
This is the author's version of an article that has been published in IEEE/ACM Transactions on Computational Biology and Bioinformatics. Changes were made
to this version by the publisher prior to publication. The final version of record is available at https://doi.org/10.1109/TCBB.2018.2884701

1

Accelerating Sequence Alignments Based on
FM-Index Using the Intel KNL Processor

Jose M. Herruzo, Sonia González-Navarro, Pablo Ibáñez, Vı́ctor Viñals, Jesús Alastruey and Oscar Plata

Abstract—FM-index is a compact data structure suitable for fast matches of short reads to large reference genomes. The matching
algorithm using this index exhibits irregular memory access patterns that cause frequent cache misses, resulting in a memory bound
problem. This paper analyzes different FM-index versions presented in the literature, focusing on those computing aspects related to
the data access. As a result of the analysis, we propose a new organization of FM-index that minimizes the demand for memory
bandwidth, allowing a great improvement of performance on processors with high-bandwidth memory, such as the second-generation
Intel Xeon Phi (Knights Landing, or KNL), integrating ultra high-bandwidth stacked memory technology. As the roofline model shows,
our implementation reaches 95% of the peak random access bandwidth limit when executed on the KNL and almost all the available
bandwidth when executed on other Intel Xeon architectures with conventional DDR memory. In addition, the obtained throughput in
KNL is much higher than the results reported for GPUs in the literature.

Index Terms—FM-index, short-read alignment, high-bandwidth memory, Intel Xeon Phi Knights-Landing

F

1 INTRODUCTION

THE high demand for fast and low-cost genomic se-
quencing has pushed onward the rapid development

of next-generation sequencing (NGS) technologies. As a
result, a number of high-throughput sequencing systems
have appeared in industry, including those from Illumina,
Roche 454, Life Technologies and Pacific Biosciences. These
systems are able to produce huge amounts of short reads
(in the order of giga base-pairs) per day of operation. For
instance, the Illumina NovaSeq 6000 sequencing system is
able to produce up to 20 billion reads of 150 base pairs (bp)
in less than two days. This represents up to 6 terabits of data
which have to be processed as fast as possible.

Usually the first step in NGS corresponds to sequence
alignment, where sequence reads must be aligned or com-
pared to a genomic reference to identify regions of similar-
ity [1]. Most popular alignment methods are based on two
types of index structures: suffix trees and variants, and hash
tables.

When dealing with large reference genomes, great efforts
were devoted to reduce memory requirements for sequence
alignment. As a result, a set of alignment algorithms based
on the FM-index structure have been developed [2]. The FM-
index uses Burrows-Wheeler transform (BWT), a method for
rearranging a character string that is useful for data com-
pression [3]. FM-index is well suited for fast exact matches
of short reads to large reference genomes while keeping a
small memory footprint. Many efficient sequence aligners
are based on FM-index, such as Bowtie [4], BWA [5] (BWA-
SW [6] for long reads), SOAP2 [7] and BWT-SW [8].

• J.M. Herruzo, S. González, and O. Plata are with Department of Com-
puter Architecture, University of Málaga, Andalucı́a Tech, 29071 Málaga,
Spain. E-mail: {jmherruzo, sgn, oplata}@uma.es

• P. Ibañez, V. Viñals, and J. Alastruey are with Departamento de In-
formática e Ingenierı́a de Sistemas, University of Zaragoza, Marı́a de Luna
1, 50018 Zaragoza, Spain. E-mail: {imarin,victor,jalastru}@unizar.es

Manuscript received MMMM DD, YYYY; revised MMMM DD, YYYY.

As high-throughput sequencing systems produce a mas-
sive amount of data, the usage of high-performance tech-
nologies is of crucial importance to deal with the compu-
tational challenge. In fact, many optimized exact matching
algorithms have appeared recently in the literature for dif-
ferent architectures, like CPU clusters, GPUs and FPGAs [9].

Due to the data structure layout, the searching process
using FM-index exhibits irregular memory access patterns.
In addition, sequence aligners based on that index include
support for inexact matching built on exact alignments, that
causes the memory pattern to be even less predictable. These
data access patterns cause a high cache miss rate on typical
cache hierarchies of multicore processors. Besides, it is com-
mon for the exact matching algorithm to be memory bound
due to the low arithmetic intensity (ratio of the computation
to the memory traffic). Each step of the algorithm accesses a
section of the index that it is not known in advance, making
the cache hierarchy difficult to exploit.

This paper analyzes the exact matching based on the FM-
index data structure. The study focuses on bottlenecks re-
lated to data access patterns and computational capabilities.
The evaluation assumes a batch or offline setting, where a
bulk of queries is issued to be processed as fast as possible.
Our main contributions can be summarized as follows:

• Exact matching algorithms built upon FM-index are
analyzed, focusing on those aspects related to com-
puting costs and access to data, which have a great
impact on performance.

• A new organization of the FM-index data structure
layout and codification is proposed, which reduces
the required traffic between memory and processor
cores for the exact search process.

• An optimized exact matching algorithm has been
implemented based on the proposed FM-index, ex-
ploiting the ultra high-bandwidth memory modules
integrated in the KNL processor.

This is the author's version of an article that has been published in IEEE/ACM Transactions on Computational Biology and Bioinformatics. Changes were made
to this version by the publisher prior to publication. The final version of record is available at https://doi.org/10.1109/TCBB.2018.2884701 2

We have evaluated our proposal on a system with an
Intel Xeon Phi 7210 processor [10], [11] (codenamed Knights
Landing, or KNL) that includes 64 cores and 16 GiB of
stacked 3D MCDRAM integrated on package. This memory
offers a much higher memory bandwidth than the standard
out-of-package DDR4 DRAM (∼400 vs. ∼ 90 GB/s peak).
Our results show that performance on KNL reaches 95%
of the peak random access bandwidth limit, outperforming
other CPU and GPU solutions reported in the literature.

2 BACKGROUND

2.1 FM-index
The FM-index is a data structure that allows fast substring
searches over large texts [2]. In the following subsections we
show some basic definitions concerning the FM-index.

In the rest of the paper, brackets are used to specify an
entry in an array (e.g., A[k] is k-th entry of the array A),
and a character or a substring in a string (e.g., A[k] is the
character at position k in the string A, and A[k..r] is the
substring from position k to position r in A).

2.1.1 Suffix Array
Let T [1..n] be a character string drawn from an alphabet Σ
having σ symbols. The suffix array SA[1, ..., n] of T is an
array containing the starting positions of all suffixes of T in
lexicographical order [12]. The suffix array can be used as
an index to locate every occurrence of a pattern.

2.1.2 Burrows-Wheeler Transform (BWT)
The BWT is a permutation of a character string. Originally
it was used in text compression algorithms, but it has other
applications such as large text indexing.

The BWT [1..n+1] of a n-character string T is another
string obtained as follows: (1) append to the end of the orig-
inal text T the symbol $, which is lexicographically smaller
than any symbol in Σ; (2) form a conceptual (n+1)×(n+1)
matrix M whose rows are the cyclic shifts of T$ sorted in
lexicographical order; (3) the last column of the matrix M is
the BWT of T , denoted by L.

The suffix array of T$ contains the starting positions in
T of every row of the matrix M .

2.1.3 FM-index data structure
The FM-index is composed of two data structures derived
from L (BWT of T): the C array and the Occ matrix. The C
array stores in C[c] the number of occurrences in L of the
symbols lexicographical smaller than c.Occ[c, i] contains the
number of occurrences of the symbol c in the prefix L[1..i],
being 1≤ i≤n+1.

The FM-index was designed as a compressed structure
such that the index size can be smaller than the original text.
However, in the context of sequence alignment, it is usually
not compressed in order to achieve better performance [1].

2.2 Exact Matching Using FM-Index
Given a pattern Q[1..p], the FM-index allows to find all
occurrences of Q in the text T [2]. The search process takes
two steps: Count and Locate. The first step is a rank query
process that calculates the number of occurrences of Q in

T by identifying the first and last rows of matrix M (see
sec. 2.1.2) prefixed by the query Q. The second step uses
the indexes of these rows to access the suffix array, where it
finds the position of every occurrence of Q in the text T .

The suffix array is usually a very large compressed data
structure. However, its size for the human genome is about
12 GB (3 gigabases x 4 bytes), so it can be stored without
compression in modern systems. This way, the Locate step
is very simple, it only requires an access to the suffix array.
For this reason, this paper focuses in the Count step.

