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Abstract: In any precision manufacturing process, positioning systems play a very important role
in achieving a quality product. As a new approach to current systems, camera-LCD positioning
systems are a new technology that can provide substantial improvements enabling better accuracy
and repeatability. However, in order to provide stability to the system a global positioning system
is required. This paper presents an improvement of a positioning system based on the treatment
of images on an LCD in which a new algorithm with absolute reference has been implemented.
The method is based on basic geometry and linear algebra applied to computer vision. The algorithm
determines the spiral center using an image taken at any point. Consequently, the system constantly
knows its position and does not lose its reference. Several modifications of the algorithm are proposed
and compared. The simulation and test of the algorithm provide an important improvement in the
reliability and stability of the positioning system providing errors of microns for the calculation of
the global position used by the algorithm.

Keywords: accuracy; pattern recognition; positioning; artificial vision; precision

1. Introduction

Recent studies have demonstrated the benefits of using computer vision systems for automatic
machine tool control. In fact, the toolpath optimization in a Computer Numerical Control machine
(CNC machine) was studied by Ahmad et al. [1] using image processing algorithms. More recently,
Zhang et al. [2] estimated the position of the cutting tool by reconstructing a 3D image using a
single camera. In addition, to protect the machines against collisions between tools and fasteners,
Karabagli et al. [3] developed a vision system for automatic verification of machining accessories. In the
context of micromachining, Chen et al. [4] proposed a machine method to measure and compensate for
errors caused by the inaccuracy of mechanical systems. Furthermore, different closed loop positioning
systems that analyze the patterns shown in the image of the LCD screen have been developed,
achieving a certain degree of accuracy using different approaches such as in Wong [5], Montes [6],
Leviton [7] and more recently by de Francisco [8,9].

Identifying the same points in two images to control the position is essential in the analysis of
the movement controlled by vision. The calculation of the movement of an object from a sequence of
two-dimensional images has been extensively analyzed and discussed by Roach [10] and Yachida [11]
using two frames of a sequence to solve this problem. Later Sethi [12] used a sequence of frames
to explore the smoothness of the motion by proposing an iterative algorithm to find trajectories of
points in a monocular image sequence. Ramírez-Hernández [13] proposes a novel camera calibration
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method to improve the accuracy of stereo vision systems for three-dimensional point localization.
In his approach, the least square method was used to model the error caused by the image digitization
and the lens distortion with two images taken by two different cameras. Other machine vision
systems have been used to experimental measurement of velocity as in Valenzuela-Delgado [14],
Castro-Toscano [15,16].

The use of geometric and symmetric patterns in a vision system provides a good local
positioning system, which requires additional external information to achieve absolute positioning
successfully [9] or depends on the previous relative positions assuming the cumulative errors generated.
This manuscript presents a step forward creating an asymmetric and non-periodic pattern so that each
image taken is unique. A spiral pattern, including the conditions mentioned, is presented as a solution.
Pattern analysis using the artificial vision algorithm will be more difficult than the analysis required
by using a symmetric pattern but will provide better results in the overall positioning system.

The algorithm used for the analysis was initially created using Matlab [8]. Theodoridis [17]
describes how to perform pattern recognition using Matlab. The solution presented in this work
consists of the use of a logarithmic spiral as a geometric base to calculate the global positioning.
Mathematical aspects of the logarithmic spiral have been studied by Catrakis [18], who clarifies
and summarizes years of mathematical studies on spirals considering mathematical aspects of the
logarithmic spiral and its utility in turbulence modeling. Logarithmic spirals have also been analyzed
and used in image processing, but with different approaches as summarized below.

