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Abstract. If µ is a finite positive Borel measure on the interval [0, 1), we let
Hµ be the Hankel matrix (µn,k)n,k≥0 with entries µn,k = µn+k, where, for n =
0, 1, 2, . . . , µn denotes the moment of order n of µ. This matrix induces formally the
operator Hµ(f)(z) =

∑∞
n=0 (

∑∞
k=0 µn,kak) zn on the space of all analytic functions

f(z) =
∑∞
k=0 akz

k , in the unit disc D. When µ is the Lebesgue measure on [0, 1)
the operator Hµ is the classical Hilbert operator H which is bounded on Hp if
1 < p < ∞, but not on H1. J. Cima has recently proved that H is an injective
bounded operator from H1 into the space C of Cauchy transforms of measures on
the unit circle.

The operator Hµ is known to be well defined on H1 if and only if µ is a Carleson
measure and in such a case we have that Hµ(H1) ⊂ C . Furthermore, it is bounded
from H1 into itself if and only if µ is a 1-logarithmic 1-Carleson measure.

In this paper we prove that when µ is a 1-logarithmic 1-Carleson measure then
Hµ actually maps H1 into the space of Dirichlet type D1

0 . We discuss also the
range of Hµ on H1 when µ is an α-logarithmic 1-Carleson measure (0 < α < 1).
We study also the action of the operators Hµ on Bergman spaces and on Dirichlet
spaces.

1. Introduction and main results

Let D = {z ∈ C : |z| < 1} denote the open unit disc in the complex plane C, ∂D
will be the unit circle. The space of all analytic functions in D will be denoted by
Hol(D). We also let Hp (0 < p ≤ ∞) be the classical Hardy spaces. We refer to [11]
for the notation and results regarding Hardy spaces.

For 0 < p < ∞ and α > −1 the weighted Bergman space Apα consists of those
f ∈ Hol(D) such that

‖f‖Apα
def
=

(
(α + 1)

∫
D
(1− |z|2)α|f(z)|p dA(z)

)1/p

< ∞.

Here, dA stands for the area measure on D, normalized so that the total area of D is
1. Thus dA(z) = 1

π
dx dy = 1

π
r dr dθ. The unweighted Bergman space Ap0 is simply

denoted by Ap. We refer to [12, 18, 29] for the notation and results about Bergman
spaces.
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The space of Dirichlet type Dpα (0 < p < ∞ and α > −1) consists of those
f ∈ Hol(D) such that f ′ ∈ Apα. In other words, a function f ∈ Hol(D) belongs to
Dpα if and only if

‖f‖Dpα
def
= |f(0)| +

(
(α + 1)

∫
D
(1− |z|2)α|f ′(z)|p dA(z)

)1/p

< ∞.

The Hilbert matrix is the infinite matrix H =
(

1
k+n+1

)
k,n≥0

. It induces formally an

operator, called the Hilbert operator, on spaces of analytic functions as follows:
If f ∈ Hol(D), f(z) =

∑∞
n=0 anz

n, then we set

(1) Hf(z) =
∞∑
n=0

(
∞∑
k=0

ak
n+ k + 1

)
zn, z ∈ D,

whenever the right-hand side of (1) makes sense for all z ∈ D and the resulting function
is analytic in D. We define also

(2) If(z) =

∫ 1

0

f(t)

1− tz
dt, z ∈ D,

if the integrals in the right-hand side of (2) converge for all z ∈ D and the resulting
function If is analytic in D. It is clear that the correspondences f 7→ Hf and
f 7→ If are linear.

If f ∈ H1, f(z) =
∑∞

n=0 anz
z, then by the Fejér-Riesz inequality [11, Theorem 3. 13,

p. 46] and Hardy’s inequality [11, p. 48], we have∫ 1

0

|f(t)| dt ≤ π‖f‖H1 and
∞∑
n=0

an
n+ 1

≤ π‖f‖H1 .

This immediately yields that if f ∈ H1 then Hf and If are well defined analytic
functions in D and that, furthermore, Hf = If .

Diamantopoulos and Siskakis [9] proved that H is a bounded operator from Hp

into itself if 1 < p < ∞, but this is not true for p = 1. In fact, they proved that
H (H1) * H1. Cima [6] has recently proved the following result.

Theorem A. (i) The operator H maps H1 into the space C of Cauchy trans-
forms of measures on the unit circle ∂D.

(ii) H : H1 → C is injective.

We recall that if σ is a finite complex Borel measure on ∂D, the Cauchy transform
Cσ is defined by

Cσ(z) =

∫
∂D

dσ(ξ)

1− ξ z
, z ∈ D.

We let M be the space of all finite complex Borel measure on ∂D. It is a Banach space
with the total variation norm. The space of Cauchy transforms is C = {Cσ : σ ∈M }.
It is a Banach space with the norm ‖Cσ‖ def

= inf{‖τ‖ : Cτ = Cσ}. We mention [7]
as an excellent reference for the main results about Cauchy transforms. We let A
denote the disc algebra, that is, the space of analytic functions in D with a continuous
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extension to the closed unit disc, endowed with the ‖ · ‖H∞-norm. It turns out [7,
Chapter 4] that A can be identified with the pre-dual of C via the pairing

(3) 〈g, Cσ〉 def
= lim

r→1

1

2π

∫ 2π

0

g(reiθ)Cσ(reiθ) dθ.

This is the basic ingredient used by Cima to prove the inclusion H(H1) ⊂ C .
Now we turn to consider a class of operators which are natural generalizations of

the operators H and I. If µ is a finite positive Borel measure on [0, 1) and n =
0, 1, 2, . . . , we let µn denote the moment of order n of µ , that is, µn =

∫
[0,1)

tn dµ(t),

and we define Hµ to be the Hankel matrix (µn,k)n,k≥0 with entries µn,k = µn+k. The
measure µ induces formally the operators Iµ and Hµ on spaces of analytic functions
as follows:

Iµf(z) =

∫
[0,1)

f(t)

1− tz
dµ(t), Hµf(z) =

∞∑
n=0

(
∞∑
k=0

akµn+k

)
zn, z ∈ D,

for f(z) =
∑∞

n=0 anz
n ∈ Hol(D) being such that the terms on the right-hand sides

make sense for all z ∈ D, and the resulting functions are analytic in D. If µ is the
Lebesgue measure on [0, 1) the matrix Hµ reduces to the classical Hilbert matrix and
the operators Hµ and Iµ are simply the operators H and I.

