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1. Introduction 

Nonlinear equations with variable coefficients have become increasingly important in recent years because these describe

many nonlinear phenomena more realistically than equations with constant coefficients. The Gardner equation, for instance,

is used in different areas of physics, such as fluid dynamics, plasma physics, quantum field theory, and it also describes a

variety of wave phenomena in plasma and solid state. 

In this paper, we consider the variable-coefficient Gardner equation with nonlinear terms given by 

u t + A (t) uu x + C(t) u 

2 u x + B (t) u xxx + Q(t) u = 0 , (1)

where A ( t ) � = 0, B ( t ) � = 0, C ( t ) � = 0 and Q ( t ) are arbitrary smooth functions of t . 

In [10] , for A (t) = 1 and C(t) = 0 , the optimal system of one-dimensional subalgebras was obtained. In [11] , some conser-

vation laws for Eq. (1) were constructed for some special forms of the functions B ( t ) and Q ( t ). Lie symmetries of Eq. (1) when

Q(t) = 0 , were derived in [15] . The classification of Lie symmetries obtained in [15] was enhanced in [19] by using the gen-

eral extended equivalence group. In [23] , adding to Eq. (1) the term E ( t ) u x , where E ( t ) is an arbitrary smooth function of t ,

the authors found new exact non-traveling solutions, which include soliton solutions, combined soliton solutions, triangular

periodic solutions, Jacobi elliptic function solutions and combined Jacobi elliptic function solutions of Eq. (1) . Soliton solu-

tions of Eq. (1) were obtained in [20] transforming the equation to an homogeneous equation when Q(t) = 0 and a forcing

term R ( t ) has been added. Finally, in [9] , exact solutions were obtained by using the general mapping deformation method

adding a new term E ( t ) u x and a forcing term R ( t ) to Eq. (1) , where E ( t ) and R ( t ) are arbitrary smooth functions of t . 
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Lie symmetries, in general, symmetry groups, have several applications in the context of nonlinear differential equa-

tions. It is noteworthy that they are used to obtain exact solutions and conservation laws of partial differential equations

[5–7,16,22] . 

In [3] Anco and Bluman gave a general treatment of a direct conservation law method for partial differential equations

expressed in a standard Cauchy–Kovaleskaya form 

u t = G (x, u, u x , u xx , . . . , u nx ) . 

Nontrivial conservation laws are characterized by a multiplier λ, which has no dependence on u t and all derivatives of u t ,

satisfying 

ˆ E [ u ] ( λu t − λG (x, u, u x , u xx , . . . , u nx ) ) = 0 . 

Here 

ˆ E [ u ] := 

∂ 

∂u 

− D t 
∂ 

∂u t 
− D x 

∂ 

∂u x 
+ D 

2 
x 

∂ 

∂u xx 
+ · · · . 

The conserved density T t must satisfy 

λ = 

ˆ E [ u ] T t , 

and the flux T x is given by 

T x = −D 

−1 
x (λG ) − ∂T t 

∂u x 
G + GD x 

(
∂T t 

∂u xx 

)
+ · · · . 

In [13] , Ibragimov introduced a general theorem on conservation laws which does not require the existence of a classical

Lagrangian and it is used based on the concept of an adjoint equation for nonlinear equations. In [14] , Ibragimov generalized

the concept of linear self-adjointness by introducing the concept of nonlinear self-adjointness of differential equations. This

concept has been recently used for constructing conservation laws [7,18] . 

The aim of this work is to obtain Lie symmetries of Eq. (1) and construct conservation laws by using both methods,

the direct method proposed by Anco and Bluman [2,3] and Ibragimov theorem [13] . We have studied Lie symmetries of

equation (1) for cases Q � = 0 and Q = 0 . In order to obtain conservation laws using Ibragimov theory we have determined

the subclasses of Eq. (1) which are nonlinearly self-adjoint. 

2. Classical symmetries 

To apply the Lie classical method to Eq. (1) we consider the one-parameter Lie group of infinitesimal transformations in

( x , t , u ) given by 

x ∗ = x + εξ (x, t, u ) + O (ε2 ) , 

t ∗ = t + ετ (x, t, u ) + O (ε2 ) , 

u 

∗ = u + εη(x, t, u ) + O (ε2 ) , 

where ε is the group parameter. We require that this transformation leaves invariant the set of solutions of Eq. (1) . This

yields an overdetermined, linear system of differential equations for the infinitesimals ξ ( x , t , u ), τ ( x , t , u ) and η( x , t , u ). The

associated Lie algebra of infinitesimal symmetries is formed by the set of vector fields of the form 

v = ξ (x, t, u ) ∂ x + τ (x, t, u ) ∂ t + η(x, t, u ) ∂ u . (2) 

