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Abstract 
 
We describe here three bacterial strains isolated from different saline 

soils in Spain. They are moderately halophilic, exopolysaccharide-producing, 

Gram-negative, non-motile rods. They require NaCl and grow best with 7.5% -

10% w/v in the medium. They form wax-coloured colonies, are oxidase positive 

and show respiratory metabolism, using oxygen, nitrate and nitrite as terminal 

electron acceptors. They denitrify and do not produce acids from sugars. Their 

G+C content varies between 62.7 and 66.2. Phylogenetic analyses based on 

16S rRNA gene sequences and sequence signatures of this gene show that all 

three isolates belong to the genus Halomonas in the γ-Proteobacteria class and 

form an independent genetic line. The most phylogenetically related species are 

Halomonas alimentaria, Halomonas campaniensis, Halomonas gudaonensis 

and Halomonas ventosae, with which our strains show 16S rRNA similarity 

values of between 96.3 and 95.2. The principal fatty acids of the new strains are 

18:1 ω7c, 16:0, 16:1 ω7c and 19:0 cyclo ω8c. Their predominant respiratory 

lipoquinone is ubiquinone with nine isoprene units (Q-9). The name Halomonas 

cerina sp. nov. is proposed for these isolates. Strain SP4T (CECT 7282T, LMG 

24145T) is the type strain. 
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The Halomonadaceae family belongs to the class of γ-Proteobacteria and 

includes three genera of halophilic bacteria: Halomonas, Chromohalobacter and 

Cobetia, plus two genera of non-halophilic bacteria, Zymobacter and 

Carnimonas (Garrity et al., 2005). The genus Halomonas currently contains 

more than forty species (Euzeby, 2007). Its members are Gram-negative, rod-

shaped, non-sporulated, aerobic, chemo-organotrophs, with predominantly 

respiratory metabolisms, which use oxygen or, more rarely, nitrate as electron 

acceptors (cf. Mata et al., 2002; Dobson and Franzman, 1996; Franzman et al., 

1988; Vreeland, 2005); a few species have fermentative metabolism. Colonies 

range from white to yellow in colour. Most Halomonas species are found in 

hypersaline habitats and tend to be moderate halophiles, although some 

members of the genus could be classified as being halotolerant. Their G+C 

content ranges widely, between 54% in H. halocynthiae (Romanenko et al. 

2002) and 74.3% in H. ventosae (Martínez-Cánovas et al. 2004b). Their 

principal fatty acids are: 16:1 cis 9, 16:0, 17:0 cyclo, 18:1 and 19:0 cyclo 11-12, 

and the major isoprenoid quinone is ubiquinone 9 (Franzmann and Tindall, 

1990). The Halomonas species described by our group, H. eurihalina (Quesada 

et al. 1990), H. maura (Bouchotroch et al., 2001), H. almeriensis (Martínez-

Checa et al. 2005), H. anticariensis (Martínez-Cánovas et al. 2004a) and H. 

ventosae (Martínez-Cánovas et al. 2004b), produce exopolysaccharides (EPSs) 

with potential applications in biotechnology (Calvo et al., 2002; Béjar et al., 

1998; Martínez-Checa et al., 2002; Arias et al., 2003; Quesada et al., 2004). 

Our research indicates that besides the species cited other EPS-producing 

bacterial strains are to found in hypersaline habitats that cannot be assigned to 

any currently recognized Halomonas species. 

 

We classify here three hitherto unassigned exopolysaccharide-producing 

Halomonas strains which are characterised by their capacity to denitrify. On the 

basis of their phenotypic features, comparative studies of their 16S rRNA gene 

sequences and DNA-DNA hybridization, followed by analyses of their fatty-acid 

and isoprenoid - quinone contents, we propose a new species, Halomonas 

cerina sp. nov.   
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The new strains, 15CR, SP4 and R53, were isolated from hypersaline soils at 

Fuente de Piedra (Malaga), Santa Pola (Alicante) and Rambla Salada (Murcia) 

in the south of Spain. All the strains were routinely grown in MY medium (Moraine 

& Rogovin, 1966) with 7.5% w/v sea-salt solutions (Rodríguez-Valera et al., 1981) 

at 32ºC. For comparison we used strains from the culture collections listed in the 

figures and tables below. 

 

The procedures followed for phenotypic characterisation are described in Mata 

et al. (2002), Quesada et al. (1983) and Ventosa et al. (1982). Anaerobic nitrate 

and nitrite reduction were tested according to Stanier et al. (1966).  

Characteristics common to all three strains are given in the species description. 