If I ⊂ ∂D is an interval, |I| will denote the length of I. The Carleson square S(I)

is defined as S(I) = {reit : eit ∈ I, 1− |I|
2π
≤ r < 1}.

If s > 0 and µ is a positive Borel measure on D, we shall say that µ is an s-Carleson
measure if there exists a positive constant C such that

µ (S(I)) ≤ C|I|s, for any interval I ⊂ ∂D.

A 1 -Carleson measure will be simply called a Carleson measure. We recall that Car-
leson [4] proved that Hp ⊂ Lp(dµ) (0 < p <∞) if and only if µ is a Carleson measure
(see also [11, Chapter 9]).

For 0 ≤ α < ∞ and 0 < s < ∞ we say that a positive Borel measure µ on D is
an α-logarithmic s-Carleson measure if there exists a positive constant C such that

µ (S(I))
(

log 2π
|I|

)α
|I|s

≤ C, for any interval I ⊂ ∂D.

A positive Borel measure µ on [0, 1) can be seen as a Borel measure on D by identi-
fying it with the measure µ̃ defined by

µ̃(A) = µ (A ∩ [0, 1)) , for any Borel subset A of D.

In this way a positive Borel measure µ on [0, 1) is an s-Carleson measure if and only if
there exists a positive constant C such that

µ ([t, 1)) ≤ C(1− t)s, 0 ≤ t < 1.

We have a similar statement for α-logarithmic s-Carleson measures.
The action of the operators Iµ and Hµ on distinct spaces of analytic functions have

been studied in a number of articles (see, e. g., [2, 5, 14, 15, 16, 22, 25, 27]).
Combining results of [14] and of [16] we can state the following result.
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Theorem B. Let µ be a finite positive Borel measure on [0, 1).

(i) The operator Iµ is well defined on H1 if and only if µ is a Carleson measure.
(ii) If µ is a Carleson measure, then the operator Hµ is also well defined on H1

and Iµf = Hµf for all f ∈ H1.
(iii) The operator Hµ is a bounded operator from H1 into itself if and only if µ is

a 1-logarithmic 1-Carleson measure.

Galanopoulos and Peláez [14, Theorem 2. 2] proved the following.

Theorem C. Let µ be a positive Borel measure on [0, 1). If µ is a Carleson measure
then Hµ(H1) ⊂ C .

This result is stronger than Theorem A(i). In view of these results, the following
question arises naturally.

Question 1. Suppose that µ is a 1-logarithmic 1-Carleson measure on [0, 1). What
can we say about the image Hµ(H1) of H1 under the action of the operator Hµ?

To answer Question 1, let us start noticing that it is known that, for 0 < p ≤ 2,
the space of Dirichlet type Dpp−1 is continuously included in Hp (see [26, Lemma 1. 4]).
In particular, the space D1

0 is continuously included in H1. In fact, the estimates
obtained by Vinogradov in the proof of his lemma easily yield the inequality

‖f‖H1 ≤ 2‖f‖D1
0
, f ∈ D1

0.

We shall prove that if µ is a 1-logarithmic 1-Carleson measure on [0, 1) then Hµ(H1)
is contained in the space D1

0. Actually, we have the following stronger result.

Theorem 1. Let µ be a positive Borel measure on [0, 1). Then the following conditions
are equivalent.

(i) µ is a 1-logarithmic 1-Carleson measure.
(ii) Hµ is a bounded operator from H1 into itself.

(iii) Hµ is a bounded operator from H1 into D1
0.

(iv) Hµ is a bounded operator from D1
0 into D1

0.

There is a gap between Theorem C and Theorem 1 and so it is natural to discuss the
range of H1 under the action of Hµ when µ is an α-logarithmic 1-Carleson measure
with 0 < α < 1. We shall prove the following result.

Theorem 2. Let µ be a positive Borel measure on [0, 1). Suppose that 0 < α < 1
and that µ is an α-logarithmic 1-Carleson measure. Then Hµ maps H1 into the
space D1(logα−1) defined as follows:

D1(logα−1) =

{
f ∈ Hol(D) :

∫
D
|f ′(z)|

(
log

2

1− |z|

)α−1
dA(z) <∞

}
.

These results will be proved in Section 2. Since the space of Dirichlet type D1
0 has

showed up in a natural way in our work, it seems natural to study the action of the
operators Hµ and Iµ on the Bergman spaces Apα and the Dirichlet spaces Dpα for
general values of the parameters p and α. This will be done in Section 3.
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Throughout this paper the letter C denotes a positive constant that may change from
one step to the next. Moreover, for two real-valued functions E1, E2 we write E1 . E2,
or E1 & E2, if there exists a positive constant C independent of the arguments such that
E1 ≤ CE2, respectively E1 ≥ CE2. If we have E1 . E2 and E1 & E2 simultaneously
then we say that E1 and E2 are equivalent and we write E1 � E2.

2. Proofs of the theorems 1 and 2

Proof of Theorem 1. We already know that (i) and (ii) are equivalent by Theorem B.
To prove that (i) implies (iii) we shall use some results about the Bloch space. We

recall that a function f ∈ Hol(D) is said to be a Bloch function if

‖f‖B
def
= |f(0)| + sup

z∈D
(1− |z|2)|f ′(z)| < ∞.

The space of all Bloch functions will be denoted by B. It is a non-separable Banach
space with the norm ‖ · ‖B just defined. A classical source for the theory of Bloch
functions is [1]. The closure of the polynomials in the Bloch norm is the little Bloch
space B0 which consists of those f ∈ Hol(D) with the property that

lim
|z|→1

(1− |z|2)|f ′(z)| = 0.

It is well known that (see [1, p. 13])

(4) |f(z)| . ‖f‖B log
2

1− |z|
.

The basic ingredient to prove that (i) implies (iii) is the fact that the dual (B0)∗
of the little Bloch space can be identified with the Bergman space A1 via the integral
pairing

(5) 〈h, f〉 =

∫
D
h(z) f(z) dA(z), h ∈ B0, f ∈ A1.

