                                                              (25)  

From (20) the first set of constraints of problem (25) for r 𝜖 𝑂 can be equivalently 

transformed into 

𝛼𝑜
𝑟 1

𝑦𝑟
− 𝑓𝑟 (𝝀) ≤ 0  𝛼𝑜

𝑟 1

𝑦𝑟
≤ 𝑓𝑟 (𝝀) −𝑦𝑟𝑓𝑟 (𝝀) ≤ −𝛼𝑜

𝑟 

𝐹𝑟
𝑚𝑎𝑥−𝑦𝑟𝑓𝑟 (𝝀) ≤ 𝐹𝑟

𝑚𝑎𝑥 − 𝛼𝑜
𝑟 𝑦𝑟 (

𝐹𝑟
𝑚𝑎𝑥

𝑦𝑟
− 𝑓𝑟 (𝝀)) ≤ 𝐹𝑟

𝑚𝑎𝑥 − 𝛼𝑜
𝑟 

𝑦𝑟 (𝑓𝑟 
𝑟𝑒𝑓

− 𝑓𝑟 (𝝀)) ≤ 𝐹𝑟
𝑚𝑎𝑥 − 𝛼𝑜

𝑟𝑦𝑟 (𝑓𝑟 
𝑟𝑒𝑓

− 𝑓𝑟 (𝝀)) ≤ 𝐹𝑟
𝑚𝑎𝑥 − 𝛼𝑜

𝑟 

𝑦𝑟 (𝑓𝑟 
𝑟𝑒𝑓

− 𝑓𝑟 (𝝀)) ≤ 𝛼𝑟 .                                                                                                     (26) 

Analogously from (21), the second set of constraints of problem (25) can be equivalently 

transformed into: 

𝑥𝑖 (𝑓𝑟 
𝑟𝑒𝑓

− 𝑓𝑖(𝝀)) ≤ 𝐹𝑖
𝑚𝑎𝑥 − 𝜁𝑜

𝑖   𝑥𝑖 (𝑓𝑟 
𝑟𝑒𝑓

− 𝑓𝑖(𝝀)) ≤ 𝜁𝑖 , i 𝜖 𝐼,                             (27) 

Additionally, the objective function of model (25) becomes: 

max  𝛽𝑜
𝑅 = min (−  𝛽𝑜

𝑅) = min .                                                                                            (28) 

Since   𝑓𝑟𝑜 
̂ = 𝑓𝑟𝑜(𝝀∗), r 𝜖 𝑂, expression (18) implies that for any 𝝀  o  

𝑓𝑟 
𝑟𝑒𝑓

=
𝐹𝑟

𝑚𝑎𝑥

𝑦𝑟
 ≥ 

𝑦𝑟   𝑓𝑟𝑜 ̂

𝑦𝑟
=    𝑓𝑟𝑜 

̂ = max 
𝑓𝑟𝑜(𝝀)

𝝀 ∈ 𝛬
, r 𝜖 𝑂,                                                             (29) 

Analogously from (19) it is obtained, respectively, 
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𝑓𝑖 
𝑟𝑒𝑓

=
𝐹𝑖

𝑚𝑎𝑥

𝑥𝑖
 ≥ 

𝑥𝑖   𝑓𝑖𝑜 ̂

𝑥𝑖
=    𝑓𝑖𝑜 

̂ = max 
𝑓𝑖𝑜(𝝀)

𝝀 ∈ 𝛬
, i 𝜖 𝐼,                                                                 (30) 

Equations (29) and (30) imply for any 𝝀   

𝑓𝑟 
𝑟𝑒𝑓

- 𝑓𝑟 (𝝀)  0, r 𝜖 𝑂,                                                                                                            (31) 

𝑓𝑖 
𝑟𝑒𝑓

- 𝑓𝑖 (𝝀)  0, i 𝜖 𝐼,                                                                                                              (32) 

Hence, from (24) it is verified for any 𝝀  o that 

 = (𝑤𝑦(∑ 𝜛𝑦
𝑟𝐹𝑟

𝑚𝑎𝑥)𝑟 𝜖 𝑂 + 𝑤𝑥(∑ 𝜛𝑥
𝑖𝐹𝑖

𝑚𝑎𝑥
𝑖 𝜖 𝐼 ) −  𝛽𝑜

𝑅. 