Phenotypic features distinguishing between the three strains are shown in Table 

1. We compared the new strains to other species of Halomonas by numerical 

analysis based on 107 phenotypic data. The data were submitted to cluster 

analysis using the simple matching coefficient (SSM) (Sokal & Michener, 1958) and 

clustering was achieved by the unweighted-pair-group method of association 

(UPGMA) (Sneath & Sokal, 1973). Computer analysis was done with the TAXAN 

program (Information Resources Group, Maryland Biotechnology Institute, 

University of Maryland, College Park, HD20742, USA). The dendrogram thus 

obtained is shown in Figure 1, where it can be seen that at 88% similarity the 

three strains group into one phenon, which shares less than 78% similarity with 

any other species belonging to Halomonas.  

 

Table 2 shows the main phenotypic differences between the type strains of 

Halomonas cerina and other phenotypically and phylogenetically related 

species of the genus. 

 

The G+C DNA content was estimated from the midpoint value (Tm) of the 

thermal denaturation profile (Marmur & Doty, 1962) using the equation of Owen 

and Hill (1979). The G+C content of reference DNA from Escherichia coli was 

taken to be 50.8 mol% (Owen & Pitcher, 1985). The values (mol%) were 62.7 

for strain 15CR, 66.2 for strain R53 and for strain SP4.  
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Phylogenetic analyses based on the 16S rRNA gene were made as described 

in Bouchotroch et al. (2001). The sequences were compared to reference 16S 

rRNA gene sequences available in the GenBank and EMBL databases obtained 

from the National Center of Biotechnology Information database using the 

BLAST search. Phylogenetic analyses were carried out using the software 

MEGA (Molecular Evolutionary Genetics Analysis) version 3.1 (Kumar et al., 

2004) after multiple alignments of data by CLUSTALX (Thomson et al., 1997). 

Distances and clustering with the neighbour-joining and maximum-parsimony 

methods were determined by using bootstrap values based on 1,000 

replications. 

 

We determined almost the entire16S rDNA sequences of the three strains: 

15CR (1,436 bp), SP4(1,449 bp) and R53 (1,486 bp). The fragment analysed 

contained the 15 signature nucleotides defined for Halomonadaceae and the 

four defined for the Halomonas genus (Dobson and Franzmann, 1996). The 

phylogenetic tree constructed using the neighbour-joining algorithm appears in 

Figure 2. The three sequences share more than 99.4% similarity and are on the 

same separate phylogenetic branch.  The most phylogenetically related species 

are Halomonas alimentaria, Halomonas campaniensis, Halomonas 

gudaonensis and Halomonas ventosae, with which our strains show 16S rRNA 

similarity values of between 96.3 and 95.2.   

 

DNA-DNA hybridization was conducted following Lind & Ursing’s methods 

(1986) with the modifications of Ziemke et al. (1998) and Bouchotroch et al. 

(2001). The comparative values for all three strains are higher than 80%, 

demonstrating that they belong to the same species.  

 

Transmission electron micrographs obtained using the methods of Bouchotroch 

et al. (2001) show the cell morphology of the three strains (Fig. 3). The cells 

contain poly-β-hydroxyalkanoate (PHA) granules together with EPS clinging to 

the cell surface and in the medium surrounding the bacteria.  
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Fatty acids and quinones were identified by high-resolution GLC and HPLC 

respectively by the Identification Service of DSMZ, Braunschweig, Germany. 

The results are given in Table 1 and in the species description. The three 

strains showed a combination of fatty acids found in species of Halomonas: 

predominantly 18:1ω7, 16:0, 16:1ω7c and 19:0 cyclo ω8c (Dobson & 

Franzmann, 1996). An analysis of the quinones shows that the three strains 

contain ubiquinone 9; strain R53 also contains a small quantity (6%) of 

ubiquinone 8.  

 

On the basis of the data discussed and the full description provided below, we 

propose that a novel species of the genus Halomonas, called Halomonas 

cerina, be admitted to include the denitrifying EPS-producing strains 15CR, SP4 

and R53. 

 

Description of Halomonas cerina sp. nov. 

 

Halomonas cerina sp. (ceri´na, L. adj., the colour of bees-wax, describing the 

colour of the mature colonies).  

 

The strains described here are straight, Gram-negative rods, 1.9-2.8 x 0.7-0.9 

µm, appearing either singly or in pairs. The cells are capsulated and non-motile. 