Invariance of Eq. (1) under a Lie group of point transformations with infinitesimal generator (2) leads to a set of 18 de-

termining equations. By simplifying this system we obtain that ξ = ξ (x, t) , τ = τ (t) , and η = η(x, t, u ) are related by the

following conditions: 

ηuu = 0 , ηux − ξxx = 0 , ηuuu = 0 , ηuux = 0 , −τB t − τt B + 3 ξx B = 0 , τuBQ t − τuB t Q − ηu uBQ + 3 ξx uBQ 

+ ηBQ + ηx u 

2 BC + ηxxx B 

2 + ηx uAB + ηt B = 0 , τu 

3 BC t − τu 

3 B t C + ξx u 

3 BC + 2 ηu 

2 BC − τu 

2 AB t + 3 ηuxx uB 

2 

− ξxxx uB 

2 + τu 

2 A t B + 2 ξx u 

2 AB + ηuAB − ξt uB = 0 . (3) 

In order to find Lie symmetries of the equation, we distinguish two cases: Q � = 0 and Q = 0 . 

Case 1. Q � = 0. 

For the sake of simplicity, in Case 1 we shall consider C(t) = 1 , obtaining the following symmetries 

ξ = k 1 x + β, τ = τ (t) , η = 

βt 

A 

+ ( k 1 + α) u 

where A = A (t) , B = B (t) , Q = Q(t) , α = α(t) , β = β(t) and τ = τ (t) must satisfy the following conditions: 

( 3 k 1 − τt ) B − τB t = 0 , (4) 
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−τB t + ( 4 k 1 + 2 α) B = 0 , (5)

2 βt B + τAA t B − τA 

2 B t + ( 3 k 1 + α) A 

2 B = 0 , (6)

τBQ t − τB t Q + 3 k 1 BQ + αt B = 0 , (7)

βt ( AQ − A t ) + βtt A = 0 . (8)

Eq. (4) can be written as: 

B t 

B 

= 

3 k 1 − τt 

τ
= k, (9)

where k is a constant. From (8) we get: 

Q = 

A t 

A 

− βtt 

βt 
. (10)

Subcase 1.1. Setting k � = 0, by solving (9) we obtain 

B = b 0 e 
k t , τ (t) = k 4 e 

−k t + 

3 k 1 
k 

. (11)

From (5) we obtain 

α(t) = 

k k 4 e 
−k t − k 1 
2 

. (12)

Substituting (10) , (11) and (12) into Eqs. (6) and (7) , we get the following system 

− 2 AA t f 1 + 

(
kk 1 e 

kt + k 2 k 4 
)
A 

2 − 4 ke kt βt = 0 , (13)

2 

(
A t 

A 

− βtt 

βt 

)
t 

f 1 − 2 k 2 k 4 

(
A t 

A 

− βtt 

βt 

)
− k 3 k 4 = 0 . (14)

where f 1 (t) = 3 k 1 e 
kt + kk 4 . This system admits two solutions 

A (t) = 

√ 

e kt 

2 d 0 + kk 1 
f 1 

− d 0 
3 kk 1 

− 1 
2 

(
2 a 1 k f 1 

d 0 
3 kk 1 

+ 1 6 + a 0 ( 2 d 0 + kk 1 ) 

)
, (15)

β(t) = 

a 0 
8 d 0 k ( kk 1 − 2 d 0 ) 

f 1 
− 2 d 0 

3 kk 1 

(
a 0 

(
4 d 2 0 − k 2 k 2 1 

)
+ 8 a 1 d 0 k f 1 

d 0 
3 kk 1 

+ 1 6 

)
, (16)

and 

A (t) = 

√ 

e kt 

2 d 0 + kk 1 
f 1 

− d 0 
3 kk 1 

− 1 
2 

(
a 0 ( 2 d 0 + kk 1 ) f 1 

d 0 
3 kk 1 

+ 1 6 − 2 a 1 k 

)
, (17)

β(t) = 

a 1 

2 

(
4 d 2 

0 
− k 2 k 2 

1 

) f 1 
− 2 d 0 

3 kk 1 

(
2 a 0 ( 2 d 0 + kk 1 ) f 1 

d 0 
3 kk 1 

+ 1 6 + 

a 1 k 

d 0 
( kk 1 − 2 d 0 ) 

)
. (18)

Lastly, substituting solutions (15) and (16) or solutions (17) and (18) into (10) , we obtain 

Q(t) = 

2 d 0 e 
kt − k 2 k 4 
2 f 1 

. (19)

In the above equations, the following appointments are introduced: a 0 � = 0, a 1 � = 0, b 0 � = 0, d 0 � = 0, k 1 � = 0, k 4 are arbitrary

constants, 2 d 0 ± kk 1 � = 0. 