Moreover, since 

 𝛽𝑜
𝑅 = 𝑤𝑦(∑ 𝜛𝑦

𝑟(𝛼𝑜
𝑟))𝑟 𝜖 𝑂 + 𝑤𝑥(∑ 𝜛𝑥

𝑖(𝜁𝑜
𝑖 )𝑖 𝜖 𝐼 )  

Thus, from (20) - (21), it is known that   

 = ((𝑤𝑦(∑ 𝜛𝑦
𝑟𝐹𝑟

𝑚𝑎𝑥)𝑟 𝜖 𝑂 + 𝑤𝑥(∑ 𝜛𝑥
𝑖𝐹𝑖

𝑚𝑎𝑥
𝑖 𝜖 𝐼 )) −  𝛽𝑜

𝑅   =

(𝑤𝑦(∑ 𝜛𝑦
𝑟(𝐹𝑟

𝑚𝑎𝑥 − 𝛼𝑜
𝑟))𝑟 𝜖 𝑂 + 𝑤𝑥(∑ 𝜛𝑥

𝑖(𝐹𝑖
𝑚𝑎𝑥 − 𝜁𝑜

𝑖 )𝑖 𝜖 𝐼 ) = 

(𝑤𝑦(∑ 𝜛𝑦
𝑟(𝛼𝑟 ))𝑟 𝜖 𝑂 + 𝑤𝑥(∑ 𝜛𝑥

𝑖(𝜁𝑖 )𝑖 𝜖 𝐼 )  

With the foregoing in mind, it is proven that the general combined-oriented DEA 

Model (4) can be equivalently transformed into the super-ideal point Model (11). 

 

2.2.3. Interactive approaches to obtain solutions to the hybrid DEA-MOLP model  

Interactive methods comprise a series of computation stages intertwined with dialogue 

phases conducted with the DM (Miettinen and Makela, 1999). After each computation 

phase, the solution attained is presented to the DM, who is asked to provide the required 

information to proceed with a new computation phase to obtain a new solution more 

consistent with his/her preferences, or by stopping the procedure when a satisfactory 

solution is found which is supposedly the MPS. Most interactive methods in MOLP 

generate one or more solutions that are efficient, except for a family of methods called 

NAUTILUS that starts from the nadir point (Miettinen et al., 2010, Ruiz et al., 2015). 

Each interactive procedure has specific dialogue and computation phases, as well as 

stopping conditions. In this section, we describe several interactive approaches that will 

be used to obtain solutions to the hybrid DEA-MOLP model previously developed. 

The choice of the interactive method to be used is dependent on the preferences 

provided by the DM as follows: i) if the DM wishes to directly provide new target values 

to be achieved for the DMUs, then the Wierzbicki or the Tchebycheff methods should be 

used to generate new targets; ii) if the DM rather prefers to set the required adjustments 

to be made to the target input or output values, specifying those factors that should be 
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improved, maintained or relaxed, then the STEM and/or STOM methods should be 

employed to generate new targets. 

The switch of method, considering these two variants of preferences, does not 

imply restarting the interactive procedure, allowing to preserve the information gathered 

previously (Luque et al., 2011). Furthermore, the DM can correct his/her prior decisions 

if he/she wishes to do so. 

Generically, the following steps are considered: 

Step 1. Solve problem (4) to identify the efficient and inefficient DMUs using a 

selected combination of weights for each input and output and remain with this same 

combination for all the steps of the algorithm. Additionally, use the same weight profiles 

for all DMUs to guarantee the ordering of the DMUs based on the resulting efficiency 

scores (Ruiz and Sirvent, 2016). Solve the following problem to rank the efficient DMUs: 

max 𝛽𝑜
𝑅 = 𝑚𝑎𝑥 (𝑤𝑦(∑ 𝜛𝑦

𝑟𝛼𝑜
𝑟)𝑟 𝜖 𝑂 + 𝑤𝑥(∑ 𝜛𝑥

𝑖𝜁𝑜
𝑖

𝑖 𝜖 𝐼 ))) 

