
JOURNAL OF IEEE TRANSACTIONS ON FUZZY SYSTEMS 1

Parameterised Simplification Logic: reasoning with
implications in an automated way

Pablo Cordero, Manuel Enciso, Ángel Mora, and Vilem Vychodil

Abstract—In this sequel to our previous paper [1] on general
inference systems for reasoning with if-then dependencies, we
study transformations of if-then rules to semantically equivalent
collections of if-then rules suitable to solve several problems
related to reasoning with data dependencies. We work in a
framework of general lattice-based if-then rules whose semantics
is parameterised by systems of isotone Galois connections. This
framework allows us to obtain theoretical insight as well as
algorithms on a general level and observe their special cases
by choosing various types of parameterisations. This way, we
study methods for automated reasoning with different types
of if-then rules in a single framework that covers existing as
well as novel types of rules. Our approach supports a large
family of if-then rules, including fuzzy if-then rules with various
types of semantics. The main results in this paper include new
observations on the syntactic inference of if-then rules, complete
collections of rules, reduced normal forms of collections of
rules, and automated reasoning methods. We demonstrate the
generality of the framework and the results by examples of their
particular cases focusing on fuzzy if-then rules.

Index Terms—closure operator, lattice theory, completeness,
data dependency, fuzzy if-then rules, approximate reasoning

I. INTRODUCTION

METHODS of automated reasoning play an important
role in reasoning with if-then rules. In the case of

the classic rules that include functional dependencies [2],
[3], [4], attribute implications [5], [6], [7], and association
rules [8], [9], efficient algorithms as well as the computational
complexity of the problems involved are known. In the case
of the fuzzy, vague, or graded if-then rules [10], [11], the
situation is different mainly since there exist a vast number
of types of rules that vary in their syntax and semantics. It
would be a praiseworthy effort to review all of the existing
approaches and, in each of them, focus on the issue of the
basic entailment problem: “Does a given rule follow from
a collection of other rules (and to what degree)?” One can
imagine that as a result, it would be possible to make general
conclusions about entailment problems of graded rules falling
into several categories. However, such a review is hardly
achievable due to the number of various systems of if-then
rules that exist in the literature, cf. [12]. In this paper, we focus
on this type of making general conclusions on properties of the
entailment of graded/fuzzy if-then rules and related algorithms.
Instead of going through a family of individual approaches,
we work in a general framework that covers a large family

Pablo Cordero, Manuel Enciso and Ángel Mora from the University of
Málaga, Andalucı́a Tech, Spain e-mail: {pcordero,enciso, amora}@uma.es

Vilem Vychodil, Czech computer professor and researcher.
Manuscript received xx, 2021

of if-then rules that differ in their syntax and semantics. The
framework is indeed general and captures possible semantics
of if-then rules that are seemingly unrelated. For instance,
as a special case of the approach, we are able to work with
various types of fuzzy if-then rules as well as multiple types
of temporal if-then rules, and in addition, the approach offers
a way of their combination. In this paper, and mainly in the
presented examples, we focus on the fuzzy rules, but it should
be noted that the achieved results are not limited just to fuzzy
rules.

The contribution of our paper is the following. Using a
parametric approach [13] to if-then rules whose semantics
is defined through special families of closure operators, we
study a general entailment problem, investigate properties of
complete inference systems and normal forms of collections
of if-then rules that may represent knowledge bases specified
by experts or rule bases inferred from graded/fuzzy input
data. As we show in the paper; this ultimately gives us a
description of a general algorithm that can be used to compute
semantic closures that play a crucial role in deciding the
entailment problem. In addition to the observations made on
the general level, we show how the observations translate into
particular theories of if-then rules that exist in the literature.
As a consequence, for several of the theories, we obtain
new theoretical insight into the entailment problem and new
algorithms. Our investigation is based on and is an extension
of the observations in our recent paper [1] where we have
investigated parameterised simplification logic for general if-
then rules.

This paper is organised as follows. Section II presents
the preliminary notions of residuated lattices, isotone Galois
connections, and general if-then rules. In Section III, we
provide a characterisation of complete theories. In Section IV,
we study an automated reasoning method for general if-then
rules, and we present general algorithms of completion and
computing closures. In Section V, we show an application of
the general results in the case of automated reasoning with
fuzzy if-then rules. Conclusions are presented in Section VI.

II. PRELIMINARIES

As we mentioned in the Introduction, this article is a further
step of the work presented in [1]. In this section, we summarise
the basic notions introduced there to contextualise the results
presented later.

We are going to work with complete dual residuated lattices,
which is a structure L = 〈L,6,⊕,	, 0, 1〉 fulfilling the
following conditions:

JOURNAL OF IEEE TRANSACTIONS ON FUZZY SYSTEMS 2

• 〈L,6, 0, 1〉 is a complete lattice where 0 is the least
element and 1 is the greatest element. As usual, we use
the symbols ∨ and ∧ to denote suprema (least upper
bounds) and infima (greatest lower bounds), respectively;

• 〈L,⊕, 0〉 is a commutative monoid;
• 	 is a binary operation so that the pair 〈⊕,	〉 satisfies

the following adjointness property: For all a, b, c ∈ L, we
have

a 6 b⊕ c if and only if a	 b 6 c. (1)

As a consequence, the operations ⊕ and 	, named addition
and residuated subtraction respectively, fulfils the following
properties: for any a, b, c ∈ L:

a 6 b if and only if a	 b = 0, (2)
a	 0 = a, (3)
a	 b 6 a 6 a⊕ b, (4)
b 6 c implies a⊕ b 6 a⊕ c, b	 a 6 c	 a and

a	 c 6 a	 b, (5)
a ∨ b 6 a⊕ (b	 a) 6 a⊕ b, (6)
(a⊕ b)	 a 6 b 6 a⊕ (b	 a). (7)

We use the usual terminology in lattice theory [14]: an
element k ∈ L is said to be compact if, for all J ⊆ L,

if k 6
∨
J, there exists a finite J ′ ⊆ J such that k 6

∨
J ′.

The set of all compact elements in L is denoted by K and we
assume that L is algebraic (or compactly generated), i.e.,

for all a ∈ L there exists X ⊆ K such that a =
∨
X.

Here, in the same way, that was presented in [1] we also
assume that K is closed for ⊕ and 	:

a, b ∈ K implies a⊕ b, a	 b ∈ K. (8)

This structure is the basis for defining implications. We con-
sider premises and conclusions of implications to be compact
elements of the lattice L. Thus, the language of the Logic is
the following

L = {a⇒ b | a, b ∈ K}

As we mentioned in the introduction, the development of
a framework as general as possible, requires the introduction
of some kind of parameters. In our work, the role of such
parameters are played by isotone Galois connections. Recall
that a pair of mappings between lattices 〈f , g〉 is an isotone
Galois connections if both mappings are isotone, g ◦ f is
inflationary and f ◦ g is deflationary. As a consequence, for
all X ⊆ L, we have that :

f
(∨

X
)

=
∨
f(X) and g

(∧
X
)

=
∧
g(X). (9)

An L-parameterization is a set S of isotone Galois con-
nections in L such that 〈I, I〉 ∈ S. If S is closed under
composition, i.e., if 〈S, ◦, 〈I, I〉〉 is a monoid, we call it an
L-parameterization, see [13, Definition 1]. In addition, S is
called compact (see [15, Definition 4]) if f(K) ⊆ K for all
〈f , g〉 ∈ S.

The semantics of these implications was presented in terms
of closure operators, which are compatible with the parame-
ters.