Weiman [19] presented a picture digitization grid based on logarithmic spiral coordinates but
focused on edge detection applied to large images. Later, Rojer [20] discussed about a space-variant
sensor design based on the conformal mapping of the half disk, which characterizes the anatomical
structure of the primate, and human visual systems. He presented an analysis which makes it possible
to compare directly the space complexity of different sensor designs in the complex logarithmic family.
More recently, Palacios [21] proposed an image processing for computer vision based on a combined
map. This method was applied to a model on the workings of visual cortical area which attributes are
approximately logarithmic at the periphery. Finally, Zhao [22] discussed some of the main features
of biological eagle-eye vision technology, providing a study about the eagle-eye and its relation with
visual information processing technology, including the logarithmic spiral movement of the eagle and
the eagle-eye visual attention mechanism.

The work presented below is based on the calculation of a logarithmic spiral center with three
different methods using the same mathematical background, based on the treatment of images on
an LCD in which a new algorithm with absolute reference has been implemented. As will be shown,
a comparison has been made between the algorithms developed for each method to determine which
provides better consistency and accuracy during position determination. The most accurate method
presents an important improvement in the reliability and stability of the positioning system. As novelty,
the simulation and test provide errors of microns for the calculation of the global position used by
the algorithm.

2. Methodology

The need for a global reference coordinate system to accurately determine the position is,
as already introduced, a necessary requirement to achieve stability and reliability in the positioning
system. In addition, one of the main problems of the system presented and developed in the previous
related works, due to the use of a repetitive pattern on the LCD screen, is the inability of the system to
know exactly its absolute position, so in a situation of loss of reference, it causes the system to get lost.

There are different solutions that can be implemented to solve this problem. The most obvious
would be to use another camera with a wider view of the work environment to determine the overall
position; however, one might fear that it may introduce a lack of precision, and it would be necessary
to implement another image processing algorithm. Furthermore, additional parts such as the second
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camera or its necessary support would make the micro-positioning system more complex and would
not fulfill the original idea of using a system that is as efficient and cost-effective as possible.

Therefore, in order to maintain the same structure and hardware components of the original
system to improve the global positioning system, a software modification is presented as the most
suitable option.

Since a periodic and symmetrical pattern presents the aforementioned problem, it has been
proposed to use an asymmetric and non-periodic pattern. Therefore, each image taken by the camera,
regardless of the area of the image seen, is unique. Consequently, a logarithmic spiral pattern that
includes the exposed conditions has been implemented. Spiral pattern analysis using the artificial
vision algorithm will be more complex but will lead to better results.

The calculation method uses the properties of the logarithmic spiral such as the angle α built
by the radius and tangent vectors at a point of the curve, remains constant all points of the curve as
shown in Figure 1.
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Figure 1. Representation of the constant angle α at any point of the logarithmic spiral.

2.1. Method 1: Slope at the Point of Tangency

The camera used by the visual positioning system focuses on a specific area of the spiral shown
on the screen, and this property is sufficient to calculate a global position. However, the center of
the spiral must be approximated each time a movement is made. If the accuracy of the estimated
central point is sufficient, the system may know its position. To do this, a simulation with a random
spiral in Matlab will first be performed to validate the method; then, the spiral parameters will be
discussed to find the values that best suit the real situation. As a starting point to simulate such a spiral,
it is reminded that an arbitrary logarithmic spiral centered in a point O = (xc, yc) is parametrized by
Equation (1) {

x(t) = aebt cos(t) + xc

y(t) = aebt sin(t) + yc,
(1)

where x is the abscissa of the spiral in a Cartesian coordinate system and y is the ordinate; a is the
amplitude or scale factor; b is the divergence and t is the parameter to set the range of the spiral. In the
presented case, the coordinates of the center xc and yc are randomly chosen by the algorithm.

Once the spiral has been generated, the first step of the method consist of taking the camera’s
vision at an arbitrary portion of the spiral as shown in Figure 2, the green frame. This frame will be
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denoted as the region of interest (ROI). In the ROI, coordinates have been introduced in such a way that
the origin (0, 0) agrees with its lower left corner. This reference system is really important since the
center of the spiral must be in the image reference system. In this way, all distances and coordinates
will be expressed in the frame reference system (which simulates the image taken by the camera).