s.t. ∑ 𝜆𝑗𝑦𝑟𝑗 ≥ 𝑦𝑟𝑜𝑗≠𝑜 + 𝛼𝑜
𝑟𝑔𝑦𝑟, r 𝜖 𝑂, 

∑ 𝜆𝑗𝑥𝑖𝑗 ≤ 𝑥𝑖𝑜 − 𝜁𝑜
𝑖 𝑔𝑥𝑖𝑗≠𝑜 , i 𝜖 𝐼, 

∑ 𝜆𝑗𝑗≠𝑜 = 1, 𝑗0 (j),                                                                                                     (33)  

Step 2. For each problem given in Step 1, solve problem (5) for each inefficient 

DMU and obtain the corresponding DMU target set. If the DM is satisfied with the 

previous target set, then the solution procedure ends. Otherwise, continue. 

Step 3. Set ℎ = 1. Obtain through expressions (18) and (19) the values of 𝑓𝑟 
𝑟𝑒𝑓

, 

r 𝜖 𝑂, 𝑓𝑖 
𝑟𝑒𝑓

, i 𝜖 𝐼.  

Step 4. Compute 𝑓𝑟(𝝀∗), r 𝜖 𝑂, 𝑓𝑖(𝝀∗), i 𝜖 𝐼 through expressions (12) and (13), 

respectively, where 𝝀∗ is the optimal solution to each model obtained with formulation 

(5). 

Step 5. The DM is either asked directly to provide new target values (case 1) or 

to set the required adjustments to be made to the target input or output values according 

to three categories (case 2): the ones that require further improvement (𝐼ℎ), the ones that 

are to be maintained (𝑀ℎ) and the ones that must be relaxed (𝑅ℎ). In case 1, the DM 

should choose the Wierzbicki and/or Tchebycheff methods, whereas, in case 2, the DM 

should select the STEM and/or STOM methods. 

Step 6. Consider the new reference points according to the method used. 

Step 7. Consider the weights according to the method used. 

Step 8. Solve the required model according to the method used. 
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Step 9. Obtain the optimal values 𝛼𝑟∗ and 𝜁𝑖∗. 

Step 10. Let:  

𝛼𝑜
𝑟∗ = 𝐹𝑟

𝑚𝑎𝑥 − 𝛼𝑟∗, r 𝜖 𝑂,                                                  

𝜁𝑜
𝑖∗ = 𝐹𝑖

𝑚𝑎𝑥 − 𝜁𝑖∗, i 𝜖 𝐼,                                                      

Step 11. Solve problem (5) and obtain the new reference target units of the DMU 

under assessment. If the DM accepts the new reference target unit as the MPS, then stop. 

Otherwise, let h:= h+1. Go to Step 4 or Step 1 if new weight profiles for the inputs and 

outputs should be explored (accounting for the same weight profiles for all DMUs). 

Figure 1 provides a diagrammatical illustration of the overall algorithm, considering 

different interactive methods. 

 

Choice of the interactive method to be used in each iteration 

Wierzbicki method 

The Wierzbicki (1980) method is based on the use of ASF (6). At each iteration, several 

efficient solutions are computed through the minimization of an ASF by using a reference 

point selected by the DM, which is representative of his/her aspiration levels. A specific 

feature of this method refers to the fact that the weights used in the ASF are fixed, and 

they are kept unchanged during the entire solution process.  

Step 6. Ask the DM to stipulate the new reference points given as: 

𝑞𝑟 
ℎ  for each 𝑟 𝜖 𝑂, 

𝑞𝑖 
ℎ for each 𝑖 𝜖 𝐼. 

Step 7. Consider the weights 𝑦𝑟, 𝑟 𝜖 𝑂, and 𝑥𝑖, 𝑖 𝜖 𝐼, computed according to 

expressions (16) and (17). 