(See [29, Theorem 5. 15]).
Let us proceed to prove the implication (i)⇒ (iii). Assume that µ is a 1-logarithmic

1-Carleson measure and take f ∈ H1. We have to show that Iµf ∈ D1
0 or, equivalently,

that (Iµf)′ ∈ A1. Since B0 is the closure of the polynomials in the Bloch norm, it
suffices to show that

(6)

∣∣∣∣∫
D
h(z) (Iµf)′ (z) dA(z)

∣∣∣∣ . ‖h‖B‖f‖H1 , for any polynomial h.

So, let h be a polynomial. We have∫
D
h(z) (Iµf)′ (z) dA(z) =

∫
D
h(z)

(∫
[0,1)

t f(t)

(1− tz)2
dµ(t)

)
dA(z)

=

∫
D
h(z)

∫
[0,1)

t f(t)

(1− t z)2
dµ(t) dA(z)

=

∫
[0,1)

t f(t)

∫
D

h(z)

(1− t z)2
dA(z) dµ(t).
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Because of the reproducing property of the Bergman kernel [29, Proposition 4. 23],∫
D

h(z)
(1−t z)2 dA(z) = h(t). Then it follows that

(7)

∫
D
h(z) (Iµf)′ (z) dA(z) =

∫
[0,1)

t f(t)h(t) dµ(t).

Since µ is a 1-logarithmic 1-Carleson measure, the measure ν defined by

dν(t) = log
2

1− t
dµ(t)

is a Carleson measure [15, Proposition 2. 5]. This implies that∫
[0,1)

|f(t)| log
2

1− t
dµ(t) . ‖f‖H1 .

This and (4) yield ∫
[0,1)

∣∣∣t f(t)h(t)
∣∣∣ dµ(t) . ‖h‖B‖f‖H1 .

Using this and (7), (6) follows.
Since D1

0 ⊂ H1 , the implication (iii) ⇒ (iv) is trivial. To prove that (iv) implies
(i) we shall use the following result of Pavlović [23, Theorem 3. 2].

Theorem D. Let f ∈ Hol(D), f(z) =
∑∞

n=0 anz
n, and suppose that the sequence

{an} is a decreasing sequence of non-negative real numbers. Then f ∈ D1
0 if and only

if
∑∞

n=0
an
n+1

<∞, and we have

‖f‖D1
0
�

∞∑
n=0

an
n+ 1

.

Now we turn to prove the implication (iv)⇒ (i). Assume that Hµ is a bounded
operator from D1

0 into D1
0. We argue as in the proof of Theorem 1. 1 of [16]. For

1
2
< b < 1 set

fb(z) =
1− b2

(1− bz)2
, z ∈ D.

We have f ′b(z) = 2b(1−b2)
(1−bz)3 (z ∈ D). Then, using Lemma 3. 10 of [29] with t = 0 and

c = 1, we see that

‖fb‖D1
0
�
∫
D

1− b2

|1− bz|3
dA(z) � 1.

Since Hµ is bounded on D1
0, this implies that

(8) 1 & ‖Hµ(fb)‖D1
0
.

We also have,

fb(z) =
∞∑
k=0

ak,bz
k, with ak,b = (1− b2)(k + 1)bk.
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Since the ak,b’s are positive, it is clear that the sequence {
∑∞

k=0 µn+kak,b}∞n=0 of the
Taylor coefficients of Hµ(fb) is a decreasing sequence of non-negative real numbers.
Using this, Theorem D, (8), and the definition of the ak,b’s, we obtain

1 & ‖Hµ(fb)‖D1
0
&

∞∑
n=1

1

n

(
∞∑
k=0

µn+kak,b

)

=
∞∑
n=1

1

n

(
∞∑
k=0

ak,b

∫
[0,1)

tn+k dµ(t)

)

& (1− b2)
∞∑
n=1

1

n

(
∞∑
k=1

kbk
∫
[b,1)

tn+k dµ(t)

)

& (1− b2)
∞∑
n=1

1

n

(
∞∑
k=1

kbn+2k µ ([b, 1))

)

= (1− b2)µ ([b, 1))
∞∑
n=1

bn

n

(
∞∑
k=1

kb2k

)

= (1− b2)µ ([b, 1))

(
log

1

1− b

)
b2

(1− b2)2
.

Then it follows that

µ ([b, 1)) = O

(
1− b

log 1
1−b

)
, as b→ 1.

Hence, µ is a 1-logarithmic 1-Carleson measure. �

Before embarking on the proof of Theorem 2 we have to introduce some notation
and results. Following [24], for α ∈ R the weighted Bergman space A1(logα) consists
of those f ∈ Hol(D) such that

‖f‖A1(logα)
def
=

∫
D
|f(z)|

(
log

2

1− |z|

)α
dA(z) <∞.

This is a Banach space with the norm ‖ · ‖A1(logα) just defined and the polynomials
are dense in A1(logα). Likewise, we define

D1(logα) = {f ∈ Hol(D) : f ′ ∈ A1(logα)}.

We define also the Bloch-type space B(logα) as the space of those f ∈ Hol(D) such
that

‖f‖B(logα)
def
= |f(0)|+ sup

z∈D
(1− |z|2)

(
log

2

1− |z|

)−α
|f ′(z)| <∞,

and

B0(logα) =

f ∈ Hol(D) : |f ′(z)| = o


(

log 2
1−|z|

)α
1− |z|

 , as |z| → 1

 .
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The space B(logα) is a Banach space and B0(logα) is the closure of the polynomials
in B(logα).

We remark that the spaces D1(logα) , B(logα) , and B0(logα) were called B1
logα ,

Blogα , and blogα in [24]. Pavlović identified in [24, Theorem 2. 4] the dual of the space
B0(logα).

Theorem E. Let α ∈ R. Then the dual of B0(logα) is A1(logα) via the pairing

〈h, g〉 =

∫
D
f(z) g(z) dA(z), h ∈ B0(logα), g ∈ A1(logα).

Actually, Pavlović formulated the duality theorem in another way but it is a simple
exercise to show that his formulation is equivalent to this one which is better suited to
our work.