Figure 2. Method 1: Logarithmic spiral representation and analysis area (ROI). Axes in Matlab units.

For the example shown in Figure 2, the values a = 1, b = 0.05, xc = 4, yc = 4 have been taken,
obtaining a value of α = 87.1376◦ by means of Equation (2)

α = arctan(1/b). (2)

The second step consists in the reconstruction of the spiral only in the ROI, as shown in Figure 3,
simulating the pixels as points in order to work without mathematical functions during this stage.

For the third step, two points are selected in the spiral, and two straight lines passing through
these points that approximate the tangent lines at the spiral are drawn. To do this, a point P0 is
considered in the spiral having minimum distance d to the center of the ROI, denoted by Pc. Then,
the points Pm and Pn are taken in the spiral at a distance of d points to P0.

In the example shown in Figure 3a, the center Pc has coordinates (2.5, 2.5), and a distance of 20
points has been selected as shown in Figure 3b. Table 1 shows the x and y coordinates of the initial
point P0 on the curve and the points Pm and Pn where the approximation of the tangent lines will
take place.

Table 1. Coordinates x and y of the selected points to plot the approximated tangents in method 1.

Coordinate Pm P0 Pn

x 2.25185 2.38209 2.52098
y 2.54879 2.39567 2.25308
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Figure 3. Logarithmic spiral: (a) ROI central point Pc and the chosen P0, Pm, Pn; (b) Enlargement to
show the points gap between Pm and Pn.

An approximation to the tangent line passing through Pm is obtained by means of the well-known
Equation (3)

ytan =
dy ∗ (xtan − x (Pm))

dx
+ y(Pm), (3)

where (x(Pm), y(Pm)) are the coordinates of the point Pm; dx and dy stand for the difference of the x
and y coordinates between the points Pm and its contiguous; and ytan, xtan are the ordinate and abscissa
of the straight line. The same discussions hold for the point Pn. The straight lines passing through Pm

and Pn are calculated as shown in Figure 4.

Pn

Pm

(a)

Pm

(b)

Figure 4. Approximated tangent lines at points Pm and Pn: (a) General view throughout the ROI;
(b) Enlargement over tangency points.
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Now, the line passing through Pm (respectively through Pn) is rotated an angle α, obtaining
the straight line with direction~rm (respectively the straight line with direction~rn). The intersection
between such lines, named O1, will be the approximation to the center of the spiral O. See Figure 5 for
a diagram of this construction.

Pm

Pn

o

(a)

Pm

Pn

o

rm

rn

(b)
Figure 5. Lines with directions~rm and~rn that pass through Pm and Pn, respectively: (a) General view;
(b) Enlargement over the line drawing area.

2.2. Method 2: Compensated Slope

A second calculation method has been tested that relaxes the errors that could be made in
the calculation of the tangent line with the information of a single point as performed by method
1. The goal remains the same, but the calculation method differs slightly. In this case, instead of
calculating the tangents with Equation (3), lines that pass through one of the initial points (Pm and Pn)
are drawn but other adjacent points at both sides of Pm and Pn are used to generate more tangents lines
to include its slopes as part of the final tangent calculation (Figure 6). One of the critical parameters of
this method is, therefore, the determination of the number of lines to be drawn for the calculation (for
the example shown, 100 lines have been selected for each of the points adjacent to Pm and Pn). The aim
of this method is to compensate for the error due to the discretization of the spiral in Matlab since the
program uses independent points to generate the curve instead of a real continuous line.