Step 8. Solve the following problem: 

min , 

s.t. 𝑦𝑟(𝑞𝑟 
ℎ − 𝑓𝑟 (𝝀)) ≤  𝛼𝑟 , 𝑟 𝜖 𝑂, 

𝑥𝑖(𝑞𝑖 
ℎ − 𝑓𝑖 (𝝀)) ≤  𝜁𝑖 , 𝑖 𝜖 𝐼, 

(𝑤𝑦(∑ 𝜛𝑦
𝑟(𝛼𝑟 ))𝑟 𝜖 𝑂 + 𝑤𝑥(∑ 𝜛𝑥

𝑖(𝜁𝑖 )𝑖 𝜖 𝐼 ) ≤ , 

∑ 𝜛𝑦
𝑟

𝑟 𝜖 𝑂 =1,  

∑ 𝜛𝑥
𝑖

𝑖 𝜖 𝐼 = 1, 

𝑤𝑦 + 𝑤𝑥 = 1, 

𝝀                                                                                                                                                 (34) 
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Let: 

𝐹𝑟
𝑚𝑎𝑥:= 𝑦𝑟(𝑞𝑟 

ℎ − 𝑦𝑟𝑜), r 𝜖 𝑂                                                                                           

𝐹𝑖
𝑚𝑎𝑥:=  𝑥𝑖(𝑥𝑖𝑜 − 𝑞𝑖 

ℎ), i 𝜖 𝐼                                                                                             

Go to Step 9. 

 

Tchebycheff method 

The Tchebycheff method was proposed by Steuer and Choo (1983). This method begins 

with a set of dispersed weight vectors which are used to create a set of radially dispersed 

probing directions emanating from the ideal point and solves problem (6) once for each 

of them (Steuer and Choo, 1983). The efficient solutions thus generated are then shown 

to the DM, who must choose his/her MPS. Subsequently, a group of dispersed vectors is 

obtained from a neighborhood of the weight vector that generated the MPS. Problem (6) 

is, once more, solved for each of them, and a new, but more concentrated set of efficient 

solution candidates is computed. After the DM selects the MPS from this new set of 

efficient solutions, a new group of dispersed weight vectors is obtained departing from a 

neighborhood around the weight vector that produced it, and so forth. Provided that the 

neighborhoods keep narrowing, the algorithm will converge to a final solution. 

Step 6. Consider the ideal reference point given as (18) and (19). 

Step 7. Obtain the new weights for the current solution under scrutiny as follows. 

Let 𝑘= 𝑦𝑘, 𝑘  𝑂 and 𝑘= 𝑥𝑘, 𝑘  𝐼, where 𝑘[0,1], 𝑘  {𝑂} { 𝐼} and ∑ 𝑘 = 1𝑠+𝑚
𝑘=1  

can be selected according to the DM’s preferences. 

Step 8. Solve super-ideal model (11) with the weights considered in Step 7. 

Go to Step 9. 

 

STOM method 

This method was published by Nakayama and Sawaragi (1984) and proposes the use of 

an achievement function similar to the ASF proposed by Wierzbicki (1980). A distinctive 

feature of this method refers to the fact that in its original version, the reference point 

considered is kept constant throughout the entire procedure and it is the ideal point and 

the weights are updated considering the DM’s preferences. Based on this method the 

following additional steps should be considered: 

Step 6. For each 𝑟, 𝑖 ∈ 𝐼ℎ, ask the DM how much he/she wants to improve the 

corresponding output (∆𝑓𝑟 
ℎ) or input (∆𝑓𝑖 

ℎ) and, for each 𝑟, 𝑖 ∈ 𝑅ℎ, specify how much the 
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DM allows to worsen the corresponding output ∆𝑓𝑟 
ℎ or input ∆𝑓𝑖 

ℎ. Update the new 

reference values given as: 