An S-closure operator [15, Definition 3] is a mapping c :
L→ L satisfying the following properties:

a 6 c(a), (10)
a 6 b implies c(a) 6 c(b), (11)
c(g(c(a))) 6 g(c(a)), (12)

are satisfied for all a, b ∈ L and all 〈f , g〉 ∈ S. A closure
operator c is called additive whenever a⊕ b 6 c(a∨ b) for all
a, b ∈ L. In addition, if S is an L-parameterization, then c is
called an S-closure operator.

We now introduce the notions of a model for an implication.
A mapping c : L → L is said to be a model for a ⇒ b ∈ L,
written c |= a⇒ b, if the following condition holds:

c is an additive S-closure operator in L and b 6 c(a) (13)

As usual, a closure operator c is a model for a theory Σ ⊆ L
if it is a model for all the implications in Σ and Σ |= a ⇒ b
if any model of Σ is a model of a⇒ b.

Example 1. Consider the dual complete residuated lattice L =
〈L,6,⊕,	, 0, 1〉where L =

{
0, 0.1, 0.2, . . . 1

}
, 6 is the usual

order and ⊕ and 	 are the following binary operations:

a⊕ b =

{
a+ b, if a+ b 6 0.5,
max

{
0.5, a, b

}
, otherwise,

a	 b =

 0, if a 6 b,
1− b, if 0 6 b < a 6 0.5,
a, otherwise.

Over this structure, the dual complete residuated lattice of
fuzzy sets in the universe N of natural numbers, LN =
〈LN,⊆,⊕,	, ∅,N, 〉, is introduced in the usual way. Thus,
given two fuzzy sets A,B ∈ LN, we have that A ⊆ B
iff A(n) 6 B(n) for all n ∈ N, and the addition and the
residuated subtraction are defined componentwise as follows:
(A⊕B)(n) = A(n)⊕B(n) and (A	B)(n) = A(n)	B(n).

The compact elements in LN are those sets having a finite
support, i.e., A ∈ LN such that {n ∈ N | A(n) > 0} is finite.
In this case, we use the usual succinct notation of writing fuzzy
sets, e.g. A = {1/0.3, 3/0.6} denotes that A(1) = 0.3, A(3) =
0.6, and A(n) = 0 otherwise. Notice that LN is algebraic and
is closed for ⊕ and 	 (8).

In addition, consider the compact L-parameterization

S =
{
〈fa, ga〉 | a ∈ {0, 0.2, 0.4, . . . 1}

}
where fa, ga : LN → LN are defined as follows:

(fa(A))(n) = max{0, A(n)− a}
(ga(A)(n) = min{1, A(n) + a}

In particular, for all A ∈ LN, f1(A) = ∅, g1(A) = N, and
f0(A) = g0(A) = A.

Finally, c : LN → LN defined as follows:

c(A)(n) =

0.6 if A(n) 6 0.6,

0.8 if 0.6 < A(n) 6 0.8,

1 otherwise,

JOURNAL OF IEEE TRANSACTIONS ON FUZZY SYSTEMS 3

for each A ∈ LN and each n ∈ N, which is an additive S-
closure operator, is a model for the following theory

Σ =
{
{2/0.9} ⇒ {2/1, 3/0.5}, {3/0.9, 4/0.7} ⇒ {3/1, 4/0.6}

}
As usual, reasoning based on models lacks efficiency, and a

syntactic method is needed. This role is played by an axiomatic
system, which is enriched in a further stage with an automated
reasoning method. We now present the axiomatic system
introduced in ,[1] which is the keystone of the automated
method presented in this paper.

Definition 1. For all a, b, c, d ∈ K and 〈f , g〉 ∈ S, the
inference system considers the following axiom scheme:

Reflexivity : Infer a⇒ a, (Ref)

together with the three following inference rules:

Composition :

From a⇒ b and a⇒ c infer a⇒ b⊕ c, (Comp)
Simplification :

From a⇒ b and c⇒ d infer a⊕ (c	 b)⇒ d, (Simp)
Multiplication :

From a⇒ b infer f(a)⇒ f(b). (Mul)

An implication a⇒ b ∈ L is said to be syntactically derived
or inferred from a theory Σ ⊆ L, denoted by Σ ` a ⇒ b, if
there exists a sequence σ1, . . . , σn ∈ L such that σn is a⇒ b
and, for all 1 6 i 6 n, at least one of the following conditions
holds: σi ∈ Σ; or σi is an axiom (Ref); or σi can be obtained
by applying one of the inference rules (Comp), (Simp), or
(Mul) to formulas in {σj | 1 6 j < i}.

The following rules are derived from the axiomatic system:

Generalized Reflexivity : ` a⇒ b when b ≤ a (GRef)
Transitivity : a⇒ b, b⇒ c ` a⇒ c (Tran)
Generalized Composition :

a⇒ b, c⇒ d ` a ∨ c⇒ b⊕ d (GComp)
Augmentation : a⇒ b ` a ∨ c⇒ b⊕ c (Augm)
Generalized Transitivity :

a⇒ b, b ∨ c⇒ d ` a ∨ c⇒ d (GTran)

Theorems 1 and 4 in [1] established soundness and cor-
rectness of the axiomatic system, respectively. That is, for all
implication a ⇒ b ∈ L and all theory Σ ⊆ L, the following
equivalence holds

Σ ` a⇒ b if and only if Σ |= a⇒ b. (14)

The above result allows us to define the twofold notion of
equivalence in their syntactic and semantic ways. The second
version of such notion is the following: two theories Σ1 and
Σ2 are said to be equivalent, denoted Σ1 ≡ Σ2 if all their
models coincide.

One outstanding characteristic of this axiomatic system is
that each inference rule can be paired with an equivalence rule
providing a way to transform theories into a more simple one,
preserving its semantics:

Decomposition : {a⇒ b} ≡ {a⇒ b	 a} (DeEq)
Composition : {a⇒ b, a⇒ c} ≡ {a⇒ b⊕ c} (CoEq)
Simplification : if a 6 c,

{a⇒ b, c⇒ d} ≡ {a⇒ b, c	 b⇒ d	 b} (SiEq)

Example 2. Let LN be the dual complete residuated lattice and
S be the compact L-parameterization defined in Example 1.
Consider the theory

Σ =
{
{1/0.3, 3/0.6}⇒{2/0.7}, {3/0.7}⇒{1/0.6}

}
.

The following sequence shows that Σ ` {3/0.6}⇒{2/0.7}
holds.

(i) {1/0.3, 3/0.6}⇒{2/0.7} by hypothesis.
(ii) {3/0.7}⇒{1/0.6} by hypothesis.

(iii) {3/0.5}⇒{1/0.4} . . . by (ii) and (Mul) with f0.2.
(iv) {3/0.6}⇒{2/0.7} by (iii), (i) and (Simp).

On the other side, by (SiEq), we have that Σ can be
simplified: Σ ≡

{
{3/0.6}⇒{2/0.7}, {3/0.7}⇒{1/0.6}

}
.

In a natural way, theories are tied with a set of models. We
have characterised a canonical model, named syntactic closure,
in this way: Given a theory Σ ⊆ L, we define cΣ(a) : L→ L
where for each a ∈ L, cΣ(a) =

∨
CΣ(a) and

CΣ(a) = {b ∈ K | Σ ` c⇒ b for some c ∈ K with c ≤ a}.