2.3 Rank Query Implementations

To speed-up the Count process, FM-index uses the Occ
matrix as a look-up table [2]. The main drawback of this
solution is the large memory footprint of Occ. It is a matrix
with σ rows and n+1 columns. Hence, its footprint is:

Fp(Occ) = σ × (n+ 1)× Fp(Occentry), (1)

where the size of Occentry depends on n. For the human
genome (DNA), σ is 4 (A, C, G, and T) and n is around 3G (3
gigabases). Hence, each Occ entry fits in a 4-byte unsigned
integer, and the footprint ofOcc is about 4×3G×4 ≈ 48 GB.
Several techniques have been developed to reduce this
large footprint based on storing only a portion of Occ and
calculating the rest of it [2], [13], [14]. These techniques are
described and analyzed in detail in the next section. In this
paper we propose a new organization of Occ that improves
the performance of the Count algorithm, taking maximum
advantage of the available memory bandwidth.

Another approach to reduce the memory usage uses
wavelet trees to store the Occ data [15], [16]. These struc-
tures are specially space efficient when performing rank
queries on large texts based on large alphabets. The effi-
ciency of this solution also depends on the entropy of the
text. A rank query on an alphabet of σ symbols is done by
log2(σ) binary rank queries. Each binary query calculates
several indexes, accesses several memory locations, and
performs some arithmetic operations.

In the DNA context, the alphabet is very small and the
text is relatively small and with high entropy. Therefore,
optimized versions of the Occ matrix fit in contemporary
memory systems, so as the advantage of using wavelet trees
regarding the space usage is not so relevant. However, its
computational cost is much higher than those implementa-
tions based on a table-based Occ.

In the experimental evaluation section we compare
our proposal with an FM-index implementation based on
wavelet trees using the sdsl-lite library [17].

3 ANALYSIS OF EXACT MATCHING

This section presents a computational analysis, in terms
of memory and performance, of the Count algorithm for
different versions of the FM-index proposed in the literature
using a table-based Occ structure. This analysis serves to
introduce the main characteristics of the searching algorithm
and to justify our proposal.

3

Algorithm BS: Backward Search Based on FM-index

Input: FM-index of T (C & Occ), Q query, n=|T|, p=|Q|

Ouput: (sp,ep): Interval pointers of Q in T

 begin

1: sp = C[Q[p]]
2: ep = C[Q[p]+1]

3: for i from p-1 to 1 step -1

4: sp = LF(Q[i],sp)

5: ep = LF(Q[i],ep)

6: end for

7: return (sp+1,ep)

 end

2 LFM-chains

Fig. 1. Basic backward search algorithm based on FM-index

3.1 Full FM-index
The full FM-index assumes that Occ is a pre-computed full
look-up table, that is, it stores counts for each possible
symbol and index. It can be used to quickly locate the
occurrences of a pattern (query) Q[1..p] in a text T [1..n],
being p�n. An exact matching algorithm using FM-index
has been presented in [2]. Fig. 1 illustrates the Count step
of this algorithm, called backward search (BS). At the end of
the algorithm, the sp and ep variables contain the start and
the end indices in the suffix array of T that contains Q as a
prefix, respectively.

The main operation in the search algorithm is a Last-
to-First Mapping (LFM), which is performed by calling the
function LF (), defined as follows:

LF (Q[i], u) = C[Q[i]] +Occ[Q[i], u], (2)

where i is the index of the loop and u is either sp or ep.
Each iteration of the loop 3−6 in the BS algorithm

accesses the Q string and makes two calls to the LF ()
function, one with sp and the other with ep. Note that in
every loop iteration, sp (ep) is updated using the value
computed in the previous iteration. That constitutes two
dependency chains of calls to LF (), one for sp and the other
for ep. We denote these chains LFM-chains (see Fig. 1).

3.2 Sampled FM-index
The full FM-index requires a large amount of memory
space (see (1)) but the BS algorithm exhibits low computing
cost. The sampled FM-index is a variant of the full version
that introduces a trade-off between memory footprint and
computing cost [2], [13].

The storage requirements can be reduced by replacing
the Occ structure with a smaller one (rOcc). rOcc stores one
column out of every d columns of Occ, that is, rOcc[c, i] =
Occ[c, 1+(i − 1)×d]. Fig. 2 depicts this new data structure
(sampled, k=1).

In order to reconstruct the content of Occ, both rOcc and
BWT are needed. Let us see an example for d=5. Consider
that we need to know the number of occurrences of the
symbol s up to the entry 8 of the BWT text, that is, the
value of Occ[s, 8]. The nearest entry in the row s of Occ
previous to Occ[s, 8] that is stored in rOcc corresponds
to rOcc[s, 2], because b(8-1)/d+1c=2. So, we can obtain
Occ[s, 8] by adding the value rOcc[s, 2] (which is equal
to Occ[s, 6]) and the number of occurrences of the symbol

s in the sub-string of BWT from position 7 to 8. This
equivalence can be expressed in general as follows:

Occ[s, p] = Occ[s, q] + occur(s,BWT [(q + 1)..p])

= rOcc[s, b(p− 1)/d+ 1c] + occur(s,BWT [(q + 1)..p]),
(3)

being q=1+d×b(p− 1)/dc≤p, and occur(s,str) the number of
occurrences of the symbol s in the string str.

A way of improving data locality consists of placing next
in memory columns of rOcc and the blocks of BWT re-
quired to reconstruct Occ. This is accomplished in two steps
(see Fig. 2). Firstly, rearranging the BWT text in an array
of substrings of d consecutive symbols taken from BWT ,
called buckets [2]. The new data structure, named bBWT , is
defined as bBWT [u, v]=BWT [d×(u − 1)+v], representing
the symbol v of the bucket u. Secondly, combining both rOcc
and bBWT data structures into a new one denoted by SFM
(Sampled FM-index). SFM associates the column j from rOcc
with the row j from bBWT . Specifically, a SFM row refers to
a rOcc column (σ counters) and the bBWT bucket required
to reconstruct the discarded Occ counters up to the next
rOcc column.

A search algorithm based on the sampled FM-index fol-
lows a similar structure as the BS algorithm, but it requires
to re-write the calculation of an LFM (see (2)) as follows:

sLF (Q[i],m, d) = C[Q[i]] + rOcc[Q[i], b(m− 1)/d+ 1c]
+ occur(Q[i], bBWT [b(m− 1)/dc+ 1, [1..(m mod d)]]).

(4)

Note that each sampled LFM uses rOcc instead of Occ,
which is d times smaller, but at the cost of performing
more computation (the higher the value of d, the higher the
computational cost).

3.3 K-step Sampled FM-index

The k-step sampled FM-index searches k symbols in a query in
a single step [14]. This version reduces computing cost and
improves data locality of the sampled version but increases
slightly memory footprint.

To search k symbols in a single query, the original
alphabet, Σ, is replaced by the set of k-tuples whose el-
ements come from Σ (permutations with repetition). The
new alphabet is denoted Σk and its size is σk. This change
in the alphabet implies modifications in the sampled FM-
index data structure. C is transformed into Ck, which is
indexed by k-tuples in Σk (hence, its size is σk). rOcc
becomes rOcck, whose first dimension is also indexed by k-
tuples (thus, its size is σk×d(n+1)/de). BWT is transformed
into BWTk, which is composed of k (n+1)-symbol strings,
namely the last k columns of the M matrix (see sec. 2.1.2).
These k strings, however, can be encoded as only one (n+1)-
symbol string, where each symbol is now the concatenation
of the k symbols of each row from the M matrix. Similarly
to bBWT , BWTk, encoded as a single string of k-tuples
of symbols, can be blocked into buckets of size d. This
new structure is denoted bBWTk, an array of sub-strings
composed by the concatenation of d k-tuples of symbols. As
with SFM, the extended data structures, rOcck and bBWTk,
are combined into a new one denoted by SFMk (k-step

This is the author's version of an article that has been published in IEEE/ACM Transactions on Computational Biology and Bioinformatics. Changes were made
to this version by the publisher prior to publication. The final version of record is available at https://doi.org/10.1109/TCBB.2018.2884701

4

C 1 σ

1

2

n+1

M

BWT

G C

T C

G T

BWT2

SFM row

1

1

σ

d 2d n+1Occ

1 n+1

C 1 σ C2 1 σ2

1

1

σ

2rOcc (n+1)/d 1

1

2rOcc2
(n+1)/d

σ2

Full Sampled, k=1 Sampled, k=2∑={A,B,…}, ∑ =σ ∑={A,B,…}, ∑ =σ ∑2={AA,AB,…}, ∑2 =σ2

A B A B AA AB

2

2

2 2

A

B

A

B

AA

AB

1

2

n+1

C

C

T

BWT 1 d

1

(n+1)/d

bBWT
C C

T

1

2

n+1

GC

TC

GT

1 d

1

(n+1)/d

bBWT2

GC TC

GT

BWT2

1

(n+1)/d

2

1 σ

A B

1 d

C C

T

SFM
1

(n+1)/d

2

1 σ2

AA AB

1 d

GC TC

GT

SFM2

SFM2 row

Fig. 2. Full, sampled, and 2-step sampled FM-index data structures

Sampled FM-index). Fig. 2 shows these new data structures
for k=2.