Proof of Theorem 2. Let µ be a positive Borel measure on [0, 1) and 0 < α < 1.
Suppose that µ is an α-logarithmic 1-Carleson measure. Take f ∈ H1. We have
to show that Iµf ∈ D1(logα−1) or, equivalently, that (Iµf)′ ∈ A1(logα−1). Bearing
in mind Theorem E and the fact that B0(logα−1) is the closure of the polynomials in
B(logα−1) , it suffices to show that

(9)

∣∣∣∣∫
D
h(z) (Iµf)′ (z) dA(z)

∣∣∣∣ . ‖h‖B(logα−1)‖f‖H1 , for any polynomial h.

So, let h be a polynomial. Arguing as in the proof of the implication (i) ⇒ (iii) in
Theorem 1 we obtain

(10)

∫
D
h(z) (Iµf)′ (z) dA(z) =

∫
[0,1)

t f(t)h(t) dµ(t).

Now, it is clear that

|h(z)| . ‖h‖B(logα−1)

(
log

2

1− |z|

)α
,

and then it follows that∫
[0,1)

∣∣∣t f(t)h(t)
∣∣∣ dµ(t) . ‖h‖B(logα−1)

∫
[0,1)

|f(t)|
(

log
2

1− t

)α
dµ(t).

Using the fact that the measure
(
log 2

1−t

)α
dµ(t) is a Carleson measure [15, Proposi-

tion 2. 5], this implies that∫
[0,1)

∣∣∣t f(t)h(t)
∣∣∣ dµ(t) . ‖h‖B(logα−1)‖f‖H1 .

This and (10) give (9). �

3. The operators Hµ acting on Bergman spaces and on Dirichlet spaces

Jevtić and Karapetrović [20] have recently proved the following result.

Theorem F. The Hilbert operator H is a bounded operator from Dpα into itself if and
only if max(−1, p− 2) < α < 2p− 2.

Now, it is well known that Apα = Dpα+p (see [29, Theorem 4. 28]). Hence, regarding
Bergman spaces Theorem F says the following.
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Corollary G. The Hilbert operator H is a bounded operator from Apα into itself if
and only if −1 < α < p− 2.

Let us recall that Diamantopoulos [8] had proved before that the Hilbert operator
is bounded on Ap for p > 2, but not on A2. The situation on A2 is even worse.
Dostanić, Jevtić, and Vukotić [10] proved that the Hilbert operator is not well defined
on A2. Indeed, they considered the function f defined by

(11) f(z) =
∞∑
n=1

1

log(n+ 1)
zn, z ∈ D,

which belongs to A2. However, the series defining Hf(0) is
∑∞

n=1
1

(n+1) log(n+1)
= ∞

and the integral defining If(0) is
∫ 1

0
f(t) dt = ∞. Hence neither H nor I are

defined on A2.
This result can be extended. We can assert that H is not well defined on App−2 for

any p > 1. Indeed, let f be the function defined in (11). Notice that the sequence
{ 1
(n+1) log(n+1)

} is decreasing and that
∑∞

n=1
1

n(log(n+1))p
< ∞. Then (see Proposition 1

below) it follows that f ∈ App−2, and we have already seen that Hf and If are not
defined. Since α ≥ p − 2 ⇒ App−2 ⊂ Apα, it follows that the Hilbert operator H is
not defined on Apα if α ≥ p− 2.

In this section we shall obtain extensions of the mentioned results of Jevtić and
Karapetrović considering the generalized Hilbert operators Hµ .

Theorem 3. Suppose that max(−1, p−2) < α < 2p−2 and let µ be a finite positive
Borel measure on [0, 1). If µ is a Carleson measure then the operators Hµ and Iµ
are well defined on Dpα. Furthermore, Iµf = Hµf , for all f ∈ Dpα.

When dealing with Bergman spaces Theorem 3 reduces to the following.

Corollary 1. Suppose that p > 1 and −1 < α < p−2 , and let µ be a finite positive
Borel measure on [0, 1). If µ is a Carleson measure then the operators Hµ and Iµ
are well defined on Apα. Furthermore, Iµf = Hµf , for all f ∈ Apα.

Proof of Theorem 3. Suppose that µ is a Carleson measure and take f ∈ Dpα. Set
β = 2+α

p
− 1. Observe that 0 < β < 1. Using [29, Theorem 4. 14], we see that

|f ′(z)| . 1
(1−|z|)(2+α)/p and, hence, |f(z)| . 1

(1−|z|)β . Then it follows that∫
[0,1)

|f(t)| dµ(t) .
∫
[0,1)

dµ(t)

(1− t)β
.

Integrating by parts, using that µ is a Carleson measure, and that 0 < β < 1, we
obtain ∫

[0,1)

dµ(t)

(1− t)β
= µ([0, 1)) − lim

t→1

µ([t, 1))

(1− t)β
+ β

∫ 1

0

µ([t, 1))

(1− t)β+1
dt

= µ([0, 1)) + β

∫ 1

0

µ([t, 1))

(1− t)β+1
dt

. µ([0, 1)) +

∫ 1

0

1

(1− t)β
dt
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< ∞.
Consequently, we obtain that

(12)

∫
[0,1)

|f(t)| dµ(t) < ∞.

Clearly, this implies that the integral

(13)

∫
[0,1)

f(t) dµ(t)

1− tz
converges absolutely and uniformly on compact subsets of D.

This gives that Iµf is a well defined analytic function in D and that

(14) Iµf(z) =
∞∑
n=0

(∫
[0,1)

tn f(t) dµ(t)

)
zn, z ∈ D.

Using [19, Theorem 2. 1] (see also [20, Theorem 2. 1]) we see that for these values of

p and α we have that if f ∈ Apα, f(z) =
∑∞

n=0 anz
n, then

∑∞
k=0

|ak|
k+1

<∞. Now, since

µ is a Carleson measure we have that |µn| . 1
n+1

([5, Proposition 1]). Then it follows
that

∞∑
k=0

|µn+kak| .
∞∑
k=0

|ak|
k + n+ 1

.
∞∑
k=0

|ak|
k + 1

, for all n.

Clearly, this implies that Hµf is a well defined analytic function in D and that∫
[0,1)

tn f(t) dµ(t) =
∑∞

k=0 µn+kak for all n. This and (13) give that Iµf = Hµf . �

Our next result is an extension of Corollary G

Theorem 4. Suppose that −1 < α < p − 2 and let µ be a finite positive Borel
measure on [0, 1).