Subcase 1.2. Setting k = 0 , by solving (9) we obtain 

B = b 0 , τ (t) = 3 k 1 t + k 3 . (20)

From (5) we obtain 

α(t) = −2 k 1 . (21)

Substituting (20) , (21) and (10) into Eqs. (6) and (7) , we get the following system 

−2 AA t τ − 2 k 1 A 

2 − 4 βt = 0 , (22)

2 τ

(
A t 

A 

− βtt 

βt 

)
t 

+ 6 k 1 

(
A t 

A 

− βtt 

βt 

)
= 0 . (23)
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In this case, we have 

A (t) = a 0 τ
− d 0 

3 k 1 + a 1 τ
− 1 

3 , (24) 

β(t) = 

1 

2 

a 0 ( d 0 − k 1 ) τ
− 2 d 0 

3 k 1 
− 1 

3 

( 

a 0 τ
4 
3 

3 k 1 − 2 d 0 
− a 1 τ

d 0 
3 k 1 

+1 

d 0 − 2 k 1 

) 

. (25) 

Substituting solutions (24) and (25) into (10) , we get that 

Q(t) = 

d 0 
τ

. (26) 

In the above equations, the following appointments are introduced: a 0 � = 0, a 1 , b 0 � = 0, d 0 � = 0, k 1 � = 0, k 3 are arbitrary

constants, d 0 � = 

3 
2 k 1 and d 0 � = 2 k 1 . 

Case 2. Q = 0 . 

Now, the generators are given by: 

ξ = k 1 x + β, τ = τ (t) , η = ( k 1 + k 3 ) u + k 2 , 

where A = A (t) , B = B (t) , C = C(t) , β = β(t) and τ = τ (t) must satisfy the following conditions: 

( 3 k 1 − τt ) B − τB t = 0 , (27) 

τBC t − τB t C + ( 4 k 1 + 2 k 3 ) BC = 0 , (28) 

τA t B − τAB t + 2 k 2 BC + ( 3 k 1 + k 3 ) AB = 0 , (29) 

k 2 A − βt = 0 . (30) 

Subcase 2.1. We consider k � = 0. In this case we have that B ( t ) and τ ( t ) are given by (11) . The remaining functions are

defined as follows 

C(t) = c 0 e 
kt f 1 

− 2 k 3 
3 k 1 

− 4 
3 , (31) 

A (t) = 

1 

k 1 + k 3 
e kt f 1 

− 2 k 3 
3 k 1 

− 4 
3 

(
2 c 0 k 2 + a 0 ( k 1 + k 3 ) f 1 

k 3 
3 k 1 

+ 1 3 

)
, (32) 

β(t) = β0 − a 0 k 2 f 1 
− k 3 

3 k 1 

kk 3 
− 2 c 0 k 

2 
2 f 1 

− 2 k 3 
3 k 1 

− 1 
3 

k ( k 1 + k 3 ) ( k 1 + 2 k 3 ) 
, (33) 

where f 1 has already been previously defined as f 1 (t) = 3 k 1 e 
kt + kk 4 . 

Subcase 2.2. We consider k = 0 . Now, B ( t ) and τ ( t ) are given by (20) . In this case, the remaining functions are given by 

C(t) = c 0 τ
− 2 k 3 

3 k 1 
− 4 

3 , (34) 

A (t) = 

1 

k 1 + k 3 
τ

− 2 k 3 
3 k 1 

− 4 
3 

(
2 c 0 k 2 + a 0 ( k 1 + k 3 ) τ

k 3 
3 k 1 

+ 1 3 

)
, (35) 

β(t) = β0 − a 0 k 2 τ
− k 3 

3 k 1 

k 3 
− 2 c 0 k 

2 
2 τ

− 2 k 3 
3 k 1 

− 1 
3 

( k 1 + k 3 ) ( k 1 + 2 k 3 ) 
. (36) 

In Case 2, the following designations are introduced: a 0 , b 0 � = 0, c 0 � = 0, β0 , k 1 � = 0, k 2 , k 3 � = 0, k 4 are arbitrary constants,

k 1 � = −k 3 and k 1 � = −2 k 3 . For this case the symmetries were obtained in [15] . 

