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Simulating frustrated quantum magnets is among the most challenging tasks in computational physics. We
apply string-bond states, a recently introduced Ansatz which combines tensor networks with Monte Carlo
based methods to the simulation of frustrated quantum systems in both two and three dimensions. We compare
our results with existing results for unfrustrated and two-dimensional systems with open boundary conditions
and demonstrate that the method applies equally well to the simulation of frustrated systems with periodic
boundaries in both two and three dimensions.
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I. INTRODUCTION

The simulation of correlated quantum spin systems is one
of the central problems in condensed-matter physics. The
lack of exact solutions and the exponentially growing
Hilbert-space dimension motivate the need for numerical
methods for the simulation of such systems. During the last
decades, quantum Monte Carlo �QMC� �Ref. 1� and the
density-matrix renormalization-group �DMRG� method2,3

have arguably been the most successful methods for the ac-
curate simulation of large quantum spin systems. Despite
their huge success, both methods also have their limitations:
the DMRG method gives extremely accurate results for one-
dimensional �1D� systems but fails to simulate two-
dimensional �2D� systems similarly well; on the other hand,
QMC can deal efficiently with 2D and three-dimensional
�3D� systems but fails on frustrated �fermionic� quantum sys-
tems due to the so-called “sign problem.” As frustrated quan-
tum systems in two and three dimensions underlie some of
the most interesting phenomena in condensed-matter phys-
ics, methods that promise to overcome the previously men-
tioned limitations are of high interest.

The natural generalization of the matrix product state
�MPS� Ansatz underlying DMRG to higher dimensional sys-
tems is given by projected entangled pair states �PEPS�.4,5

PEPS-based algorithms have been applied successfully, e.g.,
to the simulation of frustrated quantum spin systems or hard-
core bosons in two dimensions.6–10 Yet, due to the scaling of
resources the method is bound to two-dimensional systems
with open boundaries, motivating the search for different
tensor-network-based algorithms.11–17 Recently, it has been
proposed to use Monte Carlo sampling to enhance the pos-
sibilities of tensor network based methods, both in 1D for
DMRG �Ref. 18� and, for appropriately chosen Ansatz
classes, in two and higher dimensions,19 and their applicabil-
ity to two-dimensional systems has been demonstrated.19–21

The string-bond states �SBS� Ansatz proposed in Ref. 19
generalizes the MPS Ansatz to two and higher dimensions in
a way which allows to employ Monte Carlo sampling to
efficiently compute expectation values. While the MPS An-
satz is inherently one dimensional, SBS generalize it to

higher dimensional lattices by placing several one-
dimensional structures atop of each other, e.g., along the
axes, the diagonals, and in loops between adjacent neighbors,
thus allowing for arbitrary correlations between any group of
spins without sacrificing the advantages of the one-
dimensional structure.

In this paper, we demonstrate the applicability of the SBS
Ansatz to the simulations of two- and three-dimensional frus-
trated quantum systems. In two dimensions, we apply it to
the simulation of the frustrated J1-J2 model, where we find
that for open boundary condition �OBC�, SBS reproduce
well both the energies and the structure of correlations ob-
tained using the general PEPS Ansatz. Moreover, SBS also
allow us to simulate systems with periodic boundary condi-
tions �PBC� with similar accuracy, and we find that the be-
havior of the low-energy regime of the system in the transi-
tion region J2 /J1�0.6 �changing from Néel to columnar
order� differs significantly for OBC and PBC.

Second, we apply the SBS Ansatz to the simulation of 3D
frustrated spin systems. To benchmark the Ansatz, we com-
pare results for the 3D Ising model with transverse field to
results obtained using QMC. Then, we apply it to the simu-
lation of a three-dimensional frustrated quantum spin system
on up to 6�6�6=216 qubits, where we observe a perfor-
mance comparable to that in two dimensions. This demon-
strates the ability of the method to simulate frustrated quan-
tum spin systems in both two and three dimensions and with
periodic boundaries.