𝑞𝑟 
ℎ = 𝑓𝑟(𝝀∗) + ∆𝑓𝑟 

ℎ for each 𝑟𝜖𝐼ℎ ∩ 𝑂 

𝑞𝑖 
ℎ = 𝑓𝑖(𝝀∗) − ∆𝑓𝑖 

ℎ for each 𝑖𝜖𝐼ℎ ∩   𝐼 

𝑞𝑟 
ℎ = 𝑓𝑟(𝝀∗) − ∆𝑓𝑟 

ℎ for each 𝑟𝜖𝑅ℎ ∩ 𝑂 

𝑞𝑖 
ℎ = 𝑓𝑖(𝝀∗) + ∆𝑓𝑖 

ℎ for each 𝑖𝜖𝑅ℎ ∩ 𝐼 

𝑞𝑟 
ℎ = 𝑓𝑟(𝝀∗) for each 𝑟𝜖𝑀ℎ ∩ 𝑂 

𝑞𝑖 
ℎ = 𝑓𝑖(𝝀∗) for each 𝑖𝜖𝑀ℎ ∩ 𝑂 

Step 7. According to the new reference values given in Step 6, compute: 

𝑦𝑟=
1

𝑓𝑟 
𝑟𝑒𝑓

−𝑞𝑟 
ℎ
, 𝑟 𝜖 𝑂,                           𝑥𝑖=

1

𝑓
𝑖 
𝑟𝑒𝑓

−𝑞𝑖 
ℎ
, i 𝜖 𝐼. 

With these weights, it is possible to obtain a normalized degree of non-attainability of the 

objective function regarding the reference point (which corresponds to the ideal point). 

Step 8. Solve super-ideal model (11) with the weights computed in Step 7. 

Go to Step 9. 

 

STEM method 

STEM was the first interactive method, proposed by Benayoun et al. (1971). In each 

interaction, the DM is asked to stipulate how much he/she wishes to sacrifice the objective 

functions whose value he/she views as acceptable, to enhance those whose values are still 

not satisfactory. With this information, a weighted Tchebycheff distance from the ideal 

point to the criterion space, which is reduced, is minimized. Thus, the following additional 

steps should be incorporated into the algorithm: 

Step 6. Taking into account the three categories of outputs and inputs, the ones 

that require further improvement (𝐼ℎ), the ones that are to be maintained (𝑀ℎ) and the 

ones that must be relaxed (𝑅ℎ), for each 𝑟, 𝑖 ∈ 𝑅ℎ, specify how much the DM allows to 

worsen the corresponding output ∆𝑓𝑟 
ℎ, 𝑟 𝜖 𝑅ℎ ∩ 𝑂 or input ∆𝑓𝑖 

ℎ, 𝑖 𝜖 𝑅ℎ  ∩  𝐼. 

Step 7. Compute the new weights as follows: 

𝑘=
𝑓𝑘 

𝑟𝑒𝑓
−min 

𝑓𝑘𝑜(𝝀)

𝝀∈𝛬

𝑓
𝑘 
𝑟𝑒𝑓 (

1

√∑ (𝑓𝑘 )
2𝑠+𝑚

𝑘=1

), 𝑘  {𝑂} { 𝐼},                                                              

where 𝑓𝑘 corresponds to the gradients of each objective function (i.e. to the original inputs 

and outputs). The first term of this expression is aimed at giving higher importance to 
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those factors subject to higher relative variations, whereas the second term is a 

normalization factor. Let 𝑘= 𝑦𝑘, 𝑘  {𝑂} and 𝑘= 𝑥𝑘, 𝑘  {𝐼}. 

Step 8. Solve the following problem with the weights computed in Step 7: 