The operator Hµ is well defined on Apα and it is a bounded operator from Apα to
itself if and only if µ is a Carleson measure.

A number of results will be needed to prove this theorem. We start with a character-
ization of the functions f ∈ Hol(D) whose sequence of Taylor coefficients is decreasing
which belong to Apα.

Proposition 1. Let f ∈ Hol(D), f(z) =
∑∞

n=0 an z
n (z ∈ D). Suppose that 1 < p <

∞, α > −1, and that the sequence {an}∞n=0 is a decreasing sequence of non-negative
real numbers. Then

f ∈ Apα ⇔
∞∑
n=1

np−3−αapn < ∞.

Furthermore, ‖f‖p
Apα
� |a0|p +

∑∞
n=1 n

p−3−αapn < ∞.

This result can be proved with arguments similar to those used in the proofs of [15,
Theorem 3.10] and [23, Theorem 3. 1] where the analogous results for the Besov spaces
Bp = Dpp−2 (p > 1) and for the spaces Dpp−1 (p > 1) were proved. The case α = 0 is
proved in [3, Proposition 2. 4]. Consequently, we omit the details.

The following lemma is a generalization of [13, Lemma 3 (ii)].
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Lemma 1. Let µ be a positive Borel measure on [0, 1) which is a Carleson measure.
Assume that 0 < p < ∞ and α > −1. Then there exists a positive constant C =
C(p, α, µ) such that for any f ∈ Apα∫

[0,1)

Mp
∞(r, f)(1− r)α+1 dµ(r) ≤ C‖f‖p

Apα
.

Of course, M∞(r, f) = sup|z|=r |f(z)|.
Proof. Take f ∈ Apα and set

g(r) = Mp
∞(r, f)(1− r)α+1, F (r) = µ([0, r)) − µ([0, 1)) = −µ([r, 1)), 0 < r < 1.

Integrating by parts, we have∫
[0,1)

Mp
∞(r, f)(1− r)α+1 dµ(r) =

∫
[0,1)

g(r) dµ(r)(15)

= lim
r→1

g(r)F (r) − g(0)F (0) −
∫ 1

0

g′(r)F (r) dr

= |f(0)|pµ([0, 1)) − lim
r→1

Mp
∞(r, f)(1− r)α+1µ([r, 1)) +

∫ 1

0

g′(r)µ([r, 1)) dr.

Since f ∈ Apα we have that Mp
∞(r, f) = o ((1− r)−2−α), as r → 1 (see, e. g., [18,

p. 54]). This and the fact that µ is a Carleson measure imply that

(16) lim
r→1

Mp
∞(r, f)(1− r)α+1µ([r, 1)) = 0.

Using again that µ is a Carleson measure and integrating by parts we see that∫ 1

0

g′(r)µ([r, 1)) dr .
∫ 1

0

g′(r)(1− r) dr

= lim
r→1

g(r)(1− r) − g(0) +

∫ 1

0

g(r) dr

≤ lim
r→1

Mp
∞(r, f)(1− r)α+2 +

∫ 1

0

Mp
∞(r, f)(1− r)α+1 dr

=

∫ 1

0

Mp
∞(r, f)(1− r)α+1 dr.

Then, using [13, Lemma 3. (ii)], it follows that∫ 1

0

g′(r)µ([r, 1)) dr . ‖f‖p
Apα
.

Using this and (16) in (15) readily yields
∫
[0,1)

Mp
∞(r, f)(1− r)α+1 dµ(r) . ‖f‖p

Apα
. �

We shall also need the following characterization of the dual of the spaces Aqβ (q > 1).
It is a special case of [21, Theorem 2. 1].

Lemma 2. If 1 < q < ∞ and β > −1, then the dual of Aqβ can be identified with Apα
where 1

p
+ 1

q
= 1 and α is any number with α > −1, under the pairing

(17) 〈h, f〉Aq,β,α =

∫
D
h(z)f(z)(1− |z|2)

β
q
+α
p dA(z), h ∈ Aqβ, f ∈ Apα.
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Finally, we recall the following result from [13, (5. 2), p. 242] which is a version of
the classical Hardy’s inequality [17, pp. 244-245].

Lemma 3. Suppose that k > 0, q > 1, and h is a non-negative function defined in
(0, 1), then∫ 1

0

(∫ 1

1−r
h(t) dt

)q
(1− r)k−1 dr ≤

( q
k

)q ∫ 1

0

(h(1− r))q(1− r)q+k−1 dr.

Proof of Theorem 4. Suppose first that Hµ is a bounded operator from Apα into itself.
For 0 < b < 1, set

fb(z) =
(1− b2)1−

α
p

(1− bz)
2
p
+1
, z ∈ D.

Recall that p − α > 2. Then using [29, Lemma 3. 10] with t = α and c = p − α, we
obtain

‖fb‖pApα = (1− b2)p−α
∫
D

(1− |z|2)α

|1− bz|2+p
dA(z) � 1.

Since Hµ is bounded on Apα, this implies

1 & ‖Hµ(fb)‖Apα .(18)

We also have

fb(z) =
∞∑
k=0

ak,bz
k, (z ∈ D), with ak,b � (1− b2)1−

α
p k

2
p bk.

Since the ak,b’s are positive, it is clear that the sequence {
∑∞

k=0 µn+kak,b}
∞
n=0 of the

Taylor coefficients of Hµ(fb) is a decreasing sequence of non-negative real numbers.
Using this, Proposition 1, (18), and the definition of the ak,b’s, we obtain

1 & ‖Hµ(fb)‖pApα &
∞∑
n=1

np−α−3

(
∞∑
k=1

µn+kak,b

)p

=
∞∑
n=1

np−α−3

(
∞∑
k=1

ak,b

∫
[0,1)

tn+kdµ(t)

)p

& (1− b2)p−α
∞∑
n=1

np−α−3

(
∞∑
k=1

k
2
p bk
∫
[b,1)

tn+kdµ(t)

)p

≥ (1− b2)p−α
∞∑
n=1

np−α−3

(
∞∑
k=1

k
2
p bn+2kµ([b, 1))

)p

= (1− b2)p−αµ([b, 1))p
∞∑
n=1

np−α−3bnp

(
∞∑
k=1

k
2
p b2k

)p

� (1− b2)p−αµ([b, 1))p
1

(1− b2)2+p
∞∑
n=1

np−α−3bnp
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� (1− b2)p−αµ([b, 1))p
1

(1− b2)2+p
· 1

(1− b2)p−α−2

� µ([b, 1))p
1

(1− b)p
.