The k-step version of the calculation of a LFM (denoted
by sLFk()) is an extension of the single-step version, sLF ()
(see (4)), but using the extended Σk alphabet and the ex-
tended data structures: Ck, rOcck and bBWTk. A single
sLFk() call resolves k LFMs, that is, it is equivalent to k
calls to sLF (). A call to sLFk() reads one piece of main
memory containing the data to resolve k LFMs, exploiting
in this way data locality. Moreover, the computational cost
of sLFk() is slightly higher than that of sLF () and therefore
the cost per LFM is much lower.

3.4 Memory and Performance Analysis

3.4.1 Memory footprint
The most memory consuming data structure is Occ, for full
FM-index, and SFMk, for the sampled variants. In the case
of DNA, the full Occ matrix is a big data structure (see (1)).
The sampled versions, however, reduces largely this size
depending on the parameters d (sampling factor) and k
(symbols searched in a single step). Specifically, the memory
footprint for the SFMk data structure is:

Fp(SFMk) = d(n+1)/de×(σk×R+d×dlog2σke) bits, (5)

where R is the size of the rOcck entry.
Taking the human genome example (n=3 Gbases, σ=4)

and d=64, the memory footprint for SFMk is 1.5 GBs, for
k=1, and 4.5 GBs, for k=2, considering that a rOcc entry fits
in 32 bits. These sizes are much lower than the footprint of
the full Occ structure (48 GBs).

Values of k greater than 2 require a large amount of
memory due to the exponential dependency of Fp(SFMk)
on the number of steps (k). Taking the same example as
above but for k=4, the size of SFMk increases to 51 GBs,
greater than the original Occ structure.

3.4.2 Memory access pattern
One of the main performance limitations of the BS algo-
rithm is related to the memory system. When executing this
algorithm in an out-of-order processor, two LFM-chains are
issued for each backward search query, overlapping their
execution. Each of these LFMs obtains theOcc entry address
(sp or ep) using the address from the previous iteration.
Given how the BS algorithm works, the Occ memory ac-
cess pattern for an LFM-chain is not predictable and it is
distributed along the whole Occ matrix, showing neither
spatial nor temporal locality. Hence, accesses to Occ result
in a high cache miss rate.

However, computations from both LFM-chains are par-
tially correlated. When a part of the query has already been
performed, there are usually few matches in the reference
text, and the start and end pointers (sp and ep) may have
similar values. In that case, the pair of LFMs executed in a
loop iteration likely access two Occ entries that are stored in
the same cache block. We have measured the ratio of these
cache block correlations for different query lengths and text
sizes, assuming 64-byte cache blocks (see Fig. 3). It can be
noted a high degree of cache block correlation between the
two LF () calls within the same loop iteration.

To summarize, each pair of LFMs in a loop iteration
reads two different cache blocks from main memory at the
beginning of a query, but they are likely to access only one
cache block when the query moves forward. Let α denote
the average number of cache blocks read from main memory
by each LFM pair in the same loop iteration, that is,

α = 1 + (1− r), (6)

being r the probability of sp and ep referring data from the
same cache block (see Fig. 3). The value of α depends on
factors such as the index size and the query length.

For the sampled FM-index variants, an LFM reads one
rOcck entry and a sub-string from bBWTk (see (4) for k=1),

This is the author's version of an article that has been published in IEEE/ACM Transactions on Computational Biology and Bioinformatics. Changes were made
to this version by the publisher prior to publication. The final version of record is available at https://doi.org/10.1109/TCBB.2018.2884701

5

0.5 1 1.5 2 2.5 3
Text size (GBases)

60

70

80

90

100
%

 C
oi

nc
id

en
ce

s (
r)

86.7%
82.6%

78.6%
75.0%

70.0%

65.7%

92.0%
88.5%

84.7%
81.9%

78.4%
75.3%

200 symbols 400 symbols

Fig. 3. Fraction of LF (c, ep) calls that access the same cache block as
companion LF (c, sp) calls for different text and query sizes

TABLE 1
Full and sampled FM-index properties (B (GB) stands for bytes (Giga

bytes), CB for cache blocks and P for padding)

Full Occ column size Occ size α SI
r (CB) (B) (GB) (CB) (LFMs/B)

0.657 1 16 48 1.34 0.0232
Sampled SFMk row size SFMk size αdk SIdk
k d ∆dk rdk (CB) (B) (GB) (CB) (LFMs/B)
1 32 1 0.916 1 24+8P 3 1.08 0.0288
1 192 1 0.934 1 64 1 1.07 0.0293
1 448 1.57 0.943 2 128 0.857 1.66 0.0188
1 704 2.09 0.947 3 192 0.818 2.02 0.0142
2 16 2 0.860 2 72+56P 13.5 2.28 0.0274
2 128 2 0.924 2 128 3 2.15 0.0290
2 256 2.5 0.932 3 192 2.25 2.67 0.0234
2 384 3 0.936 4 256 2 3.19 0.0196

both belonging to the same SFMk row. In order to minimize
the number of cache blocks read from main memory, the
SFMk row has to be properly aligned to cross the minimum
number of cache block boundaries. Therefore, either d has a
suitable value or the SFMk row has to be padded.

Equation (6) has to be adapted for the sampled FM-index
versions because d and k appear as new parameters. In
particular, the average number of cache blocks read from
main memory for each query step (performing 2k LFMs) is:

αdk = ∆dk × (1 + (1− rdk)), (7)

where ∆dk is the average number of accessed cache blocks
for a pointer access (either sp or a ep), and rdk is the
probability that both sp and ep refer to elements stored in
the same SFMk row.

Table 1 shows the footprint of Occ and α for the full
FM-index (first row in table), as well as the footprint of
SFMk and αdk for the sampled versions, using different
values of k and d, and 64-byte cache blocks. r and rdk
were obtained experimentally searching 20M sequences of
DNA strings with an average length of 200 symbols in a
full human genome reference (σ=4 and n=3G). ∆dk was
calculated assuming random accesses to rOcck. Note that,
for k=1 and d=32, the SFMk row size is 24 bytes, which is
padded with 8 extra bytes in order to store two complete
rows in a single cache block (similar situation for k=2 and
d=16). It is worth noting that the huge memory footprint of
Occ for the full version may result in frequent TLB misses
for most of the modern processors.

Our design goal is to reduce αdk for a given k value.
On the one hand, ∆dk increases with growing values of d,
since the SFMk row size increases. On the other hand, the

Lmem Lop

LLFM

MEMLF(Q[p-1],sp) OP

MEM OPLF(Q[p-1],ep)

MEM OP

MEM OP

LF(Q[p-2],sp)

LF(Q[p-2],ep)

idle time

Liter

Fig. 4. Backward search timing model, where Lx represents latencies
for the different phases.

greater the value of d, the higher the probability rdk. For
k=1 and k=2, this trade-off results in a minimum value of
αdk with d=192 and d=128, respectively. For 64-byte blocks,
these are the sampling values that minimize the average
number of cache blocks read from main memory for each
query step. Lower d values do not exploit sp and ep locality.
For higher values, the SFMk size increase in terms of cache
blocks outweighs the effect of pointers locality.

3.4.3 Search intensity
The arithmetic intensity is the ratio of the number of opera-
tions (work) to the amount of data traffic (in bytes) [18]. In
the case of the FM-index backward search, we use the num-
ber of LFMs performed per transferred byte. Consequently,
we name this metric search intensity (SI).

For the full FM-index, an LFM pair needs to retrieve, in
average, α cache blocks from main memory. Hence, the SI
of the BS algorithm for a B-byte cache block is:

SI =
2

α×B
LFMs/byte. (8)

For the sampled versions, search intensity is calculated
in a similar way, but replacing α with αdk, that is:

SIdk =
2× k

αdk ×B
LFMs/byte, (9)

considering that 2k LFMs are searched per query step.
Table 1 shows the search intensity for the full and sam-

pled versions of FM-index. Search intensity is maximized
for the pairs (k=1,d=192) and (k=2,d=128), obtaining similar
values (0.0293 and 0.0290) and slightly better than that for
the full version (0.0232). For k=2, SFMk occupies three times
more memory than for k=1 (3 GB vs. 1 GB). The impact
of searching k symbols in a query step on search intensity
is compensated by the increase in the average number of
blocks read from memory (αdk). For example, for k=2 and
d=128, the matching algorithm performs 4 LFMs in a query
step (two sLFk=2()) instead of the 2 LFMs performed with
k=1 and d=192. However, each step loads from memory
an average of 2.15 cache blocks instead of 1.07, leaving the
search intensity almost unchanged.

3.4.4 Throughput
Latency. Considering the full FM-index, the execution of
the pair of LFMs issued in a iteration of a search query
can be modeled with two logical phases (see Fig. 4). The
first phase, MEM, corresponds to the memory operations
associated to an LFM, which is mainly due to the access to

This is the author's version of an article that has been published in IEEE/ACM Transactions on Computational Biology and Bioinformatics. Changes were made
to this version by the publisher prior to publication. The final version of record is available at https://doi.org/10.1109/TCBB.2018.2884701

6

Occ. The second phase, OP, corresponds to the computing
operations of an LFM. Basically, this phase comprises the
processing of three memory and one add instructions.