3. Formal Lagrangian and adjoint equation 

In [13] Ibragimov introduced a new theorem on conservation laws. This theorem is valid for any system of differential

equations wherein the number of equations is equal to the number of dependent variables. The new theorem does not

require the existence of a classical Lagrangian and it is based on the concept of adjoint equation for nonlinear equations. In

order to obtain the adjoint equation we use the following definition: 

Definition 1. Consider an q th-order partial differential equation 

F ( x , u, u (1) , . . . , u (s ) ) = 0 (37) 
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with independent variables x = (x 1 , . . . , x n ) and a dependent variable u , where u (1) = { u i } , u (2) = { u i j } , . . . denote the sets

of partial derivatives of first, second, etc. order, u i = ∂ u/∂ x i , u i j = ∂ 2 u/∂ x i ∂ x j . The formal Lagrangian is defined as 

L = v F ( x , u, u (1) , . . . , u (s ) ) , (38)

where v = v ( x ) is a new dependent variable. The adjoint equation to (37) is 

F ∗( x , u, v , u (1) , v (1) , . . . , u (s ) , v (s ) ) = 0 , (39)

with 

F ∗( x , u, v , u (1) , v (1) , . . . , u (s ) , v (s ) ) = 

δ(v F ) 
δu 

, 

where 

δ

δu 

= 

∂ 

∂u 

+ 

∞ ∑ 

s =1 

(−1) s D i 1 · · · D i s 

∂ 

∂u i 1 ···i s 
, 

denotes the variational derivative (the Euler–Lagrange operator). Here 

D i = 

∂ 

∂x i 
+ u i 

∂ 

∂u 

+ u i j 

∂ 

∂u j 

+ · · ·

represents the total differentiation. 

Theorem 1. The adjoint equation to Eq. (1) is 

F ∗ ≡ v Q − u 

2 v x C − v xxx B − u v x A − v t . (40)

4. Nonlinearly self-adjoint equations 

In this section we use the following definition given in [14] . 

Definition 2. Eq. (37) is said to be nonlinearly self-adjoint if the equation obtained from the adjoint Eq. (39) by the substi-

tution 

v = ϕ( x , u ) , (41)

such that ϕ( x, u ) � = 0, is identical with the original Eq. (37) , i.e. 

F ∗ | v = ϕ = λ( x , u, . . . ) F . (42)

for some differential function λ = λ( x , u, . . . ) . If ϕ = u or ϕ = ϕ(u ) and ϕ 

′ ( u ) � = 0, Eq. (37) is said to be self-adjoint or quasi

self-adjoint , respectively. If ϕ x i ( x , u ) � = 0 or ϕ u ( x, u ) � = 0 Eq. (37) is said to be weak self-adjoint [8] . 

Taking into account expression (40) and using (41) and its derivatives, Eq. (42) can be written as 

u x (λ(−u 

2 C − u A ) − ϕ u u 

2 C − 3 ϕ uu u xx B − 3 ϕ uxx B − ϕ u u A ) 

+ u xxx (−λ B − ϕ u B ) − λ u Q + u t (−λ − ϕ u ) + ϕ Q − ϕ x u 

2 C − ϕ t 

− 3 ϕ ux u xx B − ϕ uuu (u x ) 
3 B − 3 ϕ uux (u x ) 

2 B − ϕ xxx B − ϕ x u A = 0 . (43)

Eq. (43) should be satisfied identically in all variables u t , u x , u xx , . . . Requiring the vanishing of the coefficients of the deriva-

tives of u we obtain: 

Theorem 2. Eq. (1) with A ( t ) � = 0, B ( t ) � = 0, C ( t ) � = 0 and Q ( t ) arbitrary functions, is nonlinearly self-adjoint and 

ϕ = c 1 e 
∫ 

2 Q(t) dt u + c 2 e 
∫ 

Q(t) dt , (44)

with c 1 and c 2 arbitrary constants. 

5. Conservation laws 

Conservation laws appear in many of physical, chemical and mechanical processes, such laws enable us to solve problems

in which certain physical properties do not change over time within an isolated physical system. 

A conservation law of Eq. (1) is a space-time divergence such that 

D t T 
t (x, t, u, u x , u t , . . . ) + D x T 

x (x, t, u, u x , u t , . . . ) = 0 , (45)

on all solutions u ( x , t ) of Eq. (1) . Here, T t represents the conserved density and T x the associated flux [4] , and D x , D t denote

the total derivative operators with respect to x and t respectively. 

In this section we construct conservation laws of each case by using both methods. 



130 R. de la Rosa et al. / Applied Mathematics and Computation 290 (2016) 125–134 

 

 

 

 

 

 

5.1. Conservation laws by using the direct method of the multipliers of Anco and Bluman 

We suppose, that T t and T x have no dependence on u t and all derivatives of u t . 