II. STRING-BOND STATE ANSATZ

String-bond states have been proposed as a variatonal
class of states for which expectation values of local observ-
ables can be computed efficiently using Monte Carlo sam-
pling. Monte Carlo sampling allows to compute an expecta-
tion value �p�n�f�n� over a probability distribution p by
generating a sample �n1 ,n2 , . . .� drawn from p�n� and aver-
aging f over this sample. Now for any observable O, we can
rewrite its expectation value in a state ��� as
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	��O��� = �
n

	��n�	n�O��� = �
n

p�n�
	n�O���
	n���

, �1�

where p�n�= �	n ����2 and �n� is an orthonormal basis. Thus,
whenever 	n ��� and 	n�O��� can be computed efficiently,
	��O��� can be evaluated efficiently using Monte Carlo
sampling.

We are interested in investigating systems consisting of N
spins with a Hilbert space �Cd��N, and we thus choose the
basis �n�= �n1 , . . . ,nN� to be a product �i.e., local� basis of the
system. In order to do efficient Monte Carlo sampling in this
basis, we need that 	n ��� and 	n�O��� can be computed ef-
ficiently. The second requirement can be reduced to comput-
ing a few overlaps 	ñ ��� whenever O=�DkPk, with Dk as
diagonal matrices, Pk as permutations, and the set of ks suf-
ficiently small, since then 	n�O���=�kDk�n�	nk ���, with
	n�k= 	n�Pk as another local basis state. In particular, this
holds for local O �where local means small support, as, e.g.,
the terms in a Hamiltonian or two-point correlation func-
tions� and tensor products of Paulis, for instance, the Jordan-
Wigner transform of fermionic hopping terms or string order
parameters.

Thus, in order to be able to apply Monte Carlo sampling,
we need to find classes of states ��� for which the overlap
	n ��� can be computed efficiently. We choose 	n ��� to be a
product of efficiently computable functions fs �with s
=1, . . . ,S� defined on subsets Ns� �1, . . . ,N� of spins,

	n��� = f1�nN1
� ¯ fS�nNS

� . �2�

Here, nNs
contains the state of all spins in the subset Ns.

Note that the subsets Ns should be overlapping as otherwise
they just describe a product state.

Our choice of the fs will be such as to generalize MPSs to
higher dimensional systems. An MPS of bond dimension D
is given by

��� = �
n1,. . .,nN

tr
Mn1

1
¯ MnN

n ��n1, . . . ,nN� , �3�

where My
x are D�D matrices. In order to generalize MPS in

the spirit of the Ansatz of Eq. �2�, we choose each fs such
that

fs�ni1
, . . . ,nil

� = tr
Mni1

s,1
¯ Mnil

s,l� �4�

to be a trace of matrix products. Here, i1 , . . . , il denotes the
spins in the corresponding subset Ns; note that this imposes
an ordering on these sets. Clearly, this definition includes
MPS themselves since we can choose only one Ns
= �1, . . . ,N�.

In defining SBS on higher dimensional systems, the
choice of the subsets Ns �called “strings” further on, as they
impose a one-dimensional ordering in the spirit of MPS� is
of central importance. The idea is that the string pattern
should reflect the geometry of the system in such a way that
spins which are closely coupled by the Hamiltonian are
rather closely connected by a string. For a 2D square lattice,
a natural choice is to first put strings on all rows �i.e., one
row forms one string, corresponding to a product of MPS on
rows� and then connect the rows by additionally placing one

string per column. We call this pattern, as illustrated in Fig.
1�a�, lines. The line pattern can be enhanced in two different
ways by putting additional strings: first, one can put strings
on all diagonals of the lattice 
Fig. 1�b�� and, second, one can
choose strings which form small loops, encompassing all el-
ementary plaquettes 
i.e., blocks of 2�2 spins, Fig. 1�c�; cf.
Ref. 20 for a generalization of this Ansatz�; both of these
extensions allow for a better control of the correlations with
diagonal neighbors. The patterns generalize straightfor-
wardly to lattices in 3D or with different geometries. Note
that by continuously adding strings, we will eventually be
able to describe all states as SBS, as can be seen by putting
one long snail-like string on the lattice �i.e., describing the
whole state as an MPS�. Clearly, for good practical results,
the strings should be chosen such that the relevant states are
well approximated at an early stage of the pattern.

The computational resources of SBS scale favorable as
compared to PEPS: for each string, the matrix trace in Eq.
�4� has to be computed which takes resources lD3 �lD2 for
OBC�, with l�N as the length of the string. This has to be
multiplied by the number of strings S, giving a computa-
tional cost of O�SND3�. In particular, the scaling in the ac-
curacy parameter D compares favorably to the D10 �D18�
scaling of the PEPS method for OBC �PBC�.