In an out-of-order processor with a non-blocking cache,
the access to Occ with ep can be initiated while the cache is
still servicing the access to Occ with sp in the same iteration
(see Fig. 4). However, the next access to Occ must wait
to finish the execution of the corresponding LFM of the
previous iteration (due to the data dependence in the LFM-
chain). As the MEM phase requires typically hundreds of
cycles (Lmem), while the OP phase lasts few cycles (Lop),
the processor is idle most of the time (idle time in Fig. 4).

Assuming that a single hardware thread per core per-
forming a complete query, the throughput is:

ThLcore =
2

Liter
≈ 2

LLFM
≈ 2

Lmem
LFMs/s, (10)

where Liter is the latency of the iteration (see Fig. 4), and
LLFM is the latency of a complete computation of an LFM.

Bandwidth. Equation (10) determines an upper bound of
single-thread throughput in terms of latencies. Memory
bandwidth, on the other hand, also limits the maximum
achievable throughput. Given the search intensity (SI), the
throughput of a core (single thread) can be calculated as:

ThBW
core =

ThBW
system

Ncores
=
SI ×BWsystem

Ncores
LFMs/s, (11)

being ThBW
system the throughput of the complete system,

Ncores the number of cores executing independent queries
in parallel, and BWsystem the main memory bandwidth for
the complete system.

Sampled versions. With the sampled FM-index, the
throughput upper bounds determined by query latencies
and memory bandwidth are calculated by equations (10)
and (11), respectively, but replacing SI with SIdk.

Regarding ThLcore, the LFM latency (LLFM) increases
compared with the full version because of the larger in-
struction count in the computing phase (OP). Hence, the
maximum throughput per core is lower in the sampled
versions. Regarding ThBW

core, throughput bound is maximum
for k and d values that maximize SIdk (see Table 1).

3.5 Optimizing Throughput: Overlapped FM-index
The full and sampled FM-index variants have different
characteristics in terms of memory footprint and data lo-
cality exploitation. However, their impact on throughput is
much less important as the search intensity remains almost
unchanged (see Table 1).

The exact matching algorithm (BS algorithm) is typically
query latency bound, since many cycles are lost waiting for
data (idle time in Fig. 4), wasting part of the available mem-
ory bandwidth. However, the memory latency responsible
of the idle time can be hidden by issuing a given number
of different independent queries, that is, by overlapping
the memory accesses of several queries (batch or offline
processing). This way, the throughput upper limit given
query latencies is increased. The high number of queries
which are usually involved in solving genome mapping
problems makes this approach feasible.

Algorithm OBS: Query-Overlapped Backward Search

Input: FM-index of T text (C & Occ), Q[] array of queries

Input: n:|T[]|, Nq:|Q[]|, p:|Q[k]{}|, k=1...Nq

Ouput: (sp[k],ep[k]): Interval array of pointers of Q[k] in T

 begin

1: sp[k] = C[Q[k]{p}], k=1...Nq

2: ep[k] = C[Q[k]{p}+1], k=1...Nq

3: for i from p-1 to 1 step -1

4: for k from 1 to Nq step 1

5: sp[k] = LF(Q[k]{i},sp[k])

6: ep[k] = LF(Q[k]{i},ep[k])

7: prefetch(Occ[Q[k]{i},sp[k]])

8: prefecth(Occ[Q[k]{i},ep[k]])

9: end for

10: end for

11: return (sp[k]+1,ep[k]), k=1...Nq

 end

2Nq LFM-chains

Fig. 5. Backward match algorithm overlapping Nq queries

Lmem Lop

LLFM

MEMLF(Q[1][p-1],sp) OP

MEM OP

MEM OP

MEM OP

LF(Q[1][p-1],ep)

LF(Q[1][p-2],sp)

LF(Q[1][p-2],ep)

MEMLF(Q[2][p-1],sp) OP

MEM OPLF(Q[2][p-1],ep)

OPLF(Q[Nq][p-1],ep)

Liter (first iteration)

OPLF(Q[Nq][p-2],ep)

Liter (rest of iterations)

L’op

Fig. 6. Backward search timing model with Nq overlapped queries

The resulting algorithm is shown in Fig. 5 for the full
FM-index. The OBS algorithm executes a total of 2Nq LFM-
chains for each iteration of the outer loop 3−10, correspond-
ing to an array of Nq different queries that are searched
concurrently. Note that after computing the two LFMs re-
quired for a given query, two prefetch operations are issued
to retrieve from memory the two Occ entries needed for
computing the next two LFMs of the same query. The laten-
cies of these memory reads are hidden by computing LFMs
from other queries (see Fig. 6). By overlapping independent
queries, the processor should be busy most of the time.

Assuming a single hardware thread per core, the mini-
mum number of LFMs that must be overlapped in order to
nullify the idle time is Liter/L

′
op, where L′op is the latency of

the fraction of the OP phase that is not overlapped with the
same phase of other LFMs (see Fig. 6). So, to reach such situ-
ation, Nq must take a value such that 2×Nq=Liter/L

′
op. We

calculate L′op for several implementations of the algorithm
and for several processors in Section 5.

Using the above expression, the maximum throughput
obtained by a core with the OBS algorithm is:

ThCcore =
2×Nq

Liter
=

1

L′op
LFMs/s. (12)

Current architectures support simultaneous multithread-

This is the author's version of an article that has been published in IEEE/ACM Transactions on Computational Biology and Bioinformatics. Changes were made
to this version by the publisher prior to publication. The final version of record is available at https://doi.org/10.1109/TCBB.2018.2884701

7

1 Q[i] σ 1 d

SFM row

m%d

F A R R A M S M…………C A F L G A O M D

1 1 d

bvSFM rows

m%d

1 0 0 0 0 0 0 0……0 0 1 0 0 0 0 0 0

(m-1)/d +1

F A R M S D

F

Q[i] 1 dm%d

0 0 0 0 0 1 0 1……0 0 0 0 0 0 0 1 0

M

σ 1 dm%d

0 0 0 0 0 0 0 0……0 0 0 0 0 0 0 0 1

D

rOcc bBWT

Fig. 7. Original SFMk (k=1) data structure (top) and new bvSFMk data
structure (bottom). The accessed data during the computation of an LFM
is marked in red (see (4)).

ing (SMT) [19], a technique that allows a single core to
execute several interleaved independent execution flows
(hardware threads). In this situation, the Nq queries can be
distributed among the hardware threads of a core.

4 SPLIT BIT-VECTOR SAMPLED FM-INDEX

4.1 Approach
In order to increase search intensity to improve bandwidth
throughput αdk must be reduced. The upper part of Fig. 7
shows a row of the SFMk data structure, for k=1. All entries
accessed in the computation of an LFM are marked in red,
according to (4). Note that only a single entry in rOcc is
accessed, so that if σ is large enough the substring accessed
in bBWT may be stored in a different cache block. This
occurs, for example, in the case of DNA (σ=4) and k=2. Since
the alphabet size is 16 (σk), and each entry in rOcc has a size
of 4 bytes, a single rOcc2 column occupies a complete 64-
byte cache block (16 counters × 4 bytes/counter).

We propose to change the SFMk layout and data codifi-
cation so as all data needed to compute an LFM is stored in
a minimum number of cache blocks.

4.2 Description
We denote the new data structure by bvSFMk, called split
bit-vector sampled FM-index. Our solution comes from the
observation that only one out of the σk rOcck entries is read
for each LFM computation (see upper part of Fig. 7).

The bvSFMk structure is obtained from SFMk through
two transformations: (1) partition each row of SFMk into
σk rows, where each of them consists of a single rOcck
entry combined with the complete bucket. Specifically, the
row t of SFMk, that is, SFMk[t, ∗] ≡ rOcck[∗, t] | bBWTk[t]
(a concatenation of the column t of rOcck and the bucket
t), is transformed into σk rows of bvSFMk, of the form,
bvSFMk[(t-1)σk+i, ∗] ≡ rOcck[i, t] | bBWTk[t], for i=1,...,σk;
(2) compression of each bucket using a bitmap where each
symbol is represented by a single bit. This representation is
as follows: given the row bvSFMk[(t-1)σk+i, ∗] (1≤ i≤ σk),
the corresponding bucket (bBWTk[t]) is replaced by a
bitmap of length d, where a symbol in the bucket is rep-
resented by a set bit (1) if it is equal to the one associated to
the entry rOcck[i, t], and by a unset bit (0) otherwise.