They accumulate PHA and do not form endospores. Cell colonies are wax 

coloured, circular, convex and mucoid. Their growth pattern is uniform in a liquid 

medium. They are moderate halophiles, capable of growing in mixed-sea-salt 

concentrations of 3% - 25% w/v, optimum growth occurring between 7.5% and 

10%. They require NaCl and can grow within a range of 7.5% to 20% w/v, the 

optimum being 7.5% to10% w/v. They grow within a temperature range of 4ºC 

to 45ºC at pH values of between 5 and 10, the optimum values being 20ºC - 

32ºC and pH 7-8. Catalase and oxidase are produced. They are chemo-

organotrophic. Their metabolism is respiratory with oxygen, nitrate and nitrite as 

terminal electron acceptors. Respiration with fumarate is negative. Under 

aerobic conditions they reduce selenite and nitrate. They do not produce acids 

from sugar. Indol, methyl red, Voges-Proskauer, O/F and ONPG prove 

negative. They do not produce piocianin, fluorescein or pigment in tyrosine 



 7 

medium. They do not hydrolyse starch, casein, lecithin or aesculin. They 

produce urease, phosphatase and DNase but not phenylalanine deaminase. 

Gluconate is oxidised. They do not produce H2S from L-cysteine. They grow on 

MacConkey agar but not on cetrimide agar. Blood is not lysed. The following 

compounds are acceptable as sole carbon and energy sources: acetate, citrate, 

fumarate, D-gluconate, succinate, D-glucose, D-maltose and D-mannose, whilst 

aesculin, galactose, formate, malonate and sorbitol are unacceptable. L-

alanine, L-isoleucine,  L-cysteine, L-lysine, L-methionine and L-valine cannot be 

used as sole sources of carbon, nitrogen and energy. They are susceptible to 

amoxicillin+clavulanic acid (25µg), ampicillin (10µg), aztreonam (30µg), 

cephalothin (30µg), cefoxitin (30µg), ceftazidine (30µg), doxicicline (30 UI), 

gentamycin (10µg), nalidixic acid (30 µg), norfloxacin (10µg), nitrofurantoin (300 

µg), polymyxin B (300 UI), rifampycin (30 µg), sulphamide (250 µg), and 

trimetroprim-sulphametoxazol (1.25 µg -23.75 µg). They are resistant to 

tobramycine (10 µg). Their principal fatty acids are 18:1 ω7c, 16:0 and 16:1 

ω7c. The predominant respiratory lipoquinone is ubiquinone with nine isoprene 

units (Q-9). The G+C range is between 62.7 and 66.2 

 

The type strain is strain SP4T Strain SP4T (CECT 7282T, LMG 24145T) is the 

type strain. The description of the type strain is the same as that of the species. 

Additionally: strain SP4T can grow in a medium containing only 5% w/v NaCl. It 

hydrolyses tyrosine and Tween 80 but not gelatine. It does not survive for 10 

min at 80ºC. Salicine, ethanol and serine are acceptable as sole carbon and 

energy sources. It does not consume arabinose, cellobiose, fructose, lactose, 

starch, trehalose, lactate, adonitol, glycerol, inositol, manitol or hystidine. Its 

principal fatty acids are (%): 16:0 (33.9); 16:1 ω7c (18.72); 18:1 ω7c (16.08); 

19:0 cyclo ω8c (14.46) and 12:0 3OH (6.22). The predominant respiratory 

lipoquinone is ubiquinone with nine isoprene units (Q-9). Its DNA G+C content 

is 66.2 mol% (Tm method). 
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Table 1. Distinguishing characteristics between Halomonas azotoformans 

strains. 
 
 

Characteristics 

 

Strains 15CR 

 

Strain SP4T 

 

Strain R53 

 

Size (µ) 2.8 x 0.7 1.9 x 0.7 2.2 x 0.9 

Growth on 5% w/v NaCl + + - 

Resistance to 80ºC for 10 min - - + 

Tween 80 hydrolysis + + - 

Gelatinase - - + 

Tyrosine hydrolysis + + - 

Growth on:    

Arabinose - - + 

Cellobiose + - - 

Fructose + - - 

Lactose - - + 

Salicine - + - 

Starch + - + 

Trehalose + - - 

Lactate + - + 

Adonitol - - + 

Ethanol + + - 

Glycerol + - - 

Inositol + - - 

Manitol - - + 

Hystidine + - - 

Serine + + - 

Principal fatty acids    

10:0 2.30 2.60 2.35 

12:0 3.07 3.19 3.26 

12:0 3OH 5.43 6.22 5.98 

16:1 ω7c 20.81 18.72 14.19 

16:0 30.91 33.93 24.01 

18:1 ω7c 23.76 16.08 42.23 

18:0 3.06 1.55 3.79 

19:0 cyclo ω8c 9.40 14.46 4.18 

Lipoquinones Ubiquinone 9  Ubiquinone 9  Ubiquinone 9: 94% 

Ubiquinone 8: 6%  

%G+C 62.7 66.2 66.2 
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Table 2. Distinguishing characteristics of Halomonas species related to 
Halomonas cerina 
 