Let us briefly note that although we motivated SBS as a
higher-dimensional generalization of MPS, one can also re-
gard them as a specialized case of PEPS. PEPS form the
most natural generalization of MPS to two dimensions,4 they
are known to approximate the states of interest well22,23 and
have been applied successfully in numerical simulations.6,7

However, the scaling in the accuracy parameter is rather bad,
preventing the application of PEPS to problems beyond 2D
systems with OBC �note, however, that iPEPS have been
applied successfully to investigate 2D systems in the thermo-
dynamic limit9,10�. One way to resolve this problem is to
look for subclasses of PEPS which allow for more efficient
algorithms. Indeed, SBS form such a subclass of PEPS:19

while general PEPS are described by tensor networks with
general tensors Ti����, SBS with a line pattern have tensors
of the form Ai��Bi��. Note, however, that the structure of the
tensors gets more and more rich as one places additional
strings on the lattice, and thus, SBS can only be embedded in
PEPS at a cost exponential in the number of strings; more-
over, since SBS computations scale much more favorably in
the accuracy parameter, even for a basic line pattern SBS can
outperform PEPS as they can reach much larger Ds.

III. VARIATIONAL METHOD USING
STRING-BOND STATES

In the previous section, we have introduced SBSs as a
class of states which generalize MPS to two- and higher-

FIG. 1. �Color online� String patterns used in the simulations.
�a� The basic line pattern. It can be enhanced by the �b� diagonal
pattern and by the �c� loop pattern, which help to improve the
control over diagonal and four-body correlations, respectively.
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dimensional systems while allowing for an efficient compu-
tation of expectation values. In this section, we will show
how SBS can be used to build a variational algorithm for
simulating the ground states of quantum spin systems. Al-
though the ability to efficiently compute expectation values
is a necessary criterion, it is not sufficient: one also needs an
efficient and practical way to evolve the SBS toward the
ground state.

The basic idea of a variational algorithm based on SBS is
to fix a family of SBS �i.e., fix a certain string pattern and the
dimension D of the underlying matrices� and try to find the
state within this family which minimizes the energy of a
given local Hamiltonian. Similar to DMRG or the variational
method over PEPS, we will carry out the optimization in a
local fashion: We start from some SBS, described by a num-
ber of three-index tensors M as in Eq. �4�, select one of the
tensors—let us call it A—and try to minimize the energy
with respect to this tensor while keeping the others fixed.
This procedure is repeated for all tensors over and over until
the energy converges, i.e., a minimum within the family of
states is reached.

To determine how to change the selected tensor A such as
to minimize the energy, we use the linearity of the string-
bond states in the tensor A to be optimized,

E��A� =
	�A�H��A�
	�A��A�

¬

	A�X�A�
	A�Y�A�

, �5�

where we have explicitly denoted the dependence of the
string-bond state ��A� on A. 	A�X�A� denotes a quadratic
form in A, where �A� is the vectorized form of A, i.e., A�ijk�
=Aij

k , and we use boldface to avoid confusion with vectors in
state space. Minimizing Eq. �5� with respect to A is a gener-
alized eigenvalue problem and can be solved efficiently.

In order to sample X and Y, define vectors �an� and �bn�
via the linear functionals

	an�A� =
	n�H��A�
	n��A0

�
, 	bn�A� =

	n��A�
	n��A0

�
, �6�

where A0 is the initial value of the tensor A. It follows that
the matrices X and Y in Eq. �5� can be expressed as

X = �
n

p0�n��bn�	an�, Y = �
n

p0�n��bn�	bn� , �7�

where p0�n�� �	n ��A0
��2, and thus determined by Monte

Carlo sampling of �bn�	an� and �bn�	bn�, respectively. Note
that by virtue of this definition, we obtain the normalization
	A0�Y�A0�=1.