TABLE 2
Split bit-vector k-step sampled FM-index parameters, for k = 2

d bvSFMk row size bvSFMk size αsk SIsk
(CB) (B) (GB) (CB) (LFMs/B)

32 1 8 12 1.108 0.0564
64 1 12+4P 12 1.088 0.0574
96 1 16 8 1.081 0.0578
224 1 32 6.86 1.069 0.0585
480 1 64 6.4 1.061 0.0589

The lower part of Fig. 7 shows, as an example, the σk

rows of bvSFMk for k=1. Note that now, all data required to
calculate an LFM (in red) are placed together in memory
and in a compact way, minimizing memory bandwidth
consumption. The transformation also allows the occur()
function in (4) to be simplified. Now it has to count the
number of set bits (1) in the accessed bucket, operation that
can be efficiently performed by the popcount instruction.

4.3 Memory footprint
The new bvSFMk data structure has σk rows for each row of
the original SFMk structure, as shown in Fig. 7. Therefore,
the memory footprint of bvSFMk is:

Fp(bvSFMk) = σk × d(n+ 1)/de × (R+ d) bits, (13)

where R is the size of the rOcck entry. Note that the row
size does not depend on the alphabet size (σk).

Table 2 shows the size of a bvSFMk row and of the
complete structure for the human genome for k=2 and
different values of d. For all the selected d values, a bvSFMk

row fits in a cache block. Compared to the corresponding
SFMk values (see Table 1), the size of the whole data
structure increases. For instance, with d=64, the bvSFMk=2

and SFMk=2 footprints are 12 GB and 4.5 GB, respectively.
Current computing systems have enough memory to allo-
cate this up-sized bvSFMk=2 data structures.

4.4 Search Intensity and Throughput
To minimize memory traffic, a value must be chosen for
d such that a bvSFMk row fits in a single cache block.
In addition, these rows must be cache-aligned in order to
not splitting a row between two consecutive cache blocks.
That means that the cache block size must be an integer
multiple of the row size. Otherwise, the rows must be
padded accordingly.

Table 2 shows αdk and SIdk for different values of the
sample distance d, assuming 64-byte cache blocks and k=2.
Search intensity is calculated using (9). These values have
been obtained in the same way as those of Table 1. Different
from the SFMk=2 rows, which require two or more cache
blocks to be stored, the rows of bvSFMk=2 fit in a single
cache block. As a result, the value of αdk is lower for the bit-
vector version, and consequently its search intensity is about
twice larger than that of SFMk. In addition, the sensitivity
of SIdk with d is minimum for bvSFM, as its row size does
not depend on d for the selected values.

The throughput upper bounds are calculated by (10)
and (11). The proposed split bit-vector version improves
SIdk of the exact matching algorithm and, hence, increases
the throughput upper bound given by memory bandwidth.

This is the author's version of an article that has been published in IEEE/ACM Transactions on Computational Biology and Bioinformatics. Changes were made
to this version by the publisher prior to publication. The final version of record is available at https://doi.org/10.1109/TCBB.2018.2884701

8

TABLE 3
Features of processors used in the evaluation

Xeon Phi 7210 Xeon E5-2630V4 Xeon Gold 5120
(KNL) (Broadwell) (Skylake)

Cores 64× @ 1.3 GHz 10× @ 2.2 GHz 14× @ 2.2 GHz
IPC 2 4 4

HW Threads 4 2 2
Vector Unit AVX-512 AVX2 AVX-512

Memory 400 GB/s (MCDRAM) - -
Peak BW 95 GB/s (DDR4) 68 GB/s (DDR4) 107 GB/s (DDR4)
Memory 16 GiB (MCDRAM) - -

Size 192 GiB (DDR4) 256 GiB (DDR4) 48 GiB (DDR4)

TABLE 4
Instruction count and computation latency per sLFk() call

Broadwell Skylake KNL
Instr. L′

op L′
op L′

op
Algorithm count (cycles) (ns) (cycles) (ns) (cycles) (ns)
k1d32-SFM 33 8.25 3.8 8.25 3.8 16.5 12.7
k1d192-SFM 77.5 19.38 8.8 19.18 8.8 38.75 29.8
k2d16-SFM 37.5 9.38 4.3 9.38 4.3 18.75 14.4
k2d128-SFM 98.5 24.62 11.2 24.63 11.2 49.25 37.9
k2d64-bvSFM 23.5 5.88 2.7 5.88 2.7 11.75 9.0
k2d96-bvSFM 38 9.5 4.3 9.5 4.3 19 14.6

In addition, as with the full and sampled versions, it is
feasible to combine this data structure with the overlapping
of independent queries (OBS algorithm). The resulting exact
matching algorithm also improves the throughput limited
by query latencies (see (12)).

5 THROUGHPUT BOUNDS ANALYSIS

In this section, we assess the throughput bounds of the exact
matching algorithms based on the analyzed versions of
FM-index. In particular, we consider the sampled versions
with pairs (k=1,d=32) (k1d32-SFM), (k=1,d=192) (k1d192-
SFM), (k=2,d=16) (k2d16-SFM) and (k=2,d=128) (k2d128-
SFM), and the split bit-vector version with pairs (k=2,d=64)
(k2d64-bvSFM) and (k=2,d=96) (k2d96-bvSFM). All versions
use the query-overlapped technique (OBS) to maximize
throughput. (k,d) values have been selected so that a SFMk

row occupies the minimum number of cache blocks. k1d32-
SFM, k2d16-SFM and k2d64-bvSFM have 64-bit buckets,
which matches the maximum data size of the processor.

The assessment is carried out in three processor architec-
tures from Intel (see relevant features in Table 3).

5.1 Instruction count

Table 4 shows the average number of instructions in the
OP phase (see Fig. 4) of the calculation of an LFM for the
different versions of the exact matching algorithm, as well
as, the time spent by the processor to execute those in-
structions. We have analyzed optimized x86 machine codes.
The Intel IACA tool [20] was used to analyze the hardware
resource occupation in Broadwell and Skylake processors,
while a similar analysis was made manually in KNL because
the IACA tool does not support this architecture. In all
processors, the resource that limits most the computation
of the LFMs is the front-end unit, in charge of processing 2
(KNL) or 4 (Broadwell, Skylake) instructions per cycle.

2 4 6 8 10 12
Number of linked lists (C)

0

50

100

150

200

B
an

dw
id

th
 (G

B
/s

)

16

38 44 44 44 43
33

55
66 68 68 68

148

210
220 217 218 218

Broadwell
Skylake

KNL MCDRAM

Fig. 8. Memory bandwidth for Broadwell, Skylake and KNL obtained with
the RANDOM benchmark for various values of C

As expected, k1d32-SFM, k2d16-SFM and k2d64-bvSFM
versions (those with 64-bit buckets) have low instruction
counts because the operations in occur(s,str) (see (3)) trans-
late into a few processor instructions if the bucket size is
equal or smaller than the processor word (64 bits). Likewise,
those versions with larger d values have higher instruction
counts because they have to loop through d-symbol buckets.

5.2 Random Memory Access Benchmark

In order to have a more accurate value of memory band-
width when issuing random memory accesses, we have
developed a benchmark, called RANDOM, that performs
memory operations following a random pattern similar to
that in the different versions of FM-index. RANDOM uses
C randomly generated linked lists with no access locality.

All the bandwidth tests have been conducted using the
maximum number of hardware threads supported by cores
and for a different number of linked lists (C). For C values
beyond 6, the bandwidth reaches a peak and remains stable
(see Fig. 8). For lower values, bandwidth is under the peak
value because the memory latency cannot be completely
hidden by the prefetch operations.

The maximum bandwidth corresponds to KNL MC-
DRAM, able to provide about 219 GB/s. This value is much
lower than the peak 400 GB/s reported for the STREAM
benchmark [21]. On the other hand, the peak bandwidth
provided by the DDR4 DRAM memory is about 68 GB/s
(Skylake) and 44 GB/s (Broadwell).

The memory access latencies were also evaluated using
the RANDOM benchmark. Three load tests were used: low
load, medium load and high load. In the low load test, only
one hardware thread in the complete processor executes the
benchmark that runs over a single linked list (C=1). All the
others threads remain idle. In the medium load test, the
maximum number of hardware threads in each processor
runs over a single linked list. In the high load test, the
maximum number of hardware threads (same as medium
load) execute the benchmark. Every thread, except one, runs
over several linked list in order to have a high load in the
system. The remaining thread runs just over one linked list
in order to accurately measure the memory access latency.
The number of linked lists was selected to be the one that
achieves the best memory bandwidth (see Fig. 8).

This is the author's version of an article that has been published in IEEE/ACM Transactions on Computational Biology and Bioinformatics. Changes were made
to this version by the publisher prior to publication. The final version of record is available at https://doi.org/10.1109/TCBB.2018.2884701

9

Low Medium High
System load

50

100

150

200
La

te
nc

y
(n

s)
Broadwell
Skylake
KNL

Fig. 9. Comparison of RANDOM memory latencies

Fig. 9 shows the RANDOM latency results for the three
processor architectures. It can be noted that the latency
increases significantly with the load in the system. This
behaviour is expected as, when the amount of simultaneous
queries increases, accesses to hardware shared resources are
much more likely to conflict.