Then it follows that

µ ([b, 1)) = O (1− b) , as b→ 1,

and, hence, µ is a Carleson measure.
We turn to prove the other implication. So, suppose that µ is a Carleson measure

and take f ∈ Apα. Let q be defined by the relation 1
p

+ 1
q

= 1 and take β = −αq
p

= −α
p−1 .

Observe that β > −1 and that with this election of β the weight in the pairing (17)
is identically equal to 1. We have to show that Hµf ∈ Apα which is equal to

(
Aqβ
)∗

under the pairing 〈·, ·〉q,β,α. So take h ∈ Aqβ.

〈h,Hµf〉q,β,α =

∫
D
h(z)Hµf(z) dA(z)

=

∫
[0,1)

f(t)

(∫
D

h(z)

1− t z
dA(z)

)
dµ(t)

=

∫
[0,1)

f(t)

(∫ 1

0

r

π

∫ 2π

0

h(reiθ)

1− tre−iθ
dθ dr

)
dµ(t)

=

∫
[0,1)

f(t)

(∫ 1

0

(
r

πi

∫
|ξ|=1

h(rξ)

ξ − tr
dξ

)
dr

)
dµ(t)

= 2

∫
[0,1)

f(t)

(∫ 1

0

rh(r2t) dr

)
dµ(t).

Thus,

|〈h,Hµf〉q,β,α| ≤ 2

∫ 1

0

|f(t)|G(t) dµ(t),

where G(t) =
∫ 1

0
r|h(r2t)| dr. Using Hölder’s inequality we obtain,∫

[0,1)

f(t)G(t) dµ(t) =

∫
[0,1)

|f(t)|(1− t)
α+1
p G(t)(1− t)−

α+1
p dµ(t)

≤
(∫

[0,1)

|f(t)|p(1− t)α+1 dµ(t)

)1/p

·
(∫

[0,1)

G(t)q(1− t)−
q(α+1)

p dµ(t)

)1/q

.

Lemma 1 implies that(∫
[0,1)

|f(t)|p(1− t)α+1 dµ(t)

)1/p

. ‖f‖Apα .

Next we will show that ∫
[0,1)

G(t)q(1− t)−
q(α+1)

p dµ(t) . ‖h‖q
Aqβ
.(19)
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This will give that

|〈h,Hµf〉q,β,α| . ‖f‖Apα · ‖h‖
q
Aqβ
.

By the duality theorem, this implies that Hµf ∈ Apα.
Let us prove (19). Observe first that if 0 < t < 1/2 then |h(r2t)| ≤ M∞(1

2
, h) for

each r ∈ (0, 1), thus

G(t) =

∫ 1

0

|h(r2t)|r dr ≤M∞

(
1

2
, h

)
, 0 < t < 1/2.

Clearly, this implies∫
[0,1/2)

G(t)q(1− t)−
q(α+1)

p dµ(t) .M q
∞

(
1

2
, h

)
. ‖h‖q

Aqβ
.(20)

Notice that − q(α+1)
p

= p−2−α
p−1 − 1 > −1. Making the change of variables r2t = s, we

obtain
∫ 1

0
r|h(r2t)| dr = 1

2t

∫ t
0
|h(s)| ds and, hence,∫

[1/2,1)

G(t)q(1− t)−
q(α+1)

p dµ(t)(21)

=

∫
[1/2,1)

(∫ 1

0

|h(r2t)|r dr
)q

(1− t)−
q(α+1)

p dµ(t)

=

∫
[1/2,1)

1

(2t)q

(∫ t

0

|h(s)| ds
)q

(1− t)−
q(α+1)

p dµ(t)

≤
∫
[1/2,1)

(∫ t

0

M∞(s, h) ds

)q
(1− t)−

q(α+1)
p dµ(t)

≤
∫
[0,1)

(∫ 1

1−t
M∞(1− s, h) ds

)q
(1− t)−

q(α+1)
p dµ(t)

Let us call H(t) =
(∫ 1

1−tM∞(1− s, h) ds
)q

(1− t)−
q(α+1)
p for 0 ≤ t < 1. Integrating by

parts we obtain the following∫
[0,1)

H(t) dµ(t) = H(0)µ([0, 1))− lim
t→1−

H(t)µ([t, 1)) +

∫ 1

0

µ([t, 1))H ′(t) dt.(22)

The first term is equal to 0. Using the fact that µ is a Carleson measure we have that

H(t)µ([t, 1)) . (1− t)H(t)

=

(∫ 1

1−t
M∞(1− s, h) ds

)q
(1− t)1−

q(α+1)
p

=

(∫ t

0

M∞(s, h) ds

)q
(1− t)1−

q(α+1)
p .
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Since h ∈ Aqβ we have M∞(t, h) = o
(

(1− t)−
β+2
q

)
, as t→ 1. Then, bearing in mind

that β+2
q
> 1, it follows that

H(t)µ([t, 1)) = o
(

(1− t)−β−2+q · (1− t)1−
q(α+1)

p

)
= o(1), as t→ 1.(23)

Actually, we have also proved that

(1− t)H(t) = o(1), as t→ 1.(24)

Using that µ is a Carleson measure, integrating by parts, and using the definition of
H and (24), we obtain∫ 1

0

µ([t, 1))H ′(t) dt .
∫ 1

0

(1− t)H ′(t) dt(25)

= lim
t→1

(1− t)H(t) − H(0) +

∫ 1

0

H(t) dt

=

∫ 1

0

(∫ 1

1−t
M∞(1− s, h) ds

)q
(1− t)−

q(α+1)
p dt.

Now, using Lemma 3 and [13, Lemma 3], we see that∫ 1

0

(∫ 1

1−t
M∞(1− s, h) ds

)q
(1− t)−

q(α+1)
p dt .

∫ 1

0

M q
∞(t, h)(1− t)α+1 dt . ‖h‖q

Aqβ
.

Using this, (25), (23), (22), and (21), it follows that∫
[1/2,1)

G(t)q(1− t)−
q(α+1)

p dµ(t) . ‖h‖q
Aqβ
.