However, there is a major problem with the approach of
solving the generalized eigenvalue problem: Monte Carlo
sampling X and Y is relatively inaccurate as compared to,
e.g., the approximate contraction as done in the PEPS
algorithm,4 and moreover, our estimates of X and Y get less
and less accurate for As far away from A0 as we have
sampled with respect to the distribution at A=A0. Specifi-
cally, already small errors in Y might lead to completely
wrong minima for the generalized eigenvalue problem.
While for the PEPS algorithm, this problem can be success-
fully overcome by truncating small eigenvalues of Y, this is

impractical for a method based on Monte Carlo due to the
comparatively large error.

To overcome this problem, we do not solve the general-
ized eigenvalue problem to compute the new A but rather
compute the gradient of the energy with respect to A and
change A slightly along this gradient such as to decrease the
energy. First, this accounts for the fact that our sample of X
and Y, Eq. �7�, is most accurate around A0, and as we will
see, it moreover yields a formula where neither X nor Y
appear in the denominator, such that small absolute errors
remain small. Another advantage will be that it is possible to
gain a considerable speed up when sampling all the gradients
simultaneously and change all the tensors along their gradi-
ent simultaneously—this is possible since the gradients de-
couple to first order.

In order to determine the gradient of the energy with re-
spect to A around A0, consider a small variation A=A0+	B
�with 	
1�:

E��A0+	B� =
	A0 + 	B�X�A0 + 	B�
	A0 + 	B�Y�A0 + 	B�

=
	A0�X�A0� + 2	 Re
	B�X�A0�� + O�	2�

1 + 2	 Re
	B�Y�A0�� + O�	2�

= E��A0
� + 2	 Re
	B�X�A0��

− 2		A0�X�A0�Re
	B�Y�A0�� + O�	2� ,

where we have used the normalization 	A0�Y�A0�=1. Thus,
the gradient turns out to be

�AE��A��A=A0
= 2
X�A0� − E��A0

�Y�A0�� �8�


using 	A0�X�A0�=E��A0
��. Substituting the sampling for-

mula �7� for X and Y and using that 	bn �A0�=1 
Eq. �6��, we
finally obtain that

�AE��A��A=A0
= 2�

n

p0�n��bn�
En − E��A0
�� ,

where we have defined

En ª 	an�A0� =
	n�H��A0

�

	n��A0
�

,

and the energy can be computed as

E��A0
� = �

n

p0�n��A0�bn�
=1

�an�A0� = �
n

p0�n�En.

While the previous derivation holds for any Ansatz where
���A is linear in A, there are some additional tricks which can
be applied in the case of SBS to save computation time. To
this end, note that all we have to know are �bn�, En, and the
ratio p0�n� / p0�m� �this is sufficient to generate a random
walk�. For a particular tensor Aij

s , the dependence of 	n ��A�
on A �where nA denotes the state of the spin associated with
A� can be expressed as

	n��A� = tr
AnAX�n��c�n� ,

where X�n� is the product of all other matrices on the string
containing A as a function of the state n of the spins, and
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c�n� contains the contributions from all other strings. Thus,
we have that

	bn�A� =
	n��A�
	n��A0

�
=

tr
AnAX�n��c�n�
tr
A0

nAX�n��c�n�

and therefore �with s the physical spin index�

�bn�s =
�s,nA

X�n�†

tr
A0
nAX�n��

.

This means that in order to compute �bn� for a given tensor
A, one only has to consider the string which contains A,
instead of having to look at all the strings.

Similarly, in order to compute En, one can exploit that for
local Hamiltonians, string-order operators, etc., 	n�H
=�m�Mf�m�	m�, where M has only few elements, and, e.g.,
for local Hamiltonians on a 2D lattice, each m�M only
differs at two adjacent sites from n. Thus,

En =
	n�H��A0

�

	n��A0
�

= �
m�M

	m��A0
�

	n��A0
�

can again be computed as the ratio of the matrix product
traces for only the two strings on which m and n differ, again
reducing the computational effort. Computing p0�m� / p0�n�
also allows for optimizations, depending on the way the new
configuration m is constructed starting from n. For the sim-
plest scenario where only a single spin is flipped, again only
the strings containing this very spin have to be considered,
and similarly if, e.g., a pair of spins is being flipped.

Finally, we gain a speed up by computing the gradients
for all tensors simultaneously; this is reasonable since the
joint gradient of all tensors is nothing but the direct sum of
the individual gradients, thus, changing all the tensor in di-
rection opposite to the gradient by a small amount will de-
crease the energy to leading order. In this case, computation
time is saved by the fact that the same sample drawn from
p0�n� can be used and that En has to be computed only once.