From Theorems 2 and 3 in [1], this operator is an additive
S-closure operator, which is also a characteristic model of the
theory: for any Σ ⊆ L and a⇒ b ∈ L, we have:

Σ ` a⇒ b if and only if b ≤ cΣ(a) (15)

This closure operator can be characterized by means of the
compact elements as follows:

cΣ(a) =
∨
{cΣ(x) | x ∈ K,x ≤ a} (16)

and, if a ∈ K, then

cΣ(a) =
∨
{b ∈ K | Σ ` a⇒ b}. (17)

Observe that a ∈ K does not imply cΣ(a) ∈ K.

Example 3. Let LN be the dual complete residuated lattice
and S be the compact L-parameterization defined in Ex-
ample 1. Consider the compact set X = {2/0.8} and the
theory Σ =

{
{n/0.6}⇒{(n + 1)/0.7} | n ∈ N

}
Then,

cΣ(X) = {1/0.5, 2/0.8} ∪ {n/0.7 | n > 2}, which is not
a compact element. We remark that this situation does not
only hold for infinite theories. Consider now the finite theory
Σ = {{1/0.3} ⇒ {1/0.7}, {2/0.6} ⇒ {2/0.9}}. Then,
cΣ(X) = {1/0.7, 2/0.9}∪ {n/0.5 | n ∈ N, n > 2}. The reason
behind this situation is indeed the fact that the closure of the
empty set is not a compact element: c∅(∅) = {n/0.5 | n ∈ N}.

JOURNAL OF IEEE TRANSACTIONS ON FUZZY SYSTEMS 4

III. COMPLETE THEORIES FOR ADDITIVE S-CLOSURE
OPERATORS

In this section, we establish an isotone Galois connection
between models and theories. We study when a theory char-
acterises a given model and characterises the minimum model
corresponding to the empty theory.

Definition 2. Let c : L→ L be an additive S-closure operator.
A theory Σ ⊆ L is said to be complete for c if the following
equivalence holds for all a⇒ b ∈ L:

Σ ` a⇒ b if and only if b ≤ c(a)

Obviously, the greatest theory (concerning the set inclusion)
that is complete for an additive S-closure operator c is

Σc = {a⇒ b ∈ L | b ≤ c(a)}

and, for any other complete theory Σ, we have that Σ ≡ Σc.

Example 4. For the additive S-closure operator c introduced
in Example 1, we have that

Σc ={{n/a} ⇒ {n/b} | n ∈ N, a, b ∈ L, a, b ≤ 0.6}
∪{{n/a} ⇒ {n/b} | n ∈ N, a, b ∈ L, 0.6 < a, 0.8 ≥ b}
∪{{n/a} ⇒ {n/b} | n ∈ N, a, b ∈ L, 0.8 < a}

But it is not the unique complete theory for c. For instance,

Σ = {∅ ⇒ {n/0.5}, {n/0.9} ⇒ {n/1} | n ∈ N}

is also complete for c.

Theorem 1. Let S be an L-parameterization. If Σ is complete
theory for c, then cΣ(a) = c(a) for all a ∈ K.

In addition, cΣ is the greatest algebraic additive S-closure
operator such that cΣ ≤ c.

Proof. First, since L is algebraic, Σ is complete for c and (17)
holds, we have that, for all a ∈ K,

c(a) =
∨
{b ∈ K | b ≤ c(a)}

=
∨
{b ∈ K | Σ ` a⇒ b} = cΣ(a)

Second, from (16), we have that, for all a ∈ L,

cΣ(a) =
∨
{cΣ(x) | x ∈ K,x ≤ a}

=
∨
{c(x) | x ∈ K,x ≤ a} ≤ c(a)

Finally, assume that there exists an algebraic additive S-
closure operator c′ : L → L such that c′(a) ≤ c(a) for all
a ∈ L. Then

c′(a) =
∨
{c′(x) | x ∈ K,x ≤ a}

≤
∨
{c(x) | x ∈ K,x ≤ a} = cΣ(a)

Corollary 1. If c is an algebraic additive S-closure operator
and Σ is complete for c, then c = cΣ.

The following theorem ensures that the pair of mappings
c Σc and Σ cΣ is an isotone Galois connection
between the set of additive S-closure operators with the

induced relation ≤ (which is an order relation) and the set
of theories with the preorder relation given by `.

Theorem 2. Let c be an additive S-closure operator and Σ ⊆
L be a theory. The following equivalences hold:

cΣ ≤ c if and only if Σ ⊆ Σc (or, equivalently, iff Σc ` Σ).

Proof. On the one hand, we prove that, if cΣ(x) ≤ c(x) for
all x ∈ L, then Σ ⊆ Σc. For all a ⇒ b ∈ Σ, we have that
Σ ` a ⇒ b and, by (15), b ≤ cΣ(a) ≤ c(a). Therefore,
a⇒ b ∈ Σc.

On the other hand, if Σ ⊆ Σc then Σc ` Σ and, for all
a ∈ L,

cΣ(a) =
∨
{b ∈ K | Σ ` c⇒ b, c ∈ K, c ≤ a}

≤
∨
{b ∈ K | Σc ` c⇒ b, c ∈ K, c ≤ a}

=
∨
{b ∈ K | b ≤ c(c), c ∈ K, c ≤ a} ≤ c(a)

Corollary 2. Let Σ1,Σ2 ⊆ L and c1 and c2 be algebraic
additive S-closure operators.

1) If Σ1 ⊆ Σ2 then cΣ1
≤ cΣ2

.
2) If c1 ≤ c2 then Σc1 ⊆ Σc2 and Σc2 ` Σc1 .

Corollary 3. Let Σ ⊆ L and c be an algebraic additive S-
closure operator. Then,

c = cΣc and Σ ≡ ΣcΣ
.

Lemma 1. Let c be an additive S-closure operator. For any
〈f , g〉 ∈ S and a ∈ L, we have g(c(a))⊕g(c(a)) = g(c(a)).

Proof. From (4), we have g(c(a)) ≤ g(c(a))⊕ g(c(a)).
Conversely, since c is additive, we have

g(c(a))⊕ g(c(a)) ≤ c
(
g(c(a)) ∨ g(c(a))

)
= c(g(c(a)))

Finally, since c is an S-closure operator, we have g(c(a)) ⊕
g(c(a)) ≤ g(c(a)).

Theorem 3. For any a ∈ L and for all 〈f , g〉 ∈ S we have

c∅(a) =
∧
{x ∈ L | a ≤ x, and g(x)⊕ g(x) = g(x)} .

Proof. We will prove that c : L→ L, defined as

c(a) =
∧
{x ∈ L | a ≤ x, and g(x)⊕ g(x) = g(x)}

is an additive S-closure operator, and then we will prove that
c∅ = c.

First, we prove that the set

C = {x ∈ L | g(x)⊕ g(x) = g(x) for all 〈f , g〉 ∈ S}

is a closure system:

• 1 ∈ C because g(1) ⊕ g(1) = 1 ⊕ 1 = 1 = g(1) for all
〈f , g〉 ∈ S.

JOURNAL OF IEEE TRANSACTIONS ON FUZZY SYSTEMS 5

• For all X ⊆ C we have that
∧

x∈X x ∈ C because

g(
∧
x∈X

x)⊕ g(
∧
x∈X

x)

=
(∧
x∈X

g(x)
)
⊕
(∧
x∈X

g(x)
)

=
∧
x∈X

(
g(x)⊕

∧
y∈X

g(y)
)

=
∧
x∈X

∧
y∈X

(
g(x)⊕ g(y)

)
=
∧
x∈X

(
g(x)⊕ g(x)

)
∧

∧
x,y∈X,x 6=y

(
g(x)⊕ g(y)

)
=
(∧
x∈X

g(x)
)
∧

∧
x,y∈X,x 6=y

(
g(x)⊕ g(y)

)
=
∧
x∈X

g(x) = g(
∧
x∈X

x)

where, in the first and the last equalities, we have used
that 〈f , g〉 is an isotone Galois connection between
complete lattices, we have used (9) in the second and
third equalities, the definition of C in the fifth one, and
(4) in the sixth one.