Each conservation law (45) has an equivalent characteristic form in which has been eliminated u t and its differential

consequences from T t and T x by using Eq. (1) ̂ T t = T t | u t =�= T t − , ̂ T x = T x | u t =�= T x − �, 

where � = −Auu x − Cu 2 u x − Bu xxx − Qu, so that (
D t ̂

 T t (x, t, u, u x , u xx , . . . ) + D x ̂
 T x (x, t, u, u x , u xx , . . . ) 

) | u t =�= 0 , 

is verified on all solutions of Eq. (1) , and where 

D t | u t =� = ∂ t + �∂ u + D x (�) ∂ u x + · · ·
D x | u t =� = ∂ x + u x ∂ u + u xx ∂ u x + · · · = D x . 

In particular, moving off of solutions, we have the identity 

D t = D t | u t =� +(u t + Auu x + Cu 

2 u x + Bu xxx + Qu ) ∂ u + D x (u t + Auu x + Cu 

2 u x + Bu xxx + Qu ) ∂ u x + · · ·
These expressions yield the characteristic form of conservation law (45) 

D t ̂
 T t (x, t, u, u x , u xx , . . . ) + D x ( ̂  T x (x, t, u, u x , u xx , . . . ) + ̂

 �(x, t, u, u x , u t , . . . )) 

= (u t + Auu x + Cu 

2 u x + Bu xxx + Qu )�(x, t, u, u x , u xx , . . . ) , (46) 

where ̂ �(x, t, u, u x , u t , . . . ) = E u x ( ̂
 T t )(u t + Auu x + Cu 

2 u x + Bu xxx + Qu ) 

+ E u xx 
( ̂  T t ) D x (u t + Auu x + Cu 

2 u x + Bu xxx + Qu ) + · · ·
is a trivial flux [4] , and the function 

� = E u ( ̂  T t ) , 

is a multiplier, where E u = ∂ u − D x ∂ u x + D 

2 
x ∂ u xx − · · · , denotes the (spatial) Euler operator with respect to u. 

A function �(x, t, u, u x , u xx , . . . ) is called multiplier if it verifies that (u t + Auu x + Cu 2 u x + Bu xxx + Qu )� is a divergence

expression for all functions u ( x , t ), not only solutions of Eq. (1) . 

In order to obtain conservation laws, we use (46) from which is deduced that all nontrivial conserved densities in the

form (45) arise from multipliers � of Eq. (1) , where � depends only on x , t , u and x derivatives of u . Divergence condition

can be characterized as follows 

δ

δu 

((u t + Auu x + Cu 

2 u x + Bu xxx + Qu )�) = 0 , (47) 

where δ
δu 

= ∂ u − D x ∂ u x − D t ∂ u t + D x D t ∂ u xt + D 

2 
x ∂ u xx + · · ·, denotes the variational derivative. 

Eq. (47) is linear in u t , u tx , u txx , ...taking the coefficient of u t and x derivatives of u t we obtain a system of determining

equations for �, which yields the following equivalent equations [1–3] 

−D t � − D x ((Au + Cu 

2 )�) − D 

3 
x (B �) + (Au x + 2 Cuu x + Q )� = 0 , 

and 

�u = E u (�) , �u x = −E (1) 
u (�) , �u xx 

= −E (2) 
u (�) , ... 

which are verified for all solutions u ( x , t ) of Eq. (1) . 

Given a multiplier �, we can obtain the conserved density using a standard method [21] 

T t = 

∫ 1 

0 

dλu �(x, t, λu, λu x , λu xx , . . . ) . 

We have considered multipliers up to second order, i.e., �( x , t , u , u x , u xx ). In this section we proceed to obtain conserva-

tion laws for the values obtained for A ( t ), B ( t ), C ( t ) and Q ( t ) in Case 1, Section 2 . 

Subcase 1.1. In this case, Eq. (1) is given by 

u t + A (t) uu x + u 

2 u x + b 0 e 
kt u xxx + 

2 d 0 e 
kt − k 2 k 4 
2 f 1 

u = 0 , (48) 

where A ( t ) is given by (15) or (17) . For Eq. (48) multiplier is given by 

� = e −
kt 
2 f 1 

2 d 0 
3 kk 1 

+1 
(

c 1 + c 2 e 
− kt 

2 u 

)
, 
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where f 1 (t) = 3 k 1 e 
kt + kk 4 . The conserved density obtained from this multiplier is 

T t = e −
kt 
2 f 1 

2 d 0 
3 kk 1 

+1 
u 

(
c 1 + 

c 2 
2 

e −
kt 
2 u 

)
. 