At a later stage, a weighted average m̄ of the slopes is calculated, providing more weight to the
lines drawn with points closer to the starting point using Equation (4), where mi is the value of the
slope calculated at point i and wi is the weight given to the slope at point i for the calculation of
the average.

m̄ =
∑n

i=1 miwi

n
. (4)

Once the weighted slopes m̄m and m̄n at points Pm and Pn have been calculated, the tangent lines
at these points are approximated using as tangent directions the slopes found. Next, it is proceeded as
in method 1: the approximated tangents are rotated an angle α, and the intersection of such rotations
is the approximated center O2.
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Pm
Pn

o

(a)

Pm

(b)
Figure 6. Lines adjacent to the points Pm and Pn: (a) General view throughout the ROI; (b) Enlargement
on the point Pm, showing the straight lines.

2.3. Comparison of Methods 1 and 2

Comparing the two exposed methods there are small differences in the approximated centers
obtained, although both methods seem to be good approximations to the calculation (Figure 7).

Pm

Pn

o

algorithm 1
algorithm 2

(a)

Pm

Pn

o

algorithm 1
algorithm 2

(b)
Figure 7. Methods 1 and 2 applied on points Pm and Pn: (a) Overview; (b) ROI area.

With the selected parameters, the error in the calculation of the spiral center coordinates given by
method 1 is represented in Figure 8a. This is compared graphically in Figure 8b in which the center
is calculated as the intersection of the rotations of the tangents calculated at points Pm and Pn for the
average of 60 slopes. Since the numerical value depends on the spiral creation parameters, it is not the
most relevant data in this section. O designates the position of the real center of the spiral, O1 indicates
the position of the center of the spiral calculated according to method 1 and O2 references the position
of the center of the spiral calculated according to method 2.



Sensors 2020, 20, 2118 8 of 18

o

Pm radius - method 1
Pn  radius - method 1

O1

(a)

o
O1

O2

Pm radius - method 1
Pn  radius - method 1
Pm radius - method 2
Pn  radius - method 2

(b)
Figure 8. Approximations of the center of the spiral: (a) According to method 1; (b) Graphical
comparison between method 1 and method 2.

The error provided by method 2 is greater than the one corresponding to method 1.
Several simulations of the calculation of the spiral center have been carried out with both methods to
verify stability, accuracy and precision. To do this, the calculations have been repeated 10 times and
are represented in Figure 9, in which two circumferences have been drawn representing the maximum
error found using each method, where O1i with i = 1, . . . , 10, indicates the position of the centers of the
spiral calculated according to method 1 for each iteration. Equivalently, O2i with i = 1, . . . , 10, indicates
the position of the centers of the spiral calculated according to method 2 for each of the iterations.

o

Max. error method 1
Max. error method 2

O1i

O2i

Figure 9. Comparison of the error made in the calculation of the spiral center using method 1 and 2
with 10 iterations.

With the results obtained for the comparison of methods 1 and 2, the ratio between the radii of
the maximum error circumferences shown in Figure 9 has a value of 8.33, confirming that method 1
makes an error of approximately 8 times less than method 2.
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2.4. Parameters Influencing the Error

Method 1, which uses the rotation of the tangent line at a point in the spiral, the angle α known,
provides better results than method 2, so it will be chosen as part of the final algorithm used for
implementation in the global positioning system. The error depends on the accuracy when plotting the
tangents, and therefore, on the distance d between the points used to calculate dx and dy in Equation (3).
Given the importance of the d parameter, a simulation was carried out using 11 different values of
distances between points to compare errors. Each point represented is the average of 100 iterations.
The results are shown in Figure 10, whose axes are represented in logarithmic scale and Matlab units.
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Figure 10. Errors in the calculation of the position of the center of the spiral (O1) based on the distance
between two consecutive points of the spiral (d) for method 1. The values next to each point represent
the execution time of the algorithm (in seconds).

There is a clear relation between the error in the calculation of the center and the distance
considered between two consecutive points when representing the spiral in Matlab. As expected, at
a smaller distance d between points, the error when calculating the position of the center decreases,
being a clear linear relation between the error and the distance between points.