Data from Mata et al. (2002), Yoon et al. (2001), Martínez-Cánovas et al. 
(2004b), Romano et al. (2005), Wang et al. (2007), Ventosa et al. (1998) and 
from this work. Species: 1, H. cerina; 2, H. alimentaria; 3, H. campaniensis; 4, 
H. campisalis; 5, H. desiderata; 6, H. gudaonensis; 7, H. ventosae 
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Characteristic 
 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
 
Morphology 

 
Short rod 

Coccus 
short rod 

 
 

Rod 

 
 

Rod 

 
 

Rod 

 
 

Rod 

 
 

Rod 
 
Pigmentation 

Wax-
coloured 

Cream-
yellow  

Cream-
pink 

 
White 

 
Cream 

 
Cream  

 
Cream 

PHA + ND + + + ND + 
EPS + - - - - ND + 
Motility - - + + + + + 
Sea-salt range (% w/v) 3-25 1-23  0-16 0.5-15 0-20 1-20a  1-15 
Sea-salt optimum (% w/v) 5-10 1-13 10 5 1-5 10-15a  8 
pH range 5-10 5-10 7-10 8-11 7-11 8-9 6-10 
pH optimum 7-10 6.5-7.5 9 9.5 9.5 8 7-8 
Temperature range (ºC) 4-45 4-45 10-43 4-50 10-45 10-42 15-50 
Optimum temperature 20-32 30 37 30 37-42 30 32 
Strictly halophilic + + - + - + + 
Acid from:        

D-glucose - - ND - - ND - 
Hydrolysis of:        

aesculin - - ND - - ND - 
casein - - - - - ND - 

tween 20 + - ND + + ND + 
tween 80 + - + - + - - 

DNA + + ND + + ND - 
tyrosine + - + - + ND + 

H2S - - ND - + ND + 
Respiration on nitrate + + ND + + + + 
Respiration on nitrite + + ND + + + + 
Gas from nitrate + + ND + + + + 
Phosphatase + ND ND - + ND - 
Urease + + + - + + - 
Phenylalanine deaminase - ND - - + ND + 
Gluconate oxidation + ND ND + + ND + 
Selenite reduction + ND ND + + ND + 
MacConkey growth + ND ND - + ND - 
Cetrimide agar growth - ND ND - + ND - 
Haemolysis - - ND - - ND - 
Growth on b        

aesculin - - ND - - ND + 
L-arabinose - + - - + - - 
D-cellobiose - + + + - - - 
D-fructose - - + + + - + 

D-galactose - ND - - - + + 
D-mannose + + + - + + - 

D-melezitose - ND ND - + ND ND 
D-salicin + + ND - - ND - 
starch - + ND + + ND - 

D-trehalose - + ND + + + + 
citrate + + ND + - ND + 

formate - - ND - + ND - 
fumarate + + ND + + ND + 
gluconate + + ND + + + + 
malonate - + ND - + ND + 

propionate - + ND + - ND + 
succinate + - ND + + ND + 
adonitol - - ND - - ND + 
ethanol + + ND - - + - 
glycerol - + + + + + + 

myo-inositol - - ND + - ND + 
D-mannitol - + ND - - + + 

sorbitol - + ND - - ND + 
L-alanine - + ND + - + - 
L-cysteine - - ND - - ND - 
L-histidine - + ND - - ND - 

DL-isoleucine - D ND - - + - 
L-lysine - + ND + - - - 

L-methionine - ND ND - - ND - 
L-serine + + ND + + ND - 
L-valine - + ND - - ND - 

G +C content (%) 66.2 63 63.7 66 66 64 74.3 
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ª NaCl 
b When supplied as the sole source of carbon and energy or as sole source of 
carbon, nitrogen and energy 
 
All species are Gram-negative rods, catalase and oxidase positive, reduce 
nitrate to nitrite and grow with acetate, maltose or glucose as sole carbon and 
energy source. They do not hydrolyse starch or gelatine. 
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Figure legends 
 
 
 
Fig. 1. Dendrogram based on 107 phenotypic data. The simple-matching (SSM) 

coefficient and UPGMA were used.  

 
 
Fig. 2. Phylogenetic tree based on 16S rRNA gene sequences, showing the 

position of the novel group of three isolates compared to other Halomonas 

species. The tree was obtained using the neighbour-joining algorithm. 

GenBank/EMBL/DDBJ accession numbers are given in parenthesis. Bar, 1% 

sequence divergence. 

 

Fig. 3. Transmission electron micrograph of strains 15CR (A), R53 (B) and SP4 

(C) stained with ruthenium red. Bars 1 µm  
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