As a consequence, the mapping c is a closure operator. In
addition, for all a ∈ L we have that c(a) ∈ C because c(a) =∧
{x ∈ C | a ≤ x}.
Second, we prove that c is an additive S-closure operator:
• c is additive because, for all a, b ∈ L, since a, b ≤ c(a∨
b), c(a ∨ b) ∈ C and 〈I, I〉 ∈ S, we have that a ⊕ b ≤
c(a ∨ b)⊕ c(a ∨ b) = c(a ∨ b).

• Since S is closed for composition, we have that g(c(a)) ∈
C for all a ∈ L and 〈f , g〉 ∈ S and, therefore,
c(g(c(a))) ≤ g(c(a)).

Now, from Theorem 2, we have that c∅ ≤ c and, from
Lemma 1, we have c∅(a) ∈ C for all a ∈ L, i.e, c ≤ c∅.

IV. AUTOMATED REASONING METHOD

Recall that the classic deduction theorem of propositional
logic says that Σ ` ϕ ⇒ ψ if and only if Σ ∪ {ϕ} ` ψ.
Using the fact that any propositional formula χ is equivalent
to > ⇒ χ where > denotes a tautology, the classic deduction
theorem can be equivalently restated as Σ ` ϕ ⇒ ψ if and
only if Σ ∪ {> ⇒ ϕ} ` > ⇒ ψ.

The automatic reasoning method we propose here is in-
tended to answer the question of whether a ⇒ b can be
inferred from a theory Σ based on two pillars: one is a theorem
of deduction reminiscent of propositional logic, and the other
is a set of transformations that simplify the theory Σ∪{0⇒ a}.

Theorem 4 (Deduction theorem). Let S be an L-
parametrization. The following conditions are equivalent:

1) For all 〈f , g〉 ∈ S and a, b ∈ K,

f(a⊕ b) ≤ c∅(a⊕ f(b)).

2) For all Σ ⊆ L and a, b, c ∈ K,

Σ ∪ {0⇒ a} ` b⇒ c iff Σ ` a⊕ b⇒ c.

3) For all Σ ⊆ L and a, c ∈ K,

Σ ` a⇒ c iff Σ ∪ {0⇒ a} ` 0⇒ c.

Proof. First, we prove that 1. implies 2.
Assume Σ ` a ⊕ b ⇒ c. The following sequence proves

Σ ∪ {0⇒ a} ` b⇒ c:
(i) 0⇒ a . by hypothesis.

(ii) a⊕ b⇒ c . by hypothesis.
(iii) (a⊕ b)	 a⇒ c by (i), (ii) and (Simp).
(iv) b⇒ (a⊕ b)	 a by (6) and (GRef).
(v) b⇒ c by (iv), (iii) and (Tran).

Conversely, we prove by induction that Σ∪{0⇒ a} ` b⇒ c
implies Σ ` a⊕ b⇒ c:

CASE 1: If b⇒ c ∈ Σ ∪ {0⇒ a} we have two possibilities:
• If b = 0 and c = a, by (Ref), we obtain Σ ` a⊕ b⇒ c.
• If b⇒ c ∈ Σ, by (GRef), Σ ` a⊕b⇒ b and, by (Tran),

Σ ` a⊕ b⇒ c.

CASE 2: If b ⇒ c is an axiom (i.e. b = c) then, by (GRef),
Σ ` a⊕ b⇒ c.

CASE 3: If b⇒ c is the result of applying (Comp) to b⇒ d1

and b ⇒ d2 with c = d1 ⊕ d2 and, by induction hypothesis
Σ ` a ⊕ b ⇒ d1 and Σ ` a ⊕ b ⇒ d2, then, by using also
(Comp), we obtain Σ ` a⊕ b⇒ d1 ⊕ d2, i.e. Σ ` a⊕ b⇒ c.

CASE 4: If b ⇒ c is the result of applying (Simp) to u ⇒ v
and w ⇒ c (i.e. b = u ⊕ (w 	 v)), the following sequence
proves Σ ` a⊕ b⇒ c:

(i) a⊕ u⇒ v by induction hypothesis.
(ii) a⊕ w ⇒ c by induction hypothesis.

(iii) a⊕ u⊕ ((a⊕ w)	 v)⇒ c by (i), (ii) and
(Simp).

(iv) a⊕ a⊕ b⇒ a⊕ u⊕ ((a⊕ w)	 v) . . by (5), (7)
and (GRef).

(v) a⊕ a⊕ b⇒ c by (iv), (iii) and (Tran).
(vi) a⇒ a . by (Ref).

(vii) a⇒ a⊕ a by (vi) and (Comp).
(viii) a ∨ b⇒ a⊕ a⊕ b by (vii) and (Augm).

(ix) a⊕ b⇒ a ∨ b by (6) and (GRef).
(x) a⊕ b⇒ a⊕ a⊕ b . . . by (ix), (viii) and (Tran).

(xi) a⊕ b⇒ c by (x), (v) and (Tran).

CASE 5: If b ⇒ c is the result of applying (Mul) to u ⇒ v
(i.e. b = f(u) and c = f(v) for some 〈f , g〉 ∈ S) and,
by induction hypothesis, Σ ` a ⊕ u ⇒ v, then, by (Mul),
Σ ` f(a ⊕ u) ⇒ f(v). From 1. and Corollary 2, we have
that f(a ⊕ u) ≤ c∅(a ⊕ f(u)) ≤ cΣ(a ⊕ f(u)) and, then,
Σ |= a ⊕ b ⇒ f(a ⊕ u). Now, from (14), we have that Σ `
a⊕ b⇒ f(a⊕ u) and, by (Tran), Σ ` a⊕ b⇒ c.

Second, we prove that 2. implies 1.
For all 〈f , g〉 ∈ S and a, b ∈ K, the following sequence

proves that {0⇒ a} ` f(b)⇒ f(a⊕ b):
(i) 0⇒ a . by hypothesis.

(ii) b⇒ b . by (Ref).
(iii) b⇒ a⊕ b by (i), (ii) and (GComp).
(iv) f(b)⇒ f(a⊕ b) by (iii) and (Mul).

JOURNAL OF IEEE TRANSACTIONS ON FUZZY SYSTEMS 6

Therefore, from condition 2., ∅ ` a ⊕ f(b) ⇒ f(a ⊕ b) and,
from (14), we have that f(a⊕ b) ≤ c∅(a⊕ f(b)).

Finally, it is straightforward that 2. implies 3. (consider b =
0), and the following sequence proves that 3. implies 2.

{0⇒ a} ∪ Σ ` b⇒ c iff (by 3.)
{0⇒ b} ∪ {0⇒ a} ∪ Σ ` 0⇒ c iff (by (CoEq))

{0⇒ a⊕ b} ∪ Σ ` 0⇒ c iff (by 3.)
Σ ` a⊕ b⇒ c

Notice that, when the addition ⊕ is idempotent (i.e. ⊕ and
∨ coincide), the first condition in Theorem 4 becomes to f(a∨
b) ≤ a ∨ f(b) for all 〈f , g〉 ∈ S and a, b ∈ K.