5.3 Throughput Bounds

Table 5 shows the throughput upper bounds determined by
query latencies (processor computing capacity) and main
memory bandwidth for all FM-index versions. These val-
ues have been obtained through the expressions (12) for
computing time and (11) for memory bandwidth, taking as
BWsystem those values shown in Fig. 8.

As expected, the system throughput bounds imposed
by memory bandwidth are much higher in KNL than in
Broadwell or Skylake. The reason is that, in KNL, the FM-
index structure is stored in its MCDRAM banks which
provides a much higher bandwidth than DDR4 DRAM.

KNL cores have a lower computing capacity than Broad-
well/Skylake cores but a much higher memory bandwidth.
This fact results in more versions of the matching algorithm
being compute bound for KNL than for Broadwell/Skylake.

The split bit-vector version performs best, mainly due to
its higher search intensity compared to the other versions.
Specifically, the memory bandwidth throughput bound for
bvSFM is around twice as large as that of the SFM versions.

In summary, the best result for Broadwell is 2.52G
LFM/s and it is achieved with the k2d96-bvSFM version,
with a memory footprint of 8 GB. For Skylake, the best result
is 3.94G LFMs/s, obtained with the same version. Finally,
for KNL, this version is compute bound, achieving the best
throughput with the k2d64-bvSFM version (12.61G LFM/s),
with a memory footprint of 12 GB. In general, the split bit-
vector data structure strongly improves the throughput for
all processor architectures.

6 EXPERIMENTAL EVALUATION

6.1 Experimental Setup and Methodology

The evaluation was conducted on three different platforms:
(1) a system with an Intel Xeon Phi 7210 processor (KNL),
16 GiB of MCDRAM and 192 GiB of DDR4 running Ubuntu
16.04.1 Linux; (2) a system with an Intel Xeon Gold 5120
processor (Skylake) and 48 GiB of DDR4 running CentOS
Linux 7; and (3) a system with an Intel Xeon E5-2630v4
(Broadwell) and 256 GiB of DDR4 running Ubuntu 16.04.

k1d192-SFM k1d32-SFM k2d128-SFM k2d16-SFM k2d96-bvSFM k2d64-bvSFM
FM-index version

0

2

4

6

8

10

12

14

Th
ro

ug
hp

ut
 (G

 L
FM

s/
s)

0.59 1.14 0.99 1.23 1.76 1.97
0.99

1.86 1.38 1.86
2.77

3.62

1.69

4.29
3.16

5.06
5.91

11.6Theoretical limit
Broadwell
Skylake
KNL

Fig. 10. Throughput for different FM-index versions

We used the Intel C Compiler (ICC version 17.0.4) with
common flags, -O3 -qno-opt-prefetch, and architec-
ture dependent flags, -xMIC-AVX512, -xCORE-AVX512,
and -xCORE-AVX2, for the KNL, Skylake and Broadwell
systems, respectively.

Thread-level parallelism has been exploited by using
all the available threads in all the physical cores. For the
KNL system, all FM-index data structures were placed in
the MCDRAM, and it was configured in memory flat mode
and in quadrant clustering mode [22]. In addition, we used
1 GiB huge TLB pages to avoid TLB misses. The overlapping
factor, Nq , was set to 4 for KNL, and to 20 for Broadwell
and Skylake, being the minimum number of queries to be
overlapped to keep busy the processor for all the versions.

A set of 20M queries generated by the Mason simulation
tool [23] was used as input data. These queries (200 symbols
in average) have been searched in the human genome refer-
ence GRCh38 (3 gigabases). All experiments were conducted
after loading the sequences into memory.

6.2 Throughput

Fig. 10 shows the throughput achieved by different FM-
index versions. Each bar is split into two parts. The col-
ored part (bottom of the bar) shows the value obtained
experimentally in each processor. The gray part (top of the
bar) shows the theoretical value achievable according to the
models presented in the previous sections.

In general, the experimental values reasonably approxi-
mate the theoretical ones. The differences are due to proces-
sor features not taken into account in the models, specially,
the penalty caused by branch miss-predictions. The actual
throughput is about 95% of the theoretical limit for exact
matching algorithms with 64-bit buckets, and it drops to
around 80% for larger bucket sizes. In these cases, the count
of coincidences in a variable number of 64-bit pieces forces
to execute more branches, which also have unpredictable
behavior because they are dependent on the input data.

The branch miss-prediction penalty of those versions
with buckets larger than 64 bits adds to the substantial
increase in the instruction count (see Table 4). As a result,
throughput for versions with large buckets (more than 64
bits) is lower than that of versions with shorter buckets.

The exact matching algorithm based on the proposed
split bit-vector data structure outperforms by about 60%
and 90% the best of previous implementations, executed in
Broadwell and Skylake processors, respectively. In KNL, our

This is the author's version of an article that has been published in IEEE/ACM Transactions on Computational Biology and Bioinformatics. Changes were made
to this version by the publisher prior to publication. The final version of record is available at https://doi.org/10.1109/TCBB.2018.2884701

10

TABLE 5
Throughput limits imposed by query latencies and memory bandwidth (in LFMs/s). Underlined entries show the minimum throughput

Broadwell Skylake KNL
FM-index Computing Bandwidth Computing Bandwidth Computing Bandwidth

version Core System Core System Core System Core System Core System Core System
k1d32-SFM 267M 2.67G 126M 1.26G 267M 3.73G 140M 1.96G 79M 5.04G 99M 6.33G
k1d192-SFM 114M 1.14G 128M 1.28G 114M 1.59G 143M 2G 34M 2.15G 101M 6.44G
k2d16-SFM 469M 4.69G 128M 1.28G 469M 6.57G 133M 1.87G 139M 8.87G 94M 6.02G
k2d128-SFM 179M 1.79G 135M 1.35G 179M 2.50G 141M 1.98G 53M 3.38G 100M 6.38G
k2d64-bvSFM 749M 7.49G 251M 2.51G 749M 10.49G 279M 3.91G 221M 14.16G 197M 12.61G
k2d96-bvSFM 463M 4.63G 251M 2.52G 463M 6.48G 281M 3.94G 137M 8.76G 198M 12.70G

TABLE 6
Match operation performance

Implementation Performance Index Size
(GLFM/s) (GB)

sdsl-lite library on Broadwell 0.122 1.25
sdsl-lite library on Skylake 0.147 1.25

sdsl-lite library on KNL 0.455 1.25
2-Step + AC on CPU [25] 0.5 3
2-Step + AC on GPU [25] 3.8 3

NVBIO on Tesla P100* 2.7* 0.23*
*Test performed using a reduced 950 MiB reference file

proposal outperforms by about 135% the best of previous
solutions adapted to this processor. In addition, the best
throughput in KNL, obtained for k2d64-bvSFM version, is
about 6x and 3x that achieved by Broadwell and Skylake,
respectively. This improvement is mainly due to the ultra
high-bandwidth provided by the MCDRAM memory.

6.3 Roofline Model
The roofline model [18], [24] is a simple and intuitive visual
method that provides performance upper bounds for an
application running in a given architecture. This model is
based on the concept of arithmetic intensity. However, since
the backward search algorithm does not perform floating-
point operations, the search intensity is used instead.

Fig. 11 shows the roofline model of different FM-index
matching algorithms on the three processor architectures.
The model considers the main memory peak bandwidth
and the experimental results obtained when performing
random memory accesses (described in section 5.2) as the
memory bandwidth bounds. This random access bandwidth
is, in fact, the hardware resource that really limits the al-
gorithm performance for the best FM-index implementation
(k2d64-bvSFM) in all processor architectures. This algorithm
version is able to use up to 95% of the peak bandwidth
for the KNL processor (with vector extensions, AVX-512,
extensively used as intrinsics in the computation of an LFM)
and almost all the available bandwidth for the Broadwell
and Skylake processors.

6.4 Comparison with Other Implementations
Table 6 shows the performance of different FM-index im-
plementations presented in the literature. sdsl-lite results
are achieved using Huffman shaped wavelet trees with no
compression [17], [26]. 2-step with alternate counters (AC)
performance is reported in [25]. These results are achieved
on dual Intel Xeon E5-2650 and a NVIDIA Kepler GTX Titan,

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

Search Intensity (LFMs/Byte)

0

2

4

6

8

G
 L

FM
s/

s

RANDOM Peak Bandwidth

Peak LF Performance (8G LFMs/s)

k2d64-bvSFM (1.97G LFMs/s)
k2d16-SFM (1.23G LFMs/s)

Broadwell

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

Search Intensity (LFMs/Byte)

0

2

4

6

8

10

12
G

 L
FM

s/
s

RANDOM Peak Bandwidth

Peak LF Performance (10.49G LFMs/s)

k2d64-bvSFM (3.79G LFMs/s)
k2d16-SFM (1.98G LFMs/s)

Skylake

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

Search Intensity (LFMs/Byte)

0

2

4

6

8

10

12

14

G
 L

FM
s/

s

ST
RE

AM
 P

ea
k

Ba
nd

wi
dt

h

RANDOM Peak
 Ban

dw
idt

h

Peak LF Performance (14.16G LFMs/s)

AVX512 k2-64bvSFM (12.0 G LFM/s)
k2-64bvSFM (11.6G LFMs/s)
k2-16SFM (5.1G LFMs/s)

KNL

Fig. 11. Broadwell, Skylake and KNL roofline models

respectively. The NVIDIA Tesla Pascal P100, a modern GPU
that includes HBM2 high-bandwidth memory technology,
reports a throughput of 2.7G LFMs/s, corresponding to the
execution of a NVBIO match function.