The flux obtained from this multiplier depends on function A ( t ). If A ( t ) is given by (15) , we obtain 

T x = 

e −
kt 
2 

12 

f 
d 0 

3 kk 1 

1 

(
3 c 2 f 1 

d 0 
3 kk 1 

+1 
(

u 

4 e −
kt 
2 + 2 b 0 e 

kt 
2 

(
2 u u xx − u 

2 
x 

))
+ 4 ( a 0 c 2 + c 1 ) u 

3 f 1 + 6 a 0 c 1 u 

2 e 
kt 
2 f 

− d 0 
3 kk 1 

1 
+ 12 b 0 c 1 u xx e 

kt f 
1 
2 

1 
+ 

4 a 1 k 

2 d 0 + k k 1 
u 

2 

(
2 c 2 u f 

d 0 
3 kk 1 

+ 2 3 

1 
+ 3 c 1 e 

kt 
2 f 

1 
6 

1 

))
. 

If A ( t ) is given by (17) , we get 

T x = 

e −
kt 
2 

12 

f 
d 0 

3 kk 1 

1 

(
3 c 2 f 1 

d 0 
3 kk 1 

+1 
(

u 

4 e −
kt 
2 + 2 b 0 e 

kt 
2 

(
2 u u xx − u 

2 
x 

))
+ 4 c 1 f 

1 
2 

1 

(
u 

3 + 3 b 0 u xx e 
kt 
)

+ 6 a 0 c 1 u 

2 e 
kt 
2 f 

1 
6 

1 
+ 4 a 0 c 2 u 

3 f 
d 0 

3 kk 1 
+ 2 3 

1 
− 4 a 1 k 

2 d 0 + k k 1 
u 

2 
(

2 c 2 u f 
1 
2 

1 
+ 3 c 1 e 

kt 
2 

))
. 

Subcase 1.2. In this case, Eq. (1) is given by 

u t + 

(
a 0 τ

− d 0 
3 k 1 + a 1 τ

− 1 
3 

)
uu x + u 

2 u x + b 0 u xxx + 

d 0 
τ

u = 0 , (49)

where τ is given by (20) . For Eq. (49) has been obtained the following multiplier 

� = τ
d 0 

3 k 1 

(
c 1 + c 2 τ

d 0 
3 k 1 

)
. 

The conserved density and the flux obtained from this multiplier are: 

T t = τ
d 0 

3 k 1 u 

(
c 1 + 

c 2 
2 

τ
d 0 

3 k 1 u 

)
, 

T x = 

1 

12 

τ
d 0 

3 k 1 

(
τ

d 0 
3 k 1 

(
6 b 0 c 2 

(
2 u u xx − u 

2 
x 

)
+ 3 c 2 u 

4 
)

+ 6 a 0 c 1 u 

2 τ
− d 0 

3 k 1 

+ 6 a 1 c 1 u 

2 τ− 1 
3 + 4 a 1 c 2 u 

3 τ
d 0 

3 k 1 
− 1 

3 + 4 c 1 
(
u 

3 + 3 b 0 u xx 

)
+ 4 a 0 c 2 u 

3 
)
. 

5.2. Conservation laws by using a general theorem on conservation laws proved by Ibragimov 

In this section we construct conservation laws for the values obtained for the functions A ( t ), B ( t ), C ( t ) and Q ( t ) in Case 2,

Section 2 using the following theorem on conservation laws proved in [13] . 

Theorem 3. Any Lie point, Lie–Bäcklund or non-local symmetry 

v = ξ i ( x , u, u (1) , . . . ) 
∂ 

∂x i 
+ η( x , u, u (1) , . . . ) 

∂ 

∂u 

, (50)

of Eq. (37) provides a conservation law D i (T i ) = 0 for the simultaneous system (37) and (39) . The conserved vector is given by 

T i = ξ i L + W 

[
∂L 

∂u i 

− D j 

(
∂L 

∂u i j 

)
+ D j D k 

(
∂L 

∂u i jk 

)
− · · ·

]
+ D j (W ) 

[
∂L 

∂u i j 

− D k 

(
∂L 

∂u i jk 

)
+ · · ·

]
+ D j D k (W ) 

[
∂L 

∂u i jk 

− · · ·
]

+ · · · , (51)

where W and L are defined as follows: 

W = η − ξ j u j , L = v F ( x , u, u (1) , . . . , u (s ) ) . (52)

In order to apply Theorem 3 to our equation we perform the following change of notation: 

(x 1 , x 2 ) = (t, x ) , (ξ 1 , ξ 2 ) = (τ, ξ ) , (T 1 , T 2 ) = (T t , T x ) . 

Subcase 2.1. In this case, we consider Eq. (1) with Q(t) = 0 , A ( t ), B ( t ) and C ( t ) given by (32) , (11) and (31) , respectively.