Example 5. Let LN be the dual complete residuated lattice and
S be the compact L-parameterisation defined in Example 1.
For all 〈fa, ga〉 ∈ S and x, y ∈ L, we have that

fa(x⊕y) =

{
max{0, x+ y − a} if x+ y ≤ 0.5,
max{0, 0.5− a, x− a, y − a} otherwise.

and fa(x ⊕ y) ≤ x ⊕ fa(y) = max{x, y − a}. As a
consequence, for all X,Y ∈ LN being compact, we have that
f(X ⊕ Y) ≤ X ⊕ f(Y) ≤ c∅(X ⊕ f(Y)).

c The main goal of this paper is to design a general
method to compute the closure cΣ, which leads to defining
automated reasoning methods. A keystone in this direction is
the Deduction Theorem, as Theorem 4 enunciates in condition
3. From the mentioned Theorem, this condition can be reduced
to check if the S-parameterization fulfils condition 1. In the
rest of the paper, we are going to work with L-parameterization
fitting in the following definition:

Definition 3. A L-parameterization S = 〈S, ◦, I〉 is said to be
tractable if it is finite, compact and, for all 〈f , g〉 ∈ S and
a, b ∈ K, f(a⊕ b) ≤ c∅(a⊕ f(b)).

As a first step to designing this general method, we built
the closure of the base case c∅.

Theorem 5. For all a, k ∈ K and 〈f , g〉 ∈ S, if k ≤ g(a),
then {0⇒ a} ≡ {0⇒ a⊕ f(k⊕ k)}. In addition, c∅(a) = a
if and only if the following condition holds:

a = a⊕ f(g(a)⊕ g(a)) for all 〈f , g〉 ∈ S. (18)

Proof. By (GRef) and (Tran), we have {0⇒ a⊕f(k⊕k)} `
0 ⇒ a. The following sequence proves {0 ⇒ a} ` 0 ⇒
a⊕ f(g(a)⊕ g(a)):

(i) 0⇒ a . by hypothesis.
(ii) k ⇒ k . by (Ref).

(iii) k ⇒ k ⊕ k by (ii) and (Comp).
(iv) f(k)⇒ f(k ⊕ k) by (iii) and (Mul).
(v) a⇒ f(k) . by (GRef)

because f(k) ≤ f(g(a)) ≤ a.
(vi) 0⇒ f(k ⊕ k) by (i), (v), (iv) and (Tran).

(vii) 0⇒ a⊕ f(k ⊕ k) by (i), (vi) and (Comp).
Assume now that (18) holds. Thus, for all 〈f , g〉 ∈ S, we
have that f(g(a) ⊕ g(a)) ≤ a ⊕ f(g(a) ⊕ g(a)) = a and,

since 〈f , g〉 is an isotone Galois connection, we have that
g(a)⊕ g(a) ≤ g(a). Then, Theorem 5 ensures c∅(a) = a.

Conversely, if c∅(a) = a, by Theorem 5, for all 〈f , g〉 ∈
S, we have g(a) ⊕ g(a) ≤ g(a) or, equivalently, f(g(a) ⊕
g(a)) ≤ a. By other side, since 〈I, I〉 ∈ S, we have a⊕a = a.
Therefore, a ≤ a⊕ f(g(a)⊕ g(a)) ≤ a⊕ a = a.

Corollary 4. Let a ∈ K. Then c∅(a) = a if and only if
g(a)⊕ g(a) = g(a) for all 〈f , g〉 ∈ S.

If the lattice L satisfies the Ascending Chain Condition
(ACC), c which is equivalent to ensure that any element in
the lattice is compact (see [16, Pages 149-153], the above
theorem provides an algorithm (Function EmptyClosure) to
calculate c∅(a).

Proposition 1. If the L-parameterisation S is finite and
K = L, for all input a ∈ K, Function EmptyClosure finishes.
Moreover, if Function EmptyClosure finishes, it returns c∅(a).

Proof. It is straightforward from a ≤ a⊕ f(g(a)⊕ g(a)) for
all a ∈ L and Theorem 5.

Notice that ACC is a sufficient condition but not necessary.
In fact, depending on the nature of the ⊕ and the parameters,
it could be possible that there is an expression to calculate
c∅(a) directly. For instance, if ⊕ is idempotent (i.e. ⊕ and ∨
coincide) then c∅(a) = a for all a ∈ K.

Function EmptyClosure(a)
Input: a ∈ K
/* Assume S is a tractable L-parameterization. */

Output: c∅(a)
1 begin
2 repeat
3 aold = a
4 foreach 〈f , g〉 ∈ S do a = a⊕ f(g(a)⊕ g(a))
5 until aold == a /* A fix-point is reached */

6 return a
7 end
8 c

Once we have analysed how compute c∅, we look for a
method to compute cΣ where Σ is an arbitrary theory. To this
aim, we use Theorem 4 and Corollary 2 that ensures c∅ ≤ cΣ.

The following theorem provides a set of equivalences to
simplify Σ ∪ {∅ ⇒ a} having 0 ⇒ a as a guide to the
simplification.

Theorem 6. For all a, b, c ∈ K and 〈f , g〉 ∈ S, the following
equivalences hold:

{0⇒ a, 0⇒ b} ≡ {0⇒ a⊕ b} (19)
{0⇒ a, b⇒ c} ≡ {0⇒ a, b	 a⇒ c	 a} (20)
{0⇒ a, b⇒ c} ≡ {0⇒ a⊕ f(c), b⇒ c} if f(b) ≤ a (21)

Proof. Equivalences (19) and (20) are straightforward
from (CoEq) and (SiEq) respectively. Finally, if f(b) ≤ a,
by using (Mul), (GRef), (Tran) and (Comp), we have that

{0⇒ a, b⇒ c} ≡ {0⇒ a, b⇒ c, a⇒ f(b),f(b)⇒ f(c)}
≡ {0⇒ a, 0⇒ f(c), b⇒ c}
≡ {0⇒ a⊕ f(c), b⇒ c}

JOURNAL OF IEEE TRANSACTIONS ON FUZZY SYSTEMS 7

Function Complete(a, b⇒ c)
Input: a ∈ K, b⇒ c ∈ L
/* Assume S is a tractable L-parameterization. */

Output: 〈a′, b	 a′ ⇒ c	 a′〉 where a′ = c{b⇒c}(a)
1 begin

Function Complete applies the equivalences given in Theo-
rems 5 and 6 to {0⇒ a, b⇒ c} so that the successive values
of a constitute an ascending chain. The stop condition is that
this chain reaches a fix-point. If we can hail that these chains
are always going to stabilise, the algorithm ends, and, as we
will prove later, it gives us cb⇒c(a).

The following straightforward proposition provides a suffi-
cient condition to ensure the algorithm finishes.

Proposition 2. If the L-parameterization S is tractable and
K = L, for all input a ∈ K and b ⇒ c ∈ L, Func-
tion Complete finishes.

In addition, if Function Complete finishes and 〈a′, b′ ⇒ c′〉
is the output, then {0⇒ a, b⇒ c} ≡ {0⇒ a′, b′ ⇒ c′}.

The closure method can be viewed as a transformation
method for implication sets into a kind of normal form. In the
following, we are going to introduce the notion of reduced
normal form for sets of implications, which will lead to a
closure-like definition for the parametrised system. First, we
present a preliminary definition that will be used later on:

Definition 4. Given a ∈ K, we say that b⇒ c is bounded by
a if for all 〈f , g〉 ∈ S, if f(b) ≤ a then f(c) ≤ a .