This and (20) yield (19). �

Our final aim in this article is to find the analogue of Theorem 4 for Dirichlet spaces.
In other words, we wish give an answer to the following question.

Question 2. If max(−1, p−2) < α < 2p−2, is it true that Hµ is a bounded operator
from Dpα into itself if and only if µ is a Carleson measure?

Since p − 1 < α < 2p − 2 implies that Dpα = Apα−p, Theorem 4 answers the
question affirmatively for these values of p and α. It remains to consider the case
max(−1, p− 2) < α ≤ p− 1. We shall prove the following result which gives a positive
answer to Question 2 in the case p > 1.

Theorem 5. Suppose that p > 1 and p−2 < α ≤ p−1, and let µ be a finite positive
Borel measure on [0, 1).

The operator Hµ is well defined on Dpα and it is a bounded operator from Dpα into
itself if and only if µ is a Carleson measure.

The following two lemmas will be needed in the proof of Theorem 5. The first one
follows trivially from Proposition 1.
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Lemma 4. Let f ∈ Hol(D), f(z) =
∑∞

n=0 anz
n (z ∈ D). Suppose that 1 < p < ∞

and p − 2 < α ≤ p − 1, and that the sequence {an}∞n=0 is a decreasing sequence of
non-negative real numbers. Then

f ∈ Dpα ⇔
∞∑
n=0

(n+ 1)2p−α−3apn <∞.

The following lemma is a generalization of [13, Lemma 4].

Lemma 5. Let µ be a positive Borel measure on [0, 1) which is a Carleson measure.
Assume that 0 < p < ∞ and α > −1. Then there exists a positive constant C =
C(p, α, µ) such that for any f ∈ Dpα∫

[0,1)

Mp
∞(r, f)(1− r)α−p+1 dµ(r) ≤ C‖f‖pDpα .

Proof. We argue as in the proof of Lemma 1. Take f ∈ Dpα and set

g(r) = Mp
∞(r, f)(1− r)α−p+1, F (r) = µ([0, r)) − µ([0, 1)) = −µ([r, 1)), 0 < r < 1.

Integrating by parts, we have∫
[0,1)

Mp
∞(r, f)(1− r)α−p+1 dµ(r) =

∫
[0,1)

g(r) dµ(r)(26)

= lim
r→1

g(r)F (r) − g(0)F (0) −
∫ 1

0

g′(r)F (r) dr

= |f(0)|pµ([0, 1)) − lim
r→1

Mp
∞(r, f)(1− r)α−p+1µ([r, 1)) +

∫ 1

0

g′(r)µ([r, 1)) dr.

Since f ∈ Dpα we have that Mp
∞(r, f ′) = o ((1− r)−2−α), as r → 1. Hence, Mp

∞(r, f) =
o ((1− r)−2−α+p), as r → 1. This and the fact that µ is a Carleson measure imply
that

(27) lim
r→1

Mp
∞(r, f)(1− r)α−p+1µ([r, 1)) = 0.

Using again that µ is a Carleson measure and integrating by parts we see that∫ 1

0

g′(r)µ([r, 1)) dr .
∫ 1

0

g′(r)(1− r) dr

= lim
r→1

g(r)(1− r) − g(0) +

∫ 1

0

g(r) dr

≤ lim
r→1

Mp
∞(r, f)(1− r)α−p+2 +

∫ 1

0

Mp
∞(r, f)(1− r)α−p+1 dr

=

∫ 1

0

Mp
∞(r, f)(1− r)α−p+1 dr.

Then, using [13, Lemma 3], it follows that∫ 1

0

g′(r)µ([r, 1)) dr . ‖f‖pDpα .
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Using this and (27) in (26) readily yields
∫
[0,1)

Mp
∞(r, f)(1 − r)α−p+1 dµ(r) . ‖f‖pDpα .

�

Proof of Theorem 5. Suppose first that Hµ is a bounded operator from Dpα into itself.
For 1/2 < b < 1 we set

fb(z) =
(1− b2)1−

α
p

(1− bz)2/p
, z ∈ D.

We have ‖fb‖Dpα � 1. Then arguing as in the proof of the correspondent implication
in Theorem 4 we obtain that µ is a Carleson measure. We omit the details.

To prove the other implication, suppose that µ is a Carleson measure and take
f ∈ Dpα. Since Hµ and Iµ coincide on Dpα, we have to prove that Iµf ∈ Dpα and that
‖Iµf‖Dpα . ‖f‖Dpα or, equivalently, that (Iµf)′ ∈ Apα and

(28) ‖ (Iµf)′ ‖Apα . ‖f‖Apα .
We shall distinguish two cases.

First case: α < p− 1. Let q be defined by the relation 1
p

+ 1
q

= 1 and take

β = −αq
p

. In view of Lemma 2, (28) is equivalent to

(29)

∣∣∣∣∫
D
h(z) (Iµf)′ (z) dA(z)

∣∣∣∣ . ‖f‖Dpα‖h‖Aqβ , h ∈ Aqβ.

So, take h ∈ Aqβ. Just as in the proof of Theorem 1, we have

(30)

∫
D
h(z) (Iµf)′ (z) dA(z) =

∫
[0,1)

t f(t)h(t) dµ(t).

Set s = −1 + α+1
p

. Observe that ps = α− p+ 1 and −qs = β + 1. Then, using (30),

Hölder’s inequality, Lemma 1, and Lemma 5, we obtain∣∣∣∣∫
D
h(z) (Iµf)′ (z) dA(z)

∣∣∣∣ ≤ ∫
[0,1)

|f(t)|(1− t)s |h(t)|(1− t)−s dµ(t)

≤
(∫

D
|f(t)|p(1− t)α−p+1 dµ(t)

)1/p(∫
[0,1)

|h(t)|q(1− t)β+1 dµ(t)

)1/q

≤
(∫

D
Mp
∞(t, f)(1− t)α−p+1 dµ(t)

)1/p(∫
[0,1)

M q
∞(t, h)(1− t)β+1 dµ(t)

)1/q

≤ ‖f‖Dpα‖h‖Aqβ .