The full algorithms looks as follows: fix a string pattern
and corresponding bond dimensions and choose initial con-
figurations for all tensors. Then, iterate the following: �1�
compute the energy and its gradient with respect to all ten-
sors. �2� Change all the tensors by some small amount in the
direction given by the gradient. �3� Start over at �1� with the
modified tensors. Iterate this until the change in energy be-
comes smaller than some threshold and declare convergence.
In order to ensure that the step along the gradient is small
enough, it is advisable to normalize the gradients such that
the step remains small even for steep gradients.

Instead of declaring convergence of the algorithm when
the energy does not change any more, one can try to increase
the precision and see whether this leads to a further improve-
ment in energy and only declare convergence if it does not.
There are three possibilities to do so: first, one can increase
the length of the Monte Carlo sample used for computing the
energy and the gradient; second, one can try to decrease the
stepwidth used to update the tensors along the gradient; and
finally, one can try to extend the variational family of states
either by increasing the bond dimension or by adding extra

strings. In all cases, it is advisable to use the previously
obtained optimum as the initial state.

IV. NUMERICAL RESULTS

In the following, we present numerical results obtained
for two- and three-dimensional frustrated spin systems using
string-bond states. In all cases, the Monte Carlo sampling
was carried out using single spin flip or adjacent spin swap,
Metropolis updates. The autocorrelation time was at most
100 updates �for the structure factor of the J1-J2 model in the
frustrated regime�, and considerably less for local observ-
ables or nonfrustrated models, even in 3D. This allowed us to
choose the Monte Carlo samples sufficiently long such that
in all cases, the error bars were below what could be illus-
trated in the plots �local observables to at least 0.1%, and
nonlocal observables to at least 1% accuracy�. Note, how-
ever, that this only means that we have good control over the
error we make in measuring observables on the given varia-
tional state; the major �and not so well controlled� error
source in the method is thus the ability of the Ansatz class to
correctly describe the ground state, together with the ques-
tion as to whether the variational method converges to the
optimal state within the class.

A. Simulation in 2D: The J1-J2 model

We have applied SBS to the simulation of the so-called
J1-J2 model,

HJ1J2 = �
	i,j�

�i · � j +
J2

J1
�

		i,j��
�i · � j ,

where 	i , j� denotes nearest neighbors in a 2D square lattice,
and 		i , j�� nearest neighbors along the diagonal. This model
arises, e.g., in the context of the Hubbard model which is
believed to underlie high-temperature superconductivity,24

and has become one of the paradigmatic models to under-
stand quantum phase transitions in frustrated spin systems.25

For the simulation, we started from the patterns lines, then
added diagonals, and finally loops. Figure 2 shows how the
energy improves as D is increased and additional strings are
added, for J2 /J1=1; as on one can see, the improvement due
to additional strings depends on the model under consider-
ation. Note that for our simulations, we have used the SU�2�
invariance of the model, which implies that we can project
our Ansatz into the spin 0 subspace �as there is a ground state
with spin 0�. This can be understood as an SBS with one
additional string which covers the whole lattice and enforces
Sz=0. In practice, we achieve the restriction by sampling
from the Sz=0 subspace: we start from a configuration in this
subspace and create new configurations by swapping a ran-
domly chosen pair of spins; we have observed that this re-
striction led to a significant improvement in energy.

In Fig. 3, we show results for the ground-state energy of
the J1-J2 model on lattices of size 4�4, 6�6, and 10�10
with open boundaries, which we compare with the values
obtained using exact diagonalization �4�4� and the PEPS
method7 �6�6, 10�10�. Figure 4 shows the same numbers
for the case of periodic boundaries, compared to the exact
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numbers25 �4�4, 6�6�. Let us note that for 10�10 lattices,
there are no numbers available to compare with. Typical Ds
were Dline=Ddiag=6 for up to 6�6 and 8 to 10 for 10�10,
and Dloop=4.

The relative errors in energy corresponding to Figs. 3 and
4 are shown in Fig. 5. While the energies obtained using SBS
are above the exact/PEPS data, the error does not seem to
depend on the system size or the choice of boundaries, which
suggests that the method should be equally applicable to
larger and PBC systems.