min , 

s.t. 𝑦𝑟(𝑓𝑟 
𝑟𝑒𝑓

− 𝑓𝑟 (𝝀)) ≤  𝛼𝑟 , 𝑟 𝜖 𝐼ℎ ∩ 𝑂, 

𝑥𝑖(𝑓𝑖 
𝑟𝑒𝑓

− 𝑓𝑖 (𝝀)) ≤  𝜁𝑖 , 𝑖 𝜖 𝐼ℎ ∩  𝐼, 

𝑓𝑟 (𝝀)) ≥  𝑓𝑟(𝝀∗) − ∆𝑓𝑟 
ℎ, 𝑟 𝜖 𝑅ℎ ∩ 𝑂, 

𝑓𝑖 (𝝀)) ≤  𝑓𝑖(𝝀∗) + ∆𝑓𝑖 
ℎ, 𝑖 𝜖 𝑅ℎ  ∩  𝐼, 

𝑓𝑟 (𝝀)) ≥  𝑓𝑟(𝝀∗), 𝑟 𝜖 𝑀ℎ ∩ 𝑂, 

𝑓𝑖 (𝝀)) ≤  𝑓𝑖(𝝀∗), 𝑖 𝜖 𝑀ℎ  ∩  𝐼, 

(𝑤𝑦(∑ 𝜛𝑦
𝑟(𝛼𝑟 ))𝑟 𝜖 𝑂 + 𝑤𝑥(∑ 𝜛𝑥

𝑖(𝜁𝑖 )𝑖 𝜖 𝐼 ) ≤ , 

∑ 𝜛𝑦
𝑟

𝑟 𝜖 𝑂 =1,  

∑ 𝜛𝑥
𝑖

𝑖 𝜖 𝐼 = 1, 

𝑤𝑦 + 𝑤𝑥 = 1, 

𝝀                                                                                                                                                 (35) 

Go to Step 9. 
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Figure 1. Diagrammatical illustration of the interactive algorithm. 

  

Step 1. Solve problem (4) to identify the efficient and inefficient DMUs. 
For each efficient DMU solve problem (33) to rank the efficient DMUs. 

Step 2. Let 𝛼𝑜
𝑟∗,  𝛾𝑜

𝑟∗, 𝜁𝑜
𝑖∗ and 𝜉𝑜

𝑖∗ be the optimal solution to (4) for each 

inefficient DMU. Replace 𝛼𝑜
𝑟∗,  𝛾𝑜

𝑟∗, 𝜁𝑜
𝑖∗ and 𝜉𝑜

𝑖∗ into problem (5) for each 

inefficient DMU and obtain the corresponding DMU target set. 

 

Is the DM satisfied with the previous target set? 

Yes 

Stop 

No 

Step 3. Obtain through expressions (18) and (19) the values of   

𝑓𝑟 
𝑟𝑒𝑓

, r𝜖𝑂, 𝑓𝑖 
𝑟𝑒𝑓

, i𝜖𝐼. Set h=0. 

Step 4. Obtain 𝝀∗ with formulation (5) and compute through 

expressions (12) and (13), 𝑓𝑟(𝝀∗), r 𝜖 𝑂, 𝑓𝑖(𝝀∗), i 𝜖 𝐼.  

General combined oriented DEA model 

Step 5. If the DM decides to provide new target values directly, go 
step 6. In the opposite case, consider each of the main components of 

the target unit according to three categories: the ones that require 

further improvement (𝐼ℎ), the ones that are to be maintained (𝑀ℎ) and 

the ones that must be relaxed (𝑅ℎ).  

Step 6. Consider the new reference points. 

Step 7. Obtain the weights. 

Step 8. Solve the model with the new values using the corresponding 

interactive method. 

Step 9. Obtain the optimal values 𝛼𝑟∗ and 𝜁𝑖∗. 

 

Step 11. Solve problem (5) and obtain the new reference target units 

of the DMU under assessment.  

 

Super ideal point model 

Is the DM satisfied with the previous target set? 

Yes 

Stop 

No 

h:= h+1 

Step 10. Obtain the optimal values 𝛼𝑂
𝑟∗ and 𝜁𝑂

𝑖∗. 

 



20 

 

3 AN ILLUSTRATIVE EXAMPLE 

We have considered the example provided in Wong et al. (2009) that addresses 

the performance measurement of seven UK retail banks, i.e. seven DMUs. The outputs 

used are total revenue, corporate image and customer satisfaction, whereas the inputs 

considered are the number of branches, ATMs and staff (see Table 1). After solving 

problems (4) and (33) it is possible to conclude that the bank with the lowest efficiency 

score corresponds to DMU 6. The solution of problem (5) provides information regarding 

the benchmarks in terms of best practices for each inefficient bank (DMUs 5 and 6) and 

the corresponding projections – see Table 2. In this context, we will focus on the required 

improvements that need to be operated regarding the inputs and outputs of the DMU with 

the lowest performance in terms of aggregate efficiency to become efficient. According 

to Figure 1, to become efficient, DMU 6 should increase its total revenue from £12.04 m 

to £15.05 m, its corporate image evaluation from 2.53 to 4.83 and the customer 

satisfaction evaluation from 4.86 to 7.68, while reducing the number of branches from 

1.73 to 1.22 thousand and the number of ATMs from 3.30 to 2.95 thousand, keeping the 

original staff number. 