Definition 5. A theory Σ ⊆ L is said to be in reduced normal
form if exists 0⇒ a ∈ Σ and the following conditions hold:

1) c∅(a) = a.
2) any b⇒ c ∈ Σ is bounded by a.

The following lemma better characterises the shape of the
reduced normal form.

Lemma 2. Given Σ ⊆ L, if Σ is in reduced normal form,
then there exists a unique a⇒ b ∈ Σ such that a = 0.

Proof. Given Σ ⊆ L in reduced normal form, let us suppose
that there exist a, b ∈ K where a 6= b and 0⇒ a, 0⇒ b ∈ Σ.
From Definition 5, we have that 0 ⇒ b is bounded by a.
Considering 〈f , g〉 = 〈I, I〉 in Definition 4, we have that b ≤
a. Conversely, following the same reasoning we also conclude
that a ≤ b and the uniqueness of 0⇒ a in Σ is proved.

Theorem 7. Given a ∈ K and Σ ⊆ L. If Σ is in reduced
normal form and 0⇒ a ∈ Σ then cΣ(a) = a

Proof. First, we prove that bounding property can be extended
to all implication derived from a Σ set in reduced normal form.
Thus, we now prove by induction that all b⇒ c ∈ L such that
Σ ` b⇒ c fulfils the bounding property:

For all 〈f , g〉 ∈ S, if f(b) ≤ a then f(c) ≤ a (22)

CASE 1: If b ⇒ c ∈ Σ, by condition 4 in Definition 5, the
formula b⇒ c satisfies (22).

CASE 2 (Ref): It is straightforward that any axiom b ⇒ b
satisfies (22).

CASE 3 (Comp): Assume, as induction hypothesis, that b ⇒
c1, b⇒ c2 ∈ L such that Σ ` b⇒ c1 and Σ ` b⇒ c2 satisfy
(22), and prove that b ⇒ c1 ⊕ c2 also satisfies (22). For all
〈f , g〉 ∈ S, if f(b) ≤ a, by induction hypothesis f(c1) ≤ a
and f(c2) ≤ a. Then c1 ≤ g(a) and c2 ≤ g(a). From 1
(Def. 5) and Lemma 1, we have that c1⊕ c2 ≤ g(a)⊕g(a) =
g(a) and, therefore, f(c1 ⊕ c2) ≤ a.

CASE 4 (Simp): Assume, as induction hypothesis, that b1 ⇒
c1, b2 ⇒ c2 ∈ L such that Σ ` b1 ⇒ c1 and Σ ` b2 ⇒ c2
satisfy (22), and prove that b⇒ c2 with b = b1⊕(b2	c1) also
satisfies (22). For all 〈f , g〉 ∈ S, we prove that, if f(b) ≤ a
then f(c2) ≤ a.

Since b1 ≤ b1 ⊕ (b2 	 c1), we have f(b1) ≤ f(b) ≤ a and,
by induction hypothesis, f(c1) ≤ a and c1 ≤ g(a).

In addition, since b2 	 c1 ≤ b1 ⊕ (b2 	 c1), we have that
f(b2	 c1) ≤ f(b) ≤ a and then, we have b2	 c1 ≤ g(a). By
the residuation property, b2 ≤ g(a)⊕ c1.

From c1 ≤ g(a) we induce b2 ≤ g(a)⊕g(a) = g(a) from 1
(Def. 5) and Lemma 1. We obtain b2 ≤ g(a) and, applying
residuation, f(b2) ≤ a which, applying bounding property and
the induction hypothesis, we have f(c2) ≤ a.

CASE 5 (Mul): Assume as induction hypothesis that b ⇒ c
is bounded by a. We have to prove that for all 〈f1, g1〉 ∈ S,
f1(b)⇒ f1(c) is bounded by a. That is, for all 〈f2, g2〉 ∈ S
if f2(f1(b)) ≤ a then f2(f1(c)) ≤ a.

It is straightforward since 〈f2f1, g1g2〉 ∈ S and induction
hypothesis ensures it.

We can add an extra condition to the reduced normal form,
introducing the following definition:

Definition 6. Given Σ ⊆ L, we say that Σ is in simplified
normal form is Σ is in reduced normal form, and the following
condition holds:

If 0⇒ a, b⇒ c ∈ Σ then b = b	 a and c = c	 a.

Simplified normal form definition induces a stronger notion
than reduced normal form since it adds a more efficient man-
agement providing the inclusion of the notion of minimality
to the implication sets.

Theorem 8. If the L-parameterization S is tractable, K = L
and Σ is finte, for all a ∈ K, Algorithm 1 finishes.

In addition, if Algorithm 1 finishes, Σ1 is the last computed
theory and a′ is the output, {0 ⇒ a′} ∪ Σ1 is in simplified
normal form and is equivalent to {0⇒ a} ∪ Σ.

Corollary 5. If Algorithm 1 finishes for an input a and Σ,
the output is cΣ(a).

The condition K = L is easily assumed. Even if it is not
satisfied, sometimes we can find an element k ∈ K such that
the interval a, cΣ(a) ∈ [0, k] ⊆ K and reduce the problem to

JOURNAL OF IEEE TRANSACTIONS ON FUZZY SYSTEMS 8

Algorithm 1: S-closure algorithm
Input: Σ ⊆ L finite, a ∈ K
/* Assume S is a tractable L-parameterization. */

Output: cΣ(a)
1 begin
33 repeat
55 Σ1 = {b⇒ c	 b | b⇒ c ∈ Σ}
77 Σ = ∅
8 foreach b⇒ c ∈ Σ1 do
9 〈a, b⇒ c〉 = Complete(a, b⇒ c)

10 if c 6= 0 then Σ = Σ ∪ {b⇒ c}
11 until Σ == Σ1 /* A fix-point is reached */

1313 return a

an equivalent one in the lattice [0, a]. In other cases, we can
consider a finite subalgebra of L (depending on the input) in
the same way that it is usual to consider a finite discretisation
when working with the unit interval.

V. PARAMETERISED SIMPLIFICATION LOGIC FOR L-FUZZY
SETS

This section focuses on the particular case in which the
complete dual residuated lattice elements are L-fuzzy sets. Let
L be an algebraic complete dual residuated lattice and K(L)
be the set of its compact elements. Consider an arbitrary set Y
and the complete dual residuated lattice LY built pointwise in
the standard way. Let K(LY) be the set of compact elements
in LY . In addition, an L-parameterization S is pointwise
extended to the L-power set as follows: if 〈f , g〉 ∈ S, then
(f(A))(y) = f(A(y)) and (g(A))(y) = g(A(y)) for all
A ∈ LY and y ∈ Y .

The support of A ∈ LY will be denoted by Spp(A), i.e.
Spp(A) = {y ∈ Y | A(y) > 0}. It is extended to implications
and theories as follows: Spp(A⇒ B) =Spp(A)∪Spp(B) and
Spp(Σ) =

⋃
A⇒B∈ΣSpp(A⇒ B).

Lemma 3. Let A ∈ LY . Then A ∈ K(LY) if and only if
Spp(A) is finite and A(y) ∈ K(L) for all y ∈ Y .

Proof. Assume Spp(A) is finite and A(y) ∈ K(L) for all
y ∈ Y . Let J ⊆ LY such that A 6

∨
J . Then, for all y ∈ Y ,

A(y) 6
∨

j∈J j(y) and there exists a finite subset Jy ⊆ J
such that A(y) 6

∨
j∈Jy

j(y). Since Spp(A) is finite, J ′ =⋃
y∈Spp(A) Jy is finite and A 6

∨
J ′.