In addition, the time, in seconds, required for the execution of the algorithm for each distance
d is also represented in the same figure. That time does not increase linearly but much more slowly,
so the selection of the appropriated d parameter will have to be done looking for the best compromise
between the error and the calculation time.

2.5. Method 3: General System

The third method studied is based on the well-known Newton–Raphson method, which is a
root search algorithm that uses tangents. Cheney [23] already analyzed the process of successively
producing better approximations to the roots of a real valued function, but as Burden and Faires [24]
already described in their numerical analysis of functions, the determination of the central point cannot
be done exactly. Therefore, the error of the calculated coordinates of the center point must be evaluated.
In the two previous methods the main drawback is that the spiral parameters must be known in
advance. In fact, the value of the angle α must have been determined in advance because it is used by
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method 1 and method 2 to rotate the approximated tangent line vector and, consequently, be able to
find the approximated center of the spiral. Therefore, it is necessary to develop a method allowing
any type of logarithmic spiral to be used in the system, without prior knowledge of its parameters.
In particular, the angle of rotation α is unknown.

As in the previous methods, the objective is to approximate the coordinates of the central point
O = (xc, yc) of the spiral.

Three points (P1, P2, P3) are taken on the spiral of Figure 11, having coordinates Pi = (xi, yi),
i = 1, 2, 3. We will denote by~ri =

−→
PiO, i = 1, 2, 3 to the radius direction of the point Pi to the center O

of the spiral, by~ti, i = 1, 2, 3 to the tangent vectors to the spiral passing through each Pi, and by α to
the constant angle between~ri and~ti. We emphasize here that no approximations have been made yet.
Hence, the quantities α,~ti,~ri are related by using the definition of the scalar product as follows:

cos α =
< ~r1,~t1 >

‖ ~r1 ‖‖ ~t1 ‖
=

< ~r2,~t2 >

‖ ~r2 ‖‖ ~t2 ‖
=

< ~r3,~t3 >

‖ ~r3 ‖‖ ~t3 ‖
. (5)

where 
~r1 = (xc − x1, yc − y1)

~r2 = (xc − x2, yc − y2)

~r3 = (xc − x3, yc − y3)

(6)
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Figure 11. Elements and notation used in method 3.

Substituting the values of Equation (6) into Equation (5), the following system of equations
is obtained
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cos α =
< (xc − x1, yc − y1) | ~t1 >

‖ (xc − x1, yc − y1) ‖‖ ~t1 ‖

=
< (xc − x2, yc − y2) | ~t2 >

‖ (xc − x2, yc − y2) ‖‖ ~t2 ‖

=
< (xc − x3, yc − y3) | ~t3 >

‖ (xc − x3, yc − y3) ‖‖ ~t3 ‖
.

(7)

Note that system (7) has 9 indetermined values, namely, the center coordinates xc, yc, the angle
α and the coordinates of ~ti, i = 1, 2, 3. Thus, in order to give an approximate solution to this
system of equations, the tangent values~ti will be approximated as done in method 1 (Section 2.1);
these approximations will be named ~Ti. Once the approximated tangents are introduced in Equation (7),
a system of two equations and two variables x̂c and ŷc is obtained

< (x̂c − x1, ŷc − y1) | ~T1 >

‖ (x̂c − x1, ŷc − y1) ‖‖ ~T1 ‖
=

< (x̂c − x2, ŷc − y2) | ~T2 >

‖ (x̂c − x2, ŷc − y2) ‖‖ ~T2 ‖
,

< (x̂c − x2, ŷc − y2) | ~T2 >

‖ (x̂c − x2, ŷc − y2) ‖‖ ~T2 ‖
=

< (x̂c − x3, ŷc − y3) | ~T3 >

‖ (x̂c − x3, ŷc − y3) ‖‖ ~T3 ‖
,

(8)

where precisely, the variables x̂c and ŷc are the approximated coordinates of the expected center. That is,
solving system (8) by means of Newton–Raphson’s method, an estimation O3 = (x̂c, ŷc) to the center
of the spiral O is obtained (Figure 12).