6.4.1 Double-level bucket FM-index

rOcc counters can be organized as a two-level structure to
reduce memory usage [27]. The BWT of T (L) is divided
into s-symbol superbuckets, each one divided into d-symbol
buckets. A first-level (L1) of counters stores, for each super-

This is the author's version of an article that has been published in IEEE/ACM Transactions on Computational Biology and Bioinformatics. Changes were made
to this version by the publisher prior to publication. The final version of record is available at https://doi.org/10.1109/TCBB.2018.2884701

11

bucket, the number of occurrences of each symbol in Σk

from the beginning of L up to the beginning of the bucket.
Similarly, a second-level (L2) of counters stores, for each
bucket, the number of occurrences of every symbol from
the beginning of its superbucket.

Considering 32-bit L1 and 16-bit L2 counters, and the
human genome (n=3G, σ=4), L1 counters take up 2.9 MB of
memory space (for k=2) and, thus, they can be stored in the
last-level cache (LLC) of both Broadwell and Skylake proces-
sors (25 and 19.25 MB shared among all cores, respectively),
but not in the KNL LLC cache (1 MB private for the two
cores in a tile). Our results confirm this analysis. With d=16,
this version reaches 1.75G, 3.13G, and 4.32G LFM/s for the
Broadwell, Skylake and KNL, respectively. Those values are
89%, 86%, and 37% of the k2d64-bvSFM throughput.

7 RELATED WORK

Many sequence alignment applications based on FM-index
have emerged recently, such as HISAT [28], Bowtie [4],
BWA [6], [5] and SOAP [7], [29]. Furthermore, implemen-
tations for specific architectures or accelerators have been
published, including GPUs (Arioc [30], CUSHAW2 [31],
BarraCUDA [32], [33]), Clusters (CUSHAW3 [34]), Clouds
(BigBWA [35]) and FPGAs (FHAST [36]).

Several works focus on improving the performance of
the exact matching algorithm (FM-index) for GPUs, like
Chacon et al. [25] and Chen et al. [37]. FM-index is also
included in the NVBIO [38] library, developed by Nvidia to
speed up bioinformatics using GPUs and CUDA technology.

The most relevant operation in the FM-index backward
search algorithm is the rank operation [39]. This operation,
together with the select one, has been addressed in numer-
ous papers which focus on optimizing both the memory
footprint and the pattern search time [40]. Most of this
papers are based on succinct data structures [41], [42], [26]
and wavelet trees [43], [44].

Unlike mentioned previous works, our paper focuses
on improving the pattern search time for genomic data
on CPU, specially those with many cores and high band-
width memory. Unlike CPUs, GPUs exploit fine-grained
massive parallelism, but the performance drops when the
control flow diverges or the data access pattern is irregular.
However, while improving pattern search time, we increase
memory footprint, getting close to other fast exact matching
algorithms, like suffix array binary search [45].

Even if these techniques can also be very fast, FM-Index
can be used for non-exact matching. Several aligment tools
are based on it and could be benefited from the ideas and
techniques described in this paper.

8 CONCLUSIONS

This paper presents a new data layout organization of
FM-index that boosts throughput thanks to an increase in
the search intensity. Basically, our optimized data structure
packs all relevant data needed in a query step within a single
cache block, minimizing the memory bandwidth demand.

We have experimentally evaluated an exact search algo-
rithm based on the proposed FM-index structure using three
multi-core processors. Our proposal outperforms by about
60%, 90% and 135% the best of previous implementations.

The best performance was obtained in the Intel Xeon Phi
(KNL) architecture, mainly because of the high peak random
access memory bandwidth. Our implementation is able to
obtain a throughput of 12G LFM/s, being about 3x faster
than previous GPU implementations and about 4.4x faster
than the GPU version implemented in the NVIDIA NVBIO
bioinformatics library executed on a Tesla Pascal P100.

REFERENCES

[1] H. Li and N. Homer, “A survey of sequence alignment algorithms
for next-generation sequencing,” Briefings in Bioinformatics, vol. 11,
no. 5, pp. 473–483, May 2010.

[2] P. Ferragina and G. Manzini, “Opportunistic data structures with
applications,” in 41st Ann. Symp. on Foundations of Computer Sci-
ence, 2000, pp. 390–398.

[3] M. Burrows and D. J. Wheeler, “A block-sorting lossless data
compression algorithm,” Digital Equipment Corporation, Tech.
Rep. 124, 1994.

[4] B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, “Ultrafast
and memory-efficient alignment of short DNA sequences to the
human genome,” Genome Biology, vol. 10, no. 3, pp. R25.1–R25.10,
2009.

[5] H. Li and R. Durbin, “Fast and accurate short read alignment with
Burrows-Wheeler transform,” Bioinformatics, vol. 25, no. 14, pp.
1754–1760, 2009.

[6] H. Li and R. Durbi, “Fast and accurate long read alignment with
Burrows-Wheeler transform,” Bioinformatics, vol. 5, no. 26, pp.
589–595, 2010.

[7] R. Li, C. Yu, Y. Li, T.-W. Lam, S.-M. Yiu, K. Kristiansen, and
J. Wang, “SOAP2: an improved ultrafast tool for short read align-
ment,” Bioinformatics, vol. 25, no. 15, pp. 1966–1967, 2009.

[8] T. W. Lam, W. K. Sung, S. L. Tam, C. K. Wong, and S. M. Yiu,
“Compressed indexing and local alignment of DNA,” Bioinformat-
ics, vol. 6, no. 24, pp. 791–797, 2008.

[9] B. Schmidt and A. Hildebrandt, “Next-generation sequencing: Big
data meets high performance computing,” Drug Discovery Today,
vol. 22, no. 4, pp. 712–717, Apr. 2017.

[10] A. Sodani, R. Gramunt, J. Corbal, H.-S. Kim, K. Vinod,
S. Chinthamani, S. Hutsell, R. Agarwal, and Y.-C. Liu, “Knights
Landing: Second-generation Intel Xeon Phi product,” IEEE Micro,
vol. 36, no. 2, pp. 34–46, Mar. 2016.

[11] J. Jeffers, J. Reinders, and A. Sodani, Intel Xeon Phi Processor
High Performance Programming, Knights Landing Edition. Morgan
Kaufmann, 2016.

[12] U. Manber and G. Myers, “Suffix arrays: A new method for on-
line string searches,” SIAM Journal on Computing, vol. 22, no. 5, pp.
935–948, 1993.

[13] A. Chacon, S. M. Sola, A. Espinosa, P. Ribeca, and J. C. Moure,
“FM-index on GPU: A cooperative scheme to reduce memory
footprint,” in IEEE Int. Symp. on Parallel and Distributed Processing
with Applications (ISPA 2014), 2014.

[14] A. Chacon, J. C. Moure, A. Espinosa, and P. Hernandez, “n-step
FM-index for faster pattern matching,” Procedia Computer Science,
vol. 18, pp. 70–79, 2013.

[15] R. Grossi, A. Gupta, and J. S. Vitter, “High-order entropy-
compressed text indexes,” in 14th Ann. ACM-SIAM Symp. on
Discrete Algorithms (SODA 2003), 2003, pp. 841–850.

[16] L. Foschini, R. Grossi, A. Gupta, and J. S. Vitter, “When indexing
equals compression: Experiments with compressing suffix arrays
and applications,” ACM Transactions on Algorithms, vol. 2, no. 4,
pp. 611–639, 2006.

[17] “Succinct data structure library 2.0.” [Online]. Available:
https://github.com/simongog/sdsl-lite

[18] S. Williams, A. Waterman, and D. Patterson, “Roofline: An in-
sightful visual performance model for multicore architectures,”
Communications of the ACM, vol. 52, no. 4, pp. 65–76, 2009.

[19] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous mul-
tithreading: Maximizing on-chip parallelism,” in 22nd Ann. Int.
Symp. on Computer Architecture (ISCA 1995), Jun. 1995.