Consequently, the equation admits the following generator 

v = (k 1 x + β(t)) ∂ x + 

(
k 4 e 

−kt + 

3 k 1 
k 

)
∂ t + ((k 1 + k 3 ) u + k 2 ) ∂ u , (53)
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where β( t ) is given by (33) . From Theorem 2 , we have that ϕ is given by 

ϕ = c 1 u + c 2 . (54) 

Thus, we obtain conservation law (45) with the conserved vector 

T t = (k 3 u + k 2 )(c 1 u + c 2 ) + k 1 u 

(
3 

2 

c 1 u + 2 c 2 

)
, 

T x = 

e k t 

12 (k 3 + k 1 ) 
(6 b 0 c 1 (2 u u xx − u 

2 
x )(2 k 2 3 + 5 k 1 k 3 + 3 k 2 1 ) + 12 b 0 u xx (c 2 (k 2 3 + 3 k 1 k 3 + 2 k 2 1 ) + c 1 (k 3 + k 1 )) 

+ f 
− k 3 

3 k 1 
−1 

1 
(4 a 0 c 1 u 

3 (2 k 2 3 + 5 k 1 k 3 + 3 k 2 1 ) + 6 a 0 c 2 u 

2 (k 2 3 + 3 k 1 k 3 + 2 k 2 1 ) 

+ 6 a 0 c 1 k 2 u 

2 (k 3 + k 1 )) + f 
− 2 k 3 

3 k 1 
− 4 

3 

1 
(3 c 0 c 1 u 

4 (2 k 2 3 + 5 k 1 k 3 + 3 k 2 1 ) + 4 c 0 c 1 k 1 u 

3 (5 k 3 + 7 k 2 ) 

+ 4 c 0 c 2 u 

3 (k 2 3 + 3 k 1 k 3 + 2 k 2 1 ) + 12 c 0 k 2 u 

2 (c 2 k 3 + c 1 k 2 + 2 c 2 k 1 ))) . (55) 

Subcase 2.2. Now, we consider Eq. (1 ) with Q(t) = 0 , A ( t ), B ( t ) and C ( t ) given by (35) , (20) and ( 34), respectively. Conse-

quently, the equation admits the following generator 

v = ( k 1 x + β(t) ) ∂ x + τ∂ t + ( (k 1 + k 3 ) u + k 2 ) ∂ u , (56) 

where τ ( t ) and β( t ) are given by (20) and (36) , respectively. As in the previous case, ϕ is given by (54) . Thus, we obtain

conservation law (45) with the conserved vector 

T t = (k 3 u + k 2 )(c 1 u + c 2 ) + k 1 u 

(
3 

2 

c 1 u + 2 c 2 

)
, 

T x = 

1 

12 ( k 3 + k 1 ) 

(
6 b 0 c 1 

(
2 u u xx − u 

2 
x 

)(
2 k 2 3 + 5 k 1 k 3 + 3 k 2 1 

)
+ 12 b 0 u xx 

(
c 2 

(
k 2 3 + 3 k 1 k 3 + 2 k 2 1 

)
+ c 1 ( k 3 + k 1 ) 

)
+ τ

− k 3 
3 k 1 

−1 (
4 a 0 c 1 u 

3 
(
2 k 2 3 + 5 k 1 k 3 + 3 k 2 1 

)
+ 6 a 0 c 2 u 

2 
(
k 2 3 + 3 k 1 k 3 + 2 k 2 1 

)
+ 6 a 0 c 1 k 2 u 

2 ( k 3 + k 1 ) 
)

+ τ
− 2 k 3 

3 k 1 
− 4 

3 
(
3 c 0 c 1 u 

4 
(
2 k 2 3 + 5 k 1 k 3 + 3 k 2 1 

)
+ 4 c 0 c 1 k 1 u 

3 ( 5 k 3 + 7 k 2 ) 

+ 4 c 0 c 2 u 

3 
(
k 2 3 + 3 k 1 k 3 + 2 k 2 1 

)
+ 12 c 0 k 2 u 

2 ( c 2 k 3 + c 1 k 2 + 2 c 2 k 1 ) 
))

. 

We remark that some of these conservation laws yield conserved integrals with physical meaning. Setting in (55) k 1 = 1 ,

c 2 = 

1 
2 and k 2 = k 3 = c 1 = 0 we have 

C 1 = 

∫ ∞ 

−∞ 

u dx , 

which is the conserved mass for Eq. (1) . The conserved integral arising from (55) setting k 1 = 1 , c 1 = 

2 
3 and k 2 = k 3 = c 2 = 0

gives the energy 

C 2 = 

∫ ∞ 

−∞ 

u 

2 dx , 

for Eq. (1) . 