O3

P1
P2
P3

t1 t2 t3

r1
r3r2

O

Figure 12. Graphical representation of method 3 with the approximated tangent and radial lines that
pass through the points P1, P2 and P3.

The Figure 13 shows the Flowchart for the three methods presented. Additionally, the errors
made in the determination of the spiral centers for the 3 proposed methods are shown in Figure 14
comparing graphically O1, O2, O3 and O, clearly appreciating that method 3 is much more accurate
than methods 1 and 2 (as it will be presented numerically below). Consequently, the error in method 3
is not distinguished in the mentioned figure, since it needs a much smaller graphic scale.
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METHOD 1 METHOD 2 METHOD 3

(known spiral parameters) (unknown spiral parameters)

START

random spiral
creation

ROI

calculation
Pc     P0    Pm, Pn

tangent calculation 
tm & tn using Pm±i & Pn±i

O2

calculation
Pc     P1, P2, P3

ti    method 1

cos α
relates

ri, ti & O3

O3

tangent calculation 
tm & tn using Pm+1 & Pn+1

Calcualtion of rm & rn

using angle α

Intersection rm & rn

O1

i = 1...100
i = 1,2,3

Newton-Raphson

i = 1,2,3

Figure 13. Flowchart methods 1-2-3.

O3

r1

r3

r2

O
O1

O2

Figure 14. Comparison of the 3 methods showing O1, O2, O3 and O.

Since method 3 provides better results than the previous ones, it will be the method selected for
implementation in the final global positioning system. Note that in this case the error depends only
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on the accuracy when estimating the tangents, and therefore, on the distance d between the points
used to calculate dx and dy in Equation (3). For this reason, given the importance of the distance d, a
simulation was carried out using 11 different values of distances between points in order to compare
the errors made.

On the one hand, the results of the aforementioned simulation are shown in Figure 15, where each
point represented is the average of 100 iterations and whose axes are represented in logarithmic scale
and Matlab units. As expected, with these results it is confirmed numerically, the lower the distance d
between points, the lower the error approximating the center. In fact, such relation seems to find an
optimal point of distance d versus error when d is in the range of 10−3. Moreover, the time, in seconds,
necessary for the execution of the algorithm for each distance d used is also included in Figure 15.
It is observed that the time does not increase linearly but much more slowly, so the selection of the
appropriate d parameter will be done looking for the best compromise between the error and the
calculation time, similar to the previous methods presented.
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Figure 15. Errors in the estimation O3 based on the distance d for method 3. The values next to each
point represent the execution time of the algorithm (in seconds).

On the other hand, the average errors, after 100 simulations with each distance d, made to estimate
the center of the spiral O for each of the three methods are presented in Table 2. It should be noted
that Matlab sometimes has difficulty solving system (8), particularly when d has a value below 0.001.
Several times no solutions could be found even existing.
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Table 2. Errors made by each of the 3 methods for the estimation of O based on the distance d.