 

Table 1. Data regarding the inputs and outputs and efficiency scores 

DMU 

Total 

revenue 

(£m) 

Corporate 

image 

Customer 

satisfaction 

Nº of 

branches 

(1000) 

Nº of 

ATMs 

(1000) 

Nº of staff 

(10,000) 

Efficiency 

Score  

1 10.57 3.40 6.79 2.00 2.18 2.35 1.17 

2 13.35 6.66 2.55 1.95 3.19 8.43 1.01 

3 8.14 1.92 9.17 0.80 2.10 3.21 1.05 

4 23.67 8.47 5.82 1.75 4.00 13.30 1.17 

5 14.01 3.44 6.57 2.50 4.30 9.27 0.71 

6 12.04 2.53 4.86 1.73 3.30 7.70 0.64 

7 7.36 1.26 7.28 0.65 1.53 2.67 1.13 

Minimum 7.36 1.26 2.55 0.65 1.53 2.35 0.64 

Maximum 23.67 8.47 9.17 2.50 4.30 13.30 1.17 

Average 12.73 3.95 6.15 1.63 2.94 6.70 0.98 

Source: Authors’ own calculations 

 

Table 2. Initial DEA efficiency results 

DMU Nº Ref. 1 2 3 4 5 6 7 

1 1 1.00 0.00 0.00 0.00 0.00 0.00 0.00 

2 1 0.00 1.00 0.00 0.00 0.00 0.00 0.00 

3 3 0.00 0.00 1.00 0.00 0.00 0.00 0.00 

4 3 0.00 0.00 0.00 1.00 0.00 0.00 0.00 

5 0 0.00 0.00 0.40 0.60 0.00 0.00 0.00 

6 0 0.00 0.00 0.56 0.44 0.00 0.00 0.00 

7 1 0.00 0.00 0.00 0.00 0.00 0.00 1.00 
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Note: Nº ref.  is the number of times that the DMU is selected as a benchmark in the WRDDM non-oriented model. 

Source: Authors’ own calculations 

 

Source: Authors’ own calculations 

Figure 1. Required adjustments in DMU 6 according to the original projections  

 

Nonetheless, the projections obtained in Figure 1 do not encompass the DM’s 

preferences. Therefore, we will next describe other possible solutions obtainable with 

different interactive MOLP algorithms to compute other solutions more consistent with 

the DM’s preferences and/or aspiration levels. To proceed with our analysis, we will 

consider a hypothetical DM which establishes the following targets, i.e. the revenue will 

be targeted at £16m, the level of customer satisfaction should be improved to 7.5 and the 

level of corporate image should be maintained, but to increase its outputs he/she is willing 

to increase the Nº of staff to 90 thousand people, while increasing the number of branches 

to 2.5 thousand and the number of ATMs to 5 thousand. 

Table 3 provides a comparison of the solutions obtained with the different 

methods considered. Out of the methods used, the Tchebycheff method was the only one 

that allowed attaining exactly the target aimed for total revenue of £16m, ensuring at the 

same time the highest level of customer satisfaction of 7.00 (a little bit away from the 

target of 7.50). To obtain this solution, we have assigned higher weights to the total 

revenue and customer satisfaction, i.e. 0.25 to each factor, while the remaining factors 

were assumed a weight of 0.13 each. The benchmarks in terms of the best practices also 

change regarding the initial solution, i.e. besides DMU 3 and 4 we now have DMU 1. 