Thus, (29) holds.
Second case: α = p− 1. We let again q be defined by the relation 1

p
+ 1

q
= 1

and take β = q − 1. Using Lemma 2 and arguing as in the preceding case, we have to
show that

(31)

∣∣∣∣∫
D

(1− |z|2)h(z) (Iµf)′ (z) dA(z)

∣∣∣∣ . ‖f‖Dpp−1
‖h‖Aqq−1

, h ∈ Aqq−1.

We have

(32)

∫
D

(1− |z|2)h(z) (Iµf)′ (z) dA(z) =

∫
[0,1)

t f(t)

∫
D

(1− |z|2)h(z)

(1− t z)2
dA(z) dµ(t).
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Now,
∫
D

h(z)
(1−t z)2 dA(z) = h(t) and∫

D

|z|2 h(z)

(1− t z)2
dA(z) =

∫ 1

0

r3

π

∫ 2π

0

h(reiθ) dθ

(1− tre−iθ)2
dr

=

∫ 1

0

2r3

2πi

∫ 2π

0

eiθh(reiθ)ieiθ dθ

(eiθ − tr)2
dr =

∫ 1

0

2r3

2πi

∫
|z|=1

zh(rz)

(z − tr)2
dz dr

=

∫ 1

0

2r3
[
h(r2t) + r2th′(r2t)

]
dr.

Then it is clear that
∣∣∣∫D (1−|z|2)h(z)

(1−t z)2 dA(z)
∣∣∣ . M∞(t, h). Using this, (32), Hölder’s

inequality, Lemma 1, and Lemma 5, we obtain∣∣∣∣∫
D

(1− |z|2)h(z) (Iµf)′ (z) dA(z)

∣∣∣∣ . ∫
[0,1)

M∞(t, f)M∞(t, h) dµ(t)

≤
(∫

[0,1)

Mp
∞(t, f) dµ(t)

)1/p (∫
[0,1)

M q
∞(t, h) dµ(t)

)1/q

≤ ‖f‖Dpp−1
‖h‖Aqq−1

.

This is (31). �

We shall close the article with some comments about the case p = 1 in Question 2.
We have the following result.

Theorem 6. Let µ be a finite positive Borel measure on [0, 1) and −1 < α < 0. If µ
is a Carleson measure then the operator Hµ is a bounded operator form D1

α to itself.

Proof. Using [29, Theorem 5. 15, p. 113], we see that A1
α can be identified as the dual

of the little Bloch space under the pairing

(33) 〈h, g〉 =

∫
D
(1− |z|2)α h(z) g(z) dA(z), h ∈ B0, g ∈ A1

α.

Suppose that µ is a Carleson measure. Using this duality relation and the fact that
Hµ = Iµ on D1

α, showing that Hµ is a bounded operator from D1
α to itself is equivalent

to showing that

(34)

∣∣∣∣∫
D
(1− |z|2)α h(z) (Iµf)′ (z) dA(z)

∣∣∣∣ . ‖h‖B · ‖f‖D1
α
, h ∈ B0, f ∈ D1

α.

Let us prove (34). Take h ∈ B0 and f ∈ D1
α. We have

(35)

∫
D
(1− |z|2)α h(z) (Iµf)′ (z) dA(z) =

∫
[0,1)

t f(t)

∫
D

(1− |z|2)αh(z)

(1− t z)2
dA(z) dµ(t).

Using [29, Lemma 5. 14, pp. 113-114] we have that the operator T defined by

Tφ(ξ) = (1− |ξ|2)−α
∫
D

(1− |z|2)αφ(z)

(1− ξ z)2
dA(z)

is a bounded operator from B into L∞(D). Then it follows that∣∣∣∣∫
D

(1− |z|2)αh(z)

(1− t z)2
dA(z)

∣∣∣∣ . ‖h‖B(1− t2)α, t ∈ [0, 1).
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Using this in (35), we obtain

(36)

∣∣∣∣∫
D
(1− |z|2)α h(z) (Iµf)′ (z) dA(z)

∣∣∣∣ . ‖h‖B ∫
D
(1− t)α|f(t)| dµ(t).

The fact that µ is a Carleson measure readily implies that the measure ν defined by
dν(t) = (1− t)α dµ(t) is a (1− α)-Carleson measure. Using Theorem 1 of [28] we see
that then ν is a Carleson measure for D1

α, that is,∫
[0,1)

(1− t)α|g(t)| dµ(t) . ‖g‖D1
α
, g ∈ D1

α.

Using this in (36), (34) follows. �

We do not know whether the converse of Theorem 6 is true. This is due to the fact
that we do not know whether Lemma 4 remains true for p = 1. The inequality

∞∑
n=0

|an|(n+ 1)−(1+α) . ‖f‖D1
α
.(37)

is certainly true with no assumption on the sequence {an}. Indeed, by Hardy’s in-

equality [11, p. 48],
∑∞

n=1 |an|rn−1 .
∫ 2π

0
|f ′(reiθ)|dθ. Hence

‖f‖D1
α
�
∫ 1

0

(1− r)α
∫ 2π

0

|f ′(reiθ)|dθdr

&
∞∑
n=1

|an|
∫ 1

0

(1− r)αrn−1 dr =
∞∑
n=1

|an|B(α + 1, n),

where B(·, ·) is the Beta function. Stirling’s formula gives B(α+ 1, n) � n−(α+1) and
then (37) follows.

However, the proof of Theorem D in [23] does not seen to work to prove the opposite
inequality when {an} is decreasing.
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[5] Ch. Chatzifountas, D. Girela and J. A. Peláez, A generalized Hilbert matrix acting on Hardy
spaces, J. Math. Anal. Appl. 413 (2014), no. 1, 154-168.

[6] J. A. Cima, A type of Volterra operator, Complex Anal. Synerg. 2 (2016), no. 1, Paper No. 3, 4
pp.



20 D. GIRELA AND N. MERCHÁN
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[20] M. Jevtić and B. Karapetrović, Hilbert matrix on spaces of Bergman-type, J. Math. Anal. Appl.

453 (2017), no. 1, 241–254.
[21] D. H. Luecking, Representation and duality in weighted spaces of analytic functions, Indiana

Univ. Math. J. 34 (1985), no. 2, 319-336.
[22] N. Merchán, Mean Lipschitz spaces and a generalized Hilbert operator, to appear in Collect.

Math. (2018). https://doi.org/10.1007/s13348-018-0217-y
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