d Error O1 Error O2 Error O3

0.1002 0.0523 0.5876 2.578 × 10−3

0.0501 0.0252 0.3372 1.393 × 10−3

0.0101 0.0051 0.0561 8.013 × 10−7

0.0051 0.0025 0.0318 3.168 × 10−8

0.0012 5.942 × 10−4 6.431 × 10−3 1.106 × 10−9

5.113 × 10−4 2.835 × 10−4 3.602 × 10−3 9.548 × 10−10

1.102 × 10−4 1.000 × 10−4 8.903 × 10−4 7.602 × 10−10

6.008 × 10−5 5.897 × 10−5 6.788 × 10−4 5.460 × 10−10

2.003 × 10−5 1.707 × 10−5 1.985 × 10−4 3.551 × 10−10

6.008 × 10−6 7.934 × 10−6 7.140 × 10−5 1.403 × 10−10

2.003 × 10−6 5.264 × 10−6 6.317 × 10−5 1.101 × 10−10

It is remarkable that these methods can provide large errors if the estimated tangent lines passing
through different points of the spiral are almost parallel, since their intersection would be found very
far away. As an example, during the simulations, some values found for O1, O2 and O3 had an error of
the order of 103 with respect to the true center of the spiral when the points separated by a distance
d were very close (below 10−1). However, this issue would be easily avoidable being careful when
choosing the points in the spiral, that is, it should be checked that the selected points have direction
vector of their tangent lines far from being parallel. Otherwise, newly revised points are selected
taking into account this fact, and so the methods will work properly.

2.6. Actual Parameters, Experimental Results and Discussion

The results provided by the three methods presented have been carried out in Matlab with units
and scales provided by the software itself, so the units are relative to the distances used. However, in
order to implement any of these methodologies in a real positioning system, the true dimensions of
the LCD screen where the logarithmic spiral will be displayed should be used. Therefore, the actual
parameters must be taken into account. The LCD of the test device has a resolution of 1136× 640 pixels
and 326 ppi. In addition, the error expressed in generic Matlab units must be converted to millimeters
to evaluate the accuracy of the method.

The micro-positioning test device where the presented methods will be applied in a future phase of
this project consists of a two-dimensional control system (Figure 16) [9] with two stepper motors (ST28,
12, 280 mA) which control and move two precision guides (IKO BSR2080 50 mm stroke) connected to a
M3 ball screw/nut. The LCD screen used provides a 1136× 640 pixel resolution, 326 ppi, and 0.078 mm
dot pitch. The screen size was 88.5 × 49.9 mm. Both stepper motors are controlled by the digital
output signals provided by an NI 6001-USB data acquisition card connected to the USB port of a laptop
computer. The output signal of the acquisition card is treated by a pre-amplification power station
composed of two L293 H-bridges. The control is programmed in LabVIEW. It receives the image
captured by the camera and processes it according to an image enhancing process, which consists of
an image mask application with color plane extraction, fuzzy pixel removal, small object removal, and
particle analysis of the mass center of each evaluated pixel. Once the data of the image are processed
using the artificial vision algorithm, they provide the positioning feedback signals needed to move the
x and y axes on the test device platform. The images are taken by a digital camera (model MITSAI
1.3M, 1280× 1024 pixels) included in the device.
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Figure 16. Micro-positioning test device for the calculation of the equivalences in mm of the study
performed in Matlab.

Taking an amplitude or scale factor a = 1 and a screen width of 640 pixels, it corresponds to
4.202453987724 units in the Matlab scale. Since 640 pixels have a width of 51.70 mm (width of the
LCD screen used), each Matlab unit corresponds to 12.30233577 mm. The equivalence between both
systems (Matlab units vs. Display units) is shown in Table 3.

Table 3. Equivalence between Matlab units and display units in mm.

Matlab Units Equivalence in mm

4.202453987724 51.7
0.0812853769385687 1

1 12.30233577

The consistency in the determination of the center of the spiral is tested with 1000 iterations using
method 3. The average error e and the standard deviation s of the sample are presented in Table 4.
The parameters of the spiral are: a = 1, b = 0.05, d = 0.05 mm.

Table 4. Average error e and standard deviation s, in millimeters, between the real center and the center
provided by method 3 using as spiral parameters a = 1, b = 0.05, d = 0.05 mm in a simulation of
1000 iterations.

Statistical Error
Parameter ×10−6 mm

e 0.3996
s 0.2188

Therefore, it has been possible to develop an absolute positioning system with an error below
1 mm without using very small values of the distance between points d, being the algorithm accurate
and fast. However, the disparity in the results is remarkable. The non-precision or high distribution of
them around the average value is clearly reflected in the value obtained for the standard deviation
with a value close to 53% of the average value itself. This effect has been minimized by increasing
the number of iterations in each simulation. Consequently, although the average value provides a
valid number, in the future, it will be necessary to improve the algorithm to achieve better stability
and accuracy.