[20] “Intel Architecture Code Analyzer,” 2012. [On-
line]. Available: https://software.intel.com/en-us/articles/intel-
architecture-code-analyzer

[21] J. D. McCalpin, “Memory bandwidth and machine balance in high
performance computers,” IEEE Technical Committee on Computer
Architecture Newsletter, pp. 19–25, Dec. 1995.

This is the author's version of an article that has been published in IEEE/ACM Transactions on Computational Biology and Bioinformatics. Changes were made
to this version by the publisher prior to publication. The final version of record is available at https://doi.org/10.1109/TCBB.2018.2884701

12

[22] R. Asai, “MCDRAM as High-Bandwidth Memory (HBM) in
Knights Landing processors: Developer’s guide,” 2016. [Online].
Available: https://colfaxresearch.com/knl-mcdram

[23] M. Holtgrewe, “Mason - A read simulator for second generation
sequencing data,” Freie Universitaet Berlin, Tech. Rep. 962, 2010.

[24] D. Doerfler, J. Deslippe, S. Williams, L. Oliker, B. Cook, T. Kurth,
M. Lobet, T. Malas, J.-L. Vay, and H. Vincenti, “Applying the
roofline performance model to the Intel Xeon Phi Knights Landing
processor,” in Int. Conf. on High Performance Computing, 2016.

[25] A. Chacon, S. Marco-Sola, A. Espinosa, P. Ribeca, and J. C.
Moure, “Boosting the FM-index on the GPU: Effective techniques
to mitigate random memory access,” IEEE/ACM Transactions on
Computational Biology and Bioinformatics, vol. 12, no. 5, pp. 1048–
1059, 2015.

[26] S. Gog, J. Kärkkäinen, D. Kempa, M. Petry, and S. J. Puglisi,
“Faster, minuter,” in Data Compression Conf. (DCC 2016), 2016.

[27] P. Ferragina and G. Manzini, “An experimental study of an
opportunistic index,” in 12th Ann. ACM-SIAM Symp. on Discrete
Algorithms (SODA 2001), 2001, pp. 269–278.

[28] D. Kim, B. Langmead, and S. L. Salzberg, “Hisat: a fast spliced
aligner with low memory requirements,” Nature Methods, vol. 12,
2015.

[29] R. Luo, T. Wong, J. Zhu, C.-M. Liu, X. Zhu, E. Wu, L.-K. Lee, H. Lin,
C. D. W. Zhu, W., H.-F. Ting, S.-M. Yiu, S. Peng, C. Yu, Y. Li, R. Li,
and T.-W. La, “SOAP3-dp: Fast, accurate and sensitive GPU-based
short read aligner,” PLoS One, vol. 8, 2013.

[30] R. Wilton, T. Budavari, B. Langmead, S. J. Wheelan, S. L.
Salzberg, and A. S. Szalay, “Arioc: high-throughput read align-
ment with GPU-accelerated exploration of the seed-and-extend
search space,” PeerJ, vol. 3:e808, 2015.

[31] Y. Liu and B. Schmidt, “CUSHAW2-GPU: Empowering faster
gapped short-read alignment using GPU computing,” IEEE Design
and Test, vol. 31, no. 1, pp. 31–39, 2014.

[32] P. Klus, S. Lam, D. Lyberg, M. S. Cheung, G. Pullan, I. McFarlane,
G. S. H. Yeo, and B. Y. H. Lam, “BarraCUDA - a fast short read
sequence aligner using graphics processing units,” BMC Research
Notes, vol. 5, no. 27, 2012.

[33] J. Blom, T. Jakobi, D. Doppmeier, S. Jaenicke, J. Kalinowski,
J. Stoye, and G. A., “Exact and complete short-read alignment
to microbial genomes using Graphics Processing Unit program-
ming,” Bioinformatics, vol. 27, no. 10, pp. 1351–1358, 2011.

[34] J. Gonzalez-Dominguez, Y. Liu, and B. Schmidt, “Parallel and scal-
able short-read alignment on multi-core clusters using UPC++,”
PLoS One, vol. 11, no. 1, 2016.

[35] J. M. Abun, J. C. Pichel, T. F. Pena, and J. Amigo, “BigBWA: Ap-
proaching the Burrows-Wheeler aligner to big data technologies,”
Bioinformatics, vol. 31, no. 24, pp. 4003–4005, 2015.

[36] E. B. Fernandez, J. Villarreal, and S. Lonardi, “FHAST: FPGA-
based acceleration of Bowtie in hardware,” IEEE/ACM Transactions
on Computational Biology and Bioinformatics, vol. 12, no. 5, pp. 973–
981, 2015.

[37] S. Chen and H. Jiang, “An exact matching approach for high
throughput sequencing based on BWT and GPUs,” IEEE 14th Int.
Conf. on Computational Science and Engineering, 2011.

[38] “NVBIO: A library of reusable components designed by
NVIDIA corporation to accelerate bioinformatics applications
using CUDA.” [Online]. Available: http://nvlabs.github.io/nvbio

[39] G. Jacobson, “Space-efficient static trees and graphs,” in 30th Ann.
Symp. on Foundations of Computer Science, 1989.

[40] V. Mäkinen and G. Navarro, “Rank and select revisited and
extended,” Theoretical Computer Science, vol. 387, no. 3, 2007.

[41] R. Raman, V. Raman, and S. R. Satti, “Succinct indexable dictio-
naries with applications to encoding k-ary trees, prefix sums and
multisets,” ACM Transactions on Algorithms, vol. 3, no. 4, 2007.

[42] S. Gog and M. Petri, “Optimized succinct data structures for
massive data,” Software – Practice & Experience, vol. 44, no. 11, 2014.

[43] T. Gagie, G. Navarro, and S. J. Puglisi, “New algorithms on
wavelet trees and applications to information retrieval,” Theoretical
Computer Science, vol. 426–427, pp. 25–41, 2012.

[44] A. Golynski, J. I. Munro, and S. S. Rao, “Rank/select operations on
large alphabets: A tool for text indexing,” in 17th Ann. ACM-SIAM
Symp. on Discrete Algorithm (SODA 2006), 2006, pp. 368–373.

[45] U. Manber and G. Myers, “Suffix arrays: A new method for on-line
string searches,” 1st Ann. ACM-SIAM Symp. on Discrete Algorithms
(SODA 1990), pp. 319–327, 1990.

Jose M. Herruzo received his B.S. and M.S.
degrees in Computer Engineering from Univer-
sity of Cordoba in 2014 and from the Univer-
sity of Malaga in 2015, respectively. He is cur-
rently working toward the PhD degree at the
University of Malaga. His current research in-
terests include processing in memory, near-data
processing, stacked memory architectures, high-
performance computing and high-throughput se-
quence alignment.

Sonia Gonzalez-Navarro received the B.S. and
M.S. degrees in Mathematics in 2000 and the
Ph.D. degree in Computer Science in 2006, both
from the University of Malaga, Spain. She is
currently an assistant professor in the Com-
puter Architecture Department at the University
of Malaga. Her research interests include com-
puter arithmetic, floating point number compu-
tation, high-performance architectures for data-
intensive applications and near-data processing.

Pablo Ibáñez-Marı́n received the MS degree in
computer science from the UPC in 1989, and
the PhD degree in computer science from the
University of Zaragoza in 1998. He is an as-
sociate professor in the Computer Science and
Systems Engineering Dept. at the University of
Zaragoza, Spain. His research interests include
processor microarchitecture, memory hierarchy,
parallel computer architecture, and HPC applica-
tions.

Vı́ctor Viñals-Yúfera received the MS degree
in Telecommunications and the PhD degree in
Computer Science from the UPC in 1982 and
1987, respectively. He was associate professor
in the UPC from 1983 to 1988. Currently, he is
full professor in the Informática e Ingenierı́a de
Sistemas Dept. at the University of Zaragoza.
His research interests include processor mi-
croarchitecture, memory hierarchy, and parallel
computer architecture.

Jesús Alastruey-Benedé received the MS de-
gree in Telecommunication and the PhD de-
gree in Computer Science from the University of
Zaragoza in 1997 and 2009, respectively. He is
a professor in the Computer Science and Sys-
tems Engineering Department (DIIS), University
of Zaragoza, Spain. His research interests in-
clude processor microarchitecture, memory hier-
archy, and High Performance Computing (HPC)
applications.

Oscar Plata earned a M.S. in Physics in 1985
and a Ph.D. in Physics in 1989, both from the
University of Santiago de Compostela, Spain.
He started as Assistant Professor in the same
University where he became Associated Pro-
fessor in 1990. He moved to the University of
Malaga in 1995, where he became Full Profes-
sor in the Computer Architecture Dept. in 2002.
His research interests are related to high perfor-
mance computing and parallel architectures.

This is the author's version of an article that has been published in IEEE/ACM Transactions on Computational Biology and Bioinformatics. Changes were made
to this version by the publisher prior to publication. The final version of record is available at https://doi.org/10.1109/TCBB.2018.2884701