Let us now see whether SBS can reproduce the correla-
tion functions of the J1-J2 model. To this end, we use the
structure factor

S��� � = �
n� ,m�

ei�n�−m� �·�� 	�n� · �m� � . �9�

S��� � is the Fourier transform of the two-point correlation
functions 	�n� ·�m� �, i.e., it reveals information about the rela-
tive alignment of the spins, this is, the order of the system.26

The results for PEPS with OBC, SBS with OBC, and SBS
with PBC is displayed in Fig. 6. Note that the OBC results
exhibit the same characteristic properties for both PEPS and
SBS, while the SBS results for PBC are significantly differ-
ent in the region around J2 /J1=0.6, where the behavior of
the model is not yet fully understood. It is believed that in
this region, the system is in some kind of glassy phase.
While a signature of this phase can be seen in the case of
OBC both for the PEPS and the SBS data, the same signature
is completely absent in the case of periodic boundaries.
While this seems to suggest that the behavior of the system
in that region might be different for OBC and PBC, we
would like to stress that this is obtained from configurations
with energies clearly above the exact and PEPS data and thus
should be treated with care.

B. Three-dimensional systems

While some variational methods based on tensor networks
such as PEPS,7 multiscale entanglement renormalization An-
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satz �MERA�,17 or Monte Carlo based Ansätze such as SBS
�Ref. 19� or entangled plaquette states �EPS� �Ref. 20� have
been shown to be able to simulate two-dimensional frus-
trated quantum systems, none of the previous methods has
yet been applied to the simulation of systems in three dimen-
sions. In the following, we give results of SBS simulations
for three-dimensional frustrated quantum systems which are
comparable to those obtained in two dimensions.

The 3D simulations are based on the line pattern on a 3D
lattice with PBC and D=6. To benchmark the method, we
have simulated the 3D Ising model with transverse field, H
=�ZiZj +B�Xi, on an 8�8�8 PBC lattice, and compared
the result to QMC simulations carried out using the ALPS
package,27,28 as well as mean-field data. Figure 7 shows the
magnetization along x and the relative error in energy �inset�
as a function of the field B, and Fig. 8 the magnetization
squared along the Ising coupling, 	Mz

2�=�ij	ZiZj� /N2. Note
that the method becomes unstable close to the critical point
and frequently gives too large values for 	Mz

2�. This is not a
problem of the Monte Carlo sampling, which yields 	Mz

2�
with an accuracy of about 1% �with 1.6�106 Metropolis
updates, where 	Mz

2� is sampled on every 100th configura-
tion�. Rather, this effect is due to the fact that variational

methods using MPS and related Ansätze such as SBS gener-
ally tend to break symmetry close to the critical point even in
1D, as has been also observed elsewhere.29 This can be un-
derstood in two ways: first, the entanglement entropy of the
ground state diverges at the critical point so that the ground
state cannot be exactly reproduced by states such as MPS or
SBS which obey an area law, thus driving the Ansatz into
symmetry-broken solutions with slightly higher energy but
less entanglement. Second, variational Ansätze have a gen-
eral tendency to break symmetries as this corresponds to
having less �connected� long-range correlations, and estab-
lishing such correlations is difficult to accomplish by doing
local optimizations. For example, in the most extreme case,
once the matrices in the MPS or SBS do not have full rank
any more, the subspace not used by the matrix is lost for the
optimization as it cannot be seen any more by local varia-
tions and in particular by a gradient search.

After having tested our 3D algorithm on the Ising model,
we have subsequently applied SBS to simulate a frustrated
XX model in a transverse field on a 3D square lattice,

H = �
	i,j�

Jij
�i
x� j

x + �i
y� j

y� + B�
i

�i
z, �10�

where 	i , j� denotes nearest neighbors on the 3D square, and
Jij = 1 is chosen such that the system is frustrated around
every plaquette, as illustrated in Fig. 9. There are several
reasons for choosing this model: first, it is frustrated and thus
cannot be simulated by QMC due to the sign problem. Sec-
ond, its lower symmetry as compared to an SU�2� invariant
model makes it easier to simulate. Finally, for this model, the
z magnetization Sz is a good quantum number. Thus, the
behavior of the model can be completely understood if the
minimal energy Em for fixed m�Sz at zero field is known:
the minimal energy within each subspace with given magne-
tization m decreases linearly with the field, Em�B�=Em−Bm,
and the magnetization m at a given B is the one for which
Em�B� becomes minimal.