In the case of Spp(A) is infinite, consider the infinite set
J = {jy ∈ LY | y ∈ Spp(A)} where jy(y) = A(y) and, if
x 6= y, jy(x) = 0. It is straightforward that A 6

∨
J and

A

∨
J ′ for all J ′ (J . Therefore, A /∈ K(LY).

Finally, if A ∈ LY and there exists y ∈ Y such that A(y) /∈
K(L), then there exists an infinite D ⊆ L such that A(y) 6∨
D and A(y)

∨
D′ for all D′ ⊆ D finite. Consider now

the infinite set J = {jd ∈ LY | d ∈ D} where jd(y) = d and,
if x 6= y, jd(x) = A(x). Then A 6

∨
J but A

∨
J ′ for all

J ′ ⊆ J finite.

Theorem 9. The lattice LY is algebraic.

Proof. Let A ∈ LY . Since L is algebraic, for all y ∈ Y ,
there exists Dy ⊆ K(L) such that A(y) =

∨
Dy . Define

Jy = {jyd ∈ LY | d ∈ Dy} where jyd(y) = d and, if x 6= y,
jyd(x) = 0. Thus, if J =

⋃
y∈Y Jy , then A =

∨
J and, by

Lemma 3, J ⊆ K(LY).

Corollary 6. If Y is finite and K(L) = L then K(LY) = LY .

As a consequence, in this framework, if K(L) = L then,
even the case of Y being infinite, for any finite theory Σ and
any implication A⇒ B, we can consider the finite set

Y0 = Spp(Σ) ∪ Spp(A⇒ B)

and we have that Σ ` A⇒ B in LY if and only if Σ ` A⇒ B
in LY0 . Therefore, the algorithms described in this paper can
be used to test it.

On the other hand, in order to compute cΣ(A), we reduce
the problem to LY0 where Y0 = Spp(Σ) ∪ Spp(A) and, if
Algorithm 1 returns A′, then cΣ(A) = A′ ∨ c∅(∅). Moreover,
Algorithm 1 can be used to compute c∅(∅) also: if c∅(0) = 0̂
in the framework of the lattice L, then c∅(∅)(y) = 0̂ for all
y ∈ Y . To illustrate this situation, we introduce the following
example:

Example 6. In our running example, 0̂ = 0.5.
For X = {2/0.8} and the finite theory Σ = {{1/0.3} ⇒
{1/0.7}, {2/0.6} ⇒ {2/0.9}}, instead of LN we consider LY0

where Y0 = {1, 2}. Algorithm 1 returns {1/0.7, 2/0.9} and,
therefore, cΣ(X) = {1/0.7, 2/0.9} ∪ {n/0.5 | n ∈ N, n > 2}.

To end this work, we describe a complete example illustrat-
ing the execution of the reasoning method:

Example 7. Let LY be the dual complete residuated lat-
tice where Y = {a, b, c, d, e} and S be the compact L-
parameterization defined in Example 1. Given the theory

Σ =
{
{a/0.4, c/0.9} ⇒{a/0.5, d/0.7, e/0.1},
{a/0.9, d/0.2} ⇒{c/0.6, e/0.7},
{b/0.5, e/0.7} ⇒{c/0.8, d/0.6, e/0.6},
{b/0.3, c/0.9} ⇒{d/0.3, e/0.5},
{c/0.5, d/0.4, e/0.8} ⇒{a/0.8, b/0.9},
{d/0.6, e/0.2} ⇒{c/0.6, d/0.5, e/0.5}

}
we compute the closure of A = {a/0.5}. We build the
implication ∅ ⇒ A and, after the first iteration of the repeat
loop, A = {a/0.5, b/0.5, c/0.5, d/0.5} and the theory is reduced
up to:

Σ =
{
{c/0.9} ⇒{d/0.7, e/0.1},
{a/0.9, d/0.2} ⇒{c/0.6, e/0.7},
{b/0.5, e/0.7} ⇒{c/0.8, d/0.6, e/0.6},
{b/0.3, c/0.9} ⇒{d/0.3},
{d/0.4, e/0.8} ⇒{a/0.8, b/0.9},
{d/0.6} ⇒{c/0.6, d/0.5}

}

JOURNAL OF IEEE TRANSACTIONS ON FUZZY SYSTEMS 9

After the second iteration, A = {a/0.5, b/0.5, c/0.5, d/0.5} and
the theory is reduced up to:

Σ =
{
{c/0.9} ⇒{d/0.7},
{a/0.9} ⇒{c/0.6, e/0.7},
{e/0.7} ⇒{c/0.8, d/0.6, e/0.6},
{e/0.8} ⇒{a/0.8, b/0.9}

}
After the third iteration, A =
{a/0.5, b/0.5, c/0.6, d/0.5, e/0.5, } and the theory is reduced
up to:

Σ =
{
{c/0.9} ⇒{d/0.7},
{a/0.9} ⇒{e/0.7},
{e/0.7} ⇒{c/0.8, d/0.6, e/0.6},
{e/0.8} ⇒{a/0.8, b/0.9}

}
And in the next iteration the algorithm reaches the fix point

and finishes returning A = {a/0.5, b/0.5, c/0.6, d/0.5, e/0.5, }
and the following reduced theory:

Σ =
{
{c/0.9} ⇒{d/0.7},
{a/0.9} ⇒{e/0.7},
{e/0.7} ⇒{c/0.8, d/0.6, e/0.6},
{e/0.8} ⇒{a/0.8, b/0.9}

}
VI. CONCLUSIONS

Parametrised Simplification Logic is a general framework.
The main aim of this work is to develop such a general
framework not only in the specification view but also in
the executable view. Thus, different deduction methods are
particular instances of the method presented in Algorithm 1.
The way to be traversed is to describe each target logic as an
instance of the Parameterized Simplification Logic, providing
its complete dual residuated lattice and the set of parameters.
In addition, to ensure that the method can be appropriately
applied, we have to check that the conditions included in this
paper hold. Now, we are going to illustrate this course of action
with three different examples.

The classical simplification logic [17] is the instance of
Parameterized Simplification Logic where the complete dual
residuated lattice is U = 〈2U ,⊆,∪,r, ∅, U〉 and the U-
parameterization is S = {〈I, I〉}. This parameterization is
tractable: it is finite, compact and c∅ = I. Thus, the deduction
method can be applied for this instance.

The Fuzzy Attribute Simplification Logic [18] is the in-
stance of Parameterized Simplification Logic where, given
the finite residuated lattice 〈L,≤,⊗,→〉, its complete dual
residuated lattice is L = 〈L,≤,⊕,	〉 being ⊕ = ∨ and 	 the
adjoint operation satisfying (1). This substraction operation is
uniquely expressed as

a	 b =
∧
{c ∈ L | a ≤ b ∨ c}.

In particular, if L is linearly ordered, we have

a	 b =

{
a, if a > b,
0, otherwise.

We work with the lattice of L-fuzzy sets LY as de-
scribed in Section V. Furthermore, given a hedge ∗, the
L-parameterization S consists of all 〈fc∗⊗, gc∗→〉 where
(fc∗⊗(A))(y) = c∗ ⊗ A(y) and (gc∗→(A))(y) = c∗ → A(y)
for any A ∈ LY , c ∈ L, and y ∈ Y .

This parameterization is tractable: it is finite, compact and
c∅ = I. This is a direct consequence of the following property,
fulfilling in all residuated lattice: for all a, b, c ∈ L

c⊗ (a ∨ b) = (c⊗ a) ∨ (c⊗ b) ≤ a ∨ (c⊗ b)

Having described a pair of parameterised instances, we
conclude this illustrative motivation of our work by providing a
logic belonging to the simplification family, where the closure
method is not applicable.