Another powerful application of conservation laws taking into account the relationship between Lie symmetries and

conservation laws it is the so called double reduction method given by Sjöberg [17] . This method allow us to reduce the

Gardner equation to a second order ordinary differential equation. Sjöberg introduced this method in order to get solutions

of a q th partial differential Eq. (37) from the solutions of an ordinary differential equation of order q −1 . This method can

be applied when a symmetry v is associated to a conserved vector T . In accordance with the definition given by Kara and

Mahomed [12] we will establish that a symmetry v is associated to T if the following equation holds 

v (T i ) + T i D k (ξ
k ) − T k D k (ξ

i ) = 0 . (57) 

In the terms of the canonical variables r , s and w, symmetry (2) becomes a translation on s, v = 

∂ 
∂s 

. Thus, the conservation

law can be rewritten as 

D s T 
s + D r T 

r = 0 , (58) 

with 

T s = 

T t D t (s ) + T x D x (s ) 

D t (r) D x (s ) − D x (r) D t (s ) 
, (59) 

and 

T r = 

T t D t (r) + T x D x (r) 

D t (r) D x (s ) − D x (r) D t (s ) 
. (60) 
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Due to the fact that solutions of the Eq. (37) written in canonical variables must be invariant with respect to v and T is

associated with v , equation (58) becomes 

D r T 
r = 0 , 

so that 

T r (r, w, w r , w rr , . . . , w r q −1 ) = k, k = const. (61)

We stress that Eq. (61) is an ordinary differential equation of order q −1 , whose solutions are solutions of Eq. (37) , by writing

this solution in terms of x , t and u . 

In order to show the above explained procedure, let us consider the equation 

F ≡ u t + uu x + u 

2 u x + u xxx = 0 , (62)

It can be easily chequed that Eq. (62) admits the following generator 

v = 

(
k 1 x − k 1 

2 

t 

)
∂ x + (3 k 1 t + k 2 ) ∂ t + 

(
−k 1 u − k 1 

2 

)
∂ u , (63)

where k 1 and k 2 are arbitrary constants. From theorem (50) , one can get the following conserved vector for generator (63) 

T t = − c 1 k 1 
2 

u 

2 − c 1 k 1 
2 

u − c 2 k 1 
2 

, 

T x = −c 1 k 1 u u xx − c 1 k 1 
2 

u xx + 

c 1 k 1 
2 

u 

2 
x −

c 1 k 1 
4 

u 

4 − c 1 k 1 
2 

u 

3 − c 1 k 1 
4 

u 

2 , (64)

where c 1 and c 2 are arbitrary constants. The conserved vector (64) is not associated to symmetry (63) . It can be easily seen

that generator 

v = c ∂ x + ∂ t . 

is associated to (64) . The canonical coordinates are 

r = x − c t , s = t , w = u. 

We suppose without loss of generality that k 1 = c 1 = 1 and c 2 = 0 . From (60) we get 

T r = 

1 

4 

((4 w + 2) w rr − 2 w 

2 
r + w 

4 + 2 w 

3 + (1 − 2 c) w 

2 − 2 c w ) . (65)

Setting T r = 

k 
4 , k = const. , we obtain 

(4 w + 2) w rr − 2 w 

2 
r − 2 c w + (1 − 2 c) w 

2 + 2 w 

3 + w 

4 = k. (66)

Due to the fact that (66) is an autonomous equation the substitution w r = p(w ) yields the following first order ordinary

differential equation 

p ′ = 

k + 2 p 2 + 2 c w + (2 c − 1) w 

2 − 2 w 

3 − w 

4 

4 w + 2 

, 

whose solutions are solutions of (62) once written in terms of x , t and u . 

6. Conclusions 

In this paper we have considered a generalized variable-coefficient Gardner equation. Classical symmetries of Eq. (1) have

been obtained involving different arbitrary functions which can be used to determine similarity and exact solutions. Sym-

metries obtained in this work generalize those already obtained by other authors in equations which belong to the family of

Eq. (1) , such as KdV equation and other Gardner equations with time-dependent coefficients. In particular, we have consid-

ered two different cases, which in turn would lead to different subcases. 

We have determined the subclasses of Eq. (1) which are nonlinearly self-adjoint, as well as the multipliers, of Anco and

Bluman method. We have derived conservation laws by using both methods. We have shown that some of these conser-

vation laws yields conserved integrals with physical meaning, such as mass and energy. Finally, as an example of another

application of the conserved vectors, we have applied the double reduction method to get exact solutions of the Gardner

equation from solutions of a second order reduced ordinary differential equation. 
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