The errors, in mm, made by each of the three methods shown in Table 5 and in Figure 17 highlight,
once again, the great difference in accuracy of method 3 with respect to methods 1 and 2. In addition,
once the Matlab scale has been converted to the scale used in the positioning system, it is observed
that the errors made in the calculation of the spiral center position with method 3 are below 1 µm just
selecting the distance values d below 0.12 mm.



Sensors 2020, 20, 2118 16 of 18

Table 5. Errors, in mm, made by each of the 3 methods for the estimation of O based on the distance d.

d d Error O1 Error O2 Error O3
(Matlab) (mm) (mm) (mm) (mm)

0.100200000 1.232694044 0.643412161 7.228852498 0.0317104638
0.050100000 0.616347022 0.310018861 4.148347621 0.0171334753
0.010100000 0.124253591 0.062741912 0.690161035 0.0000098582
0.005100000 0.062741912 0.030755839 0.391214275 0.0000003897
0.001200000 0.014762803 0.007310417 0.079113369 0.0000000136
0.000511270 0.006289815 0.003487343 0.044308583 0.0000000117
0.000110170 0.001355348 0.001230725 0.010953013 0.0000000094
0.000060084 0.000739174 0.000725494 0.008350535 0.0000000067
0.000020026 0.000246367 0.000210014 0.002442264 0.0000000044
0.000006008 0.000073908 0.000097597 0.000878375 0.0000000017
0.000002003 0.000024635 0.000064745 0.000776931 0.0000000014

10−510−410−3

Method 3

Method 2

Method 1

Error O1 - O2 - O3
(Methods 1 - 2 - 3)

Distance between two consecutive points (mm)

0

Figure 17. Errors in the estimations O1, O2, O3 based on the distance d for methods 1, 2 and 3 in mm.

3. Discussion and Conclusions

A global reference system is a requirement in any positioning system that aims to provide
robustness and stability. Therefore, absolute reference is a key factor in precision positioning systems
since a loss of reference causes a reduction in accuracy and precision. Because of this, in this work,
three different methods have been presented to achieve an absolute positioning system based on
a vision system in which an asymmetric pattern in the form of a logarithmic spiral has been used.
This pattern is different from the one used for the development of the camera-screen system presented
in previous works [8] based on a pattern of illuminated repetitive LEDs on the screen in which the
position calculation was always based on the relative position with respect to the previous point
calculated. Such a method, in case of mechanical errors in the system, could provide multiple position
solutions, causing the loss of reference.

The three methods presented are based on the property of the logarithmic spiral in which the
tangent line at any point of the curve and the line that passes through the center of the curve from
that point form a constant angle. The algorithms have been tested by performing different simulations
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in Matlab, taking random images of an area of the logarithmic spiral represented and calculating the
position of the center of the spiral. If the center position is known, the system is able to position itself
with respect to the rest of the system, achieving the desired absolute positioning system. All the studied
algorithms present good solutions for the calculation of the spiral center position. However, methods 1
and 2 need to know the constant angle of the spiral for the calculation of the center; whereas, method
3, based on the Newton–Raphson method, in addition to not requiring any of the spiral parameters to
be known in advance, is the method that provides the smallest errors in the calculation of the center
position. Since the errors depend on the discretization of the curve in its simulation that is defined
by the distance between points of the spiral used, different simulations have been made finding that,
with a distance of 0.05 mm between points on the curve, method 3 is able to position the center of the
spiral with an error of less than 1× 10−6 mm. The novelty of this work is, on the one hand, a new
approach to a global positioning system using the non-periodic pattern of a logarithmic spiral and,
on the other hand, the reduction of the error in the determination of the global positioning which can
be implemented in a micro positioning system.
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