The Logic of Temporal Attribute Implciation [19] is the
instance of Parameterized Simplification Logic where, given
the complete dual residuated lattice is L = 〈2Y×Z,⊆,∪,r〉
being Z the discrete flow of time, ∩ and r are the standard set
operators. Given A ∈ 2Y×Z, a pair 〈y, i〉 ∈ A is interpreted
as “the attribute/feature y will be present after i days or was
present before −i days ago, depending on whether i is positive
or negative.

Its L-parameterization is S = {〈f i, gi〉 | i ∈ Z} where
f i(A) = {〈y, i + j〉 | 〈y, j〉 ∈ A} and gi(A) = {〈y, j − i〉 |
〈y, j〉 ∈ A} for all A ∈ 2Y×Z.

This parameterization is not finite, and therefore it is
non-tractable. In addition, the first condition of Theo-
rem 4 does not hold, since, for instance, f3({〈y1, 1〉} ∪
{〈y1, 2〉}) = {〈y1, 4〉, 〈y1, 5〉} and, since c∅ = I, we have that
c∅({〈y1, 1〉} ∪ f3({〈y1, 2〉}) = {〈y1, 1〉, 〈y1, 5〉}. The reason
behind this situation is that Deduction Theorem, which is the
key point of the method, cannot be used since given 〈y, i〉, we
have that ∅ ⇒ 〈y, i〉 ` 〈y, j〉 for all j ∈ Z.

ACKNOWLEDGMENT

Supported by Grant TIN2017-89023-P of Spain’s Science
and Innovation Ministry, co-financed by the European Re-
gional Development Fund (ERDF).

REFERENCES

[1] P. Cordero, M. Enciso, A. Mora, and V. Vychodil, “Parameterized
simplification logic I: reasoning with implications and classes of closure
operators,” Int. J. Gen. Syst., vol. 49, no. 7, pp. 724–746, 2020.

[2] E. F. Codd, “A relational model of data for large shared data banks,”
Communications of the ACM, vol. 26, pp. 64–69, 1983.

[3] D. Maier, Theory of Relational Databases. Rockville, MD, USA:
Computer Science Pr, 1983.

[4] C. Beeri and P. A. Bernstein, “Computational problems related to the
design of normal form relational schemas,” ACM Trans. Database Syst.,
vol. 4, pp. 30–59, March 1979.

[5] B. Ganter and R. Wille, Formal Concept Analysis: Mathematical Foun-
dations, 1st ed. Secaucus, NJ, USA: Springer-Verlag New York, Inc.,
1997.

[6] B. Ganter, “Two basic algorithms in concept analysis,” in Proceedings
of the 8th International Conference on Formal Concept Analysis, ser.
ICFCA’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 312–340.

[7] J.-L. Guigues and V. Duquenne, “Familles minimales d’implications
informatives resultant d’un tableau de données binaires,” Math. Sci.
Humaines, vol. 95, pp. 5–18, 1986.

[8] R. Agrawal, T. Imieliński, and A. Swami, “Mining association rules
between sets of items in large databases,” SIGMOD Rec., vol. 22, no. 2,
pp. 207–216, Jun. 1993.

JOURNAL OF IEEE TRANSACTIONS ON FUZZY SYSTEMS 10

[9] M. J. Zaki, “Mining non-redundant association rules,” Data Mining and
Knowledge Discovery, vol. 9, pp. 223–248, 2004.

[10] R. Belohlavek, J. W. Dauben, and G. J. Klir, Fuzzy Logic and Mathe-
matics: A Historical Perspective. New York: Oxford University Press,
2017.

[11] J. M. Mendel, Uncertin Rules-Based Fuzzy Systems: Introduction and
New Directions, 2nd ed. Springer International Publishing, 2017.

[12] L. Ježková, P. Cordero, and M. Enciso, “Fuzzy functional dependencies:
A comparative survey,” Fuzzy Sets and Systems, vol. 317, pp. 88–120,
2017.

[13] V. Vychodil, “Parameterizing the semantics of fuzzy attribute implica-
tions by systems of isotone Galois connections,” IEEE Trans. on Fuzzy
Systems, vol. 24, pp. 645–660, 2016.

[14] G. Birkhoff, Lattice theory, 1st ed. Providence: American Mathematical
Society, 1940.

[15] V. Vychodil, “Closure structures parameterized by systems of isotone
Galois connections,” International Journal of Approximate Reasoning,
vol. 91, pp. 1–21, 2017.

[16] B. A. Davey and H. A. Priestley, Introduction to Lattices and Order,
2nd ed. Cambridge University Press, 2002.

[17] A. Mora, P. Cordero, M. Enciso, I. Fortes, and G. Aguilera, “Closure
via functional dependence simplification,” International Journal of Com-
puter Mathematics, vol. 89, no. 4, pp. 510–526, 2012.

[18] R. Belohlavek, P. Cordero, M. Enciso, A. Mora, and V. Vychodil,
“Automated prover for attribute dependencies in data with grades,”
International Journal of Approximate Reasoning, vol. 70, pp. 51–67,
2016.

[19] J. Triska and V. Vychodil, “Logic of temporal attribute implications,”
Annals of Mathematics and Artificial Intelligence, vol. 79, no. 4, pp.
307–335, 2017.

Pablo Cordero Pablo Cordero is a Full Professor of the Applied Mathematics
Department at the University of Málaga (Spain). He received the MSc in
Mathematics in 1992 from the Universidad Complutense de Madrid and the
PhD in Computer Science in 1999 from the University of Málaga. His research
is devoted to Mathematics applied to Computer Sciences. Specifically, his
research area is the information and knowledge treatment via logic and
its algebraic foundations: Logic and Automated Reasoning, Fuzzy Logic,
Formal Methods in Databases, Formal Concept Analysis, Hyperstructures and
Multilattice Theory, Galois Connections and Applications, etc. He is co-author
of more than forty research articles in a variety of scientific journals (e.g.
Fuzzy Set Syst., Inf. Sci., Appl. Math. Comput., Ann. Math. Artif. Intell.,
Logic Jnl IGPL, etc.) and seventy contributions to conferences and workshops
(e.g. IJCAI, IPMU, CLA, ICFCA, ICSOFT, IWANN, etc.). He is a member of
the editorial board of the International Journal of Algebraic Hyperstructures
and Applications.

Manuel Enciso Manuel Enciso is an Associate Professor in the Languages and
Computer Sciences Department at the University of Málaga. In this university
received a PhD degree in Computer Science. His research is focused on
Intelligent Information Systems, logic, fuzzy logic, methods of automated
reasoning, Formal Concept Analysis, and Software Meta-models. He is a
member of the research group SICUMA and has published his research articles
in international journals and conferences.

Angel Mora Angel Mora is an Associate Professor at the University of Málaga
and received a PhD degree in Computer Science at the University of Málaga.
His research interests are in the areas of applied mathematica, logic, modal
logic, fuzzy logic, automated reasoning, Lattice theory and generalisations,
Formal methods in databases, Formal Concept Analysis. He has published
research articles in reputed international journals of applied mathematical and
engineering sciences. He is referee of mathematical and computer science
journals.

Vilem Vychodil Vilem Vychodil, Czech computer professor, researcher.
Achievements include research in fuzzy logic, model theory, relational data
analysis, logical foundations of knowledge engineering. Member of Institute
of Electrical and Electronics Engineers, Association Computing Machinery.