FIG. 6. �Color online� The absolute value of the structure factor
S��x ,�y� as defined in Eq. �9� computed for the J1-J2 model on a
10�10 lattice as a function of the ratio J2 /J1. The plot compares
the results obtained on an OBC lattice using PEPS �Ref. 7� with
both the OBC and the PBC result found using SBS. One finds that
for OBC, SBS reproduce the characteristics of the PEPS results, and
there is the signature of an intermediate glassy phase around
J2 /J1=0.6. For PBC, on the contrary, there is no signature of an
intermediate phase, which is missing for PBC. Note that this obser-
vation should be taken with care, as the SBS energies are typically
a few percent above the PEPS. The wavelike artifacts which can be
seen especially for OBC around J2 /J1=0.6 are probably due to the
fact that the string pattern has preferred axes.
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We have computed the Em for the model �10� on a 6�6
�6 lattice and from these data determined the ground-state
energy and the magnetization as a function of the field. The
results are shown in Fig. 10, where we compare it to mean-
field data, which we also used to bootstrap the SBS Ansatz.
We found that most of the improvement is already obtained
for D=2 �D=1 being mean field� and for D=6, the method
was fully converged.

In order to estimate the performance of the Ansatz, we
have compared both mean field and SBS to the exact solu-
tion on a 2�2�4 lattice. The results are shown in Fig. 11:
while both energy and magnetization are still away from the
exact solution, the values obtained using SBS are signifi-
cantly more accurate than the mean-field solution.

V. CONCLUSIONS

In this work, we have presented numerical results ob-
tained with the recently introduced string-bond state �SBS�
Ansatz for frustrated quantum spin systems in both two and
three dimensions and for open and periodic boundaries.

While the results obtained for 2D OBC systems were above
the results found using PEPS, the more favorable scaling of
the method allowed us to go beyond 2D and OBC and obtain
similarly accurate results for 2D PBC and 3D frustrated sys-
tems, which often cannot be simulated otherwise.

The computational resources needed for the simulation
are moderate, as the contraction of the strings scales only
with D3, and the Ds used are much smaller than those in
DMRG; typical simulations for the J1-J2 model took less
than two days using a MATLAB code on a single processor.
The method allows for parallelization in evaluating energy
and gradient on the Monte Carlo sample with low interpro-
cess communication. Optimizations are possible with respect
to caching contracted strings and reusing them in consecu-
tive Monte Carlo samples, as well as in reusing Monte Carlo
samples after small updates.

There are two main challenges in the implementation of
the algorithm. First, one needs a systematic way of growing
the string pattern which is suitable for the problem at hand.
As one can see in Fig. 2, the same string patterns lead to
different improvements depending on the underlying model.
Related to this, the performance of the method on non-SU�2�
invariant models will also depend on the choice of the local
basis in which the sampling is performed, since this will
affect the probability distribution sampled over. The second
important point is to choose the proper initial state for the
optimization. In particular, we have observed for the three-
dimensional frustrated XX model presented in the paper that
the algorithm performs much better when starting from the
mean-field solution as compared to a random initial state.
Here, it seems that the important information is the proper
sign of the wave function rather than the amplitude, as the
latter can be easily changed by the gradient flow. �Note how-
ever that the performance for the J1-J2 model did not depend
on the choice of the initial state.� The proper choice of the
sign pattern will likely also pose a central challenge when
applying SBS to fermionic systems; note however that this
might be overcome by using fermionic SBS, analogous to
fermionic PEPS,30,31 instead of mapping the system to spins
via a Jordan-Wigner transform.

FIG. 9. �Color online� Coupling pattern for the 3D frustrated XX
model Eq. �10�, illustrated for an elementary cell of size 2�1�2.
The thick red edges represent ferromagnetic couplings Jij =−1,
while the other edges correspond to antiferromagnetic couplings,
Jij =1. Note that the role of ferromagnetic and antiferromagnetic
couplings, as well as the axes of the model, can be swapped by
local �z transformations.
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