Furthermore, there is an improvement of corporate image, but at the expense of increasing 

the number of branches by 330 and the number of ATMs by 60. The Wierzbicki approach 
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allows reaching the highest level of total revenue, but the lowest level of customer 

satisfaction, concerning the sample of solutions under scrutiny. But, to obtain this 

outcome, it must opt for the highest increase of both the number of branches and ATMs 

when contrasted with the remaining solutions. To achieve the final solution, the STOM 

method requires an additional iteration when compared with all the other methods. The 

required number of iterations is higher because in the computation of the weights needed 

to solve problem (11) the method considered the initial target, which led to a higher 

weight of 0.60 regarding customer satisfaction and 0.54 concerning the number of 

branches. It is worth mentioning that these latter two factors are the ones that have a target 

closer to the corresponding ideal point of 9.17 and 0.65, respectively. Finally, the STEM 

method allows computing results quite near the ones reached with the STOM method but 

allocating different weights regarding the benchmarks considered. 

Overall, it might be concluded that the values generated by the different methods 

are not very discrepant. However, the use of such diverse approaches allows the DM to 

select the method according to the easiness of the information required from him/her, and 

the possibility of switching methods enables him/her to pick the method that is making 

more significant progress towards his/her MPS.  

 

Table 3. Comparison of final solutions 

        Benchmarks 

Interactive 
Method 

Nº of 
iterations 

Total 

revenue 

(£m) 

Corporate 
image 

Customer 
satisfaction 

Nº of 

branches 

(1,000) 

Nº of 

ATMs 

(1,000) 

Nº of 

staff 

(10,000) 1 3 4 

Target - 16.00 2.53 7.50 2.50 5.00 9.00 

Starting 
solution  

0 15.05 4.83 7.68 1.22 2.95 7.70 0.00 0.56 0.44 

Wierzbicki  1 16.97 5.88 6.32 1.88 3.07 7.70 0.51 0.00 0.49 

Tchebycheff  1 16.00 5.35 7.00 1.55 3.01 7.70 0.25 0.28 0.47 

STOM  2 16.54 5.64 6.62 1.73 3.04 7.70 0.06 0.72 0.22 

STEM 1 16.42 5.58 6.71 1.69 3.03 7.70 0.36 0.16 0.48 

 

4 CONCLUSIONS 

One of the most important features of DEA is that it provides information on how 

inefficient DMUs are performing against their peers, offering relevant information to 

DMs regarding the best practices that should be followed to reach efficiency. 

Nevertheless, in traditional DEA models, the selection of the benchmark DMUs is not 

influenced by the DMs’ preferences. In fact, the reference DMUs more often nominated 

generally vary according to the models used. Moreover, multiple reference sets may occur 
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for a DMU in a non-radial DEA perspective. Therefore, in real-world situations, the DMs 

might want to reflect their preferences and aspirations in the choice of the efficient DMUs 

to be used as benchmarks. 

There are several methods that allow including the DMs’ preferences. Out of 

these, the target setting models might be particularly appropriate, being usually combined 

with MOLP models. 

In this context, unlike other hybrid DEA-MOLP approaches previously suggested, 

we propose a modelling framework which allows considering different priorities and 

individual expansion and contraction scales for the inputs and outputs. Additionally, an 

equivalence model between the WRDDM and the super-ideal point model has been 

established which enables incorporating a broad category of factors.  

Several interactive methods that allow selecting the target DMUs to be viewed as 

benchmarks (i.e. best practices) of the non-efficient DMUs under evaluation have also 

been proposed based on different ways to incorporate the DM’s preferences. This feature 

can be useful since traditional DEA models tend to completely neglect the DM’s 

preferences in the computation of the DMUs to be used as benchmarks. Therefore, with 

this tool the DMs are enabled with the possibility of translating into the decision-making 

process management constraints (namely, budgetary) and aspiration levels regarding the 

inputs and outputs, providing much more realistic support for actual decision-making. 

With these interactive methods to search for the MPS (i.e. the most preferred 

benchmarks), DMs are capable of handling input and output factors according to their 

preferences, i.e. inputs and outputs can be increased, maintained or reduced, depending 

on what they believe it is reasonable and realistic for them.  

Finally, it is worth mentioning that the procedure for articulating the computation 

and dialogue phases through the use of these distinct search methods rather than being 

concerned with obtaining a minimum distance projection has an essential purpose of 

building progressively the DM’s preferences in order to obtain the most preferred 

efficient